Part 1

Elastic Solutions to Single Crack Problems

CORVER IN THE REAL OF THE REAL

# Fundamentals of Plane Elasticity

The purpose of this chapter is to present the solution to plane elasticity problems, based on the use of complex-valued potentials. An isotropic linear elastic behavior is considered (except in section 1.8).

# **1.1. Complex representation of Airy's biharmonic stress function**

Let U be an Airy stress function, from which the stress components in plane elasticity conditions are derived according to:

$$\sigma_{xx} = \frac{\partial^2 U}{\partial y^2}; \quad \sigma_{yy} = \frac{\partial^2 U}{\partial x^2}; \quad \sigma_{xy} = -\frac{\partial^2 U}{\partial x \partial y}$$
[1.1]

Let  $\Pi \sigma = \sigma - \sigma_{zz} \underline{e}_z \otimes \underline{e}_z$  denote the projection on the plane  $(\underline{e}_x, \underline{e}_y)$  of a stress tensor  $\sigma$  defined by [1.1]. It is readily proven that  $\Pi \sigma$  is given by:

$$\Pi \boldsymbol{\sigma} = (\Delta U) \left( 1 - \underline{e}_z \otimes \underline{e}_z \right) - \boldsymbol{\nabla} (\boldsymbol{\nabla} U)$$
[1.2]

This expression is useful for the derivation of the components of  $\sigma$  in polar coordinates as a function of the partial derivatives of U. To do so, we recall that:

$$\Delta U = U_{,rr} + \frac{1}{r}U_{,r} + \frac{1}{r^2}U_{,\theta\theta}$$
[1.3]

and

$$\nabla(\nabla U) = U_{,rr}\underline{e}_r \otimes \underline{e}_r + (\frac{1}{r}U_{,r} + \frac{1}{r^2}U_{,\theta\theta})\underline{e}_{\theta} \otimes \underline{e}_{\theta} + (\frac{1}{r}U_{,r\theta} - \frac{1}{r^2}U_{,\theta})(\underline{e}_{\theta} \otimes \underline{e}_r + \underline{e}_r \otimes \underline{e}_{\theta})$$
[1.4]

Introducing [1.3] and [1.4] into [1.2], we obtain:

$$\sigma_{,rr} = \frac{1}{r}U_{,r} + \frac{1}{r^2}U_{,\theta\theta}; \ \sigma_{,r\theta} = -\frac{1}{r}U_{,r\theta} + \frac{1}{r^2}U_{,\theta}; \ \sigma_{,\theta\theta} = U_{,rr}$$
 [1.5]

Equations [1.5] are the counterpart in polar coordinates of equations [1.1]. The compatibility condition of the strains, which reads:

$$\frac{\partial^2 \varepsilon_{yy}}{\partial x^2} + \frac{\partial^2 \varepsilon_{xx}}{\partial y^2} - 2\frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} = 0$$
[1.6]

is ensured, in the case of an isotropic linear elastic behavior, by the condition

$$\Delta \Delta U = 0 \tag{1.7}$$

As a matter of fact, under plane stress or strain conditions, the assumption of linear isotropy allows to write the state equations in the form:

$$\varepsilon_{xx} = A_{11}\sigma_{xx} + A_{12}\sigma_{yy}$$
  

$$\varepsilon_{yy} = A_{12}\sigma_{xx} + A_{22}\sigma_{yy}$$
  

$$2\varepsilon_{xy} = A_{66}\sigma_{xy}$$
[1.8]

Under plane stresses, the elastic compliances  $A_{ij}$  are:

$$A_{11} = A_{22} = \frac{1}{E}; \ A_{12} = -\frac{\nu}{E}; \ A_{66} = \frac{2(1+\nu)}{E}$$
 [1.9]

Under plane strains, these relations become:

$$A_{11} = A_{22} = \frac{1 - \nu^2}{E}; \ A_{12} = -\frac{\nu(1 + \nu)}{E}; \ A_{66} = \frac{2(1 + \nu)}{E}$$
 [1.10]

In both plane strains and plane stresses, the  $A_{ij}$  satisfy:

$$2A_{12} + A_{66} = 2A_{11} = 2A_{22}$$
[1.11]

Combining [1.1] with [1.10] and using [1.11], we see that condition [1.6] reduces to [1.7]. Such a biharmonic function U is now considered. Let  $P = \Delta U$ . By definition, P is a harmonic function. Let Q denote the conjugate function, defined up to a constant by:

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}; \quad \frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$$
[1.12]

This implies that the complex-valued function f(x + iy) = P(x, y) + iQ(x, y) is holomorphic, which means that the limit (with z = x + iy)

$$\lim_{dz \to 0} \frac{f(z+dz) - f(z)}{dz}$$

exists. Indeed, at the first order in dx and dy:

$$f(z+dz) - f(z) = \frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy + i\left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \quad [1.13]$$

Using [1.12] with [1.13] yields

$$f(z+dz) - f(z) = \left(\frac{\partial P}{\partial x} + i\frac{\partial Q}{\partial x}\right)dz$$
[1.14]

so:

$$f'(z) = \lim_{dz \to 0} \frac{f(z+dz) - f(z)}{dz} = \frac{\partial P}{\partial x} + i\frac{\partial Q}{\partial x}$$
[1.15]

Following [MUS 53], consider now a primitive  $\phi(z) = p + iq$  of f(z)/4:

$$\phi'(z) = \frac{1}{4}f(z)$$

where  $p \; {\rm and} \; q$  are two conjugate harmonic functions. Therefore, we have:

$$\frac{\partial p}{\partial x} = \frac{\partial q}{\partial y} = \frac{P}{4}; \quad P = 2(\phi'(z) + \overline{\phi'(z)})$$
[1.16]

We can see that

$$p_1 = U - px - qy$$

is harmonic, and that

$$px + qy = \mathcal{R}e(\overline{z}\phi(z))$$

Finally, let  $\chi(z)$  denote the holomorphic function whose real part is  $p_1$ :

$$p_1 = \mathcal{R}e(\chi(z)) = \frac{1}{2}\left(\chi(z) + \overline{\chi(z)}\right)$$

Following these definitions, we have:

$$U = \frac{1}{2} \left( \chi + \overline{\chi} + \overline{z}\phi(z) + z\overline{\phi(z)} \right)$$
[1.17]

For future purposes, let us determine the partial derivatives of U. Observing that  $\partial z/\partial x = \partial \overline{z}/\partial x = 1$ , we first obtain:

$$\frac{\partial U}{\partial x} = \frac{1}{2} \left( \chi'(z) + \overline{\chi'(z)} + \phi(z) + \overline{\phi(z)} + \overline{z}\phi'(z) + z\overline{\phi'(z)} \right) \quad [1.18]$$

In turn,  $\partial z / \partial y = -\partial \overline{z} / \partial y = i$  yields:

$$\frac{\partial U}{\partial y} = \frac{i}{2} \left( \chi'(z) - \overline{\chi'(z)} + \overline{\phi(z)} - \phi(z) + \overline{z}\phi'(z) - z\overline{\phi'(z)} \right)$$
[1.19]

It is convenient to summarize these results in the form:

$$\frac{\partial U}{\partial x} + i\frac{\partial U}{\partial y} = \phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)}$$
[1.20]

with the notation  $\psi(z) = \chi'(z)$ .

