PART 1

Elastic Solutions to Single Crack
Problems






Fundamentals of Plane Elasticity

The purpose of this chapter is to present the solution to
plane elasticity problems, based on the use of complex-valued
potentials. An isotropic linear elastic behavior is considered
(except in section 1.8).

1.1. Complex representation of Airy’s biharmonic stress
function

Let U be an Airy stress function, from which the stress
components in plane elasticity conditions are derived
according to:

o*U o*U 0*U

Ozx = 873/2; Oyy = w; Ozy = _8x8y [1.1]

Let Ilo = 0 — 0,.¢, ® e, denote the projection on the plane
(€4 ¢,) of a stress tensor o defined by [1.1]. It is readily proven
that ITo is given by:

IIo = (AU)(1—e,®e,) — V(VU) [1.2]
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This expression is useful for the derivation of the
components of o in polar coordinates as a function of the
partial derivatives of U. To do so, we recall that:

1 1
AU = UVT,« + fUVT + fQU,gg [1.3]
T r
and

1 1
V(VU) =U,re, Qe, + (;U,r + ﬁU,(%))Qg ® ey

1 1
+(;U,r0 - ﬁU,H)(Qe ®e,+e ep) [1.4]

Introducing [1.3] and [1.4] into [1.2], we obtain:
1 1 1 1
o =-Ur+ <Ups; 0,0 =—-Uso+ 5Up; 009 =U,pr [1.5]
T T T T

Equations [1.5] are the counterpart in polar coordinates of
equations [1.1]. The compatibility condition of the strains,
which reads:

ey ey 0%,
—9 v — 1.
Ox? + oy? Oxdy 0 L1.6]

is ensured, in the case of an isotropic linear elastic behavior,
by the condition

AAU =0 [1.7]

As a matter of fact, under plane stress or strain conditions,
the assumption of linear isotropy allows to write the state
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equations in the form:

€re = A1104z + AlZUyy
Eyy = AIQUJ::U + A220yy [1.8]
251:1/ = AGGny

Under plane stresses, the elastic compliances A;; are:

B 1 2 ~2(1+vw)
Ay = Ag = iok A = fok Ags = T [1.9]
Under plane strains, these relations become:
1—v? v(l+v) 2(1+v)
Ay = Ag = —F App = 5 Ags = z [1.10]

In both plane strains and plane stresses, the A;; satisfy:
2A19 + Ags = 2A11 = 2A99 [1.11]

Combining [1.1] with [1.10] and using [1.11], we see that
condition [1.6] reduces to [1.7]. Such a biharmonic function U
is now considered. Let P = AU. By definition, P is a harmonic
function. Let () denote the conjugate function, defined up to a
constant by:

oP  9Q 9P 9Q

R Gl 1.12
ox Oy’ Oy Ox [ ]
This implies that the complex-valued function f(z + iy) =
P(z,y) + iQ(z,y) is holomorphic, which means that the limit
(with z = = + iy)

o fG ) — 1)
dz—0 dz
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exists. Indeed, at the first order in dz and dy:

O e O i (99, 1 99
flz+dz)— f(z) = &de—l— 8ydy—|—z<axda:—|— aydy) [1.13]

Using [1.12] with [1.13] yields

fz+dz) — f(z) = <681; + f;g) dz [1.14]
so:
poy o J(z+dz) — f(z) 0P .0Q
o= &' .11

Following [MUS 53], consider now a primitive ¢(z) = p + iq
of f(2)/4:

where p and ¢ are two conjugate harmonic functions.
Therefore, we have:

op _0q P, Y ;
o oy 4 P =2(¢'(2) + ¢'(2)) [1.16]

We can see that
p=U—pr—qy
is harmonic, and that

pr + qy = Re(Z¢(2))
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Finally, let x(z) denote the holomorphic function whose real
part is p;:

P =Rel(x(2)) = 5 (x(2) +X(2))

Following these definitions, we have:

U= % (X + X +Zo(2) + z@) [1.17]

For future purposes, let us determine the partial
derivatives of U. Observing that 0z/0x = 0z/0x = 1, we first
obtain:

X (2) 4+ XE) + 0(2) + 6(2) + 20/ (2) + 20 () [1.18]

ou _1 (
or 2
In turn, 0z/0y = —0z/0y = i yields:

ou

(X(2) = X() +0() - 6(=) +20/(2) = 20(2))  [1.19]

Y

DO | .

