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Pure Crystalline Solids 

Crystalline solids are characterized by the regular and periodic 
spatial arrangement of entities at the nodes of a lattice. The nature of 
the entities thus arranged defines the nature of the solid. There are 
four distinct classes: 

– atomic solids, comprising a lattice of atoms, such as solid argon, 
for example; 

– molecular solids, where the entities arranged at the nodes of the 
lattice are molecules, as is the case in solid benzene; 

– ionic crystals. In this case, the entities are ions, and they are 
arranged into two sublattices: one of cations and the other of anions. 
The proportions of sites occupied by these two sublattices are 
obviously such that the whole solid is electrically neutral, overall. The 
ions thus arranged could either be simple ions, as is the case with 
sodium chloride, or complex ions such as in ammonium carbonate; 

– metals, in which ions are arranged at the nodes of the lattice. To 
ensure electrical neutrality, more-or-less mobile electrons are 
distributed around these ions. 

1.1. Characteristic values of a solid 

Solids are incompressible, which means that their derivative 
( )/

T
V P∂ ∂  is practically zero, so they do not have an equation of state 

such as F(P,V,T) = 0. 
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However, solids do experience changes in volume, under the 
influence of temperature, which is characterized by its cubic 
expansion coefficient or its linear expansion coefficient. 

Similarly, when heat is applied to it, solids heat up. The extent of 
that rise in temperature is characterized by the solid’s specific heat 
capacity. 

When a solid is subjected to a stress (or load) – i.e. a certain 
amount of force per unit surface area or a moment per unit length, 
such as axial traction (Figure 1.1(a)) or axial compression 
(Figure 1.1(b)), for example – it normally deforms. This deformation 
is also known as “strain”. 

Other values pertaining to the dielectric and magnetic properties 
are also available. 

In the next section, we will examine the first three effects, starting 
with the effect of a stress. Then we will develop models of solids 
which we can go on to use in dealing with the questions of specific 
heat capacities and thermal expansion. 

1.2. Effect of stress and Young’s modulus 

When a solid is subjected to a stress, it generally experiences a 
strain which, if pursued, could cause the material to fracture. The 
applied stress is measured in newtons per square meter.  

 

Figure 1.1. Cylindrical test tube a) under traction; b) under compression 

Take the example of traction applied to a cylinder whose initial 
length is l0 and cross-section area is s (Figure 1.1(a)). If we begin with 
zero stress, and very gradually increase the stress (i.e. the traction 

a b 
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force) at a constant temperature, the relative strain Δl/l0 increases, 
obeying a law which is often identical to its tangent to the origin – that 
is, a practically linear law (the part “OA” of the curve shown in 
Figure 1.2) – which is known as Hooke’s law, and is written as 
follows for a given temperature: 

0

EF l
s l

Δ=  [1.1] 

 
Figure 1.2. Strain/stress curve under traction 

A solid, therefore, is characterized by its modulus of longitudinal 
elasticity, known as Young’s modulus, defined by: 

0E 1
l s

l
F

=

∂
∂

 [1.2] 

If we start at O and arrive at a point between O and A (a point 
marking the start of a lesser increase of the curve), and we slowly 
decrease the stress, the strain decreases in accordance with the same 
Hooke curve. We then say that we are in the domain of elastic 
deformation. When the stress returns to zero, the sample returns to its 
initial length. The load at point A is called the elastic limit. 

After point A in Figure 1.2, the curve changes direction, and 
Hooke’s law is no longer obeyed. If we stop at a point R’ between A 
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and R, and decrease the stress, the curve then follows a straight line 
which is practically parallel to Hooke’s straight line. The result of this 
is that when the stress returns to zero, there is a remaining 
deformation which is known as the residual deformation. We say that 
between points A and R, the solid undergoes a plastic deformation. 

When we reach a point R, the test-tube breaks. The corresponding 
stress is called the fracture limit. 

The different characteristics of the curves in Figure 1.2 vary greatly 
from one material to another. Hence, for example, the fracture load is 
much greater for steel than for concrete, which has pitiful traction 
resistance – this is why steel rods are used in reinforced concrete. 

NOTE.– We have pointed out that the stress variations must, during 
increase and decrease, take place very slowly, because strictly 
speaking, the Young’s modulus depends not only on the temperature 
but also on the rate at which the load changes. 

The Young’s modulus obviously depends on the temperature, but 
these data can sometimes be replaced by a state equation in the form 
F(F,l,T) = 0, such as that given for rubber, which links the temperature 
T, the length l of a cylinder of rubber with section s, to the force of 
traction F exerted upon it in the elastic domain by way of two constants, 
B and its cubic expansion coefficient β which is of the form: 

( )
2

0
0

0

1 llF BT T T
l l

β= − + −  [1.3] 

We can obtain very similar results by imposing other types of 
stresses such as compression or shear. Of course, the corresponding 
moduli have completely different values from those encountered in 
the case of traction. 

1.3. Microscopic description of crystalline solids 

From a microscopic point of view, we find the four classes of 
solids introduced at the start of this chapter. 
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Based on each of these models, we will establish canonical 
partition functions which define the microscopic system, followed by 
the Helmholtz energy, which links the microscopic point of view to 
the macroscopic system, and finally the internal energy, which will be 
useful for us later on to establish the specific heat capacities. 

1.4. Partition function of vibration of a solid 

Irrespective of the nature of the solid, there are always species 
(atoms, ions and molecules) placed at the nodes of the lattice, and are 
animated with a motion of vibration around their equilibrium 
positions. Thus, the partition function will include a contribution due 
to these vibrations. On the statistical level, the entities in question 
(atoms, ions or molecules) are considered to be localized particles and, 
in general, to describe the vibrations of the solid, it is sufficient to 
place ourselves in the context of the conventional limit case of 
statistics. It results from this that the contribution CZ  of the vibrations 
to the canonical partition function can be calculated on the basis of the 
atomic partition functions z by the relation: 

N
CZ z=  [1.4] 

We will calculate this contribution by first considering a solid as a 
macromolecule with N vibrating entities, having 3N independent 
vibrational degrees of freedom: phonons. Two models can be used to 
express a contribution of these vibrations to the canonical partition 
function: Einstein’s model and Debye’s, which is more general. Let us 
look at each of these two models in turn. 

1.4.1. Einstein’s single-frequency model 

In this model, the crystalline solid is a system of 3N oscillators, in 
which all have the same fundamental frequency νE. The corresponding 
characteristic temperature of vibration, defined on the basis of the 
relation: 

E
B

h
k
νΘ =  [1.5] 
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is called the Einstein temperature ΘE. By applying equation [1.4] and 
the expression of the vibrational partition function, written as: 

E

E

exp
2

1 exp
v

Tz

T

Θ−
=

Θ− −
 [1.6] 

we can write the canonical partition function of vibration in the form: 

( )
3

3
( )

3exp 1 exp
2

N
N E E

C v v
NZ z

T T

−
Θ Θ= = − − −

 
[1.7] 

or if we switch to the logarithm, the previous equation becomes: 

( )
3ln 3 ln 1 exp

2
E E

C v
NZ N

T T
Θ Θ= − − − −  [1.8] 

1.4.2. Debye’s frequency distribution model 

In the case of Debye’s model, the 3N oscillators no longer have the 
same fundamental frequency. By applying the equation: 

E

E

exp
2

1 exp
v

E

Tz

T

Θ−
≅

Θ− −
∏  [1.9] 

we are able to write the following for the canonical partition function 
of vibration: 

3
B

( )
1

B

hexp
2k

h1 exp
k

i
N

C v
i i

T
Z

T

ν

ν=

−
=

− −
∏  [1.10] 
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However, if we reformulate in logarithmic terms, we find: 

3

3
1

( )
1B B

h
hln ln 1 exp

2k k

N

i N
i i

C v
i

Z
T T

ν
ν=

=
= − − −  [1.11] 

Debye supposes that the frequencies are sufficiently similar so that 
the distribution can be supposed to be continuous, which enables us to 
replace the sum of equation [1.11] by an integral, which is written as 
follows for a frequency distribution g(v): 

0
( )

B B0

h ( )d
hln ln 1 exp ( )d

2k k

D

D

C v

g
Z g

T T

ν

νν ν ν
ν ν ν= − − − −  [1.12] 

Debye also supposes that this frequency distribution is of the same 
form as the elastic frequency distribution of the solid, supposed to be a 
continuum. Those frequencies themselves are linked to the propagation 
of sound in that solid. These frequencies range from the value 0 to a 
maximum frequency νD defined by equation [1.13], where c is the 
celerity of sound in the solid. 

1/23
4D

Nc
V

ν
π

=  [1.13] 

The corresponding frequency temperature – defined, as for 
Einstein’s temperature, using relation [1.5] – which is called the 
Debye temperature ΘD, is thus defined by: 

B

h
k

D
D

νΘ =  [1.14] 

Table 1.1 shows a selection of values of the Debye temperature 
which can, as we can see, be very different depending on the solid. 
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Solid ΘD(K) 
Pb 88 
Ag 220 
Al 396 

KCl 227 
C (diamond) 2067 

Table 1.1. The Debye temperature of various solids  
(data taken from [INF 06]) 

 

Figure 1.3. Frequency distribution according to Debye 

The frequency distribution g(ν) is of the form (see Figure 1.3): 

2

3

9For : ( )

For : ( ) 0

D
D

D

Ng

g

νν ν ν
ν

ν ν ν

≤ =

> =
 [1.15] 

obviously, with the standardization condition: 

0

( )d 3
D

g N
ν

ν ν =  [1.16] 

Relation [1.12] then takes the form: 

2
( ) 3

B0

9 9 hln ln 1 exp d
8 k

D
D

C v
D

N NZ
T T

ν νν ν
ν

Θ= − − − −  [1.17] 

g(ν) 

ν
νmax 
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If we set: 

B

h
k

x
T
ν=  [1.18] 

relation [1.17] can also be written: 

( )
/3

2
( ) 3

0

9 9ln ln 1 exp d
8

D T
D

C v
D

N NTZ x x x
T

ΘΘ= − − − −
Θ

 [1.19] 

The integral appearing in this formula cannot be expressed by a 
simple algebraic sum. However, if we integrate by parts, we find: 

( )

/3 3

3
0

9ln 3 ln 1 exp
8

3 exp( ) d
1 exp( )

D

D D
C v

T

D

NZ N
T T

NT x x x
x

Θ

Θ Θ= − − − −

−+
Θ − −

 [1.20] 

1.4.3. Models with more complex frequency distributions 

Debye’s model, which allows for a frequency distribution given by 
relation [1.9], has only yielded correct values of the specific heat 
capacity at constant volume (see section 1.8) for fairly low 
temperatures. Other authors have improved the model by modifying 
that frequency distribution. For example, Born and Karman took a 
new approach to the establishment of the frequency distribution, this 
time supposing that the solid was no longer a continuum, but instead 
was represented by a periodic lattice of particles, which led them to 
the distribution function as shown in Figure 1.4(a). The distribution 
function reaches its peak very near to the limit frequency.  