# 1.2. Force acting on a curve or an element of arc

Let us consider a curve oriented by the tangent unit vector  $\underline{t}$ :

$$\underline{t} = \frac{dx}{ds}\underline{e}_x + \frac{dy}{ds}\underline{e}_y$$

where s denotes the curvilinear abscissa. The positive direction of the normal unit  $\underline{n}$  is defined such that  $(\underline{n}, \underline{t})$  is oriented like  $(\underline{e}_x, \underline{e}_y)$ . This being the case, we have:

$$\underline{n} = \underline{t} \wedge \underline{e}_z = \frac{dy}{ds} \underline{e}_x - \frac{dx}{ds} \underline{e}_y$$

Using [1.1], the components of the stress vector  $\underline{T} = \boldsymbol{\sigma} \cdot \underline{n}$  read:

$$T_{x} = \underline{e}_{x} \cdot \boldsymbol{\sigma} \cdot \underline{n} = \sigma_{xx}n_{x} + \sigma_{xy}n_{y} = \frac{d}{ds} \left(\frac{\partial U}{\partial y}\right)$$

$$T_{y} = \underline{e}_{y} \cdot \boldsymbol{\sigma} \cdot \underline{n} = \sigma_{yx}n_{x} + \sigma_{yy}n_{y} = -\frac{d}{ds} \left(\frac{\partial U}{\partial x}\right)$$
[1.21]

The elementary force  $\underline{T}ds$  acting on ds is represented by a complex dF with real and imaginary parts  $T_x ds$  and  $T_y ds$ . Using [1.21], this yields:

$$dF = (T_x + iT_y)ds = -id\left(\frac{\partial U}{\partial x} + i\frac{\partial U}{\partial y}\right)$$
[1.22]

By integration, we obtain the resultant force  $\underline{F}$  acting on a given arc oriented from A to B. Introducing [1.20] into [1.22], the components  $F_x$  and  $F_y$  are given by:

$$F_x + iF_y = -i[\phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)}]_{s_A}^{s_B}$$
[1.23]

The boundary conditions on a loaded arc are an important application of this result. In the following, let f(z) be defined as:

$$f(z) = \phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)} = i \int_{AB_z} (T_x + iT_y)ds + \text{Const} \ [1.24]$$

where the point A is fixed and z denotes the affix of point  $B_z$ . f(z) is a complex representation of the resultant force acting between A and  $B_z$  on the considered arc. f(z) is defined up to constant.

For instance, consider a uniform pressure acting on the loaded arc:

$$T_x = -pn_x = -p\frac{dy}{ds}; \quad T_y = -pn_y = p\frac{dx}{ds}$$

or

$$(T_x + iT_y)ds = p(-dy + idx) = ip(dx + idy) = ip dz$$

Introducing this result into [1.24], we obtain:

$$df = -p \, dz; \quad f = -pz + \text{Const}$$
[1.25]

# 1.3. Derivation of stresses

Consider the choice ds = dy in [1.22], for which  $\underline{t}$  is equal to  $\underline{e}_y$  so that  $\underline{n}$  is equal to  $\underline{e}_x$ . This implies that  $T_x = \sigma_{xx}$  and  $T_y = \sigma_{xy}$ :

$$\sigma_{xx} + i\sigma_{xy} = -i\frac{\partial}{\partial y} \left( \phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)} \right)$$
$$= \phi'(z) + \overline{\phi'(z)} - z\overline{\phi''(z)} - \overline{\psi'(z)}$$
[1.26]

In turn, if ds = -dx,  $\underline{t}$  is along  $-\underline{e}_x$ , so that  $\underline{n} = \underline{e}_y$ . Hence, we have  $T_x = \sigma_{xy}$  and  $T_y = \sigma_{yy}$ :

$$\sigma_{yy} - i\sigma_{xy} = \frac{\partial}{\partial x} \left( \phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)} \right)$$
$$= \phi'(z) + \overline{\phi'(z)} + z\overline{\phi''(z)} + \overline{\psi'(z)}$$
[1.27]

Combinations of these relations successively yield:

$$\sigma_{xx} + \sigma_{yy} = 2\left(\phi'(z) + \overline{\phi'(z)}\right) = P$$
[1.28]

where [1.16] has been used, and

$$\sigma_{yy} - \sigma_{xx} + 2i\sigma_{xy} = 2\left(\psi'(z) + \overline{z}\phi''(z)\right)$$
[1.29]

The stress components in cartesian and polar coordinates being related by:

$$\sigma_{rr} + \sigma_{\theta\theta} = \sigma_{xx} + \sigma_{yy}$$

$$\sigma_{\theta\theta} - \sigma_{rr} + 2i\sigma_{r\theta} = e^{2i\theta}(\sigma_{yy} - \sigma_{xx} + 2i\sigma_{xy})$$
[1.30]

it is readily seen from [1.28] and [1.29] that:

$$\sigma_{rr} + \sigma_{\theta\theta} = 2\left(\phi'(z) + \overline{\phi'(z)}\right)$$

$$\sigma_{\theta\theta} - \sigma_{rr} + 2i\sigma_{r\theta} = 2e^{2i\theta}\left(\psi'(z) + \overline{z}\phi''(z)\right)$$
[1.31]

The stresses are not modified if  $\phi(z)$  is replaced by  $\phi(z) + iCz + \gamma$  and if  $\psi(z)$  is replaced by  $\psi(z) + \gamma'$ , where  $\gamma$  and  $\gamma'$  are complex-valued constants and C is a real-valued constant. Let us assume that the origin z = 0 is part of the domain of study. If the boundary conditions prescribe stresses only, the arbitrariness of the definition of  $\phi(z)$  and  $\psi(z)$  allows us to choose them in such a way that:

 $\phi(0) = 0; \quad \psi(0) = 0; \quad \operatorname{Im} \phi'(0) = 0$  [1.32]

When the domain of study is infinite, another possibility is to define  $\phi(z)$  and  $\psi(z)$  by conditions at infinity of the form:

$$\phi(\infty) = 0; \quad \psi(\infty) = 0; \quad \text{Im} \, \phi'(\infty) = 0$$
 [1.33]

