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Pure Liquids 

This chapter will be given over to atomic and molecular liquids. A pure 
molecular liquid is a liquid comprising only one type of non-dissociated 
molecules. The study of liquids is more difficult than that of gases and solids 
because they are in an intermediary state, structurally speaking. Indeed, as is 
the case with solids, we can imagine that in liquids (and this is confirmed by 
X-ray diffraction), the interactions between molecules are sufficiently 
powerful to impose a sort of order within a short distance of the molecules. 
However, the forces involved in these interactions are sufficiently weak for 
the molecules to have relative mobility and therefore for there to be disorder 
(no form of order) when they are far apart, as is the case with gases. 

1.1. Macroscopic modeling of liquids 

In the areas where liquids are typically used, far from the critical 
conditions, it is often possible to consider liquids to be incompressible – 
meaning that ( )/ 0TV P∂ ∂ ≅  – but dilatable. The order of magnitude of a 
dilation coefficient is 10-3 degrees-1, whereas that of the compressibility 
coefficient is 10-4atm-1. 

As we approach the critical conditions, this approximation is no longer 
possible, and the properties of the liquid tend more to be governed by an 
equation of state. Whilst the “cubic” equations of state for gases do include 
critical conditions, it is accepted that the properties of liquids often  
necessitate equations of state that take account of the intervention of forces 
when more than two bodies are concerned. Additionally, the third- and 
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2     Modeling of Liquid Phases 

fourth coefficients of the virial, which can no longer be ignored in the case 
of liquids, become necessary when these types of forces are at work. 

Certain equations of state specific to liquids have been put forward in the 
literature, including Rocard’s, which is written thus: 
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In addition, this equation, expressed as the expansion of the virial, 
assumes the form: 
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This equation does indeed include the third and fourth coefficients of the 
virial. 

The heat capacities at constant volume and constant pressure are 
practically identical, around 0.5cal/g, or 2.1kJ/kg. 

1.2. Distribution of molecules in a liquid 

On a structural level, liquids are classified into two categories: associated 
liquids and non-associated liquids. 

A liquid is said to be non-associated if the intra-molecular degrees of 
freedom (rotational, vibrational, electronic and nuclear) are not majorly 
disturbed by the proximity of neighboring molecules. These liquids can be 
treated, as is the case with gases, with independence between the internal 
motions and the translation of the molecules. 

A liquid is said to be associated if, unlike in the previous case, the 
molecule’s internal degrees of freedom are disturbed by the proximity of 
other molecules. This disturbance may be so great that, in practical terms, we 
need to consider associations between molecules, coming together to form 
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dimers, trimers, etc. The new bonds that need to be taken into account are 
usually hydrogen bonds, whose energy is 4-5 times less than that involved in 
typical chemical bonds, but which are 4-5 times stronger than intermolecular 
bonding by van der Waals forces. When the temperature rises, these bonds 
are broken and, particularly when the thermal agitation energy (kBT) is much 
greater than the energy in the hydrogen bond, the molecules separate and 
regain individuality when they are near to the gaseous state. 

These associations lend associated liquids very special properties, such as 
anomalies of the dilation coefficient, high viscosity, low surface tension and 
a high boiling point. Liquid water belongs to this category. The best way of 
dealing with these liquids in thermodynamics is to consider them no longer 
as pure liquids, but rather to treat them as associated solutions, with dimeric, 
trimeric (etc.) molecules – see section 2.5. 

1.2.1. Molecular structure of a non-associated liquid 

Hereinafter, we shall focus only on non-associated liquids, and we shall 
suppose the molecules are spherical. A non-associated liquid is characterized 
by a local order, or short-distance order. The best illustration of this is of 
liquid metals. In Figure 1.1, which gives a 2-dimensional image of the 
arrangement of spherical molecules in a liquid, we can see that the molecules 
are relatively close together, and that around each molecule, there is an area 
of order which is illustrated by the circles superimposed on the figure. The 
short-distance arrangement, within the circles, is almost identical to the 
molecular arrangement in a solid crystal but, unlike with a crystal, there is no 
long-distance order. The two circles on Figure 1.1 exhibit no periodicity. 

 

Figure 1.1. Two-dimensional diagram of the distribution of molecules in a liquid 
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The second difference between a crystal and a liquid is that in the latter, 
the molecules are in perpetual motion, so Figure 1.1 is representative of the 
situation only at a given time. Unlike with a solid crystal, the distribution of 
those molecules would be different an instant later, although we would find 
similar zones of ordered arrangement. 

Hence, in order to accurately describe a liquid, we cannot content 
ourselves with merely describing the position of a few appropriately-chosen 
neighboring molecules, as we can with the lattice of the crystal. We would 
have to define the positions of each of the molecules at every moment in 
time. In view of the impossibility of the task in a medium with normal 
dimensions (around a mole, which contains 1023 molecules), we use 
statistical methods using so-called correlation functions. The paired 
correlation function which we intend to examine constitutes the first level of 
this description.  

1.2.2. The radial distribution function 

Throughout this chapter, we shall suppose that the interactions between N 
particles of a liquid medium are additive and paired, meaning that the 
internal energy due to these interactions is merely the sum of the interactions 
between molecules, two by two. Thus, the internal energy is the sum of the 
energies between the molecules taken two by two ( ), ,i j i jrε . This energy 

depends only on the distance between the two molecules. Hence, we have: 

( ), ,(1,2,... )
N

i j i j
i j

U N rε
<

=  [1.3] 

Consider a molecule chosen at random in the structure (Figure 1.2). Let 
dN(r) signify the number of molecules whose centers are situated in the 
crown between the two spheres centered on the chosen molecule, with radii r 
and r+dr and volume 4π r 2dr. The density of molecules in the crown ρ(r), 
i.e. the number of molecules situated in the crown per unit volume of that 
spherical crown, at a distance r from the central molecule, is such that: 

2
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ρ
π
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Figure 1.2. Arrangement of molecules of liquid around the center of a cage 

The volumetric density ρ is defined as the ratio of the total number of 
molecules in the liquid in question to the volume of that liquid, i.e.: 

N
V

ρ =  [1.5] 

We define the paired correlation factor or the radial distribution function 
g(r) by the relation: 

( )
( )

r
g r

ρ
ρ

=  [1.6] 

As we can see, this function is the ratio of the mean value of the local 
density of molecules (mean calculated at the positions, at a given time and 
over a period of time) to the volumetric density of molecules. The 
correlation factor g(r) is proportional to the probability of finding a molecule 
at a distance r + dr from another molecule. Thus, we can write the relation: 

, ,
1 1
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N N
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g r r r
N

δ
ρ = =

= −  [1.7] 

where ,i jδ is the Kronecker delta, such that: ,
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This ratio [1.7] quantifies the local structure – in other words, the way in 
which the molecules are arranged in relation to one another. 

