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Fundamentals of Plane Elasticity

The purpose of this chapter is to present the solution to
plane elasticity problems, based on the use of complex-valued
potentials. An isotropic linear elastic behavior is considered
(except in section 1.8).

1.1. Complex representation of Airy’s biharmonic stress
function

Let U be an Airy stress function, from which the stress
components in plane elasticity conditions are derived
according to:

σxx =
∂2U

∂y2
; σyy =

∂2U

∂x2
; σxy = − ∂2U

∂x∂y
[1.1]

Let Πσ = σ − σzzez ⊗ ez denote the projection on the plane
(ex, ey) of a stress tensor σ defined by [1.1]. It is readily proven
that Πσ is given by:

Πσ = (ΔU) (1− ez ⊗ ez)−∇(∇U) [1.2]
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This expression is useful for the derivation of the
components of σ in polar coordinates as a function of the
partial derivatives of U . To do so, we recall that:

ΔU = U,rr +
1

r
U,r +

1

r2
U,θθ [1.3]

and

∇(∇U) = U,rrer ⊗ er + (
1

r
U,r +

1

r2
U,θθ)eθ ⊗ eθ

+(
1

r
U,rθ − 1

r2
U,θ)(eθ ⊗ er + er ⊗ eθ) [1.4]

Introducing [1.3] and [1.4] into [1.2], we obtain:

σ,rr =
1

r
U,r +

1

r2
U,θθ; σ,rθ = −1

r
U,rθ +

1

r2
U,θ; σ,θθ = U,rr [1.5]

Equations [1.5] are the counterpart in polar coordinates of
equations [1.1]. The compatibility condition of the strains,
which reads:

∂2εyy
∂x2

+
∂2εxx
∂y2

− 2
∂2εxy
∂x∂y

= 0 [1.6]

is ensured, in the case of an isotropic linear elastic behavior,
by the condition

ΔΔU = 0 [1.7]

As a matter of fact, under plane stress or strain conditions,
the assumption of linear isotropy allows to write the state



Fundamentals of Plane Elasticity 5

equations in the form:

εxx = A11σxx +A12σyy
εyy = A12σxx +A22σyy
2εxy = A66σxy

[1.8]

Under plane stresses, the elastic compliances Aij are:

A11 = A22 =
1

E
; A12 = − ν

E
; A66 =

2(1 + ν)

E
[1.9]

Under plane strains, these relations become:

A11 = A22 =
1− ν2

E
; A12 = −ν(1 + ν)

E
; A66 =

2(1 + ν)

E
[1.10]

In both plane strains and plane stresses, the Aij satisfy:

2A12 +A66 = 2A11 = 2A22 [1.11]

Combining [1.1] with [1.10] and using [1.11], we see that
condition [1.6] reduces to [1.7]. Such a biharmonic function U
is now considered. Let P = ΔU . By definition, P is a harmonic
function. Let Q denote the conjugate function, defined up to a
constant by:

∂P

∂x
=

∂Q

∂y
;

∂P

∂y
= −∂Q

∂x
[1.12]

This implies that the complex-valued function f(x + iy) =
P (x, y) + iQ(x, y) is holomorphic, which means that the limit
(with z = x+ iy)

lim
dz→0

f(z + dz)− f(z)

dz
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exists. Indeed, at the first order in dx and dy:

f(z + dz)− f(z) =
∂P

∂x
dx+

∂P

∂y
dy + i

(
∂Q

∂x
dx+

∂Q

∂y
dy

)
[1.13]

Using [1.12] with [1.13] yields

f(z + dz)− f(z) =

(
∂P

∂x
+ i

∂Q

∂x

)
dz [1.14]

so:

f ′(z) = lim
dz→0

f(z + dz)− f(z)

dz
=

∂P

∂x
+ i

∂Q

∂x
[1.15]

Following [MUS 53], consider now a primitive φ(z) = p+ iq
of f(z)/4:

φ′(z) =
1

4
f(z)

where p and q are two conjugate harmonic functions.
Therefore, we have:

∂p

∂x
=

∂q

∂y
=

P

4
; P = 2(φ′(z) + φ′(z)) [1.16]

We can see that

p1 = U − px− qy

is harmonic, and that

px+ qy = Re(zφ(z))



Fundamentals of Plane Elasticity 7

Finally, let χ(z) denote the holomorphic function whose real
part is p1:

p1 = Re(χ(z)) =
1

2

(
χ(z) + χ(z)

)

Following these definitions, we have:

U =
1

2

(
χ+ χ+ zφ(z) + zφ(z)

)
[1.17]

For future purposes, let us determine the partial
derivatives of U . Observing that ∂z/∂x = ∂z/∂x = 1, we first
obtain:

∂U

∂x
=

1

2

(
χ′(z) + χ′(z) + φ(z) + φ(z) + zφ′(z) + zφ′(z)

)
[1.18]

In turn, ∂z/∂y = −∂z/∂y = i yields:

∂U

∂y
=

i

2

(
χ′(z)− χ′(z) + φ(z)− φ(z) + zφ′(z)− zφ′(z)

)
[1.19]

It is convenient to summarize these results in the form:

∂U

∂x
+ i

∂U

∂y
= φ(z) + zφ′(z) + ψ(z) [1.20]

with the notation ψ(z) = χ′(z).