# 1.4. Derivation of displacements

In plane strains, the isotropic linear elastic constitutive equation reads:

$$2\mu \frac{\partial \xi_x}{\partial x} = \sigma_{xx} - \nu \left(\sigma_{xx} + \sigma_{yy}\right)$$

$$2\mu \frac{\partial \xi_y}{\partial y} = \sigma_{yy} - \nu \left(\sigma_{xx} + \sigma_{yy}\right)$$
[1.34]

Observing that  $\sigma_{xx} = \partial^2 U / \partial y^2 = P - \partial^2 U / \partial x^2$ , and using [1.16] together with [1.28], we obtain:

$$2\mu \frac{\partial \xi_x}{\partial x} = P(1-\nu) - \frac{\partial^2 U}{\partial x^2}$$
[1.35]

which can be integrated in the form (see [1.16]):

$$2\mu\xi_x = 4(1-\nu)p - \frac{\partial U}{\partial x}$$
[1.36]

We recall that the partial derivatives of U have been determined previously (see equations [1.18] and [1.19]).

Similarly, note that  $\sigma_{yy} = \partial^2 U / \partial x^2 = P - \partial^2 U / \partial y^2$ . Again, we use [1.16] and [1.28], which yields:

$$2\mu \frac{\partial \xi_y}{\partial y} = P(1-\nu) - \frac{\partial^2 U}{\partial y^2}$$
[1.37]

A primitive of [1.37] reads:

$$2\mu\xi_y = 4(1-\nu)q - \frac{\partial U}{\partial y}$$
[1.38]

Equations [1.36] and [1.38] define the displacement up to a rigid body motion. Finally, a combination of these equations together with [1.20] gives:

$$2\mu(\xi_x + i\xi_y) = \kappa\phi(z) - z\overline{\phi'(z)} - \overline{\psi(z)}$$
[1.39]

where  $\kappa = 3 - 4\nu$ .

# 1.5. General form of the potentials $\phi$ and $\psi$

Considering applications, the domain of study S is the complex plane, except a bounded region with closed contour L. Therefore, the studied domain is non-simply connected. We aim to determine the general form of the complex-valued functions  $\phi$  and  $\psi$ . Without loss of generality, it can be assumed that the point z = 0 is located within the region bounded by L, that is  $z = 0 \notin S$ .

Owing to [1.28], we first note that the real part of  $\phi'(z)$  is single-valued, but this is possibly not the case for the imaginary part. Therefore, the integral of  $\phi'(z)$  on a closed contour surrounding L is a priori not 0 and denoted by  $2i\pi A$  $(A \in \mathbb{R})$ . There exists a single-valued holomorphic function F(z) defined on S such that:

 $\phi'(z) = A\log(z) + F(z)$ 

By integration, we obtain:

$$\phi(z) = A(z\log(z) - z) + \mathcal{F}(z)$$
 with  $\mathcal{F}(z) = \int_{z_o}^z F(u) du$ 

where  $z_o$  is some fixed point in *S*. Again, if  $\mathcal{F}(z)$  is not single-valued, there exists a complex-valued constant *B* such that  $\mathcal{F}(z) - B \log(z)$  is single-valued:

$$\phi(z) = Az \log(z) + B \log(z) + \phi^*(z)$$
[1.40]

where  $\phi^*(z)$  is a single-valued holomorphic function defined on S. A similar reasoning starting from [1.29] shows that there exists a complex-valued constant C such that:

$$\psi(z) = C \log(z) + \psi^*(z)$$
 [1.41]

where  $\psi^*(z)$  is a single-valued holomorphic function defined on S.

We now recall [1.39], and take advantage of the fact that the displacement is single-valued. An anticlockwise integration around L yields:

$$2\mu[\xi_x + i\xi_y]_L = 2i\pi \left(Az(\kappa+1) + B\kappa + \overline{C}\right)$$

from which the following identities are derived:

$$A = 0; \quad B\kappa + \overline{C} = 0 \tag{1.42}$$

We now apply [1.23] to the whole contour *L*:

$$F_x + iF_y = -i[\phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)}]_L$$
[1.43]

where  $F_x$  and  $F_y$  denote the components of the resultant force acting on the contour. In order for the unit normal <u>n</u> to point outward with respect to *S*, note that the contour must be oriented clockwise. Using [1.40], [1.41] and [1.42], we find that:

$$F_x + iF_y = 2\pi \left(\overline{C} - B\right)$$

Eventually, combining this result with [1.42],  $\phi(z)$  and  $\psi(z)$  take the form:

$$\phi(z) = -\frac{F_x + iF_y}{2\pi(1+\kappa)}\log(z) + \phi^*(z)$$

$$\psi(z) = \frac{\kappa(F_x - iF_y)}{2\pi(1+\kappa)}\log(z) + \psi^*(z)$$
[1.44]

Let us finally add the assumption that the stresses are bounded at infinity. This being the case, consider the Laurent series expansions of  $\phi^*(z)$  and  $\psi^*(z)$  in S:

$$\phi^*(z) = \sum_{-\infty}^{+\infty} a_n z^n; \quad \psi^*(z) = \sum_{-\infty}^{+\infty} b_n z^n$$

We can easily see that [1.28] requires  $a_n = 0$  for  $n \ge 2$ . In the same line of reasoning, [1.29] requires  $b_n = 0$  for  $n \ge 2$ . It is therefore possible to put  $\phi(z)$  and  $\psi(z)$  in the form:

$$\phi(z) = -\frac{F_x + iF_y}{2\pi(1+\kappa)}\log(z) + \Gamma z + \phi_o(z)$$

$$\psi(z) = \frac{\kappa(F_x - iF_y)}{2\pi(1+\kappa)}\log(z) + \Gamma' z + \psi_o(z)$$
[1.45]

where  $\Gamma = \alpha + i\beta$  and  $\Gamma' = \alpha' + i\beta'$  are complex-valued constants, and  $\phi_o(z)$  and  $\psi_o(z)$  being single-valued holomorphic (including the point at infinity) functions defined on *S*. This means that they can be put in the form (no strictly positive power in the series expansion):

$$\phi_o(z) = \sum_{-\infty}^0 a_n z^n; \quad \psi_o(z) = \sum_{-\infty}^0 b_n z^n$$
[1.46]

In the case of stress boundary conditions, [1.33] allows us to choose  $\beta = 0$  as well as  $a_o = b_o = 0$ , so that:

$$\phi_o(z) = \sum_{-\infty}^{-1} a_n z^n; \quad \psi_o(z) = \sum_{-\infty}^{-1} b_n z^n$$
[1.47]

We still have to interpret  $\Gamma = \alpha$  and  $\Gamma' = \alpha' + i\beta'$ . Introducing [1.45] into [1.28] and [1.29], and considering the limit  $|z| \to \infty$ , we obtain:

$$\sigma_{xx}^{\infty} = 2\alpha - \alpha'; \quad \sigma_{yy}^{\infty} = 2\alpha + \alpha'; \quad \sigma_{xy}^{\infty} = \beta'$$
[1.48]

or:

$$\Gamma = \frac{1}{4} \left( \sigma_{xx}^{\infty} + \sigma_{yy}^{\infty} \right); \quad \Gamma' = \frac{1}{2} \left( \sigma_{yy}^{\infty} - \sigma_{xx}^{\infty} \right) + i \sigma_{xy}^{\infty}$$
[1.49]

# 1.6. Examples

For illustrative purpose, two examples are now briefly presented.

