Part 1

Elastic Solutions to Single Crack Problems

Fundamentals of Plane Elasticity

The purpose of this chapter is to present the solution to plane elasticity problems, based on the use of complex-valued potentials. An isotropic linear elastic behavior is considered (except in section 1.8).

1.1. Complex representation of Airy's biharmonic stress function

Let U be an Airy stress function, from which the stress components in plane elasticity conditions are derived according to:

$$
\begin{equation*}
\sigma_{x x}=\frac{\partial^{2} U}{\partial y^{2}} ; \quad \sigma_{y y}=\frac{\partial^{2} U}{\partial x^{2}} ; \quad \sigma_{x y}=-\frac{\partial^{2} U}{\partial x \partial y} \tag{1.1}
\end{equation*}
$$

Let $\Pi \boldsymbol{\sigma}=\sigma-\sigma_{z z} \underline{e}_{z} \otimes \underline{e}_{z}$ denote the projection on the plane ($\underline{e}_{x}, \underline{e}_{y}$) of a stress tensor $\boldsymbol{\sigma}$ defined by [1.1]. It is readily proven that $\Pi \sigma$ is given by:

$$
\begin{equation*}
\Pi \boldsymbol{\sigma}=(\Delta U)\left(\mathbf{1}-\underline{e}_{z} \otimes \underline{e}_{z}\right)-\nabla(\nabla U) \tag{1.2}
\end{equation*}
$$

This expression is useful for the derivation of the components of σ in polar coordinates as a function of the partial derivatives of U. To do so, we recall that:

$$
\begin{equation*}
\Delta U=U_{, r r}+\frac{1}{r} U_{, r}+\frac{1}{r^{2}} U_{, \theta \theta} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{align*}
\nabla(\nabla U)= & U_{, r r} \underline{e}_{r} \otimes \underline{e}_{r}+\left(\frac{1}{r} U_{, r}+\frac{1}{r^{2}} U_{, \theta \theta}\right) \underline{e}_{\theta} \otimes \underline{e}_{\theta} \\
& +\left(\frac{1}{r} U_{, r \theta}-\frac{1}{r^{2}} U_{, \theta}\right)\left(\underline{e}_{\theta} \otimes \underline{e}_{r}+\underline{e}_{r} \otimes \underline{e}_{\theta}\right) \tag{1.4}
\end{align*}
$$

Introducing [1.3] and [1.4] into [1.2], we obtain:
$\sigma_{, r r}=\frac{1}{r} U_{, r}+\frac{1}{r^{2}} U_{, \theta \theta} ; \sigma_{, r \theta}=-\frac{1}{r} U_{, r \theta}+\frac{1}{r^{2}} U_{, \theta} ; \sigma_{, \theta \theta}=U_{, r r}$

Equations [1.5] are the counterpart in polar coordinates of equations [1.1]. The compatibility condition of the strains, which reads:

$$
\begin{equation*}
\frac{\partial^{2} \varepsilon_{y y}}{\partial x^{2}}+\frac{\partial^{2} \varepsilon_{x x}}{\partial y^{2}}-2 \frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y}=0 \tag{1.6}
\end{equation*}
$$

is ensured, in the case of an isotropic linear elastic behavior, by the condition

$$
\begin{equation*}
\Delta \Delta U=0 \tag{1.7}
\end{equation*}
$$

As a matter of fact, under plane stress or strain conditions, the assumption of linear isotropy allows to write the state
equations in the form:

$$
\begin{align*}
& \varepsilon_{x x}=A_{11} \sigma_{x x}+A_{12} \sigma_{y y} \\
& \varepsilon_{y y}=A_{12} \sigma_{x x}+A_{22} \sigma_{y y} \tag{1.8}\\
& 2 \varepsilon_{x y}=A_{66} \sigma_{x y}
\end{align*}
$$

Under plane stresses, the elastic compliances $A_{i j}$ are:

$$
\begin{equation*}
A_{11}=A_{22}=\frac{1}{E} ; \quad A_{12}=-\frac{\nu}{E} ; \quad A_{66}=\frac{2(1+\nu)}{E} \tag{1.9}
\end{equation*}
$$

Under plane strains, these relations become:

$$
A_{11}=A_{22}=\frac{1-\nu^{2}}{E} ; \quad A_{12}=-\frac{\nu(1+\nu)}{E} ; \quad A_{66}=\frac{2(1+\nu)}{E} \quad[1.10]
$$

In both plane strains and plane stresses, the $A_{i j}$ satisfy:

$$
\begin{equation*}
2 A_{12}+A_{66}=2 A_{11}=2 A_{22} \tag{1.11}
\end{equation*}
$$

Combining [1.1] with [1.10] and using [1.11], we see that condition [1.6] reduces to [1.7]. Such a biharmonic function U is now considered. Let $P=\Delta U$. By definition, P is a harmonic function. Let Q denote the conjugate function, defined up to a constant by:

$$
\begin{equation*}
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y} ; \quad \frac{\partial P}{\partial y}=-\frac{\partial Q}{\partial x} \tag{1.12}
\end{equation*}
$$

This implies that the complex-valued function $f(x+i y)=$ $P(x, y)+i Q(x, y)$ is holomorphic, which means that the limit (with $z=x+i y$)

$$
\lim _{d z \rightarrow 0} \frac{f(z+d z)-f(z)}{d z}
$$

exists. Indeed, at the first order in $d x$ and $d y$:
$f(z+d z)-f(z)=\frac{\partial P}{\partial x} d x+\frac{\partial P}{\partial y} d y+i\left(\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y\right) \quad$ [1.13]
Using [1.12] with [1.13] yields

$$
\begin{equation*}
f(z+d z)-f(z)=\left(\frac{\partial P}{\partial x}+i \frac{\partial Q}{\partial x}\right) d z \tag{1.14}
\end{equation*}
$$

so:

$$
\begin{equation*}
f^{\prime}(z)=\lim _{d z \rightarrow 0} \frac{f(z+d z)-f(z)}{d z}=\frac{\partial P}{\partial x}+i \frac{\partial Q}{\partial x} \tag{1.15}
\end{equation*}
$$

Following [MUS 53], consider now a primitive $\phi(z)=p+i q$ of $f(z) / 4$:

$$
\phi^{\prime}(z)=\frac{1}{4} f(z)
$$

where p and q are two conjugate harmonic functions. Therefore, we have:

$$
\begin{equation*}
\frac{\partial p}{\partial x}=\frac{\partial q}{\partial y}=\frac{P}{4} ; \quad P=2\left(\phi^{\prime}(z)+\overline{\phi^{\prime}(z)}\right) \tag{1.16}
\end{equation*}
$$

We can see that

$$
p_{1}=U-p x-q y
$$

is harmonic, and that

$$
p x+q y=\operatorname{Re} e(\bar{z} \phi(z))
$$

Finally, let $\chi(z)$ denote the holomorphic function whose real part is p_{1} :

$$
p_{1}=\mathcal{R} e(\chi(z))=\frac{1}{2}(\chi(z)+\overline{\chi(z)})
$$

Following these definitions, we have:

$$
\begin{equation*}
U=\frac{1}{2}(\chi+\bar{\chi}+\bar{z} \phi(z)+z \overline{\phi(z)}) \tag{1.17}
\end{equation*}
$$