It is convenient to summarize these results in the form:

ou  oU —
o Higy =906+ + ) [1.20]

with the notation ¢ (2) = \/(2).

1.2. Force acting on a curve or an element of arc
Let us consider a curve oriented by the tangent unit vector
dx dy
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where s denotes the curvilinear abscissa. The positive
direction of the normal unit n is defined such that (n,t) is

oriented like (e, ¢,). This being the case, we have:

‘A dy dx
n = e, =—€, — —¢€
-0 T dsT" ds™Y

Using [1.1], the components of the stress vector T’ = o - n
read:

T, =¢ an—an—i—an—d(aU
x — Eg° e — Oggliy Ty y—E 873/

[1.21]

d (oU
Tyzﬁy'U'Q:O’y:vn:p‘FO‘yyny:—% %

The elementary force T'ds acting on ds is represented by
a complex dF with real and imaginary parts 7,ds and T} ds.
Using [1.21], this yields:

. . (oU 00U
dF = (T, +iTy)ds = —id (83: + Z@y) [1.22]

By integration, we obtain the resultant force F' acting on a
given arc oriented from A to B. Introducing [1.20] into [1.22],
the components F, and F), are given by:

F, +iF, = —i[¢(2) + 2¢/(2) + ¥(2)]38 [1.23]

sA

The boundary conditions on a loaded arc are an important
application of this result. In the following, let f(z) be defined
as:

f(2) = ¢(2) + 20/ (z) + p(2) =i /A . (T +14T,)ds + Const [1.24]
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where the point A is fixed and z denotes the affix of point B,.
f(2) is a complex representation of the resultant force acting
between A and B, on the considered arc. f(z) is defined up to
constant.

For instance, consider a uniform pressure acting on the
loaded arc:

dy dx
T, = —pn; = P Ty = —pny = P

or
(T +iTy)ds = p(—dy + idx) = ip(dx + idy) = ipdz
Introducing this result into [1.24], we obtain:
df = —pdz; f= —pz+ Const [1.25]

1.3. Derivation of stresses

Consider the choice ds = dy in [1.22], for which ¢ is equal
to ¢, so that n is equal to ¢,. This implies that 7, = 0., and
Ty = 0gy:

Or iy = i (6(2) +=0'G) +u(2))

dy
= ¢'(2) + ¢'(2) — 20" (2) — V' (2) [1.26]
In turn, if ds = —dx, t is along —¢,, so that n = €y Hence,

we have T}, = 0,y and T}y = 0yy:

Oyy — 102y = ((b(z) +2¢/(z) + W)
= ¢'(2) + ¢/ (2) + 207 (2) +¢'(2) [1.27]
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Combinations of these relations successively yield:
oz + Oy = 2 <¢’(z) n W) —p [1.28]
where [1.16] has been used, and
Oyy — Oaa + 202y = 2 (V' (2) + 267 (2)) [1.29]

The stress components in cartesian and polar coordinates
being related by:

Orr + 099 = Oxz + Oyy

' [1.30]
099 — Opp + 20,9 = 6219(0'yy — Oga + 2i04y)
it is readily seen from [1.28] and [1.29] that:
Opr + 099 = 2 <¢/(Z) + (b/(z))
[1.31]

Too — Orr + 2i0,9 = 26*° (Y (2) + 247 (2))

The stresses are not modified if ¢(z) is replaced by ¢(z) +
iCz + v and if ¢(z) is replaced by ¢ (z) + +/, where v and ~/
are complex-valued constants and C is a real-valued constant.
Let us assume that the origin z = 0 is part of the domain of
study. If the boundary conditions prescribe stresses only, the
arbitrariness of the definition of ¢(z) and v (z) allows us to
choose them in such a way that:

$(0)=0; (0)=0; Img'(0)=0 [1.32]

When the domain of study is infinite, another possibility is
to define ¢(z) and v(z) by conditions at infinity of the form:

P(00) =0; P(oo) =0; Ime'(c0) =0 [1.33]
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1.4. Derivation of displacements

In plane strains, the isotropic linear elastic constitutive
equation reads:

0
2”% = 0z =V (0uz + 0yy)
[1.34]
o3
2,ua—yy = 0yy — V (Oga + Oyy)

Observing that o,, = 0°U/dy?> = P — 0°U/0x?, and using
[1.16] together with [1.28], we obtain:

0 0*U
Q;La—x =P(1-v)— pe [1.35]
which can be integrated in the form (see [1.16]):
ou
2uéy =41 —v)p — 5 [1.36]

We recall that the partial derivatives of U have been
determined previously (see equations [1.18] and [1.19]).

Similarly, note that o,, = 0°U/92% = P — §*U/0y*. Again,
we use [1.16] and [1.28], which yields:

2u—===P(l—v)— — [1.37]

A primitive of [1.37] reads:

ou

By [1.38]

2pugy = 4(1 —v)q —
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Equations [1.36] and [1.38] define the displacement up to
a rigid body motion. Finally, a combination of these equations
together with [1.20] gives:

2u(&s +i&y) = Kp(2) — 29/ (2) — (2) [1.39]

where k = 3 — 4v.

1.5. General form of the potentials ¢ and v

Considering applications, the domain of study S is the
complex plane, except a bounded region with closed contour
L. Therefore, the studied domain is non-simply connected. We
aim to determine the general form of the complex-valued
functions ¢ and . Without loss of generality, it can be
assumed that the point z = 0 is located within the region
bounded by L, thatis z =0 ¢ S.

Owing to [1.28], we first note that the real part of ¢/(z) is
single-valued, but this is possibly not the case for the
imaginary part. Therefore, the integral of ¢/(z) on a closed
contour surrounding L is a priori not 0 and denoted by 2ir A
(A € R). There exists a single-valued holomorphic function
F(z) defined on S such that:

¢'() = Alog(2) + F(2)
By integration, we obtain:

6(2) = A(zlog(z) — =) + F(z) with F(z) = / " P du

where z, is some fixed point in S. Again, if F(z) is not single-
valued, there exists a complex-valued constant B such that
F(z) — B log(z) is single-valued:

$(z) = Azlog(z) + Blog(z) + ¢* () [1.40]
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where ¢*(z) is a single-valued holomorphic function defined on
S. A similar reasoning starting from [1.29] shows that there
exists a complex-valued constant C such that:

Y(z) = C log(z) + 1™ (2) [1.41]

where ¢*(z) is a single-valued holomorphic function defined
on S.

We now recall [1.39], and take advantage of the fact that
the displacement is single-valued. An anticlockwise
integration around L yields:

2ulé, + &), = 2im (Az(k + 1) + Br + O)
from which the following identities are derived:
A=0; Bk+C=0 [1.42]
We now apply [1.23] to the whole contour L:

Fp+iF, = —i[¢(2) + 2¢'(2) + ¥(2)]L [1.43]

where F, and F, denote the components of the resultant force
acting on the contour. In order for the unit normal n to point
outward with respect to S, note that the contour must be
oriented clockwise. Using [1.40], [1.41] and [1.42], we find
that:

F, +iF, =27 (C — B)
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Eventually, combining this result with [1.42], ¢(2) and ¥ (z)
take the form:

0(2) = ~5 it log(z) + 67 (2
A [1.44]
0e) = e o) +0°(2)

Let us finally add the assumption that the stresses are
bounded at infinity. This being the case, consider the Laurent
series expansions of ¢*(z) and ¢*(z) in S:

+oo +oo
¢ (z) = Zanz”; v (z) = Z b, 2"

We can easily see that [1.28] requires a,, = 0 for n > 2. In
the same line of reasoning, [1.29] requires b, = 0 for n > 2. It
is therefore possible to put ¢(z) and ¢(z) in the form:

_ F, + ik,
o(z) = 7277(1 ) log(z) + 'z 4 ¢o(2)
[1.45]
B K(Fy —iF)) ,
P(z) = 72%(1 ) log(z) + Iz + 1,(2)
where I' = o + i3 and I = o + i3 are complex-valued

constants, and ¢,(z) and ,(z) being single-valued
holomorphic (including the point at infinity) functions defined
on S. This means that they can be put in the form (no strictly
positive power in the series expansion):

0

0
Bo(2) =D anz";  Po(2) =D by2" [1.46]

—00
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In the case of stress boundary conditions, [1.33] allows us
to choose 8 = 0 as well as a, = b, = 0, so that:

-1 1
Go(2) =D anz"; Po(2) =Y bnz" [1.47]

We still have to interpret ' = o and IV = o + if.
Introducing [1.45] into [1.28] and [1.29], and considering the
limit |z| — oo, we obtain:

o =2a—0a; op=2a+d; o =p [1.48]
or:
1 1 .
r-temaom): roleg ooy 0

1.6. Examples

For illustrative purpose, two examples are now briefly
presented.
1.6.1. Circular cavity under pressure

Consider an infinite domain with a circular cavity (radius
R) subjected to a uniform internal pressure p. The stresses at
infinity are equal to 0. Since the resulting force of the stresses
acting on the cavity wall is 0, [1.45] takes on the form:

-1 -1
$(z) =Y anz"; P(z) = bp2"

Combining [1.24] and [1.25] yields:

2l =R:  6(2) +2¢'(2) + ¢(2) = —pz
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which also reads:
-1 -1
lz|=R: pz+ Z anz" + Z na, R ;2
—00 —00
-1
+ ZEnRQ’rLZ—n =0
—0o0

In which we have replaced z by R?/z - for the points on the
circle with radius R. This implies that b_;R~2 = —p. All the
other coefficients (a,, or b,,) are equal to O:

o) =0 v(z) = —p'

In polar coordinates, the stresses are given by:

Opr + 099 =0

2i0 R2
099 — Opp + 2i0,9 = 2€*° Pz

which yields:
RZ
060 = —Orr = P55 Org = 0
T
1.6.2. Circular cavity in a plane subjected to uniaxial traction
at infinity

As in the previous section, the domain S is infinite with a
circular cavity centered at the origin (radius R). The stresses
at infinity are defined by the tensor

oo
o™ =pe, @e,
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The cavity wall is free of stress. Using [1.48], we obtain:

20— =0; 2a+ad =p; B =0

which yields:
p ;P
r=2 =2
4’ 2
» ~1 » ~1
o(z) = 17 + Z;o apnz"; W(z) = 5% + Z.o b 2"

These expressions are introduced in the boundary condition
[1.24]:

—1 —1
_ 1) 9 R?
|z| = R: gz—k_zo:oanz" + _zo:onanRz(" Dy2n 4 g ~

-1
+ ZBHRZnZ—n =0

As in the previous example, the coefficients of the above
power series must be equal to 0. This implies that:

a—1 = B_l = —§R2; 5_3 = a_1R2

All the other a, and b, are equal to 0. The corresponding
functions ¢(z) and ¢ (z) are:

from which the stress field can be derived.
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1.7. Conformal mapping

Conformal mapping (see, e.g. [MUS 53]) is introduced with
a view to solve the problem of the elliptic hole, which
corresponds to the so-called inhomogeneity model of a crack
in the plane strain framework.