#### 1.6.1. Circular cavity under pressure

Consider an infinite domain with a circular cavity (radius R) subjected to a uniform internal pressure p. The stresses at infinity are equal to 0. Since the resulting force of the stresses acting on the cavity wall is 0, [1.45] takes on the form:

$$\phi(z) = \sum_{-\infty}^{-1} a_n z^n; \quad \psi(z) = \sum_{-\infty}^{-1} b_n z^n$$

Combining [1.24] and [1.25] yields:

$$|z| = R:$$
  $\phi(z) + z\overline{\phi'(z)} + \overline{\psi(z)} = -pz$ 

which also reads:

$$|z| = R: \quad pz + \sum_{-\infty}^{-1} a_n z^n + \sum_{-\infty}^{-1} n \overline{a}_n R^{2(n-1)} z^{2-n} + \sum_{-\infty}^{-1} \overline{b}_n R^{2n} z^{-n} = 0$$

In which we have replaced  $\overline{z}$  by  $R^2/z$  for the points on the circle with radius R. This implies that  $\overline{b_{-1}}R^{-2} = -p$ . All the other coefficients  $(a_n \text{ or } b_n)$  are equal to 0:

$$\phi(z) = 0; \quad \psi(z) = -p\frac{R^2}{z}$$

In polar coordinates, the stresses are given by:

$$\sigma_{rr} + \sigma_{\theta\theta} = 0$$
  
$$\sigma_{\theta\theta} - \sigma_{rr} + 2i\sigma_{r\theta} = 2e^{2i\theta}p\frac{R^2}{z^2}$$

which yields:

$$\sigma_{\theta\theta} = -\sigma_{rr} = p \frac{R^2}{r^2}; \quad \sigma_{r\theta} = 0$$

# 1.6.2. Circular cavity in a plane subjected to uniaxial traction at infinity

As in the previous section, the domain S is infinite with a circular cavity centered at the origin (radius R). The stresses at infinity are defined by the tensor

$$\boldsymbol{\sigma}^{\infty} = p\underline{e}_y \otimes \underline{e}_y$$

The cavity wall is free of stress. Using [1.48], we obtain:

$$2\alpha - \alpha' = 0; \quad 2\alpha + \alpha' = p; \quad \beta' = 0$$

which yields:

$$\Gamma = \frac{p}{4}; \quad \Gamma' = \frac{p}{2}$$

$$\phi(z) = \frac{p}{4}z + \sum_{-\infty}^{-1} a_n z^n; \quad \psi(z) = \frac{p}{2}z + \sum_{-\infty}^{-1} b_n z^n$$

These expressions are introduced in the boundary condition [1.24]:

$$\begin{aligned} |z| &= R: \quad \frac{p}{2}z + \sum_{-\infty}^{-1} a_n z^n + \sum_{-\infty}^{-1} n \overline{a}_n R^{2(n-1)} z^{2-n} + \frac{p}{2} \frac{R^2}{z} \\ &+ \sum_{-\infty}^{-1} \overline{b}_n R^{2n} z^{-n} = 0 \end{aligned}$$

As in the previous example, the coefficients of the above power series must be equal to 0. This implies that:

$$a_{-1} = \overline{b}_{-1} = -\frac{p}{2}R^2; \quad \overline{b}_{-3} = a_{-1}R^2$$

All the other  $a_n$  and  $b_n$  are equal to 0. The corresponding functions  $\phi(z)$  and  $\psi(z)$  are:

$$\phi(z) = \frac{p}{4}z - \frac{p}{2}\frac{R^2}{z}; \quad \psi(z) = \frac{p}{2}z - \frac{p}{2}\frac{R^2}{z} - \frac{p}{2}\frac{R^4}{z^3}$$

from which the stress field can be derived.

# 1.7. Conformal mapping

Conformal mapping (see, e.g. [MUS 53]) is introduced with a view to solve the problem of the elliptic hole, which corresponds to the so-called inhomogeneity model of a crack in the plane strain framework.

# **1.7.1.** Application of conformal mapping to plane elasticity problems

Consider a function  $\omega$  defined on the domain  $\Sigma$  of the complex plane  $\mathbb{C}$ , valued in the codomain  $S \subset \mathbb{C}$ :

$$\omega: \ \Sigma \to S$$
$$\zeta \to z = \omega(\zeta)$$

It is assumed that the function  $\omega(\zeta)$  is holomorphic<sup>1</sup> on  $\Sigma$ and that  $\omega'(\zeta) \neq 0$ . This function is said to be a conformal map in the sense that it preserves the angles. More precisely, consider the complex numbers  $d\zeta_1$  and  $d\zeta_2$  representing two elementary vectors with origin  $\zeta$ . Their images  $dz_1$  and  $dz_2$ are:

$$dz_i = \omega'(\zeta) d\zeta_i; \quad \operatorname{Arg}(dz_i) = \operatorname{Arg}(\omega'(\zeta)) + \operatorname{Arg}(d\zeta_i)$$

It follows that

$$\operatorname{Arg}(dz_2) - \operatorname{Arg}(dz_1) = \operatorname{Arg}(d\zeta_2) - \operatorname{Arg}(d\zeta_1)$$

If the domain  $\Sigma$  is bounded while the codomain S is infinite, it implies that  $z = \omega(\zeta)$  approaches infinity in the neigborhood

<sup>1</sup> Except possibly at a pole in the case of an infinite codomain S.

of some point of  $\Sigma$ . For instance,  $z = \infty$  is the image of  $\zeta = 0$  when  $\omega(\zeta)$  is of the form:

$$\omega(\zeta) = \frac{C}{\zeta} + \text{holomorphic function on } \Sigma$$
 [1.50]

Accordingly,  $\omega(\zeta) = 1/\zeta$  provides a conformal transform from the circular domain  $\Sigma$ , defined by  $|\zeta| < 1$  centered at  $\zeta = 0$  with radius 1 on the infinite codomain S defined by  $|\zeta| > 1$ .