1.2. Force acting on a curve or an element of arc

Let us consider a curve oriented by the tangent unit vector
t:

t =
dx

ds
ex +

dy

ds
ey
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where s denotes the curvilinear abscissa. The positive
direction of the normal unit n is defined such that (n, t) is
oriented like (ex, ey). This being the case, we have:

n = t ∧ ez =
dy

ds
ex −

dx

ds
ey

Using [1.1], the components of the stress vector T = σ · n
read:

Tx = ex · σ · n = σxxnx + σxyny =
d

ds

(
∂U

∂y

)

Ty = ey · σ · n = σyxnx + σyyny = − d

ds

(
∂U

∂x

) [1.21]

The elementary force Tds acting on ds is represented by
a complex dF with real and imaginary parts Txds and Tyds.
Using [1.21], this yields:

dF = (Tx + iTy)ds = −i d
(
∂U

∂x
+ i

∂U

∂y

)
[1.22]

By integration, we obtain the resultant force F acting on a
given arc oriented from A to B. Introducing [1.20] into [1.22],
the components Fx and Fy are given by:

Fx + iFy = −i[φ(z) + zφ′(z) + ψ(z)]sBsA [1.23]

The boundary conditions on a loaded arc are an important
application of this result. In the following, let f(z) be defined
as:

f(z) = φ(z) + zφ′(z) + ψ(z) = i

∫
ABz

(Tx + iTy)ds+ Const [1.24]
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where the point A is fixed and z denotes the affix of point Bz.
f(z) is a complex representation of the resultant force acting
between A and Bz on the considered arc. f(z) is defined up to
constant.

For instance, consider a uniform pressure acting on the
loaded arc:

Tx = −pnx = −pdy
ds

; Ty = −pny = p
dx

ds

or

(Tx + iTy)ds = p(−dy + idx) = ip(dx+ idy) = ip dz

Introducing this result into [1.24], we obtain:

df = −p dz; f = −pz + Const [1.25]

1.3. Derivation of stresses

Consider the choice ds = dy in [1.22], for which t is equal
to ey so that n is equal to ex. This implies that Tx = σxx and
Ty = σxy:

σxx + iσxy = −i ∂
∂y

(
φ(z) + zφ′(z) + ψ(z)

)
= φ′(z) + φ′(z)− zφ”(z)− ψ′(z) [1.26]

In turn, if ds = −dx, t is along −ex, so that n = ey. Hence,
we have Tx = σxy and Ty = σyy:

σyy − iσxy =
∂

∂x

(
φ(z) + zφ′(z) + ψ(z)

)
= φ′(z) + φ′(z) + zφ”(z) + ψ′(z) [1.27]
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Combinations of these relations successively yield:

σxx + σyy = 2
(
φ′(z) + φ′(z)

)
= P [1.28]

where [1.16] has been used, and

σyy − σxx + 2iσxy = 2
(
ψ′(z) + zφ”(z)

)
[1.29]

The stress components in cartesian and polar coordinates
being related by:

σrr + σθθ = σxx + σyy

σθθ − σrr + 2iσrθ = e2iθ(σyy − σxx + 2iσxy)

[1.30]

it is readily seen from [1.28] and [1.29] that:

σrr + σθθ = 2
(
φ′(z) + φ′(z)

)
σθθ − σrr + 2iσrθ = 2e2iθ

(
ψ′(z) + zφ”(z)

) [1.31]

The stresses are not modified if φ(z) is replaced by φ(z) +
iCz + γ and if ψ(z) is replaced by ψ(z) + γ′, where γ and γ′

are complex-valued constants and C is a real-valued constant.
Let us assume that the origin z = 0 is part of the domain of
study. If the boundary conditions prescribe stresses only, the
arbitrariness of the definition of φ(z) and ψ(z) allows us to
choose them in such a way that:

φ(0) = 0; ψ(0) = 0; Imφ′(0) = 0 [1.32]

When the domain of study is infinite, another possibility is
to define φ(z) and ψ(z) by conditions at infinity of the form:

φ(∞) = 0; ψ(∞) = 0; Imφ′(∞) = 0 [1.33]
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1.4. Derivation of displacements

In plane strains, the isotropic linear elastic constitutive
equation reads:

2μ
∂ξx
∂x

= σxx − ν (σxx + σyy)

2μ
∂ξy
∂y

= σyy − ν (σxx + σyy)

[1.34]

Observing that σxx = ∂2U/∂y2 = P − ∂2U/∂x2, and using
[1.16] together with [1.28], we obtain:

2μ
∂ξx
∂x

= P (1− ν)− ∂2U

∂x2
[1.35]

which can be integrated in the form (see [1.16]):

2μξx = 4(1− ν)p− ∂U

∂x
[1.36]

We recall that the partial derivatives of U have been
determined previously (see equations [1.18] and [1.19]).