Blackman, for his part, determined the vibration spectrum for 
simple cubic lattices. The frequency distribution which it achieves 
exhibits two maximum points (see Figure 1.4(b)). One point of these 
is always situated in the vicinity of the limit frequency; the other 
point, which is less clear, is at a lower frequency. 
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In fact in this types of models, with a frequency distribution 
modified compared to Debye’s, we can keep the developments 
obtained using Debye’s model, but as if the Debye temperature varied 
with temperature.  

 
Figure 1.4. Frequency distributions: a) Born and Karman; b) Blackman 

Variations in the Debye temperature with the temperature have, 
indeed, been observed by Mott and Jones. 

1.5. Description of atomic solids 

In an atomic solid, each node of the lattice is occupied by an  
atom, e.g. in the case of a solid rare gas, but also chlorine, fluorine, 
etc. For a pure solid, there is only one sort of atom. 

1.5.1. Canonical partition function of an atomic solid 

Besides the vibrating motion of the atoms which we have discussed 
above, the solid is home to electron motion and nuclear spin, each of 
which makes a contribution to the canonical partition function. 

With regard to the motion of the electrons, we choose as energy 
origin the fundamental level in the atom, and these electrons are not 
excited, so that the contribution to the atomic partition function of 
electrons is reduced to its statistical weight, according to the equation 

0z g= , and therefore the electron contribution to the canonical 
partition function will be: 

( ) 0( )ln lnC e eZ N g=  [1.21] 
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For the contribution of nucleus spin, we see the same situation as 
for the electrons, so their contribution will be: 

( ) 0( )ln lnC n nZ N g=  [1.22]  

The overall canonical partition function for the solid will be: 

( ) ( ) ( )ln ln ln lnC C v C e C nZ Z Z Z= + +   [1.23]  

However, it is helpful, in studying solids, to choose as the energy 
origin the atoms which are infinitely far apart, instead of the 
fundamental level of vibration. Therefore, for each atom, we need to 
involve the crosslink energy uR, which is the energy needed to send 
that atom to infinity. This introduces a new term, known as 
crosslinking – a relative distribution function of the atoms – into the 
canonical partition function, and gives us a term in the following 
form: 

( )
B B

ln
k k

R R
C r

Nu UZ
T T

= =
 

 [1.24] 

In light of relations [1.21], [1.22] and [1.24], expression [1.23] 
becomes: 

( )
B

/3 3

3
0

9ln 3 ln 1 exp
k 8

3 exp( )               d ln
1 exp( )

D

R D D
C v

T

e n
D

U NZ N
T T T

NT x x x N g g
x

Θ

Θ Θ= − − − −

−+ +
Θ − −

 
 [1.25] 

1.5.2. Helmholtz energy and internal energy of an atomic 
solid 

The Helmholtz energy F of a solid, comprising N atoms, can be 
calculated using the relation that links Helmholtz energy to the 
canonical partition function: 

Bk ln CF T Z= −  [1.26] 
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In view of the canonical partition function, given by relation 
[1.25], the molar Helmholtz energy Fm is obtained by applying the two 
relations N = Na and kBNa = R in expression [1.26]. From this, we can 
easily deduce the molar internal energy using the relation: 

0 2

d
1

R d

m

m

F
TU U

T T
− = −  [1.27] 

In fact, that internal energy is the sum of the four contributions: 
crosslink (independent of temperature), vibration (a function of the 
temperature), electron and nuclear activity (practically independent of 
temperature), which is written as: 

0 ( ) ( ) ( ) ( )( )m m R m v m e m nU U U U T U U− = + + +   [1.28] 

For the contribution of vibration, we can either use Einstein’s 
model, which yields: 

( )
3R

exp 1

E
m v

E

U

T

Θ
=

Θ− −
  [1.29] 

or Debye’s model, which gives us: 

( )
/4 3

( ) 3
0

9R d
exp 1

d T

m v
D

T xU x
x

Θ

=
Θ −

 

 [1.30] 

We cannot analytically calculate the integral appearing in relation 
[1.30], but we can give two approximate values for it depending on 
whether the temperature is high or low in relation to the Debye 
temperature. 

For the high temperatures (T >>ΘD), we develop the function to be 
integrated into a Maclaurin series and integrate, we find: 

2 4

( )
9R 13R 1

8 20
D D D

m vU T
T T

Θ Θ Θ
= − + + + Ο   [1.31] 
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The term
4

D

T
ΘΟ  indicates the rest of the series development. 

For low temperatures (T <<ΘD), we replace the integral with the 
difference of two integrals – the first between 0 and infinity and the 
second between ΘD /T and infinity. We can show that we obtain: 

4 3

( ) 33R 3exp exp
5

D D D
m v

D

TU T
T T T

π Θ Θ Θ= − − + Ο −
Θ

 [1.32] 

1.6. Description of molecular solids 

If, instead of one atom per crystalline site, a solid contains a group 
of atoms (ions or molecules) at each site, if the crystal contains N 
molecules, the lattice will always have 3N degrees of vibrational 
freedom, but there will still be 3(s-1) internal degrees of freedom per 
molecule if the molecule contains s atoms. 

1.6.1. Partition function of molecular crystals 

The new “internal” degrees of freedom will generally tend to be 
vibrational degrees of freedom, and if the corresponding fundamental 
frequencies are ν1, ν2, …, νi, …, the contribution corresponding to the 
canonical partition function is: 

3

(int)
4

ln ln 1 exp
s

i
C

i
Z N

T=

Θ= − −   [1.33] 

In Einstein’s model, in view of the new electronic and nuclear 
contributions, this would give us: 

0

B

3

( ) ( )
4 1 1

3ln 3 ln 1 exp
k 2

            ln 1 exp ln ln

E E
C

s s s
i

s e s n
i i i

U NZ N
T T T

N N g N g
T= = =

Θ Θ= − − − − −

Θ− − − + +
  [1.34] 
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and in Debye’s model, we would have: 

/3 3 3

3
40

( ) ( )
1 1

9
ln 3 ln 1 exp

8

ln 1 exp3 exp( )               d
1 exp( )

                ln ln

D

D D
C

T is

iD

s s

i e i n
i i

N
Z N

T T

NT x x x N T
x

N g N g

Θ

=

= =

Θ Θ
= − − − −

Θ
− −−+ −

− −Θ

+ +

 
[1.35] 

It is possible that two or three of these degrees of freedom internal 
to the molecule may be better described as rotations than as vibrations. 
Such would be the case, for example, with the H2 molecule. For 
molecules containing only one atom other than hydrogen atoms – e.g. 
ClH, CH4, NH4

+– we obtain better results when we consider that a 
movement is indeed a high-temperature rotation, but also a low-
temperature vibration. There would be a rather sharp transition within 
a certain temperature range. In the case of a rotation, a rotational 
partition function term replaces a vibrational term in equation [1.30] 
and the corresponding terms in relations [1.30] and [1.32]. 

1.6.2. Thermodynamic functions of molecular solids 

As is the case with atomic solids, we can calculate the Helmholtz 
energy F of a solid containing N molecules by applying equation [1.26] 
using the canonical partition function given by equation [1.34] or [1.35]. 
The molar Helmholtz energy Fm is deduced in the same manner by 
applying the two relations N=Na and kBNa = R in the expressions thus 
obtained. We can easily deduce the molar internal energy from relation 
[1.26]. In fact, this internal energy is the sum of five terms: 

0 ( ) ( ) ( ) ( ) (int)( )m m R m v m e m n mU U U U T U U U− = + + + +  [1.36] 

The contributions ( )m RU  and ( )m vU are the same as with an atomic 
solid. Thus the contribution of the internal movements in the molecule 
is expressed as: 
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(int) 4
4

exp
R

1 exp

i
is

m
i i

TU
T

T
=

ΘΘ −
=

Θ− −
  [1.37] 

The electron and nuclear contributions are also sums on the 
number of atoms contained in the molecule: 

( )
( ) 2

1

d lnR 0
d

s
i e

m e
i

g
U

T T=

= =   [1.38] 

( )
( ) 2

1

d lnR 0
d

s
i n

m n
i

g
U

T T=

= =   [1.39] 

1.7. Description of an ionic solid 

An ionic solid is made up of two kinds of ions: anions and  
cations. These ions are located at the nodes of two  
interlocking periodic lattices: the anionic sublattice and the cationic 
sublattice. 

There are two distinct types of ionic solid: 

– simple ionic solids, where the ions contain only one atom; 

– complex ionic solids, containing at least one type of ion. Usually, 
the anion is a complex ion, which means that it is a molecule made up 
of several atoms, which carries an electrical charge.  

1.7.1. Crosslink energy of an ionic solid 

We model the energy of an ionic crystal limiting us to the case of a 
diatomic crystal with the formula AaBb linking a cation A with 
electrovalence zA and an anion B with electrovalence zB. We assume that 
these ions are comparable to spheres on which the charges are uniformly 
distributed. The overall cohesion of the crystal is provided by the 
Coulombian field at 1/r2 created by each ion, plus a repulsive potential 
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especially sensitive over a short distance, but which cannot be  
overlooked if we want to give an account of an equilibrium state of the 
crystal. 

1.7.1.1. Attraction energy 

Let us consider an ion i in the lattice, bearing the charge qi. At that 
point, there is an electrostatic potential Φi, created by all the other 
ions, and the energy of interaction between that ion i and the rest of 
the lattice is: 

i i iU q= Φ   [1.40] 

In order to find the total attraction energy, we only need to add the 
above expression for all the ions, taking care only to count  
the interaction between each pair of ions once (which we do by using 
the coefficient ½), as follows: 

1
2i i i

i
U q= Φ   [1.41] 

In a large crystal, it can be assumed that at each node A of the 
lattice, the potential is identical – i.e. ΦA – and at each node B,  
the potential will be ΦB (so we overlook any possible edge effects). 
Thus, if we compare the electrostatic energy to a mole, where e  
is the elementary charge, we find the following for the molar 
attraction term: 

( )a
A A B B

N a e b e
2attrU z z= Φ + Φ   [1.42] 

As a unit of length, let us choose a distance d which is 
characteristic of the lattice. An ion i will be at distance  

( )Aid ρ  from an arbitrary origin, chosen in place of an ion A and at 

distance ( )Bid ρ from another arbitrary origin, chosen in place of an 
ion B. The potentials ΦA  and ΦB  at those origins are, respectively: 
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( )i0

1 i
A

i a

z e
d pε

Φ =   [1.43] 

and 

( )i0

1 i
B

i a

z e
d pε

Φ =   [1.44] 

Because of the principle of electrical neutrality of the crystal, we 
must have: 

0A Baz bz+ =   

Thus: 

A Bz z
b a

ϖ= =   [1.45] 

The attraction energy per mole becomes: 

( ) ( )
2 2

a

0

N e
2

i i
attr

i ii B

abU
d p p

ϖ θ θ
ε

= −   [1.46] 

θi is equal to b if the ion i is of type A, and to (–a) if the ion i is of 
type B. This energy can be written in the form: 

2 2
a

0

N
attr

eU
d
ϖ

ε
= M   [1.47] 

including a value M , known as the Madelung constant, which depends 
solely on the nature of the lattice and is defined by: 

( ) ( )2
i i

i ii B

ab
p p
θ θ= −M   [1.48] 
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There are various algorithms which can be used to calculate the 
Madelung constant. Table 1.2 shows the values obtained for cubic 
lattices. 