Let S be the domain on which the mechanical problem is defined. The location in the complex plane is z. The preimage  $\Sigma$  of S by the conformal transformation  $z = \omega(\zeta)$  is defined on the  $\zeta$ -plane and valued in the z-plane. Let  $\phi_1(z)$  and  $\psi_1(z)$ denote the complex potentials of the solution sought in the z-plane. Let the functions  $\phi(\zeta)$  and  $\psi(\zeta)$  be defined on the  $\zeta$ -plane by the change in variable  $z = \omega(\zeta)$ :

$$\phi(\zeta) = \phi_1(\omega(\zeta)); \quad \psi(\zeta) = \psi_1(\omega(\zeta))$$
[1.51]

Differentiating the definition [1.51] of  $\phi$ , we obtain:

$$\phi_1'(z) = \frac{\phi'(\zeta)}{\omega'(\zeta)}$$
[1.52]

It is assumed that the problem is defined on the z-plane by a loading of the type [1.24] on a contour  $L_z$ , in which f(z) is given.  $L_{\zeta}$  denoting the preimage  $\omega^{-1}(L_z)$ , the change in variables yields:

$$\left(\forall \zeta \in L_{\zeta} = \omega^{-1}(L_z)\right) \quad f(\omega(\zeta)) = \phi(\zeta) + \frac{\omega(\zeta)}{\overline{\omega'(\zeta)}} \overline{\phi'(\zeta)} + \overline{\psi(\zeta)} \quad [1.53]$$

The unknowns are the functions  $\phi(\zeta)$  and  $\psi(\zeta)$  that should be determined from the boundary condition [1.53]. The potentials of the initial problem are then retrieved from [1.51].

In particular, an important a case occurs when the domain of study S is the complex plane with a hole bounded by the closed contour  $L_z$ . This is the subject of the following.

#### **1.7.2.** The domain $\Sigma$ is the unit disc $|\zeta| \leq 1$

From now on,  $\Sigma^+$  is the unit disc  $|\zeta| \leq 1$ . Let us assume that we know a conformal transformation  $z = \omega(\zeta)$  defined on  $\Sigma^+$  such that  $S = \omega(\Sigma^+)$  (Figure 1.1). We have seen that  $\omega$  is of the form [1.50]. The contour  $L_{\zeta}$  is the circle  $\gamma$  ( $|\zeta| = 1$ ). In this section, we aim to show that [1.53] provides a functional equation for the unknown  $\phi(\zeta)$ . The other unknown  $\psi(\zeta)$  can then be explicitly derived from the solution to the latter. The loading considered herein is defined by stress boundary conditions. Owing to [1.33] written for  $\phi_1(z)$  and  $\psi_1(z)$  at infinity, and observing that  $\zeta = 0$  is the preimage of  $z = \infty$  by a transformation  $\omega$  of the form [1.50], it is convenient to introduce the corresponding conditions at  $\zeta = 0$ :

$$\phi(0) = 0; \quad \psi(0) = 0$$
[1.54]



**Figure 1.1.** The domain *S* mapped on the disc  $|\zeta| < 1$ 

To begin with, the resultant force acting on  $L_z$  is equal to 0 while the stresses tend to 0 at infinity ( $\sigma^{\infty} = 0$ ). It follows that functions  $\phi_1(z)$  and  $\psi_1(z)$  are holomorphic on *S*, including the point  $z = \infty^2$ . This implies that the functions  $\phi(\zeta)$  and  $\psi(\zeta)$ are holomorphic in  $\Sigma^+$ .

Let us start with the determination of  $\psi(\zeta)$  in the domain  $|\zeta| < 1$  under the assumption that  $\phi(\zeta)$  has been determined. Since  $\psi(\zeta)$  is holomorphic in the domain  $|\zeta| \leq 1$ , Cauchy's formula reads:

$$|\zeta| < 1 \qquad \psi(\zeta) = \frac{1}{2i\pi} \int_{\gamma} \frac{\psi(\sigma)}{\sigma - \zeta} \, d\sigma \tag{1.55}$$

Introducing the expression of  $\psi(\sigma)$  derived from [1.53] into [1.55] yields:

$$|\zeta| < 1 \quad \psi(\zeta) = \frac{1}{2i\pi} \int_{\gamma} \frac{\overline{f}d\sigma}{\sigma - \zeta} - \frac{1}{2i\pi} \int_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega'(\sigma)} \frac{\phi'(\sigma)d\sigma}{\sigma - \zeta}$$
[1.56]

where formula [1.93] of Appendix 1.9 has been used as well as the condition  $\overline{\phi(0)} = 0$  (see equation [1.54]); [1.56] states that  $\psi(\zeta)$  can be determined in  $\Sigma^+$  provided that  $\phi'(\sigma)$  is known on the edge  $\gamma$  of the disc.

Let us now move to the determination of  $\phi(\zeta)$  within the unit disc. The starting point is the theorem [1.93] written for  $\psi(\zeta)$  and combined with [1.54]. We obtain:

$$|\zeta| < 1: \qquad \frac{1}{2i\pi} \int_{\gamma} \frac{\overline{\psi(\sigma)}}{\sigma - \zeta} \, d\sigma = \overline{\psi(0)} = 0 \tag{1.57}$$

<sup>2</sup> This means that these functions can be expanded in a power series of the form  $\sum_{k\geq 0}a_kz^{-k}$  in the neighborhood of infinity.

Then, the value  $\psi(\sigma)$  of  $\psi(\zeta)$  on the edge  $\gamma$  of the disc is taken from [1.53]:

$$|\sigma| = 1 \qquad \overline{\psi(\sigma)} = f(\omega(\sigma)) - \phi(\sigma) - \frac{\omega(\sigma)}{\overline{\omega'(\sigma)}} \overline{\phi'(\sigma)} \qquad [1.58]$$

Introducing this value into [1.57] yields:

$$\begin{aligned} \forall \zeta \text{ such that } |\zeta| < 1: \quad \phi(\zeta) + \frac{1}{2i\pi} \int_{\gamma} \frac{\omega(\sigma)}{\overline{\omega'(\sigma)}} \overline{\frac{\phi'(\sigma)}{\sigma - \zeta}} \, d\sigma \\ &= \frac{1}{2i\pi} \int_{\gamma} \frac{f \, d\sigma}{\sigma - \zeta} \end{aligned} \tag{1.59}$$

where Cauchy's formula:

$$|\zeta| < 1 \qquad \phi(\zeta) = \frac{1}{2i\pi} \int_{\gamma} \frac{\phi(\sigma)}{\sigma - \zeta} \, d\sigma \qquad [1.60]$$

has been used; [1.59] is a functional equation with respect to the unknown  $\phi(\zeta)$ .