1.7.1. Application of conformal mapping to plane elasticity
problems

Consider a function w defined on the domain X of the
complex plane C, valued in the codomain S C C:

w: X— 8
¢ z=w(0)

It is assumed that the function w(¢) is holomorphicl on ¥
and that «'(¢) # 0. This function is said to be a conformal
map in the sense that it preserves the angles. More precisely,
consider the complex numbers d(; and d({; representing two
elementary vectors with origin (. Their images dz; and dz,
are:

dzi = w'(Q)d¢;  Arg(dz;) = Arg(w'(€)) + Arg(d¢;)
It follows that
Arg(dzy) — Arg(dz1) = Arg(d(s) — Arg(d(y)

If the domain X is bounded while the codomain S is infinite,
it implies that z = w(() approaches infinity in the neigborhood

1 Except possibly at a pole in the case of an infinite codomain S.
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of some point of . For instance, 2 = oo is the image of ( = 0
when w(() is of the form:

w(C) = (Cj + holomorphic function on X [1.50]

Accordingly, w(¢) = 1/¢ provides a conformal transform
from the circular domain ¥, defined by |(| < 1 centered at
¢ = 0 with radius 1 on the infinite codomain S defined by
¢l > 1.

Let S be the domain on which the mechanical problem is
defined. The location in the complex plane is z. The preimage
Y of S by the conformal transformation z = w(() is defined on
the (-plane and valued in the z-plane. Let ¢1(z) and ()
denote the complex potentials of the solution sought in the
z-plane. Let the functions ¢(¢) and ¢({) be defined on the
¢-plane by the change in variable z = w(():

¢(C) = ¢1(w(Q)); ¥(C) = Y (w(C)) [1.51]

Differentiating the definition [1.51] of ¢, we obtain:

¢'(9)

RERALES 1.52
(0 1.52]

$1(2) =

It is assumed that the problem is defined on the z-plane by
a loading of the type [1.24] on a contour L., in which f(z) is
given. L; denoting the preimage w !(L.), the change in
variables yields:

O 50 + 90 [1.58]

(V¢ e Le=w (L) fw(C) = o)+

The unknowns are the functions ¢(¢) and v (¢) that should
be determined from the boundary condition [1.53]. The
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potentials of the initial problem are then retrieved from
[1.51].

In particular, an important a case occurs when the domain
of study S is the complex plane with a hole bounded by the
closed contour L.. This is the subject of the following.

1.7.2. The domain ¥ is the unit disc |¢| < 1

From now on, ¥ is the unit disc |¢| < 1. Let us assume
that we know a conformal transformation z = w(¢) defined on
¥t such that S = w(X7") (Figure 1.1). We have seen that w is
of the form [1.50]. The contour L. is the circle v (|| = 1). In
this section, we aim to show that [1.53] provides a functional
equation for the unknown ¢(¢). The other unknown v (¢) can
then be explicitly derived from the solution to the latter. The
loading considered herein is defined by stress boundary
conditions. Owing to [1.33] written for ¢;(z) and v¥1(z) at
infinity, and observing that {( = 0 is the preimage of z = oo by
a transformation w of the form [1.50], it is convenient to
introduce the corresponding conditions at ( = 0:

¢(0) =0; ¥(0)=0 [1.54]

ﬁ\ s

Le=~

Figure 1.1. The domain S mapped on the disc |(| < 1
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To begin with, the resultant force acting on L, is equal to 0
while the stresses tend to 0 at infinity (o> = 0). It follows that
functions ¢1(z) and ;(z) are holomorphic on S, including the
point z = oo 2. This implies that the functions ¢(¢) and ¥ (¢)
are holomorphic in X7,

Let us start with the determination of ¢(¢) in the domain
|¢| < 1 under the assumption that ¢({) has been determined.
Since v (¢) is holomorphic in the domain |¢| < 1, Cauchy’s
formula reads:

A<t w0 =5 [ X% [1.551
v

Introducing the expression of ¢(0) derived from [1.53] into
[1.55] yields:

1 fdo 1 w(o) ¢ (o)do
A<t vo=5 [ /

S 2im ), 0—(¢ 2ir ), W(o) 0—C

where formula [1.93] of Appendix 1.9 has been used as well as
the condition ¢(0) = 0 (see equation [1.54]); [1.56] states that
¥(¢) can be determined in X1 provided that ¢'(o) is known on

the edge ~ of the disc.