Type of lattice Madelung constant 
Sodium chloride 1.74756 
Cesium chloride 1.76267 

Blende 1.63806 
Wurtzite 1.641 

Table 1.2. Values of the Madelung constant in different cubic lattices 

1.7.1.2. Repulsion energy 

The previous expression of electrostatic energy gives an energy 
that can only grow in absolute value if the crystalline lattice parameter 
d of the crystalline lattice decreases. No equilibrium state can be 
achieved. To explain this, we must introduce a repulsion term, whose 
intensity will decrease as the distance d increases. Born and Mayer put 
forward an expression for this repulsion energy arising from the 
repulsion of the electron clouds if they intermingle. This energy has an 
exponential form that seems consistent with quantum mechanics. For 
the interaction of an ion pair i and j located a distance dρij apart, we 
set: 

,
( , ) , exp i j

rép i j i j

d
U mc

ρ
ρ

= −   [1.49] 

In this expression, ci,j and ρ are constants. Authors have shown that 
we can take the value 0.345×10-10 m for ρ for all ions, and that the 
constant ci,j is given by: 

, 1 expj i ji
i j

i j

z r rzc
n n ρ

+
= + +   [1.50] 

In this expression, zi and zj are the electrovalences of the ions i and j, 
ni and nj are the numbers of electrons on the outermost layer, ri and rj are 
the ionic radii and m is a new constant, which we will discuss later on. 
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Looking again at the case of a biatomic solid: we still need to 
consider the repulsion energy associated with an ion A taken as the 
origin of the system, and with an ion B taken as the origin. However, 
in the case of repulsion, the potential decreases very quickly as the 
distance between the ions increases, and the only way to simplify the 
calculation is to consider the nearest neighbors to a given ion, with 
opposite signs. 

Let us first examine an ion A as the origin. All its near neighbors 
will be ions B, and there will be a number β of them. The repulsion 
energy attached to that ion A will be: 

( )
A,B

A, BA,B
1

exp i

rep
i

d
U m c

β ρ
ρ=

=   [1.51] 

where: 

A B A B
A,B

A B

1 expz z r rc
n n ρ

+= + +   [1.52] 

If we now take an ion B as the origin, its nearest neighbors will be 
α ions A, and its contribution to the repulsion will be: 

( )
B,A

B, AB,A
1

exp - j

rep
j

d
U m c

α ρ
ρ=

=   [1.53] 

where, clearly: 

A,B B,Ac c=   [1.54] 

Hence, the repulsion energy per mole can be written as follows, by 
adding together the two contributions: 

a
A,B A,B B,A

11

N exp a exp b exp
2 i jrep

ji

m dU c
β α

ρ ρ
ρ ==

= − +   [1.55] 
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1.7.1.3. Crosslink energy 

The crystal’s total crosslink energy is given by the sum of the 
terms of attraction and repulsion, which (in light of expressions [1.47] 
and [1.55] given above) gives: 

( )
( )

2 2 A,B
a a

( ) A,B
10 B,A

1

expN N exp a
2 b exp

i

j

m R
i

j

e m dU c
d

β

α

ρϖ
ε ρ ρ=

=

+
= + −M 

 
[1.56] 

Thus, in the expression of the crosslink energy, there is a constant m 
which needs to be determined. We can find its value by looking at the 
compressibility coefficient. Imagine that we compress a crystal at the 
temperature of absolute zero. The variation in internal energy will be: 

d dU P V= −   [1.57] 

This variation is due only to the change in the crosslink energy. By 
taking account of the definition of the compressibility coefficient, 
which is: 

1
T

T

V
V P

χ ∂= −
∂

 [1.58] 

we find: 

2
( )
2

d
1

d
R

T

U
V

V
χ =   [1.59] 

By applying the derivation of a function of function, we can write: 

22 2 2
( ) ( ) ( )
2 2 2

d d dd d
d d d d d

R R RU U UV V
d V d V d

= +   [1.60] 

For the equilibrium position d = d0, the crosslink energy is 
minimal, so: 
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0

( )d
0

d
R

d d

U
d

=

=  which gives us 
0

( )d
0

d
R

d d

U
V

=

=   [1.61] 

and therefore, equation [1.53] becomes: 

0 0

22 2
( ) ( )
2 2

d d d
d d d

R R

d d d d

U U V
d V d

= =

=   [1.62] 

The molar volume can always be written in the form: 

0 3
0v dλ=   [1.63] 

with λ being a constant that depends only on the type of lattice. Thus, 
in view of expression [1.59], relation [1.62] gives us: 

0

2 2 4
( ) 0

2 0

d 4
d

m R

d d

U d
d v

λ
χ

=

=   [1.64] 

For simplicity’s sake, let us write expression [1.56], of the 
crosslink energy, in the form: 

( ) expm R
m dU

d ρ ρ
= − + −A B   [1.65] 

where: 

2 2
a

0

N e ϖ
ε

= MA   [1.66] 

and: 

( ) ( )a
A,B A,B B,A

11

N a exp b exp
2 i jji

cB
β α

ρ ρ
==

= +   [1.67] 

By twice deriving the function [1.65], we find: 
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0

2
( ) 0

2 3 3
0

d
2 exp -

d
m R

d d

U dm
d d ρ ρ

=

= +A B   [1.68] 

By equaling the two expressions [1.64] and [1.68] for the second 
derivative, we obtain: 

2 43
0 0

0 3
0

4 2 expd dm
v d

λρ
χ ρ

= + A
B

  [1.69] 

In view of equations [1.61] and [1.65], the equilibrium condition is 
expressed as: 

0
2 2
0

exp 0dm
d ρ ρ

+ − =A B   [1.70] 

Hence, expressions [1.69] and [1.70] constitute a system of two 
equations where the unknowns are the constants m and d0, which we 
can calculate numerically. 

1.7.2. Born/Haber cycle 

Born and Haber envisaged a thermodynamic cycle that can be used 
to calculate the crosslink energy on the basis of independently-
measured data. They begin with the observation that the crosslink 
energy is the energy that is released if the lattice is formed of gaseous 
ions which are infinitely immobile in relation to one another. 
Figure 1.5 shows the cycle for a crystal AaBb based on solid metal and 
a gaseous molecular non-metal, with the symbols having the following 
meanings: 

– S: sublimation heat for a gram atom of metal A; 

– D: dissociation heat for the non-metal B expressed in relation to a 
gram atom of that substance; 

– I: ionization energy for a gram atom of metal; 

– A: electron affinity of a gram atom of non-metal; 
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– ΔfH: enthalpy of formation of the solid crystallized from its 
elements. 

 

Figure 1.5. Born–Haber cycle for a compound AaBb 

From the cycle shown in Figure 1.5, we deduce the relation: 

( )a b a bf m RH S D I A UΔ = + + − −   [1.71] 

If the other values are known, this expression can be used to 
calculate the crosslink energy ( )m RU . 

Comparison of the direct calculation on the basis of the 
microscopic model and the result given by the Born–Haber cycle 
shows that the values overlap at less than 5%. This result is entirely 
acceptable when we remember the relatively-simple hypotheses of the 
model, and in particular the assimilation of the ions to non-deformable 
hard spheres. We can refine the model by introducing deformability of 
the ions by their polarizability, which leads us to take account of the 
ion–dipole and dipole–dipole electrostatic interactions. 

1.7.3. Vibrational partition function and internal energy of 
an ionic solid 

Earlier, when we were looking at molecular solids (see section 
1.5.1), we saw the mixture of Debyean and Einsteinian terms in the 
partition function of the same solid with degrees of vibration of the 
lattice and degrees of vibration within the molecule. We will now 
make broader use of this concept, which was developed by Born and 
Blackman, on the subject of ionic compounds. 

–  
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To begin with, in the ionic solid, we will construct neutral subsets 
by associating the minimum number of ions of opposite signs, such as 
a potassium ion and a chlorine ion to create potassium chloride, a 
calcium ion and two chlorine ions to make calcium chloride, or a 
calcium ion and a carbonate ion for calcium carbonate. Such a subset 
contains s atoms and therefore has 3s degrees of freedom – all of them 
vibrational. The whole of the solid contains N subsets and will 
therefore have 3Ns vibrational degrees of freedom. 

Born divides the 3s degrees of freedom into two categories, 
acoustic vibrations and optical vibrations (infrared): 

– acoustic vibrations (or phonons), throughout the crystal, have a 
frequency distribution with a limit frequency. This distribution could 
be that chosen by Debye (see equation [1.9]) or those proposed by 
Born or Blackman (Figures 1.4(a) and (b)). These acoustic vibrations 
give us vibrational terms for the partition function and then for the 
internal energy, which will be of the same type as those proposed by 
Debye, in accordance with equations [1.24] for the vibrational 
partition function and [1.29] for the internal energy; 

– optical vibrations, each with its own frequency, which, for the 
partition function, has a sum of Einsteinian terms such as that given 
by equation [1.3] and for the internal energy a sum of terms such as 
those in equation [1.28]. 

However, in order to express these vibrational partition functions 
and the corresponding internal energies, for a given solid, we need to 
know the number of vibrations in each group: how many acoustic 
vibrations will there be, and then how many optical vibrations? 

This distribution depends on a number of factors. 

Let us first envisage ionic compounds with simple ions – i.e. one 
anionic atom and one cationic atom, as is the case in potassium 
chloride. 

If the bond is markedly ionic in nature (say, over 50% ionic), we 
choose six acoustic vibrations. We then need to ask ourselves whether 
the two groups of three acoustic vibrations have the same value of the 
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Debye temperature. If the atoms have similar dimensions, as is the 
case with potassium chloride, we choose a single Debye temperature; 
if, however, the ions have very different dimensions – as is the case, 
for instance, with cesium fluoride or lithium iodide – we choose two 
values of the Debye temperature. The partition function and the 
internal energy then contain either one or two Debyean terms, 
depending on the case. 

If the bond is mainly covalent, we choose three acoustic vibrations 
with a Debye temperature and three optical vibrations with three 
Einsteinian temperatures. The partition function and the internal 
energy therefore include a Debyean term and the sum of three 
Einsteinian terms. 

If we now look at more complex ionic compounds, such as calcium 
fluoride or calcium carbonate, we group together species that are 
linked by a covalent bond, such as the two fluorine atoms in calcium 
fluoride, or of the carbonate ion in calcium carbonate. With regard to 
this latter bond between fluorine and calcium or between carbonate 
and calcium, we refer to the previous case depending on the covalent 
nature of the bond. Hence, for calcium fluoride which has nine 
degrees of freedom, six will be acoustic, with the same Debye 
temperature for the di-fluorine molecules and calcium, and three will 
be optical vibrations with three corresponding Einsteinian terms. The 
partition function (and the internal energy which arises from it) 
contains a Debyean term and three Einsteinian terms. 

For calcium carbonate, which has 15 degrees of freedom, six will 
be acoustic vibrations with two Debye temperatures and nine degrees 
of freedom will be optical vibrations, with an Einstein temperature for 
each one. The partition function (and the resulting internal energy) 
contains two Debyean terms and nine Einsteinian terms. 