Similarly, note that σyy = ∂2U/∂x2 = P − ∂2U/∂y2. Again,
we use [1.16] and [1.28], which yields:

2μ
∂ξy
∂y

= P (1− ν)− ∂2U

∂y2
[1.37]

A primitive of [1.37] reads:

2μξy = 4(1− ν)q − ∂U

∂y
[1.38]
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Equations [1.36] and [1.38] define the displacement up to
a rigid body motion. Finally, a combination of these equations
together with [1.20] gives:

2μ(ξx + iξy) = κφ(z)− zφ′(z)− ψ(z) [1.39]

where κ = 3− 4ν.

1.5. General form of the potentials φ and ψ

Considering applications, the domain of study S is the
complex plane, except a bounded region with closed contour
L. Therefore, the studied domain is non-simply connected. We
aim to determine the general form of the complex-valued
functions φ and ψ. Without loss of generality, it can be
assumed that the point z = 0 is located within the region
bounded by L, that is z = 0 /∈ S.

Owing to [1.28], we first note that the real part of φ′(z) is
single-valued, but this is possibly not the case for the
imaginary part. Therefore, the integral of φ′(z) on a closed
contour surrounding L is a priori not 0 and denoted by 2iπA
(A ∈ R). There exists a single-valued holomorphic function
F (z) defined on S such that:

φ′(z) = A log(z) + F (z)

By integration, we obtain:

φ(z) = A(z log(z)− z) + F(z) with F(z) =
∫ z

zo

F (u) du

where zo is some fixed point in S. Again, if F(z) is not single-
valued, there exists a complex-valued constant B such that
F(z)−B log(z) is single-valued:

φ(z) = Az log(z) +B log(z) + φ∗(z) [1.40]
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where φ∗(z) is a single-valued holomorphic function defined on
S. A similar reasoning starting from [1.29] shows that there
exists a complex-valued constant C such that:

ψ(z) = C log(z) + ψ∗(z) [1.41]

where ψ∗(z) is a single-valued holomorphic function defined
on S.

We now recall [1.39], and take advantage of the fact that
the displacement is single-valued. An anticlockwise
integration around L yields:

2μ[ξx + iξy]L = 2iπ
(
Az(κ+ 1) +Bκ+ C

)
from which the following identities are derived:

A = 0; Bκ+ C = 0 [1.42]

We now apply [1.23] to the whole contour L:

Fx + iFy = −i[φ(z) + zφ′(z) + ψ(z)]L [1.43]

where Fx and Fy denote the components of the resultant force
acting on the contour. In order for the unit normal n to point
outward with respect to S, note that the contour must be
oriented clockwise. Using [1.40], [1.41] and [1.42], we find
that:

Fx + iFy = 2π
(
C −B

)
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Eventually, combining this result with [1.42], φ(z) and ψ(z)
take the form:

φ(z) = − Fx + iFy

2π(1 + κ)
log(z) + φ∗(z)

ψ(z) =
κ(Fx − iFy)

2π(1 + κ)
log(z) + ψ∗(z)

[1.44]

Let us finally add the assumption that the stresses are
bounded at infinity. This being the case, consider the Laurent
series expansions of φ∗(z) and ψ∗(z) in S:

φ∗(z) =
+∞∑
−∞

anz
n; ψ∗(z) =

+∞∑
−∞

bnz
n

We can easily see that [1.28] requires an = 0 for n ≥ 2. In
the same line of reasoning, [1.29] requires bn = 0 for n ≥ 2. It
is therefore possible to put φ(z) and ψ(z) in the form:

φ(z) = − Fx + iFy

2π(1 + κ)
log(z) + Γz + φo(z)

ψ(z) =
κ(Fx − iFy)

2π(1 + κ)
log(z) + Γ′z + ψo(z)

[1.45]

where Γ = α + iβ and Γ′ = α′ + iβ′ are complex-valued
constants, and φo(z) and ψo(z) being single-valued
holomorphic (including the point at infinity) functions defined
on S. This means that they can be put in the form (no strictly
positive power in the series expansion):