For future purposes, let us determine the partial derivatives of U. Observing that $\partial z / \partial x=\partial \bar{z} / \partial x=1$, we first obtain:

$$
\begin{equation*}
\frac{\partial U}{\partial x}=\frac{1}{2}\left(\chi^{\prime}(z)+\overline{\chi^{\prime}(z)}+\phi(z)+\overline{\phi(z)}+\bar{z} \phi^{\prime}(z)+z \overline{\phi^{\prime}(z)}\right) \tag{1.18}
\end{equation*}
$$

In turn, $\partial z / \partial y=-\partial \bar{z} / \partial y=i$ yields:

$$
\begin{equation*}
\frac{\partial U}{\partial y}=\frac{i}{2}\left(\chi^{\prime}(z)-\overline{\chi^{\prime}(z)}+\overline{\phi(z)}-\phi(z)+\bar{z} \phi^{\prime}(z)-z \overline{\phi^{\prime}(z)}\right) \tag{1.19}
\end{equation*}
$$

It is convenient to summarize these results in the form:

$$
\begin{equation*}
\frac{\partial U}{\partial x}+i \frac{\partial U}{\partial y}=\phi(z)+z \overline{\phi^{\prime}(z)}+\overline{\psi(z)} \tag{1.20}
\end{equation*}
$$

with the notation $\psi(z)=\chi^{\prime}(z)$.

1.2. Force acting on a curve or an element of arc

Let us consider a curve oriented by the tangent unit vector t :

$$
\underline{t}=\frac{d x}{d s} \underline{e}_{x}+\frac{d y}{d s} \underline{e}_{y}
$$

where s denotes the curvilinear abscissa. The positive direction of the normal unit \underline{n} is defined such that $(\underline{n}, \underline{t})$ is oriented like $\left(\underline{e}_{x}, \underline{e}_{y}\right)$. This being the case, we have:

$$
\underline{n}=\underline{t} \wedge \underline{e}_{z}=\frac{d y}{d s} \underline{e}_{x}-\frac{d x}{d s} \underline{e}_{y}
$$

Using [1.1], the components of the stress vector $\underline{T}=\sigma \cdot \underline{n}$ read:

$$
\begin{align*}
& T_{x}=\underline{e}_{x} \cdot \boldsymbol{\sigma} \cdot \underline{n}=\sigma_{x x} n_{x}+\sigma_{x y} n_{y}=\frac{d}{d s}\left(\frac{\partial U}{\partial y}\right) \\
& T_{y}=\underline{e}_{y} \cdot \boldsymbol{\sigma} \cdot \underline{n}=\sigma_{y x} n_{x}+\sigma_{y y} n_{y}=-\frac{d}{d s}\left(\frac{\partial U}{\partial x}\right) \tag{1.21}
\end{align*}
$$

The elementary force $\underline{T} d s$ acting on $d s$ is represented by a complex $d F$ with real and imaginary parts $T_{x} d s$ and $T_{y} d s$. Using [1.21], this yields:

$$
\begin{equation*}
d F=\left(T_{x}+i T_{y}\right) d s=-i d\left(\frac{\partial U}{\partial x}+i \frac{\partial U}{\partial y}\right) \tag{1.22}
\end{equation*}
$$

By integration, we obtain the resultant force \underline{F} acting on a given arc oriented from A to B. Introducing [1.20] into [1.22], the components F_{x} and F_{y} are given by:

$$
\begin{equation*}
F_{x}+i F_{y}=-i\left[\phi(z)+z \overline{\phi^{\prime}(z)}+\overline{\psi(z)}\right]_{s_{A}}^{s_{B}} \tag{1.23}
\end{equation*}
$$

The boundary conditions on a loaded arc are an important application of this result. In the following, let $f(z)$ be defined as:
$f(z)=\phi(z)+z \overline{\phi^{\prime}(z)}+\overline{\psi(z)}=i \int_{A B_{z}}\left(T_{x}+i T_{y}\right) d s+$ Const [1.24]
where the point A is fixed and z denotes the affix of point B_{z}. $f(z)$ is a complex representation of the resultant force acting between A and B_{z} on the considered arc. $f(z)$ is defined up to constant.

For instance, consider a uniform pressure acting on the loaded arc:

$$
T_{x}=-p n_{x}=-p \frac{d y}{d s} ; \quad T_{y}=-p n_{y}=p \frac{d x}{d s}
$$

or

$$
\left(T_{x}+i T_{y}\right) d s=p(-d y+i d x)=i p(d x+i d y)=i p d z
$$

Introducing this result into [1.24], we obtain:

$$
\begin{equation*}
d f=-p d z ; \quad f=-p z+\text { Const } \tag{1.25}
\end{equation*}
$$

1.3. Derivation of stresses

Consider the choice $d s=d y$ in [1.22], for which \underline{t} is equal to \underline{e}_{y} so that \underline{n} is equal to \underline{e}_{x}. This implies that $T_{x}=\sigma_{x x}$ and $T_{y}=\sigma_{x y}:$

$$
\begin{align*}
\sigma_{x x}+i \sigma_{x y} & =-i \frac{\partial}{\partial y}\left(\phi(z)+z \overline{\phi^{\prime}(z)}+\overline{\psi(z)}\right) \\
& =\phi^{\prime}(z)+\overline{\phi^{\prime}(z)}-z \overline{\phi^{\prime \prime}(z)}-\overline{\psi^{\prime}(z)} \tag{1.26}
\end{align*}
$$

In turn, if $d s=-d x, \underline{t}$ is along $-\underline{e}_{x}$, so that $\underline{n}=\underline{e}_{y}$. Hence, we have $T_{x}=\sigma_{x y}$ and $T_{y}=\sigma_{y y}$:

$$
\begin{align*}
\sigma_{y y}-i \sigma_{x y} & =\frac{\partial}{\partial x}\left(\phi(z)+z \overline{\phi^{\prime}(z)}+\overline{\psi(z)}\right) \\
& =\phi^{\prime}(z)+\overline{\phi^{\prime}(z)}+z \overline{\phi^{\prime \prime}(z)}+\overline{\psi^{\prime}(z)} \tag{1.27}
\end{align*}
$$

Combinations of these relations successively yield:

$$
\begin{equation*}
\sigma_{x x}+\sigma_{y y}=2\left(\phi^{\prime}(z)+\overline{\phi^{\prime}(z)}\right)=P \tag{1.28}
\end{equation*}
$$

where [1.16] has been used, and

$$
\begin{equation*}
\sigma_{y y}-\sigma_{x x}+2 i \sigma_{x y}=2\left(\psi^{\prime}(z)+\bar{z} \phi^{\prime \prime}(z)\right) \tag{1.29}
\end{equation*}
$$

The stress components in cartesian and polar coordinates being related by:

$$
\begin{align*}
& \sigma_{r r}+\sigma_{\theta \theta}=\sigma_{x x}+\sigma_{y y} \tag{1.30}\\
& \sigma_{\theta \theta}-\sigma_{r r}+2 i \sigma_{r \theta}=e^{2 i \theta}\left(\sigma_{y y}-\sigma_{x x}+2 i \sigma_{x y}\right)
\end{align*}
$$

it is readily seen from [1.28] and [1.29] that:

$$
\begin{align*}
& \sigma_{r r}+\sigma_{\theta \theta}=2\left(\phi^{\prime}(z)+\overline{\phi^{\prime}(z)}\right) \tag{1.31}\\
& \sigma_{\theta \theta}-\sigma_{r r}+2 i \sigma_{r \theta}=2 e^{2 i \theta}\left(\psi^{\prime}(z)+\bar{z} \phi^{\prime \prime}(z)\right)
\end{align*}
$$