1.2.3 The curve representative of the radial distribution function 

By combining relations [1.4] and [1.6], we see that the mean number  
of molecules in the coronal volume between the spheres with radii r and  
r + dr will be: 

2d ( ) 4 ( )dN r r g r rπρ=  [1.8] 

In the solid crystal, only certain distances exist, and the representative 
curve for the function g(r) exhibits extremely slender peaks for these 
distances. 

In the case of the liquid, the curve representing the function g(r) has the 
shape shown in Figure 1.3. We obtain a first peak with a breadth Δr/r of 
several %, which represents the distance between the first neighbors. The 
next peaks, which represent the second, third (etc.) neighbors, are heavily 
damped because of the disorder over a long distance. The function g(r) tends 
toward 1 at a long distance, there is no longer order and therefore, on 
average, we always find the same number of molecules per unit volume as 
are present in the overall liquid. 

Figure 1.3 can be obtained by neutron diffraction or hard, very 
penetrating X-ray diffraction, such as those produced by synchrotron 
sources. 

In principle, the distribution g(r) is null for distances less than 0.5 Ä, 
because there is no chance of finding two molecules that close together, 
given that the order of magnitude of a molecule’s diameter is between 1 and 
3 Ä. Around values between 3 and 5 Ä, molecules may be found, and the 
local density is greater than the overall density. Thus, g(r) is greater than 1. 
Between the first series of neighbors and the second, there are few 
molecules, and the factor g(r) drops back below 1. The second maximum 
corresponds to the second neighbors, which are less precisely localized, and 
therefore have lower local densities – hence the damping effect seen here.  
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The more the peaks are damped, the more negligible the influence of the 
central atom. Thus, it is easy to understand that we can often content 
ourselves with the influence of the nearest neighbors, i.e. those which 
correspond to the first peak. 

 

Figure 1.3. Paired distribution function for a liquid 

We can see that, apart for a few exceptions, the local order and the 
intermolecular distances of the maxima are the same in the solid and  
the corresponding liquid. The peaks shown in the solid are very slender, but 
the first peak is situated at the same value of r. 

Diagrams such as Figure 1.3 are very useful, because they enable us to 
calculate two statistical values: 

– the mean distance of the first neighbors. This value is given by the first 
maximum point on the curve. The breadth of the peaks shows the variation 
of the distances around the mean value due to the ordering of the molecules 
and to their agitation; 

– the mean value of the number of first neighbors. To calculate this, we 
decide that the first neighbors are those which are found at distances 
between 0 and rmin. This value is the abscissa of the minimum which follows 
the first maximum (see Figure 1.3) on the plot of g(r). Thus, for the number 
of first neighbors, we can write: 

min min
2

0 0

d ( ) 4 ( )d
r r

z N r r g r rπρ= =  [1.9] 

In a liquid, unlike with a crystal, this number may not necessarily be an 
integer. 
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1.2.4. Calculation of the macroscopic thermodynamic values 

We shall show that, like the partition function, the radial distribution 
function contains all the information pertaining to the thermodynamic 
definition of the liquid. Therefore, it can be used to calculate the 
macroscopic values such as the internal energy, the pressure, an equation of 
state or the heat capacities. 

On the basis of relation [1.8], we can write the differential of the internal 
energy due to the interactions in the form: 

24 ( ) ( )dd
2

r g r r ru π ρ ε=  [1.10] 

Hence, by integrating over the whole volume: 

2

B 0

4 ( ) ( )d
R 2k

pfU U
r g r r r

T T
ρ π ε

∞−
=  [1.11] 

pfU
 denotes the internal energy of a fluid with no interaction, i.e. the 

molar internal energy of the perfect gas which, according to the theorem of 
equal distribution of energy, has the value: 

3R
2pf
TU =  [1.12] 

From this, we can deduce the internal energy: 

2

B 0

3 4 ( ) ( )d
R 2 2k
U r g r r r
T T

ρ π ε
∞

= +  [1.13] 

As we have the expression of the internal energy, which is a characteristic 
function in variables V and S, we have all the necessary information to 
define the phase.  

To calculate the pressure, we need to have the differential of the internal 
energy in variables P and T, an expression which is of the form: 

d d d
V V

S PU T T P V
T T

∂ ∂= − +
∂ ∂

 [1.14] 
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Then, we calculate the pressure on the basis of the derivative of the 
internal energy in relation to the volume, which gives us: 

2
2a

B 0

2 N d ( )1 ( ) d
R 3k d
P rr g r r

T T r
π ρ ε

ρ

∞

= −  [1.15] 

By substituting the value of r found in relation [1.5], written for one 
mole, back into the above expression, then it is easy to write the equation of 
state: 

 
2

2a
a

B 0

2 N d ( )N 1 ( ) d
3k d

rPV n r g r r RT
T r

π ρ ε∞

= −  [1.16] 

Similarly, the material derivative of the internal energy in relation to the 
temperature enables us to easily calculate the heat capacity at constant 
volume. 