φo(z) =

0∑
−∞

anz
n; ψo(z) =

0∑
−∞

bnz
n [1.46]
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In the case of stress boundary conditions, [1.33] allows us
to choose β = 0 as well as ao = bo = 0, so that:

φo(z) =

−1∑
−∞

anz
n; ψo(z) =

−1∑
−∞

bnz
n [1.47]

We still have to interpret Γ = α and Γ′ = α′ + iβ′.
Introducing [1.45] into [1.28] and [1.29], and considering the
limit |z| → ∞, we obtain:

σ∞
xx = 2α− α′; σ∞

yy = 2α+ α′; σ∞
xy = β′ [1.48]

or:

Γ =
1

4

(
σ∞
xx + σ∞

yy

)
; Γ′ =

1

2

(
σ∞
yy − σ∞

xx

)
+ iσ∞

xy [1.49]

1.6. Examples

For illustrative purpose, two examples are now briefly
presented.

1.6.1. Circular cavity under pressure

Consider an infinite domain with a circular cavity (radius
R) subjected to a uniform internal pressure p. The stresses at
infinity are equal to 0. Since the resulting force of the stresses
acting on the cavity wall is 0, [1.45] takes on the form:

φ(z) =
−1∑
−∞

anz
n; ψ(z) =

−1∑
−∞

bnz
n

Combining [1.24] and [1.25] yields:

|z| = R : φ(z) + zφ′(z) + ψ(z) = −pz
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which also reads:

|z| = R : pz +

−1∑
−∞

anz
n +

−1∑
−∞

nanR
2(n−1)z2−n

+
−1∑
−∞

bnR
2nz−n = 0

In which we have replaced z by R2/z for the points on the
circle with radius R. This implies that b−1R

−2 = −p. All the
other coefficients (an or bn) are equal to 0:

φ(z) = 0; ψ(z) = −pR
2

z

In polar coordinates, the stresses are given by:

σrr + σθθ = 0

σθθ − σrr + 2iσrθ = 2e2iθp
R2

z2

which yields:

σθθ = −σrr = p
R2

r2
; σrθ = 0

1.6.2. Circular cavity in a plane subjected to uniaxial traction
at infinity

As in the previous section, the domain S is infinite with a
circular cavity centered at the origin (radius R). The stresses
at infinity are defined by the tensor

σ∞ = pey ⊗ ey
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The cavity wall is free of stress. Using [1.48], we obtain:

2α− α′ = 0; 2α+ α′ = p; β′ = 0

which yields:

Γ =
p

4
; Γ′ =

p

2

φ(z) =
p

4
z +

−1∑
−∞

anz
n; ψ(z) =

p

2
z +

−1∑
−∞

bnz
n

These expressions are introduced in the boundary condition
[1.24]:

|z| = R :
p

2
z +

−1∑
−∞

anz
n +

−1∑
−∞

nanR
2(n−1)z2−n +

p

2

R2

z

+

−1∑
−∞

bnR
2nz−n = 0

As in the previous example, the coefficients of the above
power series must be equal to 0. This implies that:

a−1 = b−1 = −p

2
R2; b−3 = a−1R

2

All the other an and bn are equal to 0. The corresponding
functions φ(z) and ψ(z) are:

φ(z) =
p

4
z − p

2

R2

z
; ψ(z) =

p

2
z − p

2

R2

z
− p

2

R4

z3

from which the stress field can be derived.
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1.7. Conformal mapping

Conformal mapping (see, e.g. [MUS 53]) is introduced with
a view to solve the problem of the elliptic hole, which
corresponds to the so-called inhomogeneity model of a crack
in the plane strain framework.

1.7.1. Application of conformal mapping to plane elasticity
problems

Consider a function ω defined on the domain Σ of the
complex plane C, valued in the codomain S ⊂ C:

ω : Σ → S
ζ → z = ω(ζ)

It is assumed that the function ω(ζ) is holomorphic1 on Σ
and that ω′(ζ) �= 0. This function is said to be a conformal
map in the sense that it preserves the angles. More precisely,
consider the complex numbers dζ1 and dζ2 representing two
elementary vectors with origin ζ. Their images dz1 and dz2
are:

dzi = ω′(ζ)dζi; Arg(dzi) = Arg(ω′(ζ)) + Arg(dζi)

It follows that

Arg(dz2)− Arg(dz1) = Arg(dζ2)− Arg(dζ1)

If the domain Σ is bounded while the codomain S is infinite,
it implies that z = ω(ζ) approaches infinity in the neigborhood

1 Except possibly at a pole in the case of an infinite codomain S.
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of some point of Σ. For instance, z = ∞ is the image of ζ = 0
when ω(ζ) is of the form:

ω(ζ) =
C

ζ
+ holomorphic function on Σ [1.50]

Accordingly, ω(ζ) = 1/ζ provides a conformal transform
from the circular domain Σ, defined by |ζ| < 1 centered at
ζ = 0 with radius 1 on the infinite codomain S defined by
|ζ| > 1.