In fact, that distribution between acoustic vibrations and optical 
vibrations is only significant at temperatures close to the Debye 
temperature. If the temperature is very low (much lower than the 
lowest Debye temperature), only the corresponding Debye term is 
predominant; the other terms are negligible. This explains why all the 
internal energies (and, as we will see in section 1.8.1) all the specific 
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heat capacities at constant volume, tend toward zero, with a T3 law for 
the latter. 

However, at high temperatures, if the temperature is much higher 
than the highest of the Debye temperatures, only Einsteinian terms  
are significant: those for which the Einstein temperature is not too low. 

1.8. Description of a metallic solid 

Over the course of history, pure metal has been described by a 
variety of models. The initial model, attributable to Drude, considered 
the metal to comprise a gas of electrons enveloping positive ions in a 
constant potential. Drude applies Maxwell–Boltzmann statistics to that 
electron gas. In fact, as the electrons are fermions, it is  
most appropriate to apply Fermi–Dirac statistics to them, as 
Sommerfeld did in his model, still using a constant potential. Unlike 
with molecules, though, because of their low mass, the electrons 
cannot be used for the approximation of the classic limit statistics 
given by: 

( )expi i in g α βε= − −  [1.72] 

However, we will see that it is helpful to apply to them the 
opposite hypothesis to that condition, i.e.: 

exp( ) 1α− >>  [1.73] 

Sommerfeld’s model is perfectly well suited for chemical 
applications – particularly for determining specific heat capacities – 
but it is totally unsuited for explaining the electrical properties and the 
experimental fact that not all energy levels are acceptable in the metal. 
It was the band theory, developed by Brillouin, which was first able to 
explain these properties and also the nature of the bond between the 
metal atoms with the introduction of a periodic field. 

We will begin by discussing Sommerfeld’s constant-field theory, 
and then go on to show the modifications made by the periodic field 
and the grouping of electrons in the metal. 
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1.8.1. Sommerfeld’s electron perfect gas model 

Thus, we consider that a metal whose volume is V contains a certain 
N number of electrons that are free to move around. The ratio of the 
number of free electrons to the number of metal atoms contained in  
the volume V, for the time being, will be taken as being close to  
1 (or perhaps 2 or 3). Only with the band model we will be able  
to actually calculate that ratio, later on. That gas cloud is  
comparable to perfect gas made up of electrons placed in a  
constant average potential, so that they are contained within the  
volume V. We will apply Fermi–Dirac statistics to that perfect gas, 
accepting condition [1.73] for now, and verifying it at the end of section 
1.8.1.1. 

1.8.1.1. Determination of the coefficient α 

To begin with, we will calculate the coefficient α, which is the 
Lagrange multiplier relative to the numbers of electrons N. In the 
knowledge that the other multiplier β always has the same value 
(1/kBT) irrespective of the molecular statistics, we can calculate  by 
using the first method described in section A.1.3 of Appendix 1. 

Because the electrons obey Fermi–Dirac statistics, the total number 
thereof obeys the following law: 

i
i

N n=  [1.74] 

and their distribution between the different energy levels obeys: 

( ) ( )
( )

exp
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i i
i FD

i

g
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α βε
α βε

− −
=

+ − −
 [1.75] 

Hence, the number of free electrons is given by: 

B

1 exp
k

i

i i

gN

T
εα

=
+ +

  [1.76] 
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We have chosen ε0 = 0 as the origin of the energies for the 
electrons at rest within the metal. 

Consider that the electrons, whose mass is me, are contained in a 
cubic box with side length a and volume V = a3. The kinetic energy, 
which depends on three quantum numbers (l, m and n) is given by: 

( )
2

2 2 2
2

h
8i

e

l m n
m a

ε = + +   [1.77] 

For each energy level, there are two corresponding electrons with 
opposite spin, so the degeneration coefficient is gi = 2. If we consider 
all the states with the same energy εi, the quantum numbers l, m and n 
have values arranged over the surface of the positive quarter of the 
sphere defined by: 

( )2 2 2
2 2

8 1
h

e im l m n
a

ε = + +   [1.78] 

Thus, all the states whose energy is less than or equal to εi have the 
values of their quantum numbers located within the positive quarter of 
the sphere. The number of points with integer coordinates l, m and n 
within that positive quarter-sphere is equal to the volume of that 
quarter-sphere, so: 

3/2 3/2
3

2 2

8 8
6 h 6 h

e i e im ma Vε επ π=   [1.79] 

V is the volume of the space containing the electrons. 

 
NOTE.– We have chosen to use a cubic sample volume, but it is 
possible to demonstrate that relation [1.79] applies no matter what the 
shape of that space. 

After the degeneration of two of the electrons, the number of 
electron states with energy less than εi is, clearly, double the number 
of points within the quarter-sphere, so: 
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3/2

2

8
3 hi

e imn Vε ε
επ

≤ =   [1.80] 

By deriving the above relation, we obtain the number of electron 
states for which the energy level is between ε and ε  + dε: 

( )
3/2

1/2
2

8 d
2 h

emg Vπε ε ε=   [1.81] 

We will consider all these states to be the degeneration of a single 
energy state ε, so that: 

3/2
1/2

2

8( ) d
2 h

e
i

mg g Vπε ε ε= =   [1.82] 

By substituting this value of gi back into relation [1.76] and 
replacing the sum with an integral, as the states are very close to one 
another, we obtain the following for the number of free electrons: 

3/2 1/2

2
0

B

8 d
2 h

1 exp
k

emN V

T

ε επ
ε α

∞

=
+ +

  [1.83] 

For simplicity’s sake, we set the new integration variable x such 
that: 

Bk
x

T
ε =   [1.84] 

Relation [1.83] is then written as: 

( )
3/2 1/2

B
2

0

8 k d
2 h 1 exp

em T x xN V
x

π
α

∞

=
+ +

  [1.85] 

To simplify our expressions, we will introduce an energy level that 
is characteristic of the solid, known as the Fermi energy (or Fermi-level 
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energy) as being the maximum value reached by the energy of an 
electron if the N electrons, two by two, fill all the lower energy levels; 
thus, according to relation [1.80], this energy must satisfy the condition: 

3/2

2

8
3 h

e FmN
V

επ=   [1.86] 

Therefore, by definition, the Fermi energy is: 

2/32h 3
8F

e

N
m V

ε
π

=   [1.87] 

By taking account of relation [1.85], we find that the value of this 
Fermi level is: 

( )

3/2 1/2

B 0

d3
k 2 1 exp

F x x
T x

ε
α

∞

=
+ +

  [1.88] 

Therefore, it is helpful to evaluate the integral I defined by: 

( )
1/2

0

d
1 exp

x xI
x α

∞

=
+ +

  [1.89] 

There is no exact analytical solution for this integral, but we can 
show that a good approximation is given by a limited expansion: 

1/2 2 1/22
3 12

I α π α −

= − +   [1.90] 

Thus, if we substitute the value back into relation [1.88], the Fermi 
energy becomes: 

3/2 2 1/2
3/2

Bk 8
F

T
ε π αα≈ − +   [1.91] 



Pure Crystalline Solids     31 

We can see that, if we focus on the first term in this expansion, an 
approximation of the Fermi level is given by: 

BkF Tε α≈ −   [1.92] 

Based on this last approximation, which we can put back into 
equation [1.91] in place of the first term on the right-hand side, we 
obtain an approximate value of α: 

22
B

B

k1
k 12

F

F

T
T

ε πα
ε

= − −   [1.93] 

We are going to evaluate an order of magnitude for the coefficient 
α. In order to do so, we choose one electron per atom of the metal, 
with these atoms being a few angstroms apart from each other, so the 
ratio N/V is approximately: 

29 310N m
V

−≈  [1.94] 

Thus, using relation [1.88], we find the following for the Fermi 
level: 

18

B

1.25 10
k

F joules
T

ε −≈ ×   [1.95] 

Thus, at a temperature of around 1000 K, using relation [1.83], we 
obtain the following value for the coefficient α: 

90α ≈ −   [1.96] 

Hence, we can verify that the condition [1.73], which we have 
simply accepted for simplicity’s sake up until now, is indeed respected. 

Moreover, we can see that the second term in expression [1.93] has 
a value of approximately 2 41 / 90 10−≈ , which is much less than 1, 
which means that approximation [1.92] is also very appropriate. 
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1.8.1.2. Kinetic energy of electrons in the metal 

In order to calculate the kinetic energy of the mobile electrons, we 
use the relation: 

i i
i

E n ε=  [1.97] 

To do so, we merely need to introduce the term ε into the integral 
given in relation [1.83]. Thus, we obtain: 

3/2 3/2

2
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8 d
2 h

1 exp
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e
kin

mE V

T

ε επ
ε α

∞

=
+ +

  [1.98] 

Using the same change of variables as above (see equation [1.84]), 
and if we introduce the definition [1.87] of the Fermi energy, we find 
that: 

( )

3/2 3/2
B

B
0

k d3 k
2 1 expkin

F

T x xE N T V
xε α

∞

=
+ +

  [1.99] 

Just like the integral I in relation [1.89], the integral in terms of x 
that appears in equation [1.99] has no analytical solution. We can 
show, however, that its approximate value can be found by the 
expansion [1.100]: 

( )
3/2 2

3/2 1/2

0

d 2'
1 exp 5 4

x xI
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πα α
α

∞

= ≈ − +
+ +

  [1.100] 

Taking account of the value of α given by equation [1.96], we find: 

22
Bk3 51

5 12kin F
F

TE N πε
ε

≈ +   [1.101] 
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Similarly as for relation [1.91], we can content ourselves with the 
following relation, with a fairly high degree of accuracy: 

a
3 N
5kin FE ε≈   [1.102] 

Thus, we obtain an absolute error of around 0.05 J at 1000 K. 

Hence, we can see that for the free electrons in a metal, the kinetic 
energy is non-null at the temperature of 0 K; this is the consequence 
of the application of the Fermi–Dirac statistics. Thus, we can no 
longer define a temperature scale on the basis of the kinetic energy of 
the free electrons in a metal. 

1.8.1.3. Electrochemical potential of the electrons in the metal 
and the Fermi energy 

Regardless of the type of statistics used, we can show that the two 
coefficients α  and β, relative to the stresses, respectively, linked to 
the number of moles and to the energy, are connected to one another 
by the expression: 

A
A

αμ
β

= −  [1.103] 

Applied to the electrochemical potential of the electron, this gives 
us: 

Bkel Tμ α= −   [1.104] 

Thus, by using relation [1.93], the electrochemical potential, still 
using the electrons at rest as the origin of the energies, is given by: 

22
Bk1

12el F
F

Tπμ ε
ε

= −   [1.105] 

The application of expression [1.92] gives us the approximate value: 

el Fμ ε=   [1.106] 
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Thus, the electrochemical potential of the free electrons, at the 
temperature of 0 K, is equal to the Fermi energy of the metal. As 
approximation [1.92] is very accurate, we can say that this 
electrochemical potential practically does not vary with temperature. 