The stresses are not modified if $\phi(z)$ is replaced by $\phi(z)+$ $i C z+\gamma$ and if $\psi(z)$ is replaced by $\psi(z)+\gamma^{\prime}$, where γ and γ^{\prime} are complex-valued constants and C is a real-valued constant. Let us assume that the origin $z=0$ is part of the domain of study. If the boundary conditions prescribe stresses only, the arbitrariness of the definition of $\phi(z)$ and $\psi(z)$ allows us to choose them in such a way that:

$$
\begin{equation*}
\phi(0)=0 ; \quad \psi(0)=0 ; \quad \operatorname{Im} \phi^{\prime}(0)=0 \tag{1.32}
\end{equation*}
$$

When the domain of study is infinite, another possibility is to define $\phi(z)$ and $\psi(z)$ by conditions at infinity of the form:

$$
\begin{equation*}
\phi(\infty)=0 ; \quad \psi(\infty)=0 ; \quad \operatorname{Im} \phi^{\prime}(\infty)=0 \tag{1.33}
\end{equation*}
$$

1.4. Derivation of displacements

In plane strains, the isotropic linear elastic constitutive equation reads:

$$
\begin{align*}
& 2 \mu \frac{\partial \xi_{x}}{\partial x}=\sigma_{x x}-\nu\left(\sigma_{x x}+\sigma_{y y}\right) \\
& 2 \mu \frac{\partial \xi_{y}}{\partial y}=\sigma_{y y}-\nu\left(\sigma_{x x}+\sigma_{y y}\right) \tag{1.34}
\end{align*}
$$

Observing that $\sigma_{x x}=\partial^{2} U / \partial y^{2}=P-\partial^{2} U / \partial x^{2}$, and using [1.16] together with [1.28], we obtain:

$$
\begin{equation*}
2 \mu \frac{\partial \xi_{x}}{\partial x}=P(1-\nu)-\frac{\partial^{2} U}{\partial x^{2}} \tag{1.35}
\end{equation*}
$$

which can be integrated in the form (see [1.16]):

$$
\begin{equation*}
2 \mu \xi_{x}=4(1-\nu) p-\frac{\partial U}{\partial x} \tag{1.36}
\end{equation*}
$$

We recall that the partial derivatives of U have been determined previously (see equations [1.18] and [1.19]).

Similarly, note that $\sigma_{y y}=\partial^{2} U / \partial x^{2}=P-\partial^{2} U / \partial y^{2}$. Again, we use [1.16] and [1.28], which yields:

$$
\begin{equation*}
2 \mu \frac{\partial \xi_{y}}{\partial y}=P(1-\nu)-\frac{\partial^{2} U}{\partial y^{2}} \tag{1.37}
\end{equation*}
$$

A primitive of [1.37] reads:

$$
\begin{equation*}
2 \mu \xi_{y}=4(1-\nu) q-\frac{\partial U}{\partial y} \tag{1.38}
\end{equation*}
$$

Equations [1.36] and [1.38] define the displacement up to a rigid body motion. Finally, a combination of these equations together with [1.20] gives:

$$
\begin{equation*}
2 \mu\left(\xi_{x}+i \xi_{y}\right)=\kappa \phi(z)-z \overline{\phi^{\prime}(z)}-\overline{\psi(z)} \tag{1.3}
\end{equation*}
$$

where $\kappa=3-4 \nu$.

1.5. General form of the potentials ϕ and ψ

Considering applications, the domain of study S is the complex plane, except a bounded region with closed contour L. Therefore, the studied domain is non-simply connected. We aim to determine the general form of the complex-valued functions ϕ and ψ. Without loss of generality, it can be assumed that the point $z=0$ is located within the region bounded by L, that is $z=0 \notin S$.

Owing to [1.28], we first note that the real part of $\phi^{\prime}(z)$ is single-valued, but this is possibly not the case for the imaginary part. Therefore, the integral of $\phi^{\prime}(z)$ on a closed contour surrounding L is a priori not 0 and denoted by $2 i \pi A$ $(A \in \mathbb{R})$. There exists a single-valued holomorphic function $F(z)$ defined on S such that:

$$
\phi^{\prime}(z)=A \log (z)+F(z)
$$

By integration, we obtain:

$$
\phi(z)=A(z \log (z)-z)+\mathcal{F}(z) \quad \text { with } \quad \mathcal{F}(z)=\int_{z_{o}}^{z} F(u) d u
$$

where z_{o} is some fixed point in S. Again, if $\mathcal{F}(z)$ is not singlevalued, there exists a complex-valued constant B such that $\mathcal{F}(z)-B \log (z)$ is single-valued:

$$
\begin{equation*}
\phi(z)=A z \log (z)+B \log (z)+\phi^{*}(z) \tag{1.40}
\end{equation*}
$$

where $\phi^{*}(z)$ is a single-valued holomorphic function defined on S. A similar reasoning starting from [1.29] shows that there exists a complex-valued constant C such that:

$$
\begin{equation*}
\psi(z)=C \log (z)+\psi^{*}(z) \tag{1.41}
\end{equation*}
$$

where $\psi^{*}(z)$ is a single-valued holomorphic function defined on S.

We now recall [1.39], and take advantage of the fact that the displacement is single-valued. An anticlockwise integration around L yields:

$$
2 \mu\left[\xi_{x}+i \xi_{y}\right]_{L}=2 i \pi(A z(\kappa+1)+B \kappa+\bar{C})
$$

from which the following identities are derived:

$$
\begin{equation*}
A=0 ; \quad B \kappa+\bar{C}=0 \tag{1.42}
\end{equation*}
$$

We now apply [1.23] to the whole contour L :

$$
\begin{equation*}
F_{x}+i F_{y}=-i\left[\phi(z)+z \overline{\phi^{\prime}(z)}+\overline{\psi(z)}\right]_{L} \tag{1.43}
\end{equation*}
$$

where F_{x} and F_{y} denote the components of the resultant force acting on the contour. In order for the unit normal \underline{n} to point outward with respect to S, note that the contour must be oriented clockwise. Using [1.40], [1.41] and [1.42], we find that:

$$
F_{x}+i F_{y}=2 \pi(\bar{C}-B)
$$

Eventually, combining this result with [1.42], $\phi(z)$ and $\psi(z)$ take the form:

$$
\begin{align*}
& \phi(z)=-\frac{F_{x}+i F_{y}}{2 \pi(1+\kappa)} \log (z)+\phi^{*}(z) \\
& \psi(z)=\frac{\kappa\left(F_{x}-i F_{y}\right)}{2 \pi(1+\kappa)} \log (z)+\psi^{*}(z) \tag{1.44}
\end{align*}
$$

Let us finally add the assumption that the stresses are bounded at infinity. This being the case, consider the Laurent series expansions of $\phi^{*}(z)$ and $\psi^{*}(z)$ in S :

$$
\phi^{*}(z)=\sum_{-\infty}^{+\infty} a_{n} z^{n} ; \quad \psi^{*}(z)=\sum_{-\infty}^{+\infty} b_{n} z^{n}
$$