We can now calculate all the other functions, particularly the 
compressibility at constant temperature χΤ, which gives us: 

[ ] 2
a1 N ( ) 1 41

R
V

T
T

g r r drV
V P T

π
χ

+ −∂= − =
∂

  [1.17] 

Thus, we have shown that knowing the radial distribution function 
enables us to completely define the phase in thermodynamic terms. 

We know that a second way of calculating the macroscopic values is to 
use the canonical partition function. This is the method that we shall use 
from hereon in. To do so, we must construct a structure of the liquid, in 
order to be able evaluate the terms of interaction in the canonical partition 
function. Various techniques are used. We shall describe four such 
techniques: Guggenheim’s and Mie’s models, extrapolated respectively from 
the gas and solid models, the Lennard-John and Devonshire cellular model 
and the cell/vacancy model. 

1.3. Models extrapolated from gases or solids 

In light of the proximity of the structure of liquid, firstly to that of a gas 
(in terms of the mobility of the molecules and the disorder at long distance) 
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and secondly to that of a solid (in terms of the presence of an order over a 
short distance and figures of X-ray diffraction), the earliest models 
developed were extrapolations either from a model of a gas or from one of a 
solid. These models can be used to calculate the radial distribution function 
and the canonical partition function. As we know that only one of the two is 
necessary, in our discussion below, we shall restrict ourselves to calculating 
the canonical partition function.  

1.3.1. Guggenheim’s smoothed potential model 

This model [GUG 32] is extrapolated from the imperfect gas model, 
which can be used to calculate the second coefficient of the virial (see 
section A.3.4 in Appendix 3). The canonical partition function then takes the 
form of equation [A.3.41]. 

From this, we deduce the configuration integral due to the interactions 
and to the volume, in this case the volume of slightly imperfect gases:  

2
AA ( )1

!

NN

I
N B TVI

N V
= −   [1.18] 

Using the notation vm to represent the volume per molecule (V/N), or the 
molecular volume (which must not be confused with the volume of a 
molecule), and using Stirling’s approximation [A.3.1], this expression takes 
the following equivalent form: 

( )AAexp( ) ( ) N
I mI N v B T= −   [1.19] 

According to relation [A.3.40], the term BAA is a function only of the 
temperature. 

We can use such an expression for a highly-imperfect gas or a liquid, 
supposing that the term BAA is also a function of the volume. The difference 
vm-BAA(T,vm) will therefore represent the free volume per molecule vf and the 
above relation will then be written: 

( )exp( ) ( )
N

I f mI N v v=   [1.20] 
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Supposing the potential function to be more or less constant, an initial 
model of the liquid state was proposed. 

Thus, we suppose that each molecule moves through a uniform field of 
potential, the lattice energy,  (–ε) (attractive) which will be determined by 
the mean number of near neighbors at a given distance from the molecule, 
and will essentially be a function of the number of molecules per unit 
volume, i.e. a function of the volume per molecule vm. The contribution of 
the interactions to the canonical function can thus be written by 
supplementing it with the exponential term corresponding to that uniform 
potential. Thus, we obtain: 

( )
B

( )exp( ) ( ) exp
k

N
N m

I f m
vI N v v
T

ε=   [1.21] 

This can also be written as: 

B

( )exp(1) ( )exp
k

N

m
I f m

vI v v
T

ε=   [1.22] 

Hence, in light of relation [A.3.42], and with Stirling’s approximation 
applied, the canonical partition function for the fluid will be written thus: 

( )3/2
B

3
B

int

2 k ( )( )ln ln
k h

ln ln

f mm
C

m T v vN vZ N
T

N N z N N

πε= +

+ + −

  [1.23] 

On the basis of relations [1.23] and [A.3.48], we can calculate the 
Helmholtz energy F: 

( )3/2
B

B 3

B B int

2 k ( )
( ) k ln

h

          k k ln

f m
m

m T v vF v T
N

T T z

π
ε= − −

− −

  [1.24] 

 



12     Modeling of Liquid Phases 

From this, we deduce the pressure: 

B
,

ln ( )( ) k f mm

T N m m

v vvFP T
V v v

ε ∂∂∂= − = +
∂ ∂ ∂

  [1.25]
 

Most of the time, the properties of the liquid are insensitive to variations 
in pressure and it is therefore correct to consider the pressure to be zero. 
Thus, we shall have:

 
B

ln ( )( ) k 0f mm

m m

v vv T
v v

ε ∂∂ + ≅
∂ ∂

  [1.26] 

Hence, the compressibility factor Z = PV/RT is essentially null regardless 
of the volume.

 
The molecular Gibbs energy is:

 

( )3/2
B

B B B int3

2 k
     k ln k k ln

h
f

m

G F VP
N N N

m T v
T T T z Pv

π
ε

= +

= − − − − +

  [1.27] 

The molecular internal energy is given by:
 

2 int
B

( / ) 3- k
2

UU F TT T
N T N

ε∂= = − + +
∂

  [1.28] 

Thus, the molecular enthalpy is: 

int
B

3 k
2 m

UH U VP T Pv
N N N N

ε= + = − + + +   [1.29] 

The molecular entropy is given by: 

( )3/2
B

B 3

B B B int

2 k )
k ln

h

ln5                   k k k ln
2

f m

f

F
m T v vS N

N T

v
T z

T

π∂
= − =

∂

∂
+ + +

∂
 

 [1.30]
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In view of the variation of the free volume with temperature  
(see section 1.3.3) and of the independence of the volume from pressure  
( 0Tχ ≈ ), we find:  

( )3/2
B

B B B B int3

2 k ) 1 5k ln k ln k k ln
h 2

f

m

m T vS z
N v

π
= − + +

 

 [1.31] 

In relations [1.27], [1.28] and [1.29], the pressure can be taken to be null, 
in keeping with relation [1.26]. 