On the basis of the Fermi energy, we define a temperature known 
as the Fermi temperature, as: 

Bk
F

FT ε=   [1.107] 

Let us evaluate an order of magnitude for that Fermi temperature. 
In view of relation [1.95], we have: 

181.25 10F joulesε −≅ ×   [1.108] 

Thus, by applying definition [1.107], we find the value: 

49.10FT K≅   [1.109] 

Hence, in general, the temperature of the metal for which it remains 
solid is much lower than the Fermi temperature. Therefore, we can 
consider that the metal always behaves as though the temperature was  
0 K, and we can content ourselves with approximation [1.106]. The 
Fermi temperature defines the temperature beyond which the effects of  
Fermi–Dirac statistics begin to manifest themselves. We can write that: 

If  T <<TF,  then Bk elT μ<<   [1.110] 

NOTE.– We sometimes come across the term Fermi impulsion, which 
is the maximum value of the impulsion of the free electrons at the 
temperature of absolute zero. To find the expression of it, we only 
need to write: 

1/333h2
8F e F

Np m
V

ε
π

= =   [1.111] 



Pure Crystalline Solids     35 

1.8.1.4. Energy distribution of the free electrons 

Based on the distribution function, which is written as follows: 

1 2 3

1 2 3

3/2 2 2 2
B

2
B

1 2 3

2 k exp d .d .d
h 2 k

         .d .d .d

x x x
x x x

p p pm TNdn p p p
V m T

x x x

π + +
= −

 [1.112] 

we calculate the average number of free electrons which have the 
energy ε. It is given at 0 K, in light of expressions [1.92] and [1.106], 
by one of the following relations: 

B B B

1 1 1

1 exp 1 exp 1 exp
k k k

elF

n

T T T

ε ε με εε α
= = =

−−+ + + +
  [1.113] 

Figure 1.6 shows this distribution at the temperature 0 K. Beyond 
the Fermi level, there are no more electrons.  

 
Figure 1.6. Energy distribution of the free electrons in a metal at 0 K 

At a temperature T, the curve differs only very little from the curve 
at 0 K, because of the excellent approximation offered by relation 
[1.92] in respect to the expansion [1.91] and by relation [1.106] in 
respect to the expansion [1.105], because the temperature of the solid 
metal is generally far lower than the Fermi temperature. 

T=0 K

<n(ε) > 

ε-μel = ε-εF 0 
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1.8.1.5. Contribution of the free electrons to the internal energy 
of a metal 

On the basis of the electrochemical potential, we can express the 
function of the electrochemical Helmholtz energy by integrating at 
constant volume and temperature: 

0

d
N

el elF Nμ=   [1.114] 

By introducing, into that integral, the expression of the 
electrochemical potential given by relation [1.105], we find: 

2
2

B

0

k1 d
12

N

el F
f

tF Nπε
ε

= −   [1.115] 

We know, from relation [1.87], that the Fermi energy is 
proportional to (N/V)2/3. Thus, for the electrochemical Helmholtz 
energy, we calculate: 

( )
2

2
B

3 k
5 4el F

F

F N Tπε
ε

= −   [1.116] 

This expression gives us the electrochemical Helmholtz energy, 
having chosen ε0 = 0 as the origin of the energies, for the electrons at 
rest within the metal, in section 1.8.1.1. In order to compare the 
energies of the electrons with the contributions of the other terms for 
the solid, it is helpful to change the origin of that energy by taking as 
the origin the electrons at rest very far from the metal and very far 
removed from one another. This introduces a term Ep at a given 
temperature and volume. This energy represents an average potential 
energy of the free electrons obtained by averaging the attractions of 
the positive ions and the other electrons. We suppose that this energy, 
which is electrostatic in origin, is independent of the temperature  
but does depend on the volume of the solid, which alters the  
distances between the ions. If we change the temperature, this energy 
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will only vary by way of the variation in volume – i.e. the thermal 
expansion. 

For a mole of metal, if we let nel denote the number of free electrons 
per atom of metal, we can rewrite relation [1.116] in the form: 

( )
2

2
a B

3N ( ) ( ) k
5 4 ( )el el p F

F

F n E V V T
V

πε
ε

= − + −   [1.117] 

Based on this expression [1.117] of the Helmholtz energy,  
which is a characteristic function in our choice of variables, we  
have access to all the thermodynamic properties, and in particular,  
we can calculate the contribution of the free electrons to  
the (electrochemical) internal energy of the metal by using the 
relation: 

( )2 /el
el

F T
U T

T
∂

= −
∂

  [1.118] 

This gives us: 

( )
2

2a
B

N 3( ) ( ) k
5 4 ( )

el
el p F

F

nU E V V T
T V

πε
ε

= − + +   [1.119] 

This expression will be used later on when we are calculating the 
contribution of the free electrons to the molar specific heat capacity of 
the metal at constant volume (see section 1.8.2.1). However, in order 
to do that, we need to know the term nel, which is the number of free 
electrons per atom of the metal. Sommerfeld’s model does not provide 
us with this number, but Brillouin’s band theory, or zone theory, can 
be used to evaluate it. 

1.8.2. The metallic bond and band theory 

As we have just seen, the average potential theory cannot be used 
to determine the number of free electrons per atom of metal. In order 
to find it, we need to return to the average potential hypothesis and 
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take account of a periodic potential. To do so, we will recap a few 
details about metallic bonds. 

1.8.2.1. Origin of energy bands 

In the metal, each of the electrons is subject to the influence of all 
the nuclei and all the other electrons. In view of the periodic 
arrangement of the atoms, that potential is periodic, becoming infinite at 
each nucleus and minimal at the points furthest from the nuclei.  
We cannot hope to solve the Schrödinger equation for so complex  
a system. Certain calculations have been performed in specific  
cases – in particular, by Bloch, Brillouin, Wigner, Seitz and Slater, 
among others. 

In order to gain an understanding of the formation of the bands, we 
will greatly simplify the system, by considering a one-dimensional 
solid formed of an infinitely-long line of ions, along which, atomic 
nuclei are arranged at an equal distance from one another (Figure 1.7). 
To simplify the problem of quantum mechanics, we suppose that the 
electrons are classified into two categories; 

– the electrons in the outer layer, which are usually the bonding 
electrons, and are shared in overall orbitals created by the overlapping 
of the individual orbitals; 

– the electrons in the inner layers, which we can assume are  
not highly affected by the neighboring ions or by the electrons in the 
bond. Hence, these electrons remain in the vicinity of their respective 
nuclei. 

 

Figure 1.7. Diagrammatic representation  
of a one-dimensional metal 

We suppose that the wave function of the bond electrons is 
independent of the wave function of the ions comprising nuclei and 
inner-layer electrons. 
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Thus, it is useful to solve the Schrödinger equation for the valence 
electrons, which is written as: 

2

2

h ( - ) 0
8 p

e

E
m

ε
π

+ Φ =  [1.120] 

We construct the wave function of the valence electrons by linear 
combination of the atomic orbitals by adding the atoms in the line one 
after another, reasoning on the example of the s orbitals. 

The first atom has an s orbital with a certain level of energy. When 
a second atom is added, its s orbital overlaps with that of the previous 
atom, and forms two molecular orbitals – one bonding and the other 
antibonding. If we add a third atom, its s orbital overlaps with the 
previous two molecular orbitals to form three new molecular orbitals, 
and so on. Hence, by adding n atoms, we form s molecular orbitals, 
which, as new atoms are added, extends the available energy domain 
covered by molecular orbitals. 

We will solve the Schrödinger equation [1.120] by using the 
method of addition of the states in the Hückel approximation  
(see Appendix 2). The secular determinant is written as: 
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  [1.121] 

,i iH  and ,iH  respectively, denote the Coulomb integral and the 
resonance integral between two adjacent atoms. 

The determinant theory applied to this triangular determinant 
yields the solution: 
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, 2 cos
1k i i i

kH H
n

πε = +
+

, where k = 1, 2, …,n  [1.122] 

When the number n of nuclei is very large, the difference between 
two energy levels, corresponding to two successive values k and k + 1, 
is very slight, so that we can consider that the levels are continuous, 
but relation [1.122] gives a solution that is acceptable only if the 
cosine is between –1 and +1: 

1 cos 1
1

k
n

π− ≤ ≤
+

  [1.123] 

In view of relation [1.122], this gives us the twofold inequality at 
the conditions on the energy: 

, ,2 2i i i k i i iH H H Hε− ≤ ≤ +   [1.124] 

This means that only one energy band is allowed, and that the 
breadth of that band, therefore, is: 

4k iHεΔ =   [1.125] 

The energy band thus permitted will be known as an s band  
(Figure 1.8). 

Similarly, if the atoms used have available p orbitals, they will 
form a p band (Figure 1.8). If the energies in the p band are greater 
than those of the s band, the p band will be situated above the s band, 
and between the two, there may be an energy band that is “prohibited” 
to electrons.  

Depending on the case, the bands formed may be spaced a long 
way apart, close together or even overlapping. Hence, the bands 2s 
and 2p overlap partially (we will see later on that this overlap accounts 
for the conductive behavior of alkaline earth metals). Similarly, the 
bands 3d and 4s overlap, and this explains the conductive properties of 
the transition metals. 
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Figure 1.8. Combination of levels into bands 

1.8.2.2. Conductors, insulators and semiconductors 

If we look at the Fermi level in the conduction band, we encounter 
two possible cases: 

– in the first case, the Fermi level is included in the conduction 
band (Figure 1.9, left-hand diagram). A temperature rise enables 
electrons to pass to a higher level in that band which is still available. 
Those electrons facilitate conduction, and the solid is cataloged as a 
conductor. Such is the case, in particular, with metals. The number of 
excited electrons will be greater when the temperature is higher, but 
with this rise in temperature, the vibrations of the atoms become more 
intense, which decreases the electrons’ mobility. On balance, the 
second effect wins out over the first, and the conductivity of metals 
decreases at higher temperatures; 

– in the second case, the Fermi level is identical to the upper level 
of the conduction band (Figure 1.9, right-hand diagrams). Thus, there 
are no more levels available in the conduction band to accommodate 
electrons. The solid is then said to be non-conductive of electricity. In 
order for a substance to be able to conduct electricity, the electrons 
must be capable of crossing over a prohibited band and reaching a 
level in a new authorized band. Thus, two scenarios may arise: 

- either the energy jump required to cross the gap is too great in 
comparison to kBT, and so the gap cannot be crossed. In this case, we 
say that the non-conductor is an insulator, 
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- or the gap is sufficiently narrow, and electrons can cross it, thus 
freeing up places in the conduction band and facilitating the passage 
of electrical current. We then say that the non-conductor  
is a semiconductor. When the temperature increases, the effect  
due to the increased number of electrons jumping to the highest level 
prevails over the effect due to the most intense vibrations of the 
atoms, and the conductivity of semiconductors increases with 
temperature. 

 

Figure 1.9. Diagram of bands for metals, insulators and semi-conductors 

1.8.2.3. Determination of the number N of free electrons 

We will say that the free electrons are the electrons contained in 
the band with highest energy, which may be completely or partially 
filled (see Figure 1.10). Hence, the number of free electrons is N and 
ne is the ratio of that number N to the number of metal atoms n 
contained in the volume in question. 