We can easily see that [1.28] requires $a_{n}=0$ for $n \geq 2$. In the same line of reasoning, [1.29] requires $b_{n}=0$ for $n \geq 2$. It is therefore possible to put $\phi(z)$ and $\psi(z)$ in the form:

$$
\begin{align*}
\phi(z) & =-\frac{F_{x}+i F_{y}}{2 \pi(1+\kappa)} \log (z)+\Gamma z+\phi_{o}(z) \\
\psi(z) & =\frac{\kappa\left(F_{x}-i F_{y}\right)}{2 \pi(1+\kappa)} \log (z)+\Gamma^{\prime} z+\psi_{o}(z) \tag{1.45}
\end{align*}
$$

where $\Gamma=\alpha+i \beta$ and $\Gamma^{\prime}=\alpha^{\prime}+i \beta^{\prime}$ are complex-valued constants, and $\phi_{o}(z)$ and $\psi_{o}(z)$ being single-valued holomorphic (including the point at infinity) functions defined on S. This means that they can be put in the form (no strictly positive power in the series expansion):

$$
\begin{equation*}
\phi_{o}(z)=\sum_{-\infty}^{0} a_{n} z^{n} ; \quad \psi_{o}(z)=\sum_{-\infty}^{0} b_{n} z^{n} \tag{1.46}
\end{equation*}
$$

In the case of stress boundary conditions, [1.33] allows us to choose $\beta=0$ as well as $a_{o}=b_{o}=0$, so that:

$$
\begin{equation*}
\phi_{o}(z)=\sum_{-\infty}^{-1} a_{n} z^{n} ; \quad \psi_{o}(z)=\sum_{-\infty}^{-1} b_{n} z^{n} \tag{1.47}
\end{equation*}
$$

We still have to interpret $\Gamma=\alpha$ and $\Gamma^{\prime}=\alpha^{\prime}+i \beta^{\prime}$. Introducing [1.45] into [1.28] and [1.29], and considering the limit $|z| \rightarrow \infty$, we obtain:

$$
\begin{equation*}
\sigma_{x x}^{\infty}=2 \alpha-\alpha^{\prime} ; \quad \sigma_{y y}^{\infty}=2 \alpha+\alpha^{\prime} ; \quad \sigma_{x y}^{\infty}=\beta^{\prime} \tag{1.48}
\end{equation*}
$$

or:

$$
\begin{equation*}
\Gamma=\frac{1}{4}\left(\sigma_{x x}^{\infty}+\sigma_{y y}^{\infty}\right) ; \quad \Gamma^{\prime}=\frac{1}{2}\left(\sigma_{y y}^{\infty}-\sigma_{x x}^{\infty}\right)+i \sigma_{x y}^{\infty} \tag{1.49}
\end{equation*}
$$

1.6. Examples

For illustrative purpose, two examples are now briefly presented.

1.6.1. Circular cavity under pressure

Consider an infinite domain with a circular cavity (radius R) subjected to a uniform internal pressure p. The stresses at infinity are equal to 0 . Since the resulting force of the stresses acting on the cavity wall is $0,[1.45]$ takes on the form:

$$
\phi(z)=\sum_{-\infty}^{-1} a_{n} z^{n} ; \quad \psi(z)=\sum_{-\infty}^{-1} b_{n} z^{n}
$$

Combining [1.24] and [1.25] yields:

$$
|z|=R: \quad \phi(z)+z \overline{\phi^{\prime}(z)}+\overline{\psi(z)}=-p z
$$

which also reads:

$$
\begin{aligned}
|z|=R: \quad p z+\sum_{-\infty}^{-1} a_{n} z^{n} & +\sum_{-\infty}^{-1} n \bar{a}_{n} R^{2(n-1)} z^{2-n} \\
& +\sum_{-\infty}^{-1} \bar{b}_{n} R^{2 n} z^{-n}=0
\end{aligned}
$$

In which we have replaced \bar{z} by R^{2} / z for the points on the circle with radius R. This implies that $\overline{b_{-1}} R^{-2}=-p$. All the other coefficients (a_{n} or b_{n}) are equal to 0 :

$$
\phi(z)=0 ; \quad \psi(z)=-p \frac{R^{2}}{z}
$$

In polar coordinates, the stresses are given by:

$$
\begin{aligned}
& \sigma_{r r}+\sigma_{\theta \theta}=0 \\
& \sigma_{\theta \theta}-\sigma_{r r}+2 i \sigma_{r \theta}=2 e^{2 i \theta} p \frac{R^{2}}{z^{2}}
\end{aligned}
$$

which yields:

$$
\sigma_{\theta \theta}=-\sigma_{r r}=p \frac{R^{2}}{r^{2}} ; \quad \sigma_{r \theta}=0
$$

1.6.2. Circular cavity in a plane subjected to uniaxial traction at infinity

As in the previous section, the domain S is infinite with a circular cavity centered at the origin (radius R). The stresses at infinity are defined by the tensor

$$
\boldsymbol{\sigma}^{\infty}=p \underline{e}_{y} \otimes \underline{e}_{y}
$$

The cavity wall is free of stress. Using [1.48], we obtain:

$$
2 \alpha-\alpha^{\prime}=0 ; \quad 2 \alpha+\alpha^{\prime}=p ; \quad \beta^{\prime}=0
$$

which yields:

$$
\begin{aligned}
& \Gamma=\frac{p}{4} ; \quad \Gamma^{\prime}=\frac{p}{2} \\
& \phi(z)=\frac{p}{4} z+\sum_{-\infty}^{-1} a_{n} z^{n} ; \quad \psi(z)=\frac{p}{2} z+\sum_{-\infty}^{-1} b_{n} z^{n}
\end{aligned}
$$

These expressions are introduced in the boundary condition [1.24]:

$$
\begin{aligned}
|z|=R: \quad \frac{p}{2} z+\sum_{-\infty}^{-1} a_{n} z^{n} & +\sum_{-\infty}^{-1} n \bar{a}_{n} R^{2(n-1)} z^{2-n}+\frac{p}{2} \frac{R^{2}}{z} \\
& +\sum_{-\infty}^{-1} \bar{b}_{n} R^{2 n} z^{-n}=0
\end{aligned}
$$

As in the previous example, the coefficients of the above power series must be equal to 0 . This implies that:

$$
a_{-1}=\bar{b}_{-1}=-\frac{p}{2} R^{2} ; \quad \bar{b}_{-3}=a_{-1} R^{2}
$$

All the other a_{n} and b_{n} are equal to 0 . The corresponding functions $\phi(z)$ and $\psi(z)$ are:

$$
\phi(z)=\frac{p}{4} z-\frac{p}{2} \frac{R^{2}}{z} ; \quad \psi(z)=\frac{p}{2} z-\frac{p}{2} \frac{R^{2}}{z}-\frac{p}{2} \frac{R^{4}}{z^{3}}
$$

from which the stress field can be derived.

1.7. Conformal mapping

Conformal mapping (see, e.g. [MUS 53]) is introduced with a view to solve the problem of the elliptic hole, which corresponds to the so-called inhomogeneity model of a crack in the plane strain framework.