1.3.2. Mie’s harmonic oscillator model 

This time referring to the local order in a liquid similar to that of a solid, 
the potential function is given a form very similar to that of a harmonic 
oscillator. Thus, a second model of the liquid state [MIE 03] was put 
forward. Beginning with the quasi-crystalline model of a liquid, we suppose 
that each molecule is in a field of potential whose minimum is ε0(vm), and 
that the molecule moves through that field corresponding to a three-
dimensional harmonic oscillator of frequency ν, which is also a function of 
the volume per molecule vm. We use the symbol r to denote the distance 
from the center of the molecule to the center of the cavity where the 
minimum potential is in force. At that distance, the molecule would have a 

potential energy 
2 2

0 B
(2 )( k )

2
m rT πνε− + +  so, if we integrate for all 

possible positions of the molecule, the configuration integral for the partition 
function is found to be: 

2 2
20 B

B B0

( k ) (2 )exp 4 exp d
k 2k

N

I
T m rI N r r

T T
ε πνπ

∞+= −   [1.32] 

After integration, this gives us: 

3/2
0 B B

2
B

( k ) kexp
k 2

N

I
T TI

T m
ε

π ν
+=   [1.33] 
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Using approximation [A.3.31] for the vibration, the complete canonical 
partition function is then written: 

3/2 3
B B

int 12

2 k k
h h

N

C
m T TZ z Iπ

ν
=  [1.34]  

Hence, if we take relation [1.33] into account: 

3/2 3/2
0 BB B

int 2 2
B

( k )2 k kexp
h k 2

N N

C
Tm T TZ z

T m
επ

π ν
+=  [1.35] 

By switching to logarithms, we obtain: 

0 B
int

B m

( ) kln 3 ln ln
k h ( )

m
C

N v TZ N N N z
T v

ε
ν

= + + +   [1.36] 

This is the partition function of the liquid, given by Mie’s 3D harmonic 
oscillator model. 

Based on relations [1.36] and [A.3.48], we find that the Helmholtz energy 
per molecule is: 

B
0 B B B int

k3k ln k k ln
h

TF T T T z
N

ε
ν

= − − − −   [1.37] 

In the same way as we did above, we deduce the expressions for the 
different functions: 

0
B

ln
3k 0f

m

vFP T
V v v

ε ∂∂∂= − = − ≅
∂ ∂ ∂

  [1.38] 

B
0 B B B int

k3k ln k k ln
hN m

TG T T T z Pv
N

ε
ν

= − − − − +   [1.39] 

int
0 B3k UU T

N N
ε= − + +   [1.40] 
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int
0 B3k m

UH T Pv
N N

ε= − + + +   [1.41] 

In all these relations, the term Pvm is negligible. 

The entropy per molecule is given by: 

B
B B B int

k3k ln 4k k ln
h

F
TS N z

N T ν

∂
= − = + +

∂
  [1.42] 

This expression is independent of the volume. 

Thus, we obtain two different series of expressions. We usually use the 
smoothed potential model we link the properties of gases to those of liquids, 
and the harmonic oscillator model to link the properties of liquids to those of 
solids. 

NOTE 1.1.– Relations [1.24] and [1.37] may be identical for a certain 
temperature and a certain volume per molecule, identifying ε with ε0 and 
attributing the following value for the molecular volume: 

3/2
B

2

k
2m

Tv
mπ ν

=   [1.43] 

1.3.3. Determination of the free volume on the basis of the dilation and the 
compressibility 

The free volume of the liquid, which we need to know in order to exploit 
Guggenheim’s model, can be determined by a variety of methods: velocity 
of propagation of sound, vapor pressure, measurements of dilatation and 
compressibility. We have chosen to discuss this latter method. 

In view of their definitions, the volumetric dilation coefficient and 
compressibility coefficient enable us to write: 

( )
( )

,

,,

/

/
P N

V NT T N

V T P
V P T

β
χ

∂ ∂ ∂= − =
∂ ∂ ∂

  [1.44] 
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In light of relation [1.26] (with ε and vf being functions only of vm), we 
can write: 

B
,

ln
k f

V N m

vP
T v

∂∂ =
∂ ∂

  [1.45] 

However, if we consider that the molecules are arranged in a cubic lattice 
with centered faces, spaced the length a apart, we can take the following 
value for the free volume for the molecules: 

( )34
3fv a Dπ= −   [1.46] 

Using relation [1.51], which we shall demonstrate later on (see relations 
[1.50] and [1.51] in section 1.4), we can write: 

1/3

2/3 1/2

4 2ln 3f

m m f

v
v v v

π
∂

=
∂

  [1.47] 

By substituting this value back into equations [1.44] and [1.45], we find 
the value of the molecular free volume: 

1/3 3
B

2 3

4 2k
3

T
f

m

v
v

π χ
β

=   [1.48] 

If, for β and χΤ, we take orders of magnitude of, respectively, 10-3K-1 and  
10-4atm-1, we obtain, e.g. for chloroform: 

Navf =0.44 cm3/mole [1.49] 

This value is perfectly acceptable. 

1.4. Lennard-Jones and Devonshire cellular model 

This model [LEN 37] is based on Figure 1.4. Each molecule is inside a 
spherical cage – the cell – whose radius is a. This sphere is the molecule’s 
mean sphere of influence.  
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The energy of interaction between two molecules is expressed by 
Lennard-Jones’ relation [A.3.44]. This interaction is limited to the 
molecule’s z nearest neighbors. 

 

Figure 1.4. Cage and molecules of liquid 

This number z is the coordination index linked to the cell geometry. We 
shall suppose that the molecules occupy the sites of a cubic lattice with 
centered faces, and therefore the coordination index is z = 12. 

The volume of liquid is divided into cells centered on each molecule, 
whose near neighbors occupy the medium from the vertices of a cube with 
side length 2 / 2a . Each molecule which is a near neighbor of the original 
one thus belongs to four cells, and each cell contains 1 + 12/4 = 4 molecules. 
Hence, the volume of the cell is such that: 

( )334 8 / 2mv a=  [1.50] 

and therefore: 

3 2ma v=  [1.51] 

The translational canonical partition function with interactions can be 
written, on the basis of expression [A.3.38], taking account only of the z 
molecules that are near neighbors of each molecule i. 