The band contains the electrons that are furthest away from the 
nuclei, and thus we can consider that the amplitude of the periodic 
potential created by those electrons is slight. Therefore, we can make 
the approximation that, in the conduction band, the potential is 
essentially constant. Thus, all the calculations performed in  
section 1.8.1 are valid within that band, if we take the bottom of the 
band as the origin of the energies. Thus, the Fermi energy is given by 
relation [1.87], which is the height, in that band, occupied by electrons 
at absolute zero. 
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Figure 1.10. Energy band structure in a metal 

Using this reasoning, it is easy to calculate N. We will now take a 
look at a few examples. 

Let us choose an alkali metal (such as Li, Na, etc.). These atoms 
have a final electron layer which has one free electron on an s orbital. 
If the metal contains n atoms, their overlapping will give us n × s 
orbitals, and therefore n energy levels in the s band, which can thus 
accept 2n electrons. As there are fewer than 2n of them, the 
conduction band is incomplete, and the Fermi level is within that 
band. Thus, the ratio ne is equal to 1, so there is one free electron per 
metal atom. 

Let us now consider an alkaline earth metal (Mg, Ca, etc.). These 
atoms have a final electron layer containing two electrons on an s 
orbital. If the metal contains n atoms, then their overlap will give n × s 
orbitals, so n energy levels in the s band, which can therefore 
accommodate 2n electrons. Hence, the s band is complete and the Fermi 
level is at the upper level of that band. Alkaline earth metals should not 
exhibit metallic behavior; however, experience proves that they are, 
indeed, metals. This arises from the fact that, in these elements, the s 
band partially overlaps the p band immediately above it, to form one 
conduction band, so that the Fermi level actually lies somewhere within  
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that conduction band, because the new band can accommodate more 
than two electrons per atom (with a maximum of eight if the s and p 
bands were precisely tangential to one another). Hence, the ratio ne is 
equal to 2, meaning that there are two free electrons per atom of  
metal. These metals, which have two free electrons per atom,  
should conduct electricity better than alkali metals. However,  
this is absolutely not the case, because, at a temperature higher  
than absolute zero, the number of single electrons, which are 
responsible for conduction, is lesser in alkaline earth metals than in 
alkali metals. 

We now look at the example of solid fluorine (or any other 
halogen). Its atoms have a last electron layer comprising two electrons 
on an s orbital and 5 electrons on three equivalent p orbitals. If the 
solid contains n atoms, then their overlap will give us n × s orbitals 
and 3n×p orbitals, and therefore a total of 4n energy levels which can 
accommodate 8n electrons, so the band (s + p) is incomplete,  
and the Fermi level is included in that band. Halogens should  
behave like metals, but experience tells us that they are not 
conductive. This arises from the fact that it is not atoms of  
fluorine which make up the solid, but rather diatomic F2 molecules. 
The combination of those n/2 molecules of di-fluorine gives us  
n × s orbitals, 2n × p orbitals and n/2 orbitals linking two fluorines,  
and all of those levels, of where there are 7n/2, can accept  
up to 7n electrons, which means that the Fermi level is at the highest 
part of the sp band thus constructed, and therefore fluorine is an 
insulator. 

1.8.2.4. Distribution of energy states and of free electrons at 
absolute zero 

In order to find the distribution of the electrons, it is important to 
know the distribution function g(ε) which, in a solid with volume V, 
gives us the number g(ε) of states whose energy is between ε and 
ε+dε. Each state is capable of accommodating two electrons. It is 
complicated to calculate this distribution. Figure 1.11 shows the 
distribution calculated by Jones and Mott for the band created by the s 
and p bands in a centered cubic crystal. 
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Figure 1.11. Distribution of states of s and p bands, with overlap,  
for a centered cubic crystal (data from [FOW 49]) 

The curve OABCE represents the distribution in the s band, which 
has the lowest energy (the curve OBG is a parabola). The curve FDG 
represents the distribution in the start of the p band, which is highest. 
The plot OABCDG shows the distribution resulting from the partial 
overlap of the s and p bands. 

Figure 1.12 shows the distribution of the energy levels and electron 
filling in four cases at the temperature of absolute zero. Cases (a) and 
(b) correspond respectively to mono- and divalent metals (alkali 
metals and alkaline earth metals found in section 1.8.2.3). These are 
conductive metals, in which the s and p bands partly overlap. In case 
(a), the electrons do not completely fill the s band; in case (b), they 
completely fill the s band, but the p band is available because of the 
partial overlap. Case (c) corresponds to the case of a non-insulating 
semiconductor, wherein the bands do not overlap. The lower band is 
full but the upper band is very close to the former. Case  (d) 
corresponds to an insulator, where the bands do not overlap. The 
lower band is full, and the upper band is very far removed and is 
empty.  

Thus, we find (a), (b) and (c) – the three cases of conduction 
illustrated in Figure 1.9. 
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Figure 1.12.Occupation of states in a) a monovalent metal; b) a divalent 
metal; c) a semi-conductor; d) an insulator 

1.9. Molar specific heat capacities of crystalline solids 

We can determine the molar specific heat capacities at constant 
volume by derivation of the molar internal energy, using the relation: 

m
V

V
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 [1.126] 

We know that depending on the solids, the molar internal energy is 
the sum of several contributions – e.g. the sum shown in relation 
[1.35]. By application of relation [1.126], we find that the overall 
specific heat capacity will also be the sum of various contributions, 
but only the contributions of the internal energy, which are 
temperature-dependent, give us a term for the contribution to the 
overall specific heat capacity. 

1.9.1. Contribution of the vibrational energy to the specific 
heat capacity at constant volume 

The contribution of the vibrational motions to the internal energy is 
found in all crystalline solids, and is always temperature-dependent. 
We have found two types of contributions: 
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– the so-called Einsteinian contribution, with a unique vibration, 
mainly applicable to an optical vibration; 

– the distribution of 3N acoustic vibrations in Debye’s model and 
its derivatives. 

We will now calculate the contribution corresponding to each of 
these models to the specific heat capacity at constant volume. 

1.9.1.1. Case of a unique vibration in Einstein’s model 

By combining expressions [1.29] and [1.126], we obtain the 
contribution of a unique vibration to the specific heat capacity at 
constant volume: 

2
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  [1.127] 

We often adopt the function E(T/ΘΕ), known as Einstein’s function, 
which is defined by: 
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  [1.128] 

The corresponding specific heat capacity will thus be written: 

( ) 3REV v
E

TC =
Θ

 [1.129] 

At high temperature, the molar specific heat capacity is reduced to: 

( ) 3RV vC ≅   [1.130] 
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This is the Dulong and Petit law, which we can deduce from the 
kinetic theory of gases, noting that 3N vibrational degrees of freedom 
correspond to 6N quadratic terms. 

At low temperature, the molar specific heat capacity tends toward 
zero. 

The Einstein temperature is obtained on the basis of the infrared 
spectra which enable us to determine the vibration frequencies of the 

links and then apply the expression E
B

h
k
νΘ = . 

1.9.1.2. Case of Debye’s acoustic vibration distribution 

By combining relations [1.30] and [1.126], we obtain the 
contribution of an acoustic vibration distribution, according to Debye, 
to the specific heat capacity at constant volume, so: 
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We often posit the function D(T/ΘE), known as Debye’s function, 
defined by: 
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  [1.132] 

The corresponding specific heat capacity is then written: 

( ) 3R DV v
D

TC =
Θ

  [1.133] 

At high temperature, the molar specific heat capacity is reduced to: 

( ) 3RV vC ≅   [1.134] 

We see the Dulong–Petit law. 
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At low temperature (T <<ΘD), relation [1.26] gives the so-called  
“T 3” law, for the specific heat capacity: 

3
4

( )
12 R
5V v

D

TC π=
Θ

  [1.135] 

Figure 1.13 compares the curve given by the Einsteinian relation 
[1.129] and that given by Debye’s law [1.133]. We can see a 
difference between the two curves – particularly at low temperature. 

The Debye temperature can be measured in a variety of ways. The 
most common are: 

– evaluation on the basis of the whole curve Cv(T); 

– evaluation on the basis of the values of the specific heat 
capacities obtained at low temperature (less than ΘD/12), and 
application of the T 3 law [1.135]; 

– the Debye temperature can also be deduced from elastic data in 
the vicinity of 200 K. 

 
Figure 1.13. Comparison of the curves of the Einstein and Debye 

contributions for the specific heat capacity 
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Figure 1.14 gives a few of the values that are used. For example, 
for copper, the values obtained by the different methods all fall within 
the range 310–340 K. 

If we choose a wavelength distribution other than Debye’s, then 
the laws are obviously changed. For example, the Born–von Karmann 
distribution (Figure 1.4(a)) gives us a law combining the Einsteinian 
and Debyean terms, as follows: 

( )
3 0,8R E D
2V v

m m

T TC γ= +
Θ Θ

  [1.136] 

where γ  and Θm being two constants, which we adjust in relation to 
the experimental data. 

Choosing to use Blackman’s distribution (Figure 1.4(b)), Nernst 
and Lindemann put forward the following law: 

( )
3 2R E E
2V v

T TC = +
Θ Θ

  [1.137] 

We are going to make use of these contributions of the vibrations 
to the construction of the specific heat capacity at constant volume for 
different types of solids. 

1.9.2. Specific heat capacity of an atomic solid at constant 
volume 

An atomic solid has an energy given by a relation similar in form to 
equation [1.28], which involves a temperature-dependent vibrational 
term, which gives us a vibrational contribution to the specific heat 
capacity of the form: 

( ) 3R DV v
D

TC =
Θ

 [1.138] 

A priori, the vibrational term is the only one in equation [1.28] 
which is temperature-dependent. However, we need to take a slightly 
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closer look at the electron contribution – particularly in the wake of 
our study of section 1.7, and distinguish conductive atomic solids 
from non-conductive solids. 

1.9.2.1. Case of conductors 

Conductive solids have free levels for the electrons above the 
Fermi level in the conduction band. Thus, we distinguish between: 

– electrons in the lower bands, which are not excited, whose 
internal energy does not depend on the temperature (as envisaged in 
relation [1.28]) and which make no contribution to the specific heat 
capacity; 

– electrons which can be described as “free”, located at the 
temperature 0 K in the conduction band below the Fermi level. At 
temperature T, the internal energy of these free electrons is given by 
relation [1.119], which is a function of the temperature. By applying 
expression [1.126], we can deduce a contribution of the free electrons 
to the specific heat capacity, given by: 

8/3 2/3

( ) 2/3 2 2/3
a

4 R
3 h NV el

VC Tχ π=   [1.139] 

Thus, strictly speaking, the specific heat capacity of a metal at 
constant volume will be the sum of two contributions: one from the 
vibration of the ions and the other from the free electrons, so by 
applying the contributions [1.138] and [1.139]: 
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4 R 3R D
3 h NV

D

V TC Tχ π= +
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  [1.140] 

Based on this general relation, we can formulate two observations: 

1) The first deals with the relative orders of magnitude of the two 
terms in addition [1.140]. The electronic term would be order of  
5 × 10-4 TJ/mole.K-1, which means it is negligible at normal 
temperatures. It only becomes significant at around 1 K. This was 
confirmed by Keesom and Kok, who measured such a contribution of 
2.5 × 10-4 T for copper, which corresponds to a contribution of  
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0.033 J/mole.K-1 at 133 K, as compared to a vibrational contribution of 
16.2 J/mole.K-1. 