1.7.1. Application of conformal mapping to plane elasticity problems

Consider a function ω defined on the domain Σ of the complex plane \mathbb{C}, valued in the codomain $S \subset \mathbb{C}$:

$$
\begin{aligned}
\omega: & \Sigma \\
& \rightarrow S \\
\zeta & \rightarrow z=\omega(\zeta)
\end{aligned}
$$

It is assumed that the function $\omega(\zeta)$ is holomorphic ${ }^{1}$ on Σ and that $\omega^{\prime}(\zeta) \neq 0$. This function is said to be a conformal map in the sense that it preserves the angles. More precisely, consider the complex numbers $d \zeta_{1}$ and $d \zeta_{2}$ representing two elementary vectors with origin ζ. Their images $d z_{1}$ and $d z_{2}$ are:

$$
d z_{i}=\omega^{\prime}(\zeta) d \zeta_{i} ; \quad \operatorname{Arg}\left(d z_{i}\right)=\operatorname{Arg}\left(\omega^{\prime}(\zeta)\right)+\operatorname{Arg}\left(d \zeta_{i}\right)
$$

It follows that

$$
\operatorname{Arg}\left(d z_{2}\right)-\operatorname{Arg}\left(d z_{1}\right)=\operatorname{Arg}\left(d \zeta_{2}\right)-\operatorname{Arg}\left(d \zeta_{1}\right)
$$

If the domain Σ is bounded while the codomain S is infinite, it implies that $z=\omega(\zeta)$ approaches infinity in the neigborhood

[^0]of some point of Σ. For instance, $z=\infty$ is the image of $\zeta=0$ when $\omega(\zeta)$ is of the form:
\[

$$
\begin{equation*}
\omega(\zeta)=\frac{C}{\zeta}+\text { holomorphic function on } \Sigma \tag{1.50}
\end{equation*}
$$

\]

Accordingly, $\omega(\zeta)=1 / \zeta$ provides a conformal transform from the circular domain Σ, defined by $|\zeta|<1$ centered at $\zeta=0$ with radius 1 on the infinite codomain S defined by $|\zeta|>1$.

Let S be the domain on which the mechanical problem is defined. The location in the complex plane is z. The preimage Σ of S by the conformal transformation $z=\omega(\zeta)$ is defined on the ζ-plane and valued in the z-plane. Let $\phi_{1}(z)$ and $\psi_{1}(z)$ denote the complex potentials of the solution sought in the z-plane. Let the functions $\phi(\zeta)$ and $\psi(\zeta)$ be defined on the ζ-plane by the change in variable $z=\omega(\zeta)$:

$$
\begin{equation*}
\phi(\zeta)=\phi_{1}(\omega(\zeta)) ; \quad \psi(\zeta)=\psi_{1}(\omega(\zeta)) \tag{1.51}
\end{equation*}
$$

Differentiating the definition [1.51] of ϕ, we obtain:

$$
\begin{equation*}
\phi_{1}^{\prime}(z)=\frac{\phi^{\prime}(\zeta)}{\omega^{\prime}(\zeta)} \tag{1.52}
\end{equation*}
$$

It is assumed that the problem is defined on the z-plane by a loading of the type [1.24] on a contour L_{z}, in which $f(z)$ is given. L_{ζ} denoting the preimage $\omega^{-1}\left(L_{z}\right)$, the change in variables yields:

$$
\begin{equation*}
\left(\forall \zeta \in L_{\zeta}=\omega^{-1}\left(L_{z}\right)\right) \quad f(\omega(\zeta))=\phi(\zeta)+\frac{\omega(\zeta)}{\overline{\omega^{\prime}(\zeta)}} \overline{\phi^{\prime}(\zeta)}+\overline{\psi(\zeta)} \tag{1.53}
\end{equation*}
$$

The unknowns are the functions $\phi(\zeta)$ and $\psi(\zeta)$ that should be determined from the boundary condition [1.53]. The
potentials of the initial problem are then retrieved from [1.51].

In particular, an important a case occurs when the domain of study S is the complex plane with a hole bounded by the closed contour L_{z}. This is the subject of the following.

1.7.2. The domain Σ is the unit disc $|\zeta| \leq 1$

From now on, Σ^{+}is the unit disc $|\zeta| \leq 1$. Let us assume that we know a conformal transformation $z=\omega(\zeta)$ defined on Σ^{+}such that $S=\omega\left(\Sigma^{+}\right)$(Figure 1.1). We have seen that ω is of the form [1.50]. The contour L_{ζ} is the circle $\gamma(|\zeta|=1)$. In this section, we aim to show that [1.53] provides a functional equation for the unknown $\phi(\zeta)$. The other unknown $\psi(\zeta)$ can then be explicitly derived from the solution to the latter. The loading considered herein is defined by stress boundary conditions. Owing to [1.33] written for $\phi_{1}(z)$ and $\psi_{1}(z)$ at infinity, and observing that $\zeta=0$ is the preimage of $z=\infty$ by a transformation ω of the form [1.50], it is convenient to introduce the corresponding conditions at $\zeta=0$:

$$
\begin{equation*}
\phi(0)=0 ; \quad \psi(0)=0 \tag{1.54}
\end{equation*}
$$

Figure 1.1. The domain S mapped on the disc $|\zeta|<1$

To begin with, the resultant force acting on L_{z} is equal to 0 while the stresses tend to 0 at infinity ($\sigma^{\infty}=0$). It follows that functions $\phi_{1}(z)$ and $\psi_{1}(z)$ are holomorphic on S, including the point $z=\infty^{2}$. This implies that the functions $\phi(\zeta)$ and $\psi(\zeta)$ are holomorphic in Σ^{+}.

Let us start with the determination of $\psi(\zeta)$ in the domain $|\zeta|<1$ under the assumption that $\phi(\zeta)$ has been determined. Since $\psi(\zeta)$ is holomorphic in the domain $|\zeta| \leq 1$, Cauchy's formula reads:

$$
\begin{equation*}
|\zeta|<1 \quad \psi(\zeta)=\frac{1}{2 i \pi} \int_{\gamma} \frac{\psi(\sigma)}{\sigma-\zeta} d \sigma \tag{1.55}
\end{equation*}
$$

Introducing the expression of $\psi(\sigma)$ derived from [1.53] into [1.55] yields:

$$
\begin{equation*}
|\zeta|<1 \quad \psi(\zeta)=\frac{1}{2 i \pi} \int_{\gamma} \frac{\bar{f} d \sigma}{\sigma-\zeta}-\frac{1}{2 i \pi} \int_{\gamma} \frac{\overline{\omega(\sigma)}}{\overline{\omega^{\prime}(\sigma)}} \frac{\phi^{\prime}(\sigma) d \sigma}{\sigma-\zeta} \tag{1.56}
\end{equation*}
$$

where formula [1.93] of Appendix 1.9 has been used as well as the condition $\overline{\phi(0)}=0$ (see equation [1.54]); [1.56] states that $\psi(\zeta)$ can be determined in Σ^{+}provided that $\phi^{\prime}(\sigma)$ is known on the edge γ of the disc.

Let us now move to the determination of $\phi(\zeta)$ within the unit disc. The starting point is the theorem [1.93] written for $\psi(\zeta)$ and combined with [1.54]. We obtain:

$$
\begin{equation*}
|\zeta|<1: \quad \frac{1}{2 i \pi} \int_{\gamma} \frac{\overline{\psi(\sigma)}}{\sigma-\zeta} d \sigma=\overline{\psi(0)}=0 \tag{1.57}
\end{equation*}
$$

2 This means that these functions can be expanded in a power series of the form $\sum_{k \geq 0} a_{k} z^{-k}$ in the neighborhood of infinity.