Let us now consider the situation when the asymptotic stress state  $\sigma^{\infty}$  and the resultant force acting on the contour  $L_z$  (with components  $F_x$  and  $F_y$ ) are possibly not equal to 0. The general form of functions  $\phi_1(z)$  and  $\psi_1(z)$  is provided by [1.45]. Recalling the form [1.50] of the conformal transformation defined on  $\Sigma^+$ , this implies that  $\phi(\zeta)$  and  $\psi(\zeta)$ are of the following type:

$$\phi(\zeta) = \frac{F_x + iF_y}{2\pi(1+\kappa)}\log(\zeta) + \frac{\Gamma C}{\zeta} + \phi_o(\zeta)$$

$$\psi(\zeta) = -\frac{\kappa(F_x - iF_y)}{2\pi(1+\kappa)}\log(\zeta) + \frac{\Gamma' C}{\zeta} + \psi_o(\zeta)$$
[1.61]

where  $\phi_o(\zeta)$  and  $\psi_o(\zeta)$  are holomorphic on  $\Sigma^+$ . However, since  $\phi(\zeta)$  and  $\psi(\zeta)$  are not holomorphic in  $\zeta = 0$ , the identities [1.56] and [1.59] are no longer valid and the reasoning which has led to them must be modified. The idea consists of introducing [1.61] into [1.58], which now takes the form:

$$|\sigma| = 1 \qquad \overline{\psi_o(\sigma)} = f_o - \phi_o(\sigma) - \frac{\omega(\sigma)}{\overline{\omega'(\sigma)}} \overline{\phi'_o(\sigma)}$$
[1.62]

in which f was replaced by  $f_o$ , defined by:

$$f_{o} = f - \frac{F_{x} + iF_{y}}{2\pi} \log \sigma - \frac{\Gamma C}{\sigma} - \frac{\omega(\sigma)}{\omega'(\sigma)} \left(\frac{F_{x} - iF_{y}}{2\pi(1+\kappa)}\sigma - \Gamma \overline{C}\sigma^{2}\right) - \overline{\Gamma}' \overline{C}\sigma$$
[1.63]

Since the functions  $\phi_o$  and  $\psi_o$  are holomorphic, they can be derived from [1.56] and [1.59] in which the following changes have to be made:

$$f \to f_o, \quad \phi \to \phi_o, \quad \psi \to \psi_o$$

#### **1.7.3.** The domain $\Sigma$ is the complement $\Sigma^-$ of the unit disc

From now on,  $\Sigma^-$  denotes the complement of the unit disc. Hence,  $\zeta \in \Sigma^-$  is equivalent to  $|\zeta| \ge 1$ . We assume that S is mapped by a conformal transformation  $z = \omega(\zeta)$  defined on  $\Sigma^-$ . Furthermore, the edge  $\gamma$  of the unit disc is the preimage of the contour  $L_z$  ( $L_{\zeta} = \gamma$ ). The general form of the transformation  $\omega(\zeta)$  is

$$\omega(\zeta) = R\zeta + \omega_o(\zeta) \tag{1.64}$$

where  $R \neq 0$  is a constant and  $\omega_o(\zeta)$  is holomorphic in  $\Sigma^-$  including at infinity.

We aim to show that [1.53] provides a functional equation for the unknown  $\phi(\zeta)$ . The other unknown  $\psi(\zeta)$  can then be explicitly derived from the solution to the latter. As discussed in section 1.7.2, we restrict to stress boundary conditions, and we start with a loading in which  $F_x = F_y = \Gamma = \Gamma' = 0$  (see equation [1.45]). In other words, the functions  $\phi_1(z)$  and  $\psi_1(z)$ are holomorphic, including the point  $z = \infty$ . This holds true for the functions  $\phi(\zeta)$  and  $\psi(\zeta)$ , which are also holomorphic, including  $\zeta = \infty$ .

Let us apply theorem [1.96] of Appendix 1.9 to the function  $\psi(\zeta)$  in [1.53]:

$$\left(\forall \sigma \in \gamma = \omega^{-1}(L_z)\right) \ \overline{\psi(\sigma)} = f(\omega(\sigma)) - \phi(\sigma) - \frac{\omega(\sigma)}{\overline{\omega'(\sigma)}} \overline{\phi'(\sigma)} \ [1.65]$$

This identity is first divided by  $\sigma - \zeta$  and then integrated along  $\gamma$ . This yields:

$$|\zeta| > 1: \quad \frac{1}{2i\pi} \int_{\gamma} \frac{f \, d\sigma}{\sigma - \zeta} + \phi(\zeta) - \frac{1}{2i\pi} \int_{\gamma} \frac{\omega(\sigma)}{\overline{\omega'(\sigma)}} \frac{\overline{\phi'(\sigma)}}{\sigma - \zeta} \, d\sigma = 0 \quad [1.66]$$

where theorem [1.94] was applied to  $\phi(\zeta)$  and the relation  $\phi(\infty) = 0$  was used (see equation [1.33]); [1.66] constitutes the functional equation with respect to the unknown  $\phi(\zeta)$ . It is the counterpart of [1.59] for the domain  $\Sigma = \Sigma^{-}$ .

We still have to determine  $\psi(\zeta)$ . To do so, theorem [1.94] is applied together with the condition  $\psi(\infty) = 0$ :

$$|\zeta| > 1: \qquad \psi(\zeta) = -\frac{1}{2i\pi} \int_{\gamma} \frac{\psi(\sigma)}{\sigma - \zeta} \, d\sigma \qquad [1.67]$$

Hence, the value of  $\psi(\sigma)$  follows from [1.65]:

$$\left(\forall \sigma \in \gamma = \omega^{-1}(L_z)\right) \quad \psi(\sigma) = \overline{f(\omega(\sigma))} - \overline{\phi(\sigma)} - \frac{\overline{\omega(\sigma)}}{\omega'(\sigma)}\phi'(\sigma) \quad [1.68]$$

Again using theorem [1.96], applied to  $\phi(\zeta)$ , it appears that:

$$|\zeta| > 1: \ \psi(\zeta) = -\frac{1}{2i\pi} \int_{\gamma} \frac{\overline{f}}{\sigma - \zeta} \, d\sigma + \frac{1}{2i\pi} \int_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega'(\sigma)} \frac{\phi'(\sigma)}{\sigma - \zeta} \, d\sigma \text{[1.69]}$$

We now consider the situation when the resultant force acting on  $\mathcal{L}_z$  and the asymptotic stress state are possibly not equal to 0.