2) The second observation pertains to the influence of the 
temperature. The same two authors observed that in the vicinity of 
absolute zero, the value of the specific heat capacity is greater than 
that given by the extrapolation of the T3 law given by equation [1.135]. 
The capacity is thus written as: 
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a

4 R 12 R
3 h N 5V

D

V TC Tχ π π= +
Θ

  [1.141] 

At the temperature of 1 K, the T term could even become 
predominant. 

1.9.2.2. Case of insulating materials 

In the case of insulating materials, the electrons in the conduction 
band do not have the opportunity to gain energy by an increase in 
temperature, as the gap to be crossed is very large indeed, so the 
electron contribution will be null. However, as we noted in the case of 
fluorine, the crystal must be considered to be a crystal of diatomic 
molecules. This being the case, each molecule F2 has six degrees of 
freedom. Three will be degrees of acoustic vibrations, arising from the 
Debye term, and three will be optical vibrations, each arising from an 
Einsteinian term. Thus, the specific heat capacity contains only a 
vibrational contribution, formed of four terms in accordance with the 
following (for a mole of fluorine or ½ a mole of difluorine): 

6

s
4 ( )

3R RD E
2 2

s

V
sD E s

T TC
=

=

= +
Θ Θ

  [1.142] 

If the three Einsteinian terms have very similar frequencies, then 
the relation can be simplified to: 
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  [1.143] 
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In fact, in general, the Debye temperature is much lower than the 
Einstein temperature, so we can divide the temperature scale into three 
regions: 

– if T<<ΘD, the Debye term is predominant, the Einstein term can 
be ignored and we find the T3 law around the temperature of absolute 
zero; 

– if T>>ΘD, the Einstein term is predominant, and Debye’s can be 
ignored.  

Only if the temperature lies between those two characteristic 
temperatures we do need to apply relation [1.143]. 

 

Figure 1.14. Debye curve and specific heat capacities at  
constant volume for a number of atomic solids 

NOTE.– In the case of semiconductors, the situation is the same as for 
insulators, but there is the possibility of populating the band above the 
Fermi level by increasing the temperature, which would introduce an 
electron term, as a function of the temperature in the internal energy 
and therefore an electron contribution to the specific heat capacity. 
However, the breadth of the gap to be crossed is such that few 
electrons can make that jump at low temperature, and therefore the 
corresponding term will always be negligible in comparison to the 
vibrational term. 

Figure 1.14 shows that Debye’s curve corresponds closely with  
the variations in the Cv/3R ratio for a number of metals. Note that the 
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curve is only plotted above a certain temperature, above the temperature 
where the electronic term becomes significant. 

1.9.3. Specific heat capacity of a molecular or ionic solid at 
constant volume 

For molecules, as for ionic solids after grouping into neutral entities 
(see section 1.7.3), the internal energy is given by the sum such as 
[1.35], wherein only the vibrational term varies with temperature. 

However, as we have seen in section 1.7.3, the vibrations are 
divided into acoustic vibrations by multiples of three and arising from 
the Debyean terms and optical vibrations, whose number is 
complementary to the former and which all result from an Einsteinian 
term. Hence, the specific heat capacity takes the following form: 

ac opt
3R D EV

D E

T TC = +
Θ Θ

 [1.144] 

In general, at low temperatures, only the Debye terms need to be 
taken into account, whereas at high temperatures, the Einstein terms are 
largely predominant. This means that the T 3 extrapolation to absolute 
zero is correctly observed, because only the Debye term remains. 

1.9.4. Conclusion as to the specific heat capacity of a 
crystalline solid 

In conclusion, it can very often be admitted that, outside of metals, 
the specific heat capacity varies with temperature like Debye’s law at 
low temperatures, with a law proportional to T 3 at very low 
temperatures (below 40 K), while Einstein’s law performs better at 
higher temperatures. For metals, caution needs to be exercised when 
we come very close to absolute zero: a law proportional to T is better 
than the T 3 law. 

At very high temperatures, all laws tend toward the Dulong–Petit 
law, meaning that the specific heat capacity at constant volume 
becomes temperature-independent, obeying relation [1.130]. 
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Macroscopic modeling always gives us the specific heat capacity at 
constant volume. We can switch to the specific heat capacity at 
constant pressure by using the relation: 

P V
V P

P VC C T
T T

∂ ∂− =
∂ ∂

 [1.145] 

Using the thermomechanical coefficients (see section 1.9.1), we 
construct expression [1.146], which links the difference between the 
specific heat capacities at constant pressure and volume to the 
expansion coefficient β, and to the compressibility coefficient :Tχ  

2

P V
T

VC C β
χ

− =   [1.146] 

This very general relation for solids is the equivalent of relation 
[1.145], but is easier to use for gases on the basis of the state equation. 

1.10. Thermal expansion of solids 

The thermal expansion of a solid is the variation in that solid’s 
dimensions when its temperature is changed. A few exceptions aside, 
dimensions generally increase when the temperature rises. This 
expansion is due to the anharmonicity of the molecules’ vibrations. 

1.10.1. Expansion coefficients 

On the macroscopic level, the expansion is characterized by the 
linear and cubic expansion coefficients. 

1.10.1.1. Linear expansion coefficient 

In a direction in space, the increase of a length under the influence 
of temperature is defined at a given pressure by the linear expansion 
coefficient at constant pressure α: 

1

P

l
l T

α ∂=
∂

  [1.147] 
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We often express that coefficient in relation to the l0 at the 
temperature of 0°C, defining a standard linear expansion coefficient 

0α  as: 

0
0

1

P

l
l T

α ∂=
∂

  [1.148] 

Table 1.3 gives the value of the linear expansion coefficient for a 
number of substances at standard temperature. 

This linear expansion coefficient can be measured either by using a 
dilatometer or by shift in X-ray diffraction lines as a function of the 
temperature. 

Substance α (10-6 C-1) Substance α (10-6 C-1) 

Aluminum 22.38 Brass 18.5 

Copper 16.70 Invar 1 

Iron 11.70 Glass 7 

Lead 27.26 Pyrex glass 3 

Tantalum 6.46 Quartz 0.55 

Tungsten 4.28 Porcelain 3 

Zinc 35.40   

Table 1.3. Linear expansion coefficients of a number of substances 

1.10.1.2. Thermal expansion tensor 

In anisotropic solids, the expansion coefficient depends on the 
direction, so to describe the expansion we use a second-order 
symmetrical tensor, which, in the case of a triclinic solid, has six 
expansion coefficients: 

11 12 13

21 22 23

31 32 33

α α α
α α α
α α α
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Because this tensor must be symmetrical, we have: 

12 21α α= ; 13 31α α=  and 23 32α α=  

With an orthorhombic solid, the tensor is diagonal, the three terms 
12α , 12α  and 12α  have a value of zero, and the three diagonal terms 

12α  , 12α  and 12α  give the expansion along the three axes a, b and c 
of the material. 

The eigenvalues of that tensor are the three primary expansion 
coefficients 1α , 2α  and 3α . 

1.10.1.3. Cubic expansion coefficient (or coefficient of relative 
volume increase) 

To characterize changes in volume under the influence of 
temperature, we define a volume expansion coefficient for a level of 
pressure maintained as constant, thus: 

1

P

V
V T

β ∂=
∂

  [1.149] 

Sometimes that coefficient is expressed in relation to the volume 
V0 occupied at the temperature of 0°C: 

0
0

1

P

V
V T

β ∂=
∂

  [1.150] 

The volume expansion coefficient is obtained by “plotting” the 
expansion tensor – i.e. by the sum of the three primary coefficients –
but also, because the plot of a square matrix is invariant in a changed 
system of coordinates, by the sum of the three diagonal terms in the 
thermal expansion tensor, which gives us the relations: 

1 2 3 11 22 33β α α α α α α= + + = + +  [1.151] 

NOTE.– In isotropic media, the linear expansion coefficient is the 
same in all three directions in space, so: 
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1 2 3α α α α= = =  

Thus: 

3β α=  [1.152] 

1.10.1.4. Relation between the thermomechanical coefficients 

We define the isothermal compressibility coefficient at constant 
temperature T by the relation: 

1
T

T

V
V P

χ ∂= −
∂

  [1.153] 

The minus sign is introduced because the true intensive variable, 
conjugate to the volume, is the opposite of the pressure: –P. 

We also define the coefficient of pressure increase at constant 
volume by the relation: 

1

V

P
P T

δ ∂=
∂

  [1.154] 

If, for the phase in question, there is an equation of state such as 
f(P,V,T) = 0, we have the relation: 

T Pβ δχ=   [1.155] 

Indeed, for that state function, we can write: 

1 1 1 1.T

f f f
VP V VP Pf f fP V V V T

T P T

δχ β

∂ ∂ ∂
∂∂ ∂ ∂= − = − = =

∂ ∂ ∂ ∂
∂ ∂ ∂

 

1.10.2. Origin of thermal expansion in solids 

We will now show that the thermal expansion can be attributed to 
the vibrations of the atoms at the nodes of the crystalline lattice. 
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For this purpose, we will use the following values for the definite 
integrals: 

2exp dx x π
+∞

−∞

− =   [1.156]  

2exp d 0x x x
+∞

−∞

− =    [1.157] 

3 2exp d 0x x x
+∞

−∞

− =   [1.158] 

4 2 3exp d
4

x x x π+∞

−∞

− =   [1.159] 

To begin with, we will consider a harmonic vibration. In 
conventional mechanics, the curve that gives the potential energy of 
the harmonic oscillator as a function of the length of the spring is a 
parabola (Figure 1.15(a)). On that parabola, an increase in 
temperature results in a rise of the potential energy, at various 
temperatures T1, T2, T3 and T4 shown in the figure. When the 
temperature is raised, we can clearly see from the figure that the 
average position of the end of the spring does not change, and 
therefore this average position follows a vertical line. This means 
that no expansion is observed with this increase in temperature. This 
can be demonstrated numerically.  

The equation for the curve of the parabola is written as: 

2 2
0 0 ( )a r r axε ε− = − =   [1.160] 

Let us calculate the average stretching of the spring <r – r0> by 
applying the definition of the average of a value Q: 

 
1

Accessible states

Accessible states

Q
Q< > =   [1.161] 
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When we apply this formula to the average stretching, by using 
Boltzmann statistics, we find: 

2
0

B B
0 2

0

B B

exp d exp d
k k

 0
exp d exp d

k k

axx x x x
T T

r r
axx x

T T

ε ε

ε ε

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

−− −
− = = =

−− −
  [1.162] 

 

Figure 1.15. Potential energy curves for a) the harmonic oscillator,  
and b) an anharmonic oscillator 

We can see from the value of the integral [1.157] that the 
stretching is zero. Thus, we confirm the approximation of a harmonic 
oscillator which does not allow for thermal expansion. 