( )
( )

,
1 1

( )
B

1 ... exp d
! k

N z
N

N i j
Npf i j

C t
V

z
Z

N V T

ε ω
ω= == −  [1.52] 
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On the basis of relation [A.3.24], using ( )Nε ω  to denote the double sum 

appearing in the previous relation, the canonical partition function becomes: 

( )
( ) ( )

3

( ) 1/2
BB

1 h ... exp d
! k2 k

N N
N

C t
V V

Z
N Tm T

ε ω
ω

π

−

= −  [1.53] 

 

Figure 1.5. Distance between a molecule and one of its near neighbors  

We shall now evaluate the double sum ( )Nε ω . The near neighbors of a 

molecule i are, in fact, situated at different distances dij from it, and those 
distances change over time. Rather than moving both the molecule i and its 
near neighbors at once, we shall suppose that the center of the cell is 
stationary, that the molecule i moves in concentric circles of radius r around 
that center, and that the near neighbors are affixed to a concentric sphere 
with radius a. The radius r varies between 0 and a. Consider the plane 
passing through the molecule i at point I, one of its near neighbors at M and 
the center of the cell O (Figure 1.5). 

In order to simplify the multiple integration appearing in expression 
[1.53], we shall create spherical symmetry and average the distance from the 
atom i along a radius r to all its near neighbors. The energy ( )Nε ω  can be 

written: 

( ) ( )
1

( ) ( )
2 2

N
N

i

Nz za d aε ω ε ε ε
=

= + −  [1.54] 
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( )dε  is the mean mutual energy between the atom i and a near 
neighbor when the atom i is on the disc of radius r. This energy is a function 
of the distance, which is given by the following equation (see Figure 1.5): 

2 2 2 cosd r a ar θ= + +  [1.55] 

The mean energy is: 

0

( ) ( )sin dd d
π

ε ε θ θ=  [1.56] 

Using relation [A.3.44] for the potential energy of interaction and 
substituting into it the value given by relation [1.55], we find: 

12 62 2
0 0 0

2 2( ) l 2 m
2

                       

Nz d dd dd
a a a a

εε = −  [1.57] 

with the following meaning for the functions “l” and “m” that appear in 
equation [1.57]: 

  

22 2

102 22 2

2 23 42 2

2 2

1 12 50
l 1 1

12

                       

d d
a aa d

d ad d
a a

−+ +
= − −

+ +
 [1.58] 

42 2 2

2 2 2m 1 1 1

                       

a d d
d a a

−

= + − −  [1.59] 

Figure 1.6 shows two curves illustrating the variations of our potential 
energy as a function of the ratio d/a for two values of the ratio d0/a equal to 
0.942 (part a) and 0.681 (part b). A posteriori, these two functions provide a 
justification: the first, for the approximation of the smoothed potential 
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theory, as the potential energy is practically constant (part a), and the 
second, for the approximation of the 3D oscillator theory, with the potential 
energy showing a near-parabolic shape as a function of the distance (part b). 

 

Figure 1.6. Potential for interaction of a molecule in a liquid according to  
Lennard-Jones and Devonshire. a) for d0/a = 0.942; b) d0/a = 0.681 

By substituting expression [1.57] back into relation [1.53], the 
contribution of the translational motion to the canonical partition function 
can be written as:  

( )

3
/2

3
( ) 1/2

B0B

( ) ( )1 h 2 exp d
! k2 k

N Na

C t

d a
Z Na x

N Tm T

ε ε
π

π

−
−

=  [1.60] 

According to Lennard-Jones and Devonshire, the integration limit in 
equation [1.60] is of no importance, because the greater part of the 
contribution is made by small distances, particularly where d < a/2. 

If we set x = d/a, then the logarithm of the translational partition function 
is: 

( )

( ) [ ]

3/2
B

( ) 3

6 12
0 0

0
3

0 0
B

2 k
ln ln

h

6 2
ln 2 ln ( , )

k

C t

m T
Z N N

d d
a a

N N a N d
T

π

ε
π η ε

= +

− +

+ + +

 [1.61] 
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We have chosen z = 12, and 0 0( , )dη ε denotes the function defined by: 

12
0

1/2
1/2 0

0 0 6
B0 0

l( )
( , ) exp d

k
2 m( )

d x
a

r x x
T d x

a

γεη ε

γ

=

−

 [1.62] 

d0/a 0

B

9
k T
ε = −  0

B

10
k T
ε = −  

0.942 0.00180 0.00161 
0.918 0.00295 0.00269 
0.891 0.00515 0.00478 
0.858 0.00964 0.00916 
0.818 0.01957 0.01920 
0.765 0.0437 0.0445 
0.730 0.0676 0.0700 
0.681 0.1069 0.1125 

Table 1.1. Values of the function 0 0( , )dη ε  

The energy ε(a) is given by: 

6 12
0 0

0( ) 2 d da
a a

ε = − +  [1.63] 

Table 1.1 gives a few values, which are easy to calculate automatically, 
for this function for two values of the ratio ε0/kBT and different values of the 
ratio d0/a. 

Thus, if we accept the hypothesis of a cubic stack with centered faces, 
i.e. 2γ = , and if we know the molecular volume, the translational partition 
function contains only two parameters linked to the substance: d0 and ε0, 
which are the two parameters that play a part in the expression [A.3.44] (in 
Appendix 3) of the Lennard-Jones interaction potential. 

In order to compare the result to other models and to experimental results, 
we need to deduce the expressions of the thermodynamic functions. From 
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relation [A.3.48], we deduce the expression of the molecular Helmholtz 
energy function: 

( )

( )

6 12
0 0

03/2
B

B B3
B

3
B B int B 0 0

6 2
2 k

k ln k
h k

k ln 2  k ln k ln 2 2 ( , ) m

d d
a am TF T T

N T

T a T z T d v

ε
π

π πη ε

− +

= − − −

− − −

 [1.64] 

Here, intz  represents the contribution of all other internal motions of the 
molecule to the molecular partition function (rotations, vibrations, electronic 
and nuclear spin motions). For atomic liquids, this term can be taken as 
being equal to 1. 