Let S be the domain on which the mechanical problem is
defined. The location in the complex plane is z. The preimage
Σ of S by the conformal transformation z = ω(ζ) is defined on
the ζ-plane and valued in the z-plane. Let φ1(z) and ψ1(z)
denote the complex potentials of the solution sought in the
z-plane. Let the functions φ(ζ) and ψ(ζ) be defined on the
ζ-plane by the change in variable z = ω(ζ):

φ(ζ) = φ1(ω(ζ)); ψ(ζ) = ψ1(ω(ζ)) [1.51]

Differentiating the definition [1.51] of φ, we obtain:

φ′
1(z) =

φ′(ζ)
ω′(ζ)

[1.52]

It is assumed that the problem is defined on the z-plane by
a loading of the type [1.24] on a contour Lz, in which f(z) is
given. Lζ denoting the preimage ω−1(Lz), the change in
variables yields:

(∀ζ ∈ Lζ = ω−1(Lz)
)

f(ω(ζ)) = φ(ζ) +
ω(ζ)

ω′(ζ)
φ′(ζ) + ψ(ζ) [1.53]

The unknowns are the functions φ(ζ) and ψ(ζ) that should
be determined from the boundary condition [1.53]. The
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potentials of the initial problem are then retrieved from
[1.51].

In particular, an important a case occurs when the domain
of study S is the complex plane with a hole bounded by the
closed contour Lz. This is the subject of the following.

1.7.2. The domain Σ is the unit disc |ζ| ≤ 1

From now on, Σ+ is the unit disc |ζ| ≤ 1. Let us assume
that we know a conformal transformation z = ω(ζ) defined on
Σ+ such that S = ω(Σ+) (Figure 1.1). We have seen that ω is
of the form [1.50]. The contour Lζ is the circle γ (|ζ| = 1). In
this section, we aim to show that [1.53] provides a functional
equation for the unknown φ(ζ). The other unknown ψ(ζ) can
then be explicitly derived from the solution to the latter. The
loading considered herein is defined by stress boundary
conditions. Owing to [1.33] written for φ1(z) and ψ1(z) at
infinity, and observing that ζ = 0 is the preimage of z = ∞ by
a transformation ω of the form [1.50], it is convenient to
introduce the corresponding conditions at ζ = 0:

φ(0) = 0; ψ(0) = 0 [1.54]

1

Σ+

S

Lζ = γ

Lz

Figure 1.1. The domain S mapped on the disc |ζ| < 1
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To begin with, the resultant force acting on Lz is equal to 0
while the stresses tend to 0 at infinity (σ∞ = 0). It follows that
functions φ1(z) and ψ1(z) are holomorphic on S, including the
point z = ∞ 2. This implies that the functions φ(ζ) and ψ(ζ)
are holomorphic in Σ+.

Let us start with the determination of ψ(ζ) in the domain
|ζ| < 1 under the assumption that φ(ζ) has been determined.
Since ψ(ζ) is holomorphic in the domain |ζ| ≤ 1, Cauchy’s
formula reads:

|ζ| < 1 ψ(ζ) =
1

2iπ

∫
γ

ψ(σ)

σ − ζ
dσ [1.55]

Introducing the expression of ψ(σ) derived from [1.53] into
[1.55] yields:

|ζ| < 1 ψ(ζ) =
1

2iπ

∫
γ

fdσ

σ − ζ
− 1

2iπ

∫
γ

ω(σ)

ω′(σ)
φ′(σ)dσ
σ − ζ

[1.56]

where formula [1.93] of Appendix 1.9 has been used as well as
the condition φ(0) = 0 (see equation [1.54]); [1.56] states that
ψ(ζ) can be determined in Σ+ provided that φ′(σ) is known on
the edge γ of the disc.

Let us now move to the determination of φ(ζ) within the
unit disc. The starting point is the theorem [1.93] written for
ψ(ζ) and combined with [1.54]. We obtain:

|ζ| < 1 :
1

2iπ

∫
γ

ψ(σ)

σ − ζ
dσ = ψ(0) = 0 [1.57]

2 This means that these functions can be expanded in a power series of the
form

∑
k≥0 akz

−k in the neighborhood of infinity.
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Then, the value ψ(σ) of ψ(ζ) on the edge γ of the disc is
taken from [1.53]:

|σ| = 1 ψ(σ) = f(ω(σ))− φ(σ)− ω(σ)

ω′(σ)
φ′(σ) [1.58]

Introducing this value into [1.57] yields:

∀ζ such that |ζ| < 1 : φ(ζ) +
1

2iπ

∫
γ

ω(σ)

ω′(σ)
φ′(σ)
σ − ζ

dσ

=
1

2iπ

∫
γ

f dσ

σ − ζ
[1.59]

where Cauchy’s formula:

|ζ| < 1 φ(ζ) =
1

2iπ

∫
γ

φ(σ)

σ − ζ
dσ [1.60]

has been used; [1.59] is a functional equation with respect to
the unknown φ(ζ).