Now let us consider an anharmonic oscillator, the potential  
energy for which is plotted by the curve in Figure 1.15(b). We  
can clearly see that this shape of curve allows for the breaking of  
the link. However, we can also see that if the temperature increases, 
the average position of the end of the spring follows a curve that 
inclines to the right, thus showing an expansion. We can demonstrate 
this numerically. 

To the equation for the parabola, we add a cubic term to express 
the anharmonicity of the potential energy curve. Thus, we adopt a 

a 

r

ε−ε0 

T1 

T2 

T3 

T4 

r0 

Average position

b

T1 
T2 

T3 
T4 

r0 

Average position

r 

ε−ε0 
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position that is fairly close to the minimum – i.e. at low temperatures. 
Hence, the energy can be written as: 

2 3 2 3
0 0 0 ( ) ( )a r r b r r ax bxε ε− = − + − = +   [1.163] 

Using Boltzmann statistics like in equation [1.162] but with the 
new formula for the energy given by relation [1.163], we obtain: 

2 3

B B
0 2 3

B B

exp exp d
k k

 
exp exp d

k k

ax bxx x
T T

r r
ax bx x

T T

+∞

−∞
+∞

−∞

− −
− =

− −
  [1.164] 

The exponential term of anharmonicity, which is deemed to be 
low, is replaced by the development limited to the first two terms: 

3 3

B B

exp 1
k k
bx bx

T T
− ≈ −   [1.165] 

By substituting this value back into equation [1.164], we find: 

2 3

B B
0 2 3

B B

exp 1 d
k k

 
exp 1 d

k k

ax bxx x
T T

r r
ax bx x

T T

+∞

−∞
+∞

−∞

− −
− =

− −
  [1.166] 

The numerator and the denominator in this fraction can both be 
expanded, giving us: 

2 4 2

B B B
0 2 3 2

B B B

exp exp d
k k k

 
exp exp d

k k k

ax bx axx x
T T T

r r
ax bx ax x

T T T

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

− − −
− =

− − −
  [1.167] 
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We recognize the different definite integrals whose values are 
given in equations [1.156], [1.157], [1.158] and [1.159]. If we 
substitute in those values, the stretching becomes: 

0 B2

3 k
4

br r T
a

< − > = −   [1.168] 

The expansion coefficient can thus be obtained on the basis of its 
definition: 

0
B2

0 0

d1 3 k
d 4
r r b

r T a r
α

−
= = −   [1.169] 

We can see that simply introducing an anharmonic term into the 
equation for the potential energy curve is sufficient to take account of 
the existence of linear expansion. 

Unfortunately, our model gives us a linear expansion coefficient 
that is temperature-independent. This result would be kept if a larger 
number of terms were added to the potential energy equation in 
relation [1.163]. However, experience tells us that α  is dependent on 
the temperature.  

In order to achieve a correct representation of the expansion, we 
will approach the problem using quantum mechanics. 

1.10.3. Quantum treatment of thermal expansion. 
Grüneisen parameter 

To begin with, note that by using relations [1.152], [1.154] and 
[1.155], we can write: 

3
T

V

P
T

χα ∂=
∂

  [1.170] 
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In order to calculate the linear expansion coefficient, we first need 
to calculate the thermodynamic coefficient ( )/

V
P T∂ ∂ . For this 

purpose, we will work with the variables V and T. 

We will consider our solid to be a collection of quantum 
oscillators, phonons, each of which has its own natural frequency of 
vibration νi. 

The partition function relative to such an oscillator is: 

B

B

hexp
2k

h1 exp
k

i

i
i

Tz

T

ν

ν

−
=

− −
  [1.171] 

The characteristic function with variables T, V is the Helmholtz 
energy. Thus, for each phonon, we can write its contribution to the 
Helmholtz energy in the form: 

B B
B

h hk ln k ln 1 exp
2 k

i i
i iF T z T

T
ν ν= − = + − −   [1.172] 

Similarly, the contribution of that phonon to the internal energy 
will be: 

BB

ln h h
21 exp 1

kk

i i i
i

i

zU h
TT

ν ν
ν

∂
= − = +

−∂
  [1.173] 

The anharmonic effect of the oscillations will be taken into account 
by considering that the vibration frequency of the phonon is a function 
of the volume. 

As the pressure is the derivative of the Helmholtz energy in 
relation to the volume, the contribution of our phonon to that pressure 
will be: 
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B

B

hh exp
h k

h2 1 exp
k

i i

i i
i

iT

F V TP
V V

T

ν ν
ν

ν

∂ −
∂ ∂ ∂= − = − +
∂ ∂ − −

  [1.174] 

From this, we deduce: 

B

h h
h2 exp 1
k

i i i
i

i i

U
P

V V
T

ν ν
ν ν

∂ ∂
= − + = −

∂ ∂−
  [1.175] 

Additionally, we can always write: 

i i i i i

i

ln. . .
ln

V
V V V V V
ν ν ν ν ν

ν
∂ ∂ ∂= =
∂ ∂ ∂

  [1.176] 

We define a value iγ  by the expression: 

iln
lni V

νγ ∂= −
∂

  [1.177] 

This value is called the Grüneisen factor of the phonon i. 

The pressure due to all the phonons, in view of relations [1.176] 
and [1.177], and by adding relation [1.175] for all the phonons, will be 
written as: 

i
i i

i i

UP P
V

γ= =   [1.178] 

We derive this pressure in relation to temperature, at constant 
volume. In view of expression [1.126], we obtain: 

1 1i
i i Vi

i iV T

UP C
T V T V

γ γ∂∂ = =
∂ ∂

  [1.179] 
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By substituting that derivative back into equation [1.170], the 
expansion coefficient is written as: 

3 3

i Vi
iT T

i Vi Vi
i iVi

i

C
C C

V V C

γ
χ χα γ= =   [1.180] 

We define the value γ (T,V), called the Grüneisen parameter, by 
the expression: 

( , )
i Vi

i

Vi
i

C
T V

C

γ
γ =   [1.181] 

NOTE.– It is important not to confuse the Grüneisen factor γi with the 
Grüneisen parameter γ (T,V). 

Thus, the expansion coefficient will be: 

( , )
3

T
VT V Cχα γ=   [1.182] 

As the isothermal compressibility Tχ  and the specific heat 
capacity at constant volume VC  are both values which are always 
positive, the Grüneisen parameter has the same sign as the expansion 
coefficient – i.e. positive in the majority of cases and negative in the 
few cases of contraction with increased temperature. 

Experience tells us that the product ( , ) /T T V Vχ γ is essentially 
constant as the temperature varies, which means that, in practice, the 
linear expansion coefficient is practically proportional to the specific 
heat capacity at constant volume, i.e.: 

VCα ∝   [1.183] 

Thus, the variation of the expansion coefficient with temperature 
will be the same in form as that of the specific heat capacity at 
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constant volume, so we obtain the curve shown in Figure 1.16, which 
has the same shape as Figure 1.14. 

 

Figure 1.16. Shape of the curve of the expansion coefficient  
with temperature in the context of the Debye approximation 

In view of expression [1.183], we can reach the same conclusions 
as those about the specific heat capacity at constant volume in  
section 1.9.1.2 (see relations [1.134] and [1.135]): 

3    
     essentially constant

D

D

T T
T

α
α

<< Θ ∝
>> Θ

  [1.184] 

Experimentally, the Grüneisen parameter is determined at zero 
pressure or atmospheric pressure, on the basis of measurements of the 
volume expansion coefficient β , the adiabatic compressibility 
(constant entropy) Sχ  and the specific heat capacity at constant 
pressure PC  because we have: 

3( , )
T V S P

VT V
C C
α βγ

χ χ
= =   [1.185] 

Relation [1.177] shows that the Grüneisen parameter for the 
phonon i is dimensionless, and therefore the parameter γ(T,V), defined 
by relation [1.181], is also dimensionless. 

In the majority of cases, the Grüneisen parameter is of the order of 
magnitude of a few units at all temperatures, as is demonstrated by the 

T 
θD

α 
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curves in Figure 1.17, which give the variations of that parameter for 
several alkali halides. 

 

Figure 1.17. Grüneisen parameter for a few alkali halides  
(data from [WHI 65]) 

However, we note a few cases of values that are far greater – either 
positive or negative. 

The Grüneisen parameter also varies with the volume, as is shown 
by the example of copper illustrated in Figure 1.18. 

 

Figure 1.18. Variation of the Grüneisen parameter for copper  
with the volume (data taken from [GIR 00])  
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1.10.4. Expansion coefficient of metals 

The reasoning we employed in the previous section is valid for 
insulating solids. Indeed, for metals, we know that a contribution is 
made by the free electrons to the partition function and therefore to the 
specific heat capacity at constant volume. We will now look at the 
situation for the expansion. 

We can think in the case of the electron gas subject to Fermi–Dirac 
statistics, but calculation shows that we obtain an identical result by 
using the simple model of the gas of electrons subject to three degrees 
of freedom of translation, in the case of the equal energy distribution 
model. If the metal includes ne electrons per atom, its molar internal 
energy will be: 

a B3 N k
2

e
el

n TU =   [1.186] 

By application of the ideal gas law, we deduce the electron 
pressure: 

a BN k 2
3

e el
el

n T UP
V V

= =   [1.187] 

By deriving this pressure in relation to the temperature, we find: 

2 2
3 3

el el
Vel

V V

P U C
T V T V

∂ ∂= =
∂ ∂

  [1.188] 

If we substitute this back into equation [1.170], we find an electron 
parameter of the Grüneisen constant: ( , ) 2 / 3el T Vγ =  

Thus, the linear expansion coefficient of the metal will be the sum 
of two terms: the contribution of the lattice ( , )r VrT V Cγ  and the 
contribution of the free electrons ( , )el VelT V Cγ . Hence, we can write: 

( )1 ( , ) ( , )
3 T e Ve r VrT V C T V Cα χ γ γ= +   [1.189] 
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At low temperature, we know that the contribution of the lattice 
varies as the cube of the temperature. By keeping the product 

( , )T e T Vχ γ  practically constant, the electron contribution also varies 
as the electron contribution to the specific heat capacity at constant 
volume. However, as we have seen (relation [1.139]), that 
contribution varies with T, so, at low temperature, the linear expansion 
coefficient of a metal will be of the form: 

3aT bTα ≅ +   [1.190] 

 
Figure 1.19. Expansion of copper at low temperature,  

according to [PER 70] 

Figure 1.19 shows a good example of the application of this law. 
For copper, it represents the curve showing the / Tα  ratio as a 
function of the square of the temperature. This curve is, indeed, a 
straight line with the equation: 

10 11 21.3 10 2.7 10 T
T
α − −≅ × + ×  

On the basis of this expression, authors have determined the value
( , ) 0.57e T Vγ = for the electron Grüneisen parameter, which is near to 

the theoretical value of 2/1. 

As previously stressed, other properties characterize solids – electrical 
properties, magnetic properties and other mechanical properties such as 
resilience, resistance to hardness, etc. All of these properties are not 
studied here because they are beyond the remit of this book.
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