Based on the Helmholtz energy, it is easy to obtain the other 
thermodynamic functions such as: 

m m
FPV V
V

∂=
∂

 [1.65] 

Thus: 
6 12

0 0

B

12 6
0 0 0 0 0 0

B 0 0 0 0

12 ( )1 2 4
k

R
( , ) ( , )( )48 2

2k ( , ) ( , )

m

l m

d da
T a a

PV T
d d d da

T a d a d

ε
γ γ

η ε η εε
γ η ε γ η ε

+ −

=

− −

 [1.66] 

0 0( , )l dη ε  and 0 0( , )m dη ε  being two functions, such as 0 0( , )dη ε , of the 
two variables d0 and ε0. They can be calculated numerically using the 
relations: 

12
0

1/2
1/2 0

0 0 6
B0 0

l( )
12( , ) l( )exp d
k

2 m( )
l

d x
a

r x x x
T d x

a

γεη ε

γ

=

−

 [1.67] 
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12
0

1/2
1/2 0

0 0 6
B0 0

l( )
12( , ) m( )exp d
k

2 m( )
m

d x
a

r x x x
T d x

a

γεη ε

γ

=

−

 [1.68] 

 

Figure 1.7. Isotherms calculated using the Lennard-Jones and Devonshire model 

NOTE 1.2.– In expression [1.60], by comparison with the translational 
canonical partition function for a perfect gas (relation [A.3.26]), we can 
define the free volume of the molecules as: 

1/2
3

B0

0 0 0 0

( ) ( )
2 exp d

k

2 ( , ) 2 2 ( , )

f

m m

d a
v a x

T

d v d v

ε ε
π

πη ε γ πη ε

−
=

= =

 [1.69] 

Figure 1.7 shows a few forms of isotherms in the representation 
3
0 B/ 2kd P T  as a function of 3

02 /mv d . Curve (III) is that of a perfect gas, 
curve (II) is obtained for 0 B12 / k 9Tε = − , and curve (I) for 
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0 B12 / k 10.Tε = −  It is noteworthy that curve (II) seems very similar to the 
critical isotherm which is given by: 

0

B

4
3kcT ε= −  [1.70] 

The values obtained for certain liquids (see Table 1.2) show a satisfactory 
degree of accordance with their experimental values. 

Substances 0d (Ä) 0ε− (10-22 joules/molecule) cT calculated cT observed 

H2 35.3 4.25 41 33 

Ne 29.2 4.89 47 44.47 

N2 72.5 13.25 128 126 

A 56.2 16.5 160 150.66 

Table 1.2. Values of the critical temperature, found experimentally and calculated  
by the Lennard-Jones and Devonshire model 

It is a fairly laborious task to rigorously calculate the critical volume, but 
from Figure 1.7, it seems we can choose the critical volume such that: 

3
0

2 2cv
d

=  so that 3
0 2cv d=  [1.71] 

We can see that this value is far too low. Indeed, it yields a value of 0.7 
for 3

0 B/ 2kd P T , instead of 0.3, which is the result found experimentally. 

Thus, the Lennard-Jones and Devonshire cellular model can be used to 
calculate thermodynamic functions with only two adjustable parameters. In 
section 1.7, however, we shall demonstrate that the results obtained are very 
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approximate, so there is a necessity to perfect the model. This was the  
purpose of the cellular and vacancies model developed by Ono and Eyring. 

1.5. Cellular and vacancies model 

Whilst it does represent real progress in relation to the previous two 
models, the Lennard-Jones and Devonshire model discussed above has a 
serious shortcoming–it is incapable of taking account of two dynamic 
properties of liquids: the phenomena of viscosity and self-diffusion. In order 
to take account of these properties, Ono [ONO 47] introduced the concept of 
vacancies, comparable to that which takes account of conductivity and 
diffusion in the solid phase. Ono considers that certain sites in the pseudo-
lattice, or if you prefer, certain cells described in the above model, are not 
occupied, forming what we call vacancies. Thus, on average, over time, a 
molecule i will be surrounded by zi first neighbors in accordance with: 

i iz y z=  [1.72]
 

yi appears as the fraction of first-neighbor sites occupied around the 
molecule i. Therefore, yi is a short-distance order index, whose value is zero 
when the central molecule i is surrounded only by holes (i.e. no molecules), 
and 1 if all the cells neighboring the central molecule are occupied (see 
section 3.2.1). Its spatial mean would be <yi>, and would correspond to the 
mean value of the number of first neighbors <zi> determined by the first 
maximum of the radial distribution function demonstrated by X-ray 
diffraction. The number z, which is the coordination index, is in fact that 
maximum possible number of first neighbors, given by the chosen structure; 
that value is often taken to be equal to 12 for cubic cells with centered faces. 

In order to take account, individually, of the environs of each molecule, 
we divide the liquid volume V into L cells ( L N≥ ) with respective volumes 
τ1, τ2 … τL. The configuration integral, which is expressed over the whole of 
the volume V, and plays a part in relation [1.53], will be replaced by a sum 
of partial integrals, each of which corresponds to an individual cell. Relation 
[1.53] then becomes: 

( )
( ) ( )

1 1

3

( ) 1/2
1 1 BB

1 h ... ... exp d
! k2 k n N

N NL L
N

C t
l l

Z
N Tm T τ τ

ε ω
ω

π

−

= =
= −  [1.73] 
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The sum contains LN terms which correspond to L different cells, in 
relation to which the coordinates of the different molecules are expressed. 
Because each cell is supposed to be sufficiently small to contain at most one 
molecule, and sufficiently large so that the intermolecular forces are 
practically no longer felt beyond the immediately adjacent cells, the sums in 
expression [1.73] contain only L!/(L-N)! non-null terms. 