Then, the value $\psi(\sigma)$ of $\psi(\zeta)$ on the edge γ of the disc is taken from [1.53]:

$$
\begin{equation*}
|\sigma|=1 \quad \overline{\psi(\sigma)}=f(\omega(\sigma))-\phi(\sigma)-\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi^{\prime}(\sigma)} \tag{1.58}
\end{equation*}
$$

Introducing this value into [1.57] yields:

$$
\forall \zeta \text { such that }|\zeta|<1: \quad \begin{align*}
\phi(\zeta) & +\frac{1}{2 i \pi} \int_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)} \frac{\overline{\phi^{\prime}(\sigma)}}{\sigma-\zeta}} d \sigma \\
& =\frac{1}{2 i \pi} \int_{\gamma} \frac{f d \sigma}{\sigma-\zeta} \tag{1.59}
\end{align*}
$$

where Cauchy's formula:

$$
\begin{equation*}
|\zeta|<1 \quad \phi(\zeta)=\frac{1}{2 i \pi} \int_{\gamma} \frac{\phi(\sigma)}{\sigma-\zeta} d \sigma \tag{1.60}
\end{equation*}
$$

has been used; [1.59] is a functional equation with respect to the unknown $\phi(\zeta)$.

Let us now consider the situation when the asymptotic stress state σ^{∞} and the resultant force acting on the contour L_{z} (with components F_{x} and F_{y}) are possibly not equal to 0 . The general form of functions $\phi_{1}(z)$ and $\psi_{1}(z)$ is provided by [1.45]. Recalling the form [1.50] of the conformal transformation defined on Σ^{+}, this implies that $\phi(\zeta)$ and $\psi(\zeta)$ are of the following type:

$$
\begin{align*}
& \phi(\zeta)=\frac{F_{x}+i F_{y}}{2 \pi(1+\kappa)} \log (\zeta)+\frac{\Gamma C}{\zeta}+\phi_{o}(\zeta) \\
& \psi(\zeta)=-\frac{\kappa\left(F_{x}-i F_{y}\right)}{2 \pi(1+\kappa)} \log (\zeta)+\frac{\Gamma^{\prime} C}{\zeta}+\psi_{o}(\zeta) \tag{1.61}
\end{align*}
$$

where $\phi_{o}(\zeta)$ and $\psi_{o}(\zeta)$ are holomorphic on Σ^{+}. However, since $\phi(\zeta)$ and $\psi(\zeta)$ are not holomorphic in $\zeta=0$, the identities [1.56] and [1.59] are no longer valid and the reasoning which has led to them must be modified. The idea consists of introducing [1.61] into [1.58], which now takes the form:

$$
\begin{align*}
|\sigma|= & 1 \quad \overline{\psi_{o}(\sigma)}=f_{o}-\phi_{o}(\sigma) \\
& -\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi_{o}^{\prime}(\sigma)} \tag{1.62}
\end{align*}
$$

in which f was replaced by f_{o}, defined by:

$$
\begin{align*}
f_{o}= & f-\frac{F_{x}+i F_{y}}{2 \pi} \log \sigma-\frac{\Gamma C}{\sigma}-\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}}\left(\frac{F_{x}-i F_{y}}{2 \pi(1+\kappa)} \sigma-\Gamma \bar{C} \sigma^{2}\right) \\
& -\bar{\Gamma}^{\prime} \bar{C} \sigma \tag{1.63}
\end{align*}
$$

Since the functions ϕ_{o} and ψ_{o} are holomorphic, they can be derived from [1.56] and [1.59] in which the following changes have to be made:

$$
f \rightarrow f_{o}, \quad \phi \rightarrow \phi_{o}, \quad \psi \rightarrow \psi_{o}
$$

1.7.3. The domain Σ is the complement Σ^{-}of the unit disc

From now on, Σ^{-}denotes the complement of the unit disc. Hence, $\zeta \in \Sigma^{-}$is equivalent to $|\zeta| \geq 1$. We assume that S is mapped by a conformal transformation $z=\omega(\zeta)$ defined on Σ^{-}. Furthermore, the edge γ of the unit disc is the preimage of the contour $L_{z}\left(L_{\zeta}=\gamma\right)$. The general form of the transformation $\omega(\zeta)$ is

$$
\begin{equation*}
\omega(\zeta)=R \zeta+\omega_{o}(\zeta) \tag{1.64}
\end{equation*}
$$

where $R \neq 0$ is a constant and $\omega_{o}(\zeta)$ is holomorphic in Σ^{-} including at infinity.

We aim to show that [1.53] provides a functional equation for the unknown $\phi(\zeta)$. The other unknown $\psi(\zeta)$ can then be explicitly derived from the solution to the latter. As discussed in section 1.7.2, we restrict to stress boundary conditions, and we start with a loading in which $F_{x}=F_{y}=\Gamma=\Gamma^{\prime}=0$ (see equation [1.45]). In other words, the functions $\phi_{1}(z)$ and $\psi_{1}(z)$ are holomorphic, including the point $z=\infty$. This holds true for the functions $\phi(\zeta)$ and $\psi(\zeta)$, which are also holomorphic, including $\zeta=\infty$.

Let us apply theorem [1.96] of Appendix 1.9 to the function $\psi(\zeta)$ in [1.53]:

$$
\begin{equation*}
\left(\forall \sigma \in \gamma=\omega^{-1}\left(L_{z}\right)\right) \quad \overline{\psi(\sigma)}=f(\omega(\sigma))-\phi(\sigma)-\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi^{\prime}(\sigma)} \tag{1.65}
\end{equation*}
$$

This identity is first divided by $\sigma-\zeta$ and then integrated along γ. This yields:

$$
\begin{equation*}
|\zeta|>1: \frac{1}{2 i \pi} \int_{\gamma} \frac{f d \sigma}{\sigma-\zeta}+\phi(\zeta)-\frac{1}{2 i \pi} \int_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\overline{\phi^{\prime}(\sigma)}}{\sigma-\zeta} d \sigma=0 \tag{1.66}
\end{equation*}
$$

where theorem [1.94] was applied to $\phi(\zeta)$ and the relation $\phi(\infty)=0$ was used (see equation [1.33]); [1.66] constitutes the functional equation with respect to the unknown $\phi(\zeta)$. It is the counterpart of [1.59] for the domain $\Sigma=\Sigma^{-}$.

We still have to determine $\psi(\zeta)$. To do so, theorem [1.94] is applied together with the condition $\psi(\infty)=0$:

$$
\begin{equation*}
|\zeta|>1: \quad \psi(\zeta)=-\frac{1}{2 i \pi} \int_{\gamma} \frac{\psi(\sigma)}{\sigma-\zeta} d \sigma \tag{1.67}
\end{equation*}
$$

Hence, the value of $\psi(\sigma)$ follows from [1.65]:

$$
\begin{equation*}
\left(\forall \sigma \in \gamma=\omega^{-1}\left(L_{z}\right)\right) \quad \psi(\sigma)=\overline{f(\omega(\sigma))}-\overline{\phi(\sigma)}-\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi^{\prime}(\sigma) \tag{1.68}
\end{equation*}
$$

Again using theorem [1.96], applied to $\phi(\zeta)$, it appears that:

$$
|\zeta|>1: \psi(\zeta)=-\frac{1}{2 i \pi} \int_{\gamma} \frac{\bar{f}}{\sigma-\zeta} d \sigma+\frac{1}{2 i \pi} \int_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi^{\prime}(\sigma)}{\sigma-\zeta} d \sigma[1.69]
$$

We now consider the situation when the resultant force acting on \mathcal{L}_{z} and the asymptotic stress state are possibly not equal to 0 .