Let us now move to the determination of ¢(¢{) within the
unit disc. The starting point is the theorem [1.93] written for
1(¢) and combined with [1.54]. We obtain:

¢l <1: 1/;“_026&,:(0):0 [1.57]
Y

2 This means that these functions can be expanded in a power series of the
form > k>0 arz~* in the neighborhood of infinity.
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Then, the value ¢(o) of /({) on the edge v of the disc is
taken from [1.53]:

ol=1  ¥(0) = f(w(0)) — d(0) —

Introducing this value into [1.57] yields:

V¢ such that [(| <1: ¢(() + L [ wlo) #lo) do

2 ,Yw’(o')O'—C

L[ fio

= 2in v0—C L1.59]
where Cauchy’s formula:
<1 (0) = — / 2) 4y [1.60]
2im ), 0 —¢ '

has been used; [1.59] is a functional equation with respect to
the unknown ¢(().

Let us now consider the situation when the asymptotic
stress state 0> and the resultant force acting on the contour
L, (with components F, and F;) are possibly not equal to 0.
The general form of functions ¢;(z) and v (z) is provided by
[1.45]. Recalling the form [1.50] of the conformal
transformation defined on 7, this implies that ¢(¢) and ()
are of the following type:

F, +1F, rc
?(¢) = m log(¢) + = + 90(¢)
[1.61]
k(Fy — 1Fy) r'c

Q) = - log(¢) + —— + ¥ (C)

27(1+ k) ¢
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where ¢,(¢) and v,(¢) are holomorphic on . However, since
#(¢) and v(¢) are not holomorphic in { = 0, the identities [1.56]
and [1.59] are no longer valid and the reasoning which has
led to them must be modified. The idea consists of introducing
[1.61] into [1.58], which now takes the form:

|O" =1 1/]0(0') = fo— ¢O(U)

oy(0) [1.62]

in which f was replaced by f,, defined by:

fo:f_

Fy +iF, rc  wlo) ( F, —iF,

1 =
or 877 7, W'(o) \27(1 + k)

o — FCU2>
T'Co [1.63]

Since the functions ¢, and 1), are holomorphic, they can be
derived from [1.56] and [1.59] in which the following changes
have to be made:

= fo, &= o, Y — 1

1.7.3. The domain ¥ is the complement Y.~ of the unit disc

From now on, ¥~ denotes the complement of the unit disc.
Hence, ( € ¥~ is equivalent to |(| > 1. We assume that S is
mapped by a conformal transformation z = w({) defined on
Y~. Furthermore, the edge ~ of the unit disc is the preimage
of the contour L., (L; = +). The general form of the
transformation w(() is

w(C) = RC+ wo(C) [1.64]

where R # 0 is a constant and w,(¢) is holomorphic in >~
including at infinity.
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We aim to show that [1.53] provides a functional equation
for the unknown ¢((). The other unknown 1 (¢) can then be
explicitly derived from the solution to the latter. As discussed
in section 1.7.2, we restrict to stress boundary conditions, and
we start with a loading in which F, = F;, =T =T = 0 (see
equation [1.45]). In other words, the functions ¢,(z) and ¥ (2)
are holomorphic, including the point z = co. This holds true
for the functions ¢(¢) and ¢(¢), which are also holomorphic,
including ¢ = oc.

Let us apply theorem [1.96] of Appendix 1.9 to the function
¥(¢) in [1.53]:

— w(o) ——

(Vo ey =wl(L:) (o) = f(w(0)) —d(0) — )¢>’(U) [1.65]

W' (o

This identity is first divided by ¢ — ¢ and then integrated
along ~. This yields:

1 fdo 1 [ wl)¢),
> 1: %TLU_€+¢(C)—%Aw,(a)a_gda—o[1.66]

where theorem [1.94] was applied to ¢(¢{) and the relation
¢(00) = 0 was used (see equation [1.33]); [1.66] constitutes
the functional equation with respect to the unknown ¢(¢). It
is the counterpart of [1.59] for the domain X = X~

We still have to determine ((). To do so, theorem [1.94] is
applied together with the condition v (cc) = 0:

cl>1: 9(¢) = L2y, [1.67]

2im ), 0—(

Hence, the value of ¢)(o) follows from [1.65]:

(Vo €y =wl(L:)) (o) = flw(0)) (o) —
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Again using theorem [1.96], applied to ¢((), it appears that:

. Ll f 1 [ w(o) ¢(o)
1] >1: () = 5in ﬂ/U—{dU—i—QiW : w,(g)0_<d0[1.69]

We now consider the situation when the resultant force
acting on £, and the asymptotic stress state are possibly not
equal to O.