We start with the expressions  $\phi_1(z)$  and  $\psi_1(z)$  given in [1.45]. Owing to [1.51] and recalling the expression [1.64] of  $\omega(\zeta)$ , the potentials  $\phi(\zeta)$  and  $\psi(\zeta)$  defined on  $\Sigma^-$  are found in the form:

$$\phi(\zeta) = -\frac{F_x + iF_y}{2\pi(1+\kappa)}\log(\zeta) + \Gamma R\zeta + \phi_o(\zeta)$$

$$\psi(\zeta) = \frac{\kappa(F_x - iF_y)}{2\pi(1+\kappa)}\log(\zeta) + \Gamma' R\zeta + \psi_o(\zeta)$$
[1.70]

where  $\phi_o(\zeta)$  and  $\psi_o(\zeta)$  are holomorphic on  $\Sigma^-$  (including the point at infinity).

We now revisit the previous reasoning starting from equation [1.65]: this equation is written in terms of  $\phi_o(\zeta)$  and  $\psi_o(\zeta)$ , and replaces f by a new function  $f_o$  defined on  $\gamma$  by:

$$f_{o} = f - \frac{\overline{\Gamma'}R}{\sigma} - \Gamma R \left(\sigma + \frac{\omega(\sigma)}{\omega'(\sigma)}\right) + \frac{F_{x} - iF_{y}}{2\pi(1+\kappa)}\sigma \frac{\omega(\sigma)}{\omega'(\sigma)} + \frac{F_{x} + iF_{y}}{2\pi}\log\sigma$$
[1.71]

It is now possible to determine  $\phi_o(\zeta)$  and  $\psi_o(\zeta)$  from [1.66]:

$$|\zeta| > 1: \frac{1}{2i\pi} \int_{\gamma} \frac{f_o d\sigma}{\sigma - \zeta} + \phi_o(\zeta) - \frac{1}{2i\pi} \int_{\gamma} \frac{\omega(\sigma)}{\overline{\omega'(\sigma)}} \frac{\overline{\phi'_o(\sigma)}}{\sigma - \zeta} d\sigma = 0 \quad [1.72]$$

and [1.69]:

$$|\zeta| > 1: \psi_o(\zeta) = -\frac{1}{2i\pi} \int_{\gamma} \frac{\overline{f}_o}{\sigma - \zeta} d\sigma + \frac{1}{2i\pi} \int_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega'(\sigma)} \frac{\phi'_o(\sigma)}{\sigma - \zeta} d\sigma \quad [1.73]$$

### 1.8. The anisotropic case

# 1.8.1. General features

We now consider the anisotropic case, in plane strains or plane stress conditions. It is assumed that the plane of study is a plane of material symmetry. The linear elastic constitutive equations therefore read:

$$\varepsilon_{xx} = A_{11}\sigma_{xx} + A_{12}\sigma_{yy} + A_{16}\sigma_{xy}$$
  

$$\varepsilon_{yy} = A_{12}\sigma_{xx} + A_{22}\sigma_{yy} + A_{26}\sigma_{xy}$$
  

$$2\varepsilon_{xy} = A_{16}\sigma_{xx} + A_{26}\sigma_{yy} + A_{66}\sigma_{xy}$$
  
[1.74]

In the following,  $a_{ij}$  (respectively,  $b_{ij}$ ) will denote the coefficients  $A_{ij}$  in plane stress (respectively, plane strain) conditions. Coefficients  $a_{ij}$  are directly related to the coefficients of the tensor of compliance:

$$a_{11} = S_{1111}; \quad a_{22} = S_{2222}; \quad a_{12} = S_{1122} a_{16} = 2S_{1112}; \quad a_{26} = 2S_{2212}; \quad a_{66} = 4S_{1212}$$

$$[1.75]$$

The plane strain coefficients  $b_{ij}$  are related to  $a_{ij}$  according to (i, j = 1, 2, 6):

$$b_{ij} = a_{ij} - a_{i3} \frac{a_{3j}}{a_{33}}$$
[1.76]

with

$$a_{31} = S_{1133}, \quad a_{32} = S_{2233}, \quad a_{33} = S_{3333}, \quad a_{36} = 2S_{3312}$$

In the isotropic case, the conditions of geometrical compatibility [1.6] imply that the Airy function U (see equation [1.1]) is biharmonic  $\Delta\Delta U = 0$  (see section 1.1). Owing to [1.74], they now take the form:

$$A_{22}\frac{\partial^4 U}{\partial x^4} - 2A_{26}\frac{\partial^4 U}{\partial x^3 \partial y} + (2A_{12} + A_{66})\frac{\partial^4 U}{\partial x^2 \partial y^2} - 2A_{16}\frac{\partial^4 U}{\partial x \partial y^3} + A_{11}\frac{\partial^4 U}{\partial y^4} = 0$$
[1.77]

Observing that all terms involve a fourth-order derivative, we find solutions in the form  $f(x + \mu y)$ , where  $\mu$  is a complex constant and f(z) is a differentiable function of the (*a priori*) complex variable  $z = x + \mu y$ . It appears that [1.77] will be satisfied provided that  $\mu$  is a root of the polynomial equation:

$$A_{22} - 2A_{26}\mu + (2A_{12} + A_{66})\mu^2 - 2A_{16}\mu^3 + A_{11}\mu^4 = 0$$
 [1.78]

The latter has two pairs of conjugate roots, respectively,  $\mu_1$ ,  $\overline{\mu}_1$  and  $\mu_2$ ,  $\overline{\mu}_2$ . By convention, the imaginary parts of  $\mu_1$  and  $\mu_2$  are positive. Among other classical relations between coefficients of [1.78], let us note in particular that:

$$\frac{A_{22}}{A_{11}} = |\mu_1|^2 |\mu_2|^2$$
[1.79]

Since U(x, y) is a real-valued function, we find the solution to [1.77] in the form:

$$U(x,y) = 2\mathcal{R}e\left(f_1(x+\mu_1 y) + f_2(x+\mu_2 y)\right)$$
[1.80]

where  $f_1(z_1)$  and  $f_2(z_2)$  are two differentiable functions of the two distinct complex variables:

$$z_1 = x + \mu_1 y; \quad z_2 = x + \mu_2 y$$
 [1.81]

#### 1.8.2. Stresses, displacements and boundary conditions

Following [LEK 63] (see also [SIH 65]), let us introduce the complex potentials  $\phi_1(z_1) = f'_1(z_1)$  and  $\phi_2(z_2) = f'_2(z_2)$ . From the definition [1.1] of the Airy function, we obtain:

$$\begin{aligned}
\sigma_{xx} &= 2\mathcal{R}e\left(\mu_1^2\phi_1' + \mu_2^2\phi_2'\right) \\
\sigma_{yy} &= 2\mathcal{R}e\left(\phi_1' + \phi_2'\right) \\
\sigma_{xy} &= -2\mathcal{R}e\left(\mu_1\phi_1' + \mu_2\phi_2'\right)
\end{aligned}$$
[1.82]