We start with the expressions $\phi_{1}(z)$ and $\psi_{1}(z)$ given in [1.45]. Owing to [1.51] and recalling the expression [1.64] of $\omega(\zeta)$, the potentials $\phi(\zeta)$ and $\psi(\zeta)$ defined on Σ^{-}are found in the form:

$$
\begin{align*}
& \phi(\zeta)=-\frac{F_{x}+i F_{y}}{2 \pi(1+\kappa)} \log (\zeta)+\Gamma R \zeta+\phi_{o}(\zeta) \tag{1.70}\\
& \psi(\zeta)=\frac{\kappa\left(F_{x}-i F_{y}\right)}{2 \pi(1+\kappa)} \log (\zeta)+\Gamma^{\prime} R \zeta+\psi_{o}(\zeta)
\end{align*}
$$

where $\phi_{o}(\zeta)$ and $\psi_{o}(\zeta)$ are holomorphic on Σ^{-}(including the point at infinity).

We now revisit the previous reasoning starting from equation [1.65]: this equation is written in terms of $\phi_{o}(\zeta)$ and $\psi_{o}(\zeta)$, and replaces f by a new function f_{o} defined on γ by:

$$
\begin{align*}
f_{o}= & f-\frac{\overline{\Gamma^{\prime}} R}{\sigma}-\Gamma R\left(\sigma+\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}}\right) \\
& +\frac{F_{x}-i F_{y}}{2 \pi(1+\kappa)} \sigma \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}}+\frac{F_{x}+i F_{y}}{2 \pi} \log \sigma \tag{1.71}
\end{align*}
$$

It is now possible to determine $\phi_{o}(\zeta)$ and $\psi_{o}(\zeta)$ from [1.66]:
$|\zeta|>1: \frac{1}{2 i \pi} \int_{\gamma} \frac{f_{o} d \sigma}{\sigma-\zeta}+\phi_{o}(\zeta)-\frac{1}{2 i \pi} \int_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\overline{\phi_{o}^{\prime}(\sigma)}}{\sigma-\zeta} d \sigma=0$
and [1.69]:

$$
\begin{equation*}
|\zeta|>1: \psi_{o}(\zeta)=-\frac{1}{2 i \pi} \int_{\gamma} \frac{\bar{f}_{o}}{\sigma-\zeta} d \sigma+\frac{1}{2 i \pi} \int_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi_{o}^{\prime}(\sigma)}{\sigma-\zeta} d \sigma \tag{1.73}
\end{equation*}
$$

1.8. The anisotropic case

1.8.1. General features

We now consider the anisotropic case, in plane strains or plane stress conditions. It is assumed that the plane of study is a plane of material symmetry. The linear elastic constitutive equations therefore read:

$$
\begin{align*}
& \varepsilon_{x x}=A_{11} \sigma_{x x}+A_{12} \sigma_{y y}+A_{16} \sigma_{x y} \\
& \varepsilon_{y y}=A_{12} \sigma_{x x}+A_{22} \sigma_{y y}+A_{26} \sigma_{x y} \tag{1.74}\\
& 2 \varepsilon_{x y}=A_{16} \sigma_{x x}+A_{26} \sigma_{y y}+A_{66} \sigma_{x y}
\end{align*}
$$

In the following, $a_{i j}$ (respectively, $b_{i j}$) will denote the coefficients $A_{i j}$ in plane stress (respectively, plane strain) conditions. Coefficients $a_{i j}$ are directly related to the coefficients of the tensor of compliance:

$$
\begin{array}{ll}
a_{11}=S_{1111} ; \quad & a_{22}=S_{2222} ; \quad a_{12}=S_{1122} \\
a_{16}=2 S_{1112} ; \quad a_{26}=2 S_{2212} ; \quad a_{66}=4 S_{1212} \tag{1.75}
\end{array}
$$

The plane strain coefficients $b_{i j}$ are related to $a_{i j}$ according to ($i, j=1,2,6$):

$$
\begin{equation*}
b_{i j}=a_{i j}-a_{i 3} \frac{a_{3 j}}{a_{33}} \tag{1.76}
\end{equation*}
$$

with

$$
a_{31}=S_{1133}, \quad a_{32}=S_{2233}, \quad a_{33}=S_{3333}, \quad a_{36}=2 S_{3312}
$$

In the isotropic case, the conditions of geometrical compatibility [1.6] imply that the Airy function U (see equation [1.1]) is biharmonic $\Delta \Delta U=0$ (see section 1.1). Owing to [1.74], they now take the form:

$$
\begin{align*}
A_{22} \frac{\partial^{4} U}{\partial x^{4}} & -2 A_{26} \frac{\partial^{4} U}{\partial x^{3} \partial y}+\left(2 A_{12}+A_{66}\right) \frac{\partial^{4} U}{\partial x^{2} \partial y^{2}}-2 A_{16} \frac{\partial^{4} U}{\partial x \partial y^{3}} \\
& +A_{11} \frac{\partial^{4} U}{\partial y^{4}}=0 \tag{1.77}
\end{align*}
$$

Observing that all terms involve a fourth-order derivative, we find solutions in the form $f(x+\mu y)$, where μ is a complex constant and $f(z)$ is a differentiable function of the (a priori) complex variable $z=x+\mu y$. It appears that [1.77] will be satisfied provided that μ is a root of the polynomial equation:

$$
\begin{equation*}
A_{22}-2 A_{26} \mu+\left(2 A_{12}+A_{66}\right) \mu^{2}-2 A_{16} \mu^{3}+A_{11} \mu^{4}=0 \tag{1.78}
\end{equation*}
$$

The latter has two pairs of conjugate roots, respectively, $\mu_{1}, \bar{\mu}_{1}$ and $\mu_{2}, \bar{\mu}_{2}$. By convention, the imaginary parts of μ_{1} and μ_{2} are positive. Among other classical relations between coefficients of [1.78], let us note in particular that:

$$
\begin{equation*}
\frac{A_{22}}{A_{11}}=\left|\mu_{1}\right|^{2}\left|\mu_{2}\right|^{2} \tag{1.79}
\end{equation*}
$$

Since $U(x, y)$ is a real-valued function, we find the solution to [1.77] in the form:

$$
\begin{equation*}
U(x, y)=2 \mathcal{R} e\left(f_{1}\left(x+\mu_{1} y\right)+f_{2}\left(x+\mu_{2} y\right)\right) \tag{1.80}
\end{equation*}
$$

where $f_{1}\left(z_{1}\right)$ and $f_{2}\left(z_{2}\right)$ are two differentiable functions of the two distinct complex variables:

$$
\begin{equation*}
z_{1}=x+\mu_{1} y ; \quad z_{2}=x+\mu_{2} y \tag{1.81}
\end{equation*}
$$

1.8.2. Stresses, displacements and boundary conditions

Following [LEK 63] (see also [SIH 65]), let us introduce the complex potentials $\phi_{1}\left(z_{1}\right)=f_{1}^{\prime}\left(z_{1}\right)$ and $\phi_{2}\left(z_{2}\right)=f_{2}^{\prime}\left(z_{2}\right)$. From the definition [1.1] of the Airy function, we obtain:

$$
\begin{align*}
& \sigma_{x x}=2 \mathcal{R e} e\left(\mu_{1}^{2} \phi_{1}^{\prime}+\mu_{2}^{2} \phi_{2}^{\prime}\right) \\
& \sigma_{y y}=2 \operatorname{Re} e\left(\phi_{1}^{\prime}+\phi_{2}^{\prime}\right) \tag{1.82}\\
& \sigma_{x y}=-2 \mathcal{R e}\left(\mu_{1} \phi_{1}^{\prime}+\mu_{2} \phi_{2}^{\prime}\right)
\end{align*}
$$