We start with the expressions ¢;(z) and ;(z) given in
[1.45]. Owing to [1.51] and recalling the expression [1.64] of
w((), the potentials ¢(¢) and ¢({) defined on ¥~ are found in
the form:

F, +1F,
#(C) = _W—Hj) log(¢) + I'R¢ + ¢,(¢)
[1.70]
B K(Fy —iFy) ,
Y(() = Wlog(@ + IR + 96(C)

where ¢,(¢) and v,(¢) are holomorphic on ¥~ (including the
point at infinity).

We now revisit the previous reasoning starting from
equation [1.65]: this equation is written in terms of ¢,(¢) and
10(¢), and replaces f by a new function f, defined on ~ by:

fozf_f'R_m(Hw)

o (o)

F, —iF, w(o) n Fy +1iF,

== 1 1.71
27?(1+I€)Uw’(a) o ogo [ ]
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It is now possible to determine ¢,(¢) and ¢,(¢) from [1.66]:

I¢] > 1: L[ Jodo + ¢o(¢) — 1/“(")%(")@50:0 [1.72]
o

2w ), 0= ¢ 2im ) W(o) o —¢
and [1.69]:
. I N A 1 [ w(o) ¢y(0)
IC] > 1: 00 (C) = 2i7r/70_<da+ 2m[Y o) o ¢l 1LT3]

1.8. The anisotropic case
1.8.1. General features

We now consider the anisotropic case, in plane strains or
plane stress conditions. It is assumed that the plane of study
is a plane of material symmetry. The linear elastic constitutive
equations therefore read:

Exe = A1104z + AlQUyy + AlGny
Eyy = A12020 + A20yy + A2g0yy [1.74]
25:)3y = A16000 + A260yy + A66amy

In the following, a;; (respectively, b;;) will denote the
coefficients A;; in plane stress (respectively, plane strain)
conditions. Coefficients a;; are directly related to the
coefficients of the tensor of compliance:

ain = Si1; ag2 = S2z92; @12 = St122 [1.75]
a16 = 2511125 age = 2522125 g6 = 451212

The plane strain coefficients b;; are related to a;; according
to (i, j =1, 2, 6):

bij = aij — aigﬁ [176]
a33
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with

az1 = S1133, a3z = 52233, @33 = S3333, aze = 253312

In the isotropic case, the conditions of geometrical
compatibility [1.6] imply that the Airy function U (see
equation [1.1]) is biharmonic AAU = 0 (see section 1.1).
Owing to [1.74], they now take the form:

orU 0*U U otuU
Agg—r — 2496 —— 2A Agg) =55 — 2A16———
251 26 5550y + (2412 + 66)8x20y2 16 508y3
0*U
A — 1.77
+ An 3y 0 [1.77]

Observing that all terms involve a fourth—order derivative,
we find solutions in the form f(z + py), where p is a complex
constant and f(z) is a differentiable function of the (a priori)
complex variable z = = + uy. It appears that [1.77] will be
satisfied provided that ;. is a root of the polynomial equation:

Agy — 24060 + (2412 + Age)p® — 24161 + Appt =0 [1.78]

The latter has two pairs of conjugate roots, respectively,
w1, @y and pe, fiy. By convention, the imaginary parts of 1
and puo are positive. Among other classical relations between
coefficients of [1.78], let us note in particular that:

A
2 = Pl (179
11

Since U(x,y) is a real-valued function, we find the solution
to [1.77] in the form:

Ul(x,y) =2Re (fi(z + p1y) + f2(z + p2y)) [1.80]
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where fi(z1) and f2(z2) are two differentiable functions of the
two distinct complex variables:

21 =X+ p1y; 22 =T+ [y [1.81]

1.8.2. Stresses, displacements and boundary conditions

Following [LEK 63] (see also [SIH 65]), let us introduce the
complex potentials ¢1(z1) = f{(z1) and ¢2(z2) = f}(22). From
the definition [1.1] of the Airy function, we obtain:

oyy = 2Re (¢ + ¢b) [1.82]
Oxy = —2Re (ngbll + /142¢/2)

In the case of plane strains, it is sufficient to determine the
components &, and &, of the displacement. To do so, let us put
the strains given by [1.74] (with A;; = b;;) in the form:

0&,
- a—i = 2Re (p1] + p2dh)
[1.83]

%3
Eyy = 67yy =2Re (@) + qapiadh)

with the following notations (j = 1, 2):

b
pj = bulﬁ +b12 — bigpj; g5 = bropj + % — bog [1.84]
J

Integration gives (up to a rigid body motion):

§x = 2Re (p191 + padh2)
£y = 2Re (q1¢1 + qa¢p2) [1.85]
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Moreover, the derivation of the resultant force acting on an
oriented arc element — such as that presented in section 1.2 —
can be directly used. [1.22] provides the resultant components
along e, and €y of this force as a function of the curvilinear
abscissa:

s ou
F.(s :/ T,ds = — + Const.
5) 0 dy
[1.86]
Fy(s) :/0 Tyds = —g—g + Const.

Using [1.80] again, the conditions on a loaded edge are put
in the form:

2Re (1 d1(z1) + papa(22)) = Fy + Const.

2Re (¢1(21) + ¢2(22)) = —Fy + Const. [1.87]

1.9. Appendix: mathematical tools

As mentioned, v denotes the unit circle (Jo| = 1). Cauchy’s
classical formula states that:

¢ >1: /UdfC =0 [1.88]
Y
whereas
¢l <1: /Ud_gC = 2im [1.89]
Y

Furthermore, a partial fraction decomposition reads:

U 11
k>1: Z? k+1j oo 190
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It follows that:

1 do 1
> : _ _— .
k=1, >1 %wLaWU—O @ [1.91]
whereas
1 do
> : — _— = .
E>1,¢(<1 2i7r/wak(a—C) 0 [1.92]

These identities are helpful to establish the following
results.

1.9.1. Theorem 1

If £(¢) is a holomorphic function on the unit disc X", then:

1 flo) o

Il <1: do = £(0) [1.93]

2im Jyo0—(

This result is readily established by means of a power series
expansion » ;- ax( k of f(¢). First, considering the boundary
~ of the disc, we have:

lo|=1: flo) = Zaka_k

k>0

which is introduced into the left-hand side of [1.93]. The
theorem then immediately follows from [1.89] and [1.92].
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1.9.2. Theorem 2

The matter of the present theorem is Cauchy’s formula for
an infinite domain: If f(z) is holomorphic in X~ (|¢| > 1)
(including the point at infinity), then:

>1: = 1) 4 = foo) £(0) [1.94]

2im J,0—¢

This can be proved from a Laurent power series of f(()
(with no positive power since f(() is holomorphic at infinity):

0

FQ =Y ac [1.95]

k=—o00

A direct application of [1.91] and [1.88] yields

o1 flo) , = k
I¢] > 1: m[ya_cda—— > g

k=—o00

and the theorem [1.94] is established.

1.9.3. Theorem 3

The counterpart of theorem [1.93] for a holomorphic
function in ¥~ (including the point at infinity) reads:

_ L [ flo)
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Again, the proof'is based on a power series expansion of f(()
in the form [1.95]. Considering in particular the unit circle ~

@=1/0):
0
f(o*):dea_k
Then, observing that the function o % (¢ < 0) is

holomorphic on the unit disc, it is readily seen that

o kdo

k<0, ¢ > 1 / —0
v 0—C

The theorem [1.96] immediately follows from the two last
equations.