In the case of plane strains, it is sufficient to determine the components  $\xi_x$  and  $\xi_y$  of the displacement. To do so, let us put the strains given by [1.74] (with  $A_{ij} = b_{ij}$ ) in the form:

$$\varepsilon_{xx} = \frac{\partial \xi_x}{\partial x} = 2\mathcal{R}e\left(p_1\phi_1' + p_2\phi_2'\right)$$

$$\varepsilon_{yy} = \frac{\partial \xi_y}{\partial y} = 2\mathcal{R}e\left(q_1\mu_1\phi_1' + q_2\mu_2\phi_2'\right)$$
[1.83]

with the following notations (j = 1, 2):

$$p_j = b_{11}\mu_j^2 + b_{12} - b_{16}\mu_j; \quad q_j = b_{12}\mu_j + \frac{b_{22}}{\mu_j} - b_{26}$$
 [1.84]

Integration gives (up to a rigid body motion):

$$\begin{aligned} \xi_x &= 2\mathcal{R}e\left(p_1\phi_1 + p_2\phi_2\right) \\ \xi_y &= 2\mathcal{R}e\left(q_1\phi_1 + q_2\phi_2\right) \end{aligned} \tag{1.85}$$

Moreover, the derivation of the resultant force acting on an oriented arc element – such as that presented in section 1.2 -can be directly used. [1.22] provides the resultant components along  $\underline{e}_x$  and  $\underline{e}_y$  of this force as a function of the curvilinear abscissa:

$$F_x(s) = \int_0^s T_x \, ds = \frac{\partial U}{\partial y} + \text{Const.}$$

$$F_y(s) = \int_0^s T_y \, ds = -\frac{\partial U}{\partial x} + \text{Const.}$$
[1.86]

Using [1.80] again, the conditions on a loaded edge are put in the form:

$$2\mathcal{R}e(\mu_1\phi_1(z_1) + \mu_2\phi_2(z_2)) = F_x + \text{Const.}$$

$$2\mathcal{R}e(\phi_1(z_1) + \phi_2(z_2)) = -F_y + \text{Const.}$$
[1.87]

# 1.9. Appendix: mathematical tools

As mentioned,  $\gamma$  denotes the unit circle ( $|\sigma|=1$ ). Cauchy's classical formula states that:

$$|\zeta| > 1: \quad \int_{\gamma} \frac{d\sigma}{\sigma - \zeta} = 0$$
[1.88]

whereas

$$|\zeta| < 1: \quad \int_{\gamma} \frac{d\sigma}{\sigma - \zeta} = 2i\pi$$
[1.89]

Furthermore, a partial fraction decomposition reads:

$$k \ge 1: \quad \frac{1}{\sigma^k(\sigma - \zeta)} = -\sum_{j=1}^k \frac{1}{\zeta^j} \frac{1}{\sigma^{k+1-j}} + \frac{1}{(\sigma - \zeta)} \frac{1}{\zeta^k} \quad [1.90]$$

### It follows that:

$$k \ge 1, |\zeta| > 1: \quad \frac{1}{2i\pi} \int_{\gamma} \frac{d\sigma}{\sigma^k(\sigma - \zeta)} = -\frac{1}{\zeta^k}$$
 [1.91]

whereas

$$k \ge 1, \, |\zeta| < 1: \quad \frac{1}{2i\pi} \int_{\gamma} \frac{d\sigma}{\sigma^k(\sigma - \zeta)} = 0$$
[1.92]

These identities are helpful to establish the following results.

# 1.9.1. Theorem 1

If  $f(\zeta)$  is a holomorphic function on the unit disc  $\Sigma^+$ , then:

$$|\zeta| < 1: \qquad \frac{1}{2i\pi} \int_{\gamma} \frac{\overline{f(\sigma)}}{\sigma - \zeta} \, d\sigma = \overline{f(0)}$$
[1.93]

This result is readily established by means of a power series expansion  $\sum_{k\geq 0} a_k \zeta^k$  of  $f(\zeta)$ . First, considering the boundary  $\gamma$  of the disc, we have:

$$|\sigma| = 1:$$
  $\overline{f(\sigma)} = \sum_{k \ge 0} \overline{a}_k \sigma^{-k}$ 

which is introduced into the left-hand side of [1.93]. The theorem then immediately follows from [1.89] and [1.92].

# 1.9.2. Theorem 2

The matter of the present theorem is Cauchy's formula for an infinite domain: If f(z) is holomorphic in  $\Sigma^-$  ( $|\zeta| \ge 1$ ) (including the point at infinity), then:

$$|\zeta| > 1: \qquad \frac{1}{2i\pi} \int_{\gamma} \frac{f(\sigma)}{\sigma - \zeta} \, d\sigma = f(\infty) - f(\zeta)$$
 [1.94]

This can be proved from a Laurent power series of  $f(\zeta)$ (with no positive power since  $f(\zeta)$  is holomorphic at infinity):

$$f(\zeta) = \sum_{k=-\infty}^{0} a_k \zeta^k$$
[1.95]

A direct application of [1.91] and [1.88] yields

$$|\zeta| > 1:$$
  $\frac{1}{2i\pi} \int_{\gamma} \frac{f(\sigma)}{\sigma - \zeta} d\sigma = -\sum_{k=-\infty}^{-1} a_k \zeta^k$ 

and the theorem [1.94] is established.

# 1.9.3. Theorem 3

The counterpart of theorem [1.93] for a holomorphic function in  $\Sigma^-$  (including the point at infinity) reads:

$$|\zeta| > 1: \qquad \frac{1}{2i\pi} \int_{\gamma} \frac{\overline{f(\sigma)}}{\sigma - \zeta} \, d\sigma = 0$$
[1.96]

Again, the proof is based on a power series expansion of  $f(\zeta)$  in the form [1.95]. Considering in particular the unit circle  $\gamma$  ( $\overline{\sigma} = 1/\sigma$ ):

$$\overline{f(\sigma)} = \sum_{-\infty}^{0} \overline{a}_k \sigma^{-k}$$

Then, observing that the function  $\sigma^{-k}$   $(k \leq 0)$  is holomorphic on the unit disc, it is readily seen that

$$k \le 0, \ |\zeta| > 1: \qquad \int_{\gamma} \frac{\sigma^{-k} d\sigma}{\sigma - \zeta} = 0$$

The theorem [1.96] immediately follows from the two last equations.