In the case of plane strains, it is sufficient to determine the components ξ_{x} and ξ_{y} of the displacement. To do so, let us put the strains given by [1.74] (with $A_{i j}=b_{i j}$) in the form:

$$
\begin{align*}
& \varepsilon_{x x}=\frac{\partial \xi_{x}}{\partial x}=2 \mathcal{R} e\left(p_{1} \phi_{1}^{\prime}+p_{2} \phi_{2}^{\prime}\right) \\
& \varepsilon_{y y}=\frac{\partial \xi_{y}}{\partial y}=2 \mathcal{R} e\left(q_{1} \mu_{1} \phi_{1}^{\prime}+q_{2} \mu_{2} \phi_{2}^{\prime}\right) \tag{1.83}
\end{align*}
$$

with the following notations ($j=1,2$):

$$
\begin{equation*}
p_{j}=b_{11} \mu_{j}^{2}+b_{12}-b_{16} \mu_{j} ; \quad q_{j}=b_{12} \mu_{j}+\frac{b_{22}}{\mu_{j}}-b_{26} \tag{1.84}
\end{equation*}
$$

Integration gives (up to a rigid body motion):

$$
\begin{align*}
\xi_{x} & =2 \mathcal{R e} e\left(p_{1} \phi_{1}+p_{2} \phi_{2}\right) \tag{1.85}\\
\xi_{y} & =2 \mathcal{R} e\left(q_{1} \phi_{1}+q_{2} \phi_{2}\right)
\end{align*}
$$

Moreover, the derivation of the resultant force acting on an oriented arc element - such as that presented in section 1.2 can be directly used. [1.22] provides the resultant components along \underline{e}_{x} and \underline{e}_{y} of this force as a function of the curvilinear abscissa:

$$
\begin{align*}
& F_{x}(s)=\int_{0}^{s} T_{x} d s=\frac{\partial U}{\partial y}+\text { Const. } \tag{1.86}\\
& F_{y}(s)=\int_{0}^{s} T_{y} d s=-\frac{\partial U}{\partial x}+\text { Const. }
\end{align*}
$$

Using [1.80] again, the conditions on a loaded edge are put in the form:

$$
\begin{align*}
& 2 \mathcal{R e} e\left(\mu_{1} \phi_{1}\left(z_{1}\right)+\mu_{2} \phi_{2}\left(z_{2}\right)\right)=F_{x}+\text { Const. } \tag{1.87}\\
& 2 \mathcal{R e}\left(\phi_{1}\left(z_{1}\right)+\phi_{2}\left(z_{2}\right)\right)=-F_{y}+\text { Const. }
\end{align*}
$$

1.9. Appendix: mathematical tools

As mentioned, γ denotes the unit circle $(|\sigma|=1)$. Cauchy's classical formula states that:

$$
\begin{equation*}
|\zeta|>1: \quad \int_{\gamma} \frac{d \sigma}{\sigma-\zeta}=0 \tag{1.88}
\end{equation*}
$$

whereas

$$
\begin{equation*}
|\zeta|<1: \quad \int_{\gamma} \frac{d \sigma}{\sigma-\zeta}=2 i \pi \tag{1.89}
\end{equation*}
$$

Furthermore, a partial fraction decomposition reads:

$$
\begin{equation*}
k \geq 1: \quad \frac{1}{\sigma^{k}(\sigma-\zeta)}=-\sum_{j=1}^{k} \frac{1}{\zeta^{j}} \frac{1}{\sigma^{k+1-j}}+\frac{1}{(\sigma-\zeta)} \frac{1}{\zeta^{k}} \tag{1.90}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
k \geq 1,|\zeta|>1: \quad \frac{1}{2 i \pi} \int_{\gamma} \frac{d \sigma}{\sigma^{k}(\sigma-\zeta)}=-\frac{1}{\zeta^{k}} \tag{1.91}
\end{equation*}
$$

whereas

$$
\begin{equation*}
k \geq 1,|\zeta|<1: \quad \frac{1}{2 i \pi} \int_{\gamma} \frac{d \sigma}{\sigma^{k}(\sigma-\zeta)}=0 \tag{1.92}
\end{equation*}
$$

These identities are helpful to establish the following results.

1.9.1. Theorem 1

If $f(\zeta)$ is a holomorphic function on the unit disc Σ^{+}, then:

$$
\begin{equation*}
|\zeta|<1: \quad \frac{1}{2 i \pi} \int_{\gamma} \frac{\overline{f(\sigma)}}{\sigma-\zeta} d \sigma=\overline{f(0)} \tag{1.93}
\end{equation*}
$$

This result is readily established by means of a power series expansion $\sum_{k \geq 0} a_{k} \zeta^{k}$ of $f(\zeta)$. First, considering the boundary γ of the disc, we have:

$$
|\sigma|=1: \quad \overline{f(\sigma)}=\sum_{k \geq 0} \bar{a}_{k} \sigma^{-k}
$$

which is introduced into the left-hand side of [1.93]. The theorem then immediately follows from [1.89] and [1.92].

1.9.2. Theorem 2

The matter of the present theorem is Cauchy's formula for an infinite domain: If $f(z)$ is holomorphic in $\Sigma^{-}(|\zeta| \geq 1)$ (including the point at infinity), then:

$$
\begin{equation*}
|\zeta|>1: \quad \frac{1}{2 i \pi} \int_{\gamma} \frac{f(\sigma)}{\sigma-\zeta} d \sigma=f(\infty)-f(\zeta) \tag{1.94}
\end{equation*}
$$

This can be proved from a Laurent power series of $f(\zeta)$ (with no positive power since $f(\zeta)$ is holomorphic at infinity):

$$
\begin{equation*}
f(\zeta)=\sum_{k=-\infty}^{0} a_{k} \zeta^{k} \tag{1.95}
\end{equation*}
$$

A direct application of [1.91] and [1.88] yields

$$
|\zeta|>1: \quad \frac{1}{2 i \pi} \int_{\gamma} \frac{f(\sigma)}{\sigma-\zeta} d \sigma=-\sum_{k=-\infty}^{-1} a_{k} \zeta^{k}
$$

and the theorem [1.94] is established.

1.9.3. Theorem 3

The counterpart of theorem [1.93] for a holomorphic function in Σ^{-}(including the point at infinity) reads:

$$
\begin{equation*}
|\zeta|>1: \quad \frac{1}{2 i \pi} \int_{\gamma} \frac{\overline{f(\sigma)}}{\sigma-\zeta} d \sigma=0 \tag{1.96}
\end{equation*}
$$

Again, the proof is based on a power series expansion of $f(\zeta)$ in the form [1.95]. Considering in particular the unit circle γ ($\bar{\sigma}=1 / \sigma$):

$$
\overline{f(\sigma)}=\sum_{-\infty}^{0} \bar{a}_{k} \sigma^{-k}
$$

Then, observing that the function $\sigma^{-k}(k \leq 0)$ is holomorphic on the unit disc, it is readily seen that

$$
k \leq 0,|\zeta|>1: \quad \int_{\gamma} \frac{\sigma^{-k} d \sigma}{\sigma-\zeta}=0
$$

The theorem [1.96] immediately follows from the two last equations.

[^0]: 1 Except possibly at a pole in the case of an infinite codomain S.