Let us now consider the situation when the asymptotic
stress state σ∞ and the resultant force acting on the contour
Lz (with components Fx and Fy) are possibly not equal to 0.
The general form of functions φ1(z) and ψ1(z) is provided by
[1.45]. Recalling the form [1.50] of the conformal
transformation defined on Σ+, this implies that φ(ζ) and ψ(ζ)
are of the following type:

φ(ζ) =
Fx + iFy

2π(1 + κ)
log(ζ) +

ΓC

ζ
+ φo(ζ)

ψ(ζ) = −κ(Fx − iFy)

2π(1 + κ)
log(ζ) +

Γ′C
ζ

+ ψo(ζ)

[1.61]
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where φo(ζ) and ψo(ζ) are holomorphic on Σ+. However, since
φ(ζ) and ψ(ζ) are not holomorphic in ζ = 0, the identities [1.56]
and [1.59] are no longer valid and the reasoning which has
led to them must be modified. The idea consists of introducing
[1.61] into [1.58], which now takes the form:

|σ| = 1 ψo(σ) = fo − φo(σ)

− ω(σ)

ω′(σ)
φ′
o(σ) [1.62]

in which f was replaced by fo, defined by:

fo = f − Fx + iFy

2π
log σ − ΓC

σ
− ω(σ)

ω′(σ)

(
Fx − iFy

2π(1 + κ)
σ − ΓCσ2

)

−Γ′
Cσ [1.63]

Since the functions φo and ψo are holomorphic, they can be
derived from [1.56] and [1.59] in which the following changes
have to be made:

f → fo, φ→ φo, ψ → ψo

1.7.3. The domain Σ is the complement Σ− of the unit disc

From now on, Σ− denotes the complement of the unit disc.
Hence, ζ ∈ Σ− is equivalent to |ζ| ≥ 1. We assume that S is
mapped by a conformal transformation z = ω(ζ) defined on
Σ−. Furthermore, the edge γ of the unit disc is the preimage
of the contour Lz (Lζ = γ). The general form of the
transformation ω(ζ) is

ω(ζ) = Rζ + ωo(ζ) [1.64]

where R �= 0 is a constant and ωo(ζ) is holomorphic in Σ−

including at infinity.
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We aim to show that [1.53] provides a functional equation
for the unknown φ(ζ). The other unknown ψ(ζ) can then be
explicitly derived from the solution to the latter. As discussed
in section 1.7.2, we restrict to stress boundary conditions, and
we start with a loading in which Fx = Fy = Γ = Γ′ = 0 (see
equation [1.45]). In other words, the functions φ1(z) and ψ1(z)
are holomorphic, including the point z = ∞. This holds true
for the functions φ(ζ) and ψ(ζ), which are also holomorphic,
including ζ =∞.

Let us apply theorem [1.96] of Appendix 1.9 to the function
ψ(ζ) in [1.53]:

(∀σ ∈ γ = ω−1(Lz)
)

ψ(σ) = f(ω(σ))− φ(σ)− ω(σ)

ω′(σ)
φ′(σ) [1.65]

This identity is first divided by σ − ζ and then integrated
along γ. This yields:

|ζ| > 1 :
1

2iπ

∫
γ

f dσ

σ − ζ
+ φ(ζ)− 1

2iπ

∫
γ

ω(σ)

ω′(σ)
φ′(σ)
σ − ζ

dσ = 0 [1.66]

where theorem [1.94] was applied to φ(ζ) and the relation
φ(∞) = 0 was used (see equation [1.33]); [1.66] constitutes
the functional equation with respect to the unknown φ(ζ). It
is the counterpart of [1.59] for the domain Σ = Σ−.

We still have to determine ψ(ζ). To do so, theorem [1.94] is
applied together with the condition ψ(∞) = 0:

|ζ| > 1 : ψ(ζ) = − 1

2iπ

∫
γ

ψ(σ)

σ − ζ
dσ [1.67]

Hence, the value of ψ(σ) follows from [1.65]:

(∀σ ∈ γ = ω−1(Lz)
)

ψ(σ) = f(ω(σ))− φ(σ)− ω(σ)

ω′(σ)
φ′(σ) [1.68]
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Again using theorem [1.96], applied to φ(ζ), it appears that:

|ζ| > 1 : ψ(ζ) = − 1

2iπ

∫
γ

f

σ − ζ
dσ +

1

2iπ

∫
γ

ω(σ)

ω′(σ)
φ′(σ)
σ − ζ

dσ [1.69]

We now consider the situation when the resultant force
acting on Lz and the asymptotic stress state are possibly not
equal to 0.