The energy ( )Nε ω  in expression [1.71] will therefore be rewritten, 

instead of expression [1.54], in the form: 

( ) ( )
1 1

( ) ( , )
2 2

N N
N i i

i i
i i

z za d y aε ω ε ε ε
= =

= + −  [1.74] 

The distance di is given, for each cell, by a relation similar to 
expression [1.55], namely: 

2 2 2 cosi i id r a ar θ= + +  [1.75] 

We use the notation vc to denote the volume of a given cell, and for the 
cubic lattice with centered face, we have: 

3

2c
av =  [1.76] 

Note that this cellular volume differs from the molecular volume  
vm = V/N, because we no longer always have a molecule in each cell. 

NOTE 1.3.– The volumes vc and vm have a known ratio, because we have: 

c
i

m

v Ny
v L

= =  [1.77]  

Hence, instead of relation [1.61], the translational canonical partition 
function is written as:  

( )
( )

1

3

( ) 1/2
1 1 1 BB

1 h ... exp j( )
! 2k2 k N

N
NL L

i
C t i

l l i

z a
Z y

N Tm T

ε
π

−

= = =

= −∏  [1.78] 
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The function j(yi) is homogeneous with a volume. It is defined by: 

2

B

( , ) ( )
j( ) 4 exp d

2k
i

i i i
i i i

zy d y a
y r r

Tτ

ε ε
π

− −
=  [1.79] 

If all the sites are occupied, yi = 1 and j(yi) is identified with the free 
volume logarithm vf from relation [1.69]. If yi = 0, then j(0) is the logarithm 
of the volume of the cell vc. 

We can see that the function j(yi) is not a simple expression, and the 
various authors have been led to simplify it by a linear form of yi as a 
function of the logarithm of vf and vc so as to satisfy the boundary values of 
j(yi). Thus, Ono proposed the expression: 

( ) ( )j( ) ln 1 lni i f i cy y v y v= + −  [1.80]  

 

Figure 1.8. Potential energy curve for a molecule occupying a  
more favorable position than a neighboring vacancy (from [REE 64]) 

Eyring and his collaborators [REE 64] put forward the formula: 

( ) ( )j( ) ln 1 lni i f i i cy y v g y v= + −  [1.81]  
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Eyring’s function differs from Ono’s only by the introduction of a factor 
g, known as the degeneration factor, which is introduced because it is 
natural to suppose that, of all the places that are available, on average, for a 
molecule, some are more favorable than others, energetically speaking, 
simply because of the organization of the other molecules. This difference in 
energy between the most probable place and a less-probable near neighbor 
(see Figure 1.8) must be proportional to the interaction energy ( ) / 2z aε , and 
inversely proportional to the number of vacancies ( )1h in z y= − . Thus, 
this energy difference would be of the form: 

( )
( ) ( )

2 2 1h i

kz a k a
n y

ε εΔε = =
−  

[1.82] 

k is an adjustable constant of proportionality. Thus, the degeneration 
factor due to the vacancies present around a molecule would be written as: 

( )

( ) ( )

B

B

1 1 exp
k

( )1 1 exp
2k 1

i

i
i

g z y
T

k az y
T y

Δε

ε

= + −

= + −
−

 
[1.83] 

The authors show that if we take account of relation [1.81], using the 
Bragg-Williams approximation (Δε = 0 in g, see section 3.1.2) and Stirling’s 
approximation [A.3.1], the translational canonical partition function [1.78] 
assumes the form: 

( )( ) 1/2
BB

B

h ( )ln 3 ln ln
2k2 k

( )              ln 1 exp
2( - )k

               ln 1 ln 1
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C t

m c

m c m

m m c

m c
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c m

vv N z aZ N
v T vm T

v v kv a
v v v T

v vN v N
v v

ε
π

ε

= − + − +

−
+ + −

+ + − −

 [1.84] 
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Using this expression, the thermodynamic functions – particularly the 
Helmholtz energy – can be calculated. 

1.6. Eyring’s semi-microscopic formulation of the vacancy model  

The expressions used by Eyring in the vacancy model become 
complicated and tricky to calculate numerically. In order to remedy this 
situation, Eyring and his collaborators [EYR 61] adapted the vacancy model 
to a semi-microscopic model, by replacing Lennard-Jones’ interaction 
functions with macroscopic values, involving the molar volume of the solid 

0( )solv  at its melting point and that of the liquid 0( )liqv  at the temperature of 
study. Observing (except for a few very rare cases, one of which is water, 
which is not a non-associated liquid) a significant increase (around a twofold 
increase) in the molar volume upon transitioning from the solid state to the 
liquid state, the authors model a liquid as being a two-component solution: 

– molecules, which behave like a molecule in a solid, i.e. three 
vibrational degrees of freedom. This is the model of the short-distance lattice 
aspect; 

– vacancies, which behave like a gas, and therefore have three 
translational degrees of freedom, which we shall suppose to be perfect, with 
non-localized objects that are free to move around, which will create 
disorder over a long distance and mobility of the species. 

Of course, the movement of a vacancy is, in fact, the movement of a 
molecule neighboring that vacancy. 

Solids, just below their melting point, are assumed to contain no 
vacancies. If there are any, they are few in number in relation to the 
molecules. In a liquid, on the other hand, the number of vacancies is of  
the same order of magnitude as the number of molecules. If N denotes the 
number of molecules behaving like a solid, the number of vacancies would 
be: 

0( ) 0( )

0( )

liq sol

L sol

v vN N
v

−=  [1.85] 
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Thus, the total number of cells would be: 

0( ) 0( )

0( )

liq sol

c L sol

v vN N N N
v

−= + =  [1.86] 

Hence, the fraction of sites with molecules would be: 

0( )

0( )

sol

s liq
c

N vx
N v

= =  [1.87] 

and the fraction of sites with vacancies would be: 

0( ) 0( )

0( )

liq sol
L

L sol
c

N v vx
N v

−= =  [1.88] 

The mean number of vacancies neighboring a molecule (z is the 
coordination index of the lattice) would be: 

0( )

0( )

sol
L

L liq
s

x vn z z
x v

= =  [1.89] 