We start with the expressions φ1(z) and ψ1(z) given in
[1.45]. Owing to [1.51] and recalling the expression [1.64] of
ω(ζ), the potentials φ(ζ) and ψ(ζ) defined on Σ− are found in
the form:

φ(ζ) = − Fx + iFy

2π(1 + κ)
log(ζ) + ΓRζ + φo(ζ)

ψ(ζ) =
κ(Fx − iFy)

2π(1 + κ)
log(ζ) + Γ′Rζ + ψo(ζ)

[1.70]

where φo(ζ) and ψo(ζ) are holomorphic on Σ− (including the
point at infinity).

We now revisit the previous reasoning starting from
equation [1.65]: this equation is written in terms of φo(ζ) and
ψo(ζ), and replaces f by a new function fo defined on γ by:

fo = f − Γ′R
σ
− ΓR

(
σ +

ω(σ)

ω′(σ)

)

+
Fx − iFy

2π(1 + κ)
σ
ω(σ)

ω′(σ)
+

Fx + iFy

2π
log σ [1.71]
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It is now possible to determine φo(ζ) and ψo(ζ) from [1.66]:

|ζ| > 1:
1

2iπ

∫
γ

fodσ

σ − ζ
+ φo(ζ)− 1

2iπ

∫
γ

ω(σ)

ω′(σ)
φ′
o(σ)

σ − ζ
dσ = 0 [1.72]

and [1.69]:

|ζ| > 1: ψo(ζ) = − 1

2iπ

∫
γ

fo

σ − ζ
dσ +

1

2iπ

∫
γ

ω(σ)

ω′(σ)
φ′
o(σ)

σ − ζ
dσ [1.73]

1.8. The anisotropic case

1.8.1. General features

We now consider the anisotropic case, in plane strains or
plane stress conditions. It is assumed that the plane of study
is a plane of material symmetry. The linear elastic constitutive
equations therefore read:

εxx = A11σxx +A12σyy +A16σxy
εyy = A12σxx +A22σyy +A26σxy
2εxy = A16σxx +A26σyy +A66σxy

[1.74]

In the following, aij (respectively, bij) will denote the
coefficients Aij in plane stress (respectively, plane strain)
conditions. Coefficients aij are directly related to the
coefficients of the tensor of compliance:

a11 = S1111; a22 = S2222; a12 = S1122

a16 = 2S1112; a26 = 2S2212; a66 = 4S1212
[1.75]

The plane strain coefficients bij are related to aij according
to (i, j = 1, 2, 6):

bij = aij − ai3
a3j
a33

[1.76]
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with

a31 = S1133, a32 = S2233, a33 = S3333, a36 = 2S3312

In the isotropic case, the conditions of geometrical
compatibility [1.6] imply that the Airy function U (see
equation [1.1]) is biharmonic ΔΔU = 0 (see section 1.1).
Owing to [1.74], they now take the form:

A22
∂4U

∂x4
− 2A26

∂4U

∂x3∂y
+ (2A12 +A66)

∂4U

∂x2∂y2
− 2A16

∂4U

∂x∂y3

+ A11
∂4U

∂y4
= 0 [1.77]

Observing that all terms involve a fourth–order derivative,
we find solutions in the form f(x + μy), where μ is a complex
constant and f(z) is a differentiable function of the (a priori)
complex variable z = x + μy. It appears that [1.77] will be
satisfied provided that μ is a root of the polynomial equation:

A22 − 2A26μ+ (2A12 +A66)μ
2 − 2A16μ

3 +A11μ
4 = 0 [1.78]

The latter has two pairs of conjugate roots, respectively,
μ1, μ1 and μ2, μ2. By convention, the imaginary parts of μ1

and μ2 are positive. Among other classical relations between
coefficients of [1.78], let us note in particular that:

A22

A11
= |μ1|2|μ2|2 [1.79]

Since U(x, y) is a real-valued function, we find the solution
to [1.77] in the form:

U(x, y) = 2Re (f1(x+ μ1y) + f2(x+ μ2y)) [1.80]
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where f1(z1) and f2(z2) are two differentiable functions of the
two distinct complex variables:

z1 = x+ μ1y; z2 = x+ μ2y [1.81]

1.8.2. Stresses, displacements and boundary conditions

Following [LEK 63] (see also [SIH 65]), let us introduce the
complex potentials φ1(z1) = f ′

1(z1) and φ2(z2) = f ′
2(z2). From

the definition [1.1] of the Airy function, we obtain:

σxx = 2Re
(
μ2
1φ

′
1 + μ2

2φ
′
2

)
σyy = 2Re

(
φ′
1 + φ′

2

)
σxy = −2Re

(
μ1φ

′
1 + μ2φ

′
2

) [1.82]

In the case of plane strains, it is sufficient to determine the
components ξx and ξy of the displacement. To do so, let us put
the strains given by [1.74] (with Aij = bij) in the form:

εxx =
∂ξx
∂x

= 2Re
(
p1φ

′
1 + p2φ

′
2

)
εyy =

∂ξy
∂y

= 2Re
(
q1μ1φ

′
1 + q2μ2φ

′
2

) [1.83]

with the following notations (j = 1, 2):

pj = b11μ
2
j + b12 − b16μj ; qj = b12μj +

b22
μj
− b26 [1.84]

Integration gives (up to a rigid body motion):

ξx = 2Re (p1φ1 + p2φ2)
ξy = 2Re (q1φ1 + q2φ2)

[1.85]
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Moreover, the derivation of the resultant force acting on an
oriented arc element – such as that presented in section 1.2 –
can be directly used. [1.22] provides the resultant components
along ex and ey of this force as a function of the curvilinear
abscissa:

Fx(s) =

∫ s

0
Tx ds =

∂U

∂y
+ Const.

Fy(s) =

∫ s

0
Ty ds = −∂U

∂x
+ Const.

[1.86]

Using [1.80] again, the conditions on a loaded edge are put
in the form:

2Re (μ1φ1(z1) + μ2φ2(z2)) = Fx + Const.
2Re (φ1(z1) + φ2(z2)) = −Fy + Const.

[1.87]

1.9. Appendix: mathematical tools

As mentioned, γ denotes the unit circle (|σ| = 1). Cauchy’s
classical formula states that:

|ζ| > 1 :

∫
γ

dσ

σ − ζ
= 0 [1.88]

whereas

|ζ| < 1 :

∫
γ

dσ

σ − ζ
= 2iπ [1.89]

Furthermore, a partial fraction decomposition reads:

k ≥ 1 :
1

σk(σ − ζ)
= −

k∑
j=1

1

ζj
1

σk+1−j
+

1

(σ − ζ)

1

ζk
[1.90]
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It follows that:

k ≥ 1, |ζ| > 1 :
1

2iπ

∫
γ

dσ

σk(σ − ζ)
= − 1

ζk
[1.91]

whereas

k ≥ 1, |ζ| < 1 :
1

2iπ

∫
γ

dσ

σk(σ − ζ)
= 0 [1.92]

These identities are helpful to establish the following
results.

1.9.1. Theorem 1

If f(ζ) is a holomorphic function on the unit disc Σ+, then:

|ζ| < 1 :
1

2iπ

∫
γ

f(σ)

σ − ζ
dσ = f(0) [1.93]

This result is readily established by means of a power series
expansion

∑
k≥0 akζ

k of f(ζ). First, considering the boundary
γ of the disc, we have:

|σ| = 1 : f(σ) =
∑
k≥0

akσ
−k

which is introduced into the left-hand side of [1.93]. The
theorem then immediately follows from [1.89] and [1.92].
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1.9.2. Theorem 2

The matter of the present theorem is Cauchy’s formula for
an infinite domain: If f(z) is holomorphic in Σ− (|ζ| ≥ 1)
(including the point at infinity), then:

|ζ| > 1 :
1

2iπ

∫
γ

f(σ)

σ − ζ
dσ = f(∞)− f(ζ) [1.94]

This can be proved from a Laurent power series of f(ζ)
(with no positive power since f(ζ) is holomorphic at infinity):

f(ζ) =
0∑

k=−∞
akζ

k [1.95]

A direct application of [1.91] and [1.88] yields

|ζ| > 1 :
1

2iπ

∫
γ

f(σ)

σ − ζ
dσ = −

−1∑
k=−∞

akζ
k

and the theorem [1.94] is established.

1.9.3. Theorem 3

The counterpart of theorem [1.93] for a holomorphic
function in Σ− (including the point at infinity) reads:

|ζ| > 1 :
1

2iπ

∫
γ

f(σ)

σ − ζ
dσ = 0 [1.96]
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Again, the proof is based on a power series expansion of f(ζ)
in the form [1.95]. Considering in particular the unit circle γ
(σ = 1/σ):

f(σ) =

0∑
−∞

akσ
−k

Then, observing that the function σ−k (k ≤ 0) is
holomorphic on the unit disc, it is readily seen that

k ≤ 0, |ζ| > 1 :

∫
γ

σ−kdσ

σ − ζ
= 0

The theorem [1.96] immediately follows from the two last
equations.