By applying relation [A.3.36] to both components of the solution, we can 
calculate the canonical partition function on the basis of that of the localized 
molecules and non-localized vacancies, so that: 

( ) ( ).C C s C LZ Z Z=  [1.90] 

As the vacancies behave like a perfect gas with three translational degrees 
of freedom, we have: 
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0( ) 0 ( )
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π
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 [1.91] 
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For molecules which behave like a solid, with three vibrational degrees of 
freedom, if we ignore the residual vibration, we have: 

( ) 3

B

h1 exp
k

C s
gZ

T
ν

=

− −

 [1.92] 

The degeneration coefficient is calculated in a similar manner to that used 
to obtain relation [1.85]. Its value is: 

B

1 exp
k

g n
T

Δε= + −  [1.93] 

If SUΔ is the Helmholtz energy of sublimation of the solid, the variation 
in energy Δε  (Figure 1.8) will be proportional to the sublimation energy and 
inversely proportional to the number of vacancies NL. We can write this in a 
similar manner to expression [1.82]: 

0( )

0( ) 0( )
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s
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k Uv
v v

ΔΔε =
−

 [1.94] 

The partition function of the molecules with solid behavior would 
therefore be: 
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  [1.95] 
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Using expressions [1.90], [1.91] and [1.95] for the overall partition 
function, and after application of Stirling’s approximation, we find: 

( )
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 [1.96] 

We can see that the canonical partition function, and therefore all the 
thermodynamic functions (particularly the Helmholtz energy) depend only 
on the single adjustable parameter k defined in expression [1.94]. Hence, this 
model is a simple and powerful tool. 

The model we have just looked at is that which applies to atomic liquids, 
such as argon, for instance. Eyring and his collaborators carried out parallel 
tests, applied to the cases of molten salts and liquid metals. 

NOTE 1.4.– It is worth noting that Eyring’s model, for the partition function 
(relation [1.90]) is tantamount to mixing Guggenheim’s (section 1.3.1) and 
Mie’s (section 1.3.2) models. These models gave a good account of the 
properties of liquids respectively in the vicinity of a gaseous state and of a 
solid state. 

1.7. Comparison between the different microscopic models and 
experimental results 

A variety of comparisons have been offered by the different creators of 
models: comparisons between a model and the experimental results, 
comparisons between different models, and comparisons between results 
produced by a model and those produced by simulation calculations. Indeed,  
the calculation methods used for statistic simulation lend themselves very  
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well to this type of problem. Examples include the static Monte Carlo 
method, based on equation [1.3], or the molecular dynamics method, based 
on the fundamental law of dynamics (see Appendix 1). 

In terms of comparison with experimental values, we shall give the 
example of the variation in heat capacity at constant volume as a function of 
the temperature calculated by Eyring’s semi-microscopic method. 
Remember that it is a cellular model including vacancies and a degeneration 
coefficient (see section 1.6). Figure 1.9 illustrates such a comparison and 
exhibits good accordance between the results obtained by the model and the 
experimental results. 

 

Figure 1.9. Comparison between the observed values of  
the heat capacity at constant volume and those calculated using  

the cellular and vacancies model by Eyring et al. [EYR 61] 

Figure 1.10 shows the comparison of the result of the same model of the 
radial distribution function curve for argon at a temperature of 84.4K, 
against the experimental result. Once again, we see excellent accordance. 

Certain comparisons are made between the measured values and those 
calculated by a model, for the critical values – particularly the critical 
temperature and critical pressure, using the conditions: 

2

2                    0                       0  
T T T

F P PP
V V V

∂ ∂ ∂= − = =
∂ ∂ ∂

 [1.97] 
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Figure 1.10. Comparison between the experimental value and that calculated by Eyring’s 
model for the radial distribution function of Argon at 84.4K (data from [YOO 81]) 

Substance Tc (°K) Pc (atm) 
Calculated Observed Calculated Observed 

Neon 55.41 44.47 37.65 26.86 
Argon 154.44 150.66 58.72 48.00 
Krypton 208.33 210.60 69.68 54.24 
Xenon 287.80 289.80 74.89 58.20 

Table 1.3. Comparison of the observed values and those calculated by the Eyring  
model, for the temperature and the critical pressure (data from [EYR 58]) 

Certain data appear in Table 1.2 for Lennard-Jones and Devonshire’s 
model (see section 1.4). Others are given for the solids of rare gases in  
Table 1.3, and pertain to Eyring’s model (see section 1.5). 

Note that both models yield satisfactory results on this point. However, it 
is important to apply the comparison to several types of results. For example, 
Figure 1.11 shows that, for the representation of the distribution function, 
Lennard-Jones and Devonshire’s model, Eyring’s model and the calculations 
performed by numerical simulation are very similar. Meanwhile, 
Figure 1.12, which gives the variation of the compressibility coefficient as a 
function of a reduced volume, illustrates the significant behavioral difference 
between the molecular dynamics simulation and Eyring’s model, on the one 
hand, and Lennard-Jones/Devonshire’s, Guggenheim’s (see section 1.3.1)  
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and Mie’s model (see section 1.3.2), on the other. It seems that the important 
point which divides Eyring’s model from that of Lennard-Jones and 
Devonshire is more the introduction of the degeneration coefficient than the 
variability of the number of molecules that are near neighbors of a given 
molecule (zi). 

 

Figure 1.11. Comparison of the curve of the radial distribution function between the 
calculations of molecular dynamics and different models (according to [YOO 81]) 

 

Figure 1.12. Comparison of the results obtained on  
the compressibility factor (data from [REE 64]) 
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Thus, we can see that it is important to examine the validity of a model 
by comparing several results produced by that model. Additionally, a good 
model of the structure of liquids must also satisfy the interpretation of 
properties other than the mere thermodynamic values that are of interest to 
us here, e.g. surface tension, viscosity and self-diffusion. The major 
advantage of Eyring’s cellular and vacancy model with a degeneration 
coefficient is that it also takes account of the dynamic properties of liquids. 


