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Physico-Chemical  
Transformations and Equilibria 

A physico-chemical transformation of a system is the modification of the 
nature of its components under the influence of external stresses. 

1.1. Characteristic parameters of physico-chemical transformations 

A component is characterized by its chemical nature and by the phase to 
which it belongs. We can distinguish two types of physico-chemical 
transformations: 

– physical transformations where there is no alteration of the chemical 
nature of the species but there is a modification of their phases; 

– chemical transformations or reactions, where there is a modification of 
the chemical nature of the species present, and where that modification may 
or may not be accompanied by a phase change. 

1.1.1. Balance equation of a transformation 

Generally, a transformation is represented by its balance equation, which 
specifies the initial components, present before the transformation, and the 
end components. Symbolically, such a balance equation is written in the 
form: 
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This formulation shows the algebraic stoichiometric numbers iν , which 
are counted as positive for the end components and as negative for the initial 
components. The sum is extended to all of the initial and final components. 

Physical transformations are characterized by the unit value of all the 
stoichiometric numbers. 

It is often useful for the balance equation to show the nature of the phases 
in which the components are. In order to do this, a system of symbols as 
outlined in Table 1.1 is included in the balance equations. According to this 
system, the vaporization of pure liquid water in an atmosphere composed 
solely of water is written as: 

( ) { }2 2H O H O=  [1R.2] 

Symbol Meaning Symbol Meaning 

{A} Pure A in a gaseous phase {{A}} A in a gaseous mixture 

(A) Pure A in a liquid phase ((A)) A in a liquid solution 

<A> Pure A in a solid phase <<A>> A in a solid solution 

Table 1.1. Symbolic representation of the phases of  
components in balance equations 

The vaporization of water in air on the basis of a liquid solution is written as: 

( )( ) { }{ }2 2H O H O=  [1R.3] 

1.1.2. Values associated with a transformation 

To each transformation, for any extensive value A, we attribute a value, 
written as r A , called A associated with the transformation r. This value is 
defined, on the basis of the partial molar values iA  of the components 
involved in the transformation, by the relation: 

ir i
i

A Aν=  [1.1] 
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Thus, we speak of the enthalpy, Gibbs energy, entropy, variations in 
volume, etc. associated with the transformation.  

1.1.3. Standard values associated with a transformation 

We shall see that in the particular case where we choose pure components 
in their phases, at a pressure of 1 bar, the standard value A associated with 
the reaction [1R.1] is defined by the relation: 

0 o
r i i

i
A aν=  [1.2] 

o
ia  is the standard value of the parameter A of the i, meaning that the 

value of A taken in the pure state at a pressure of 1 bar at the temperature of 
298 K (25ºC), the substance being in its normal state of condensation at that 
temperature and pressure. We thus define a standard value at temperature T 
as the above standard value chosen at the temperature T instead of 298 K.  

1.1.4. Extent and rate of a transformation 

A transformation is also characterized by its extent ξ  at a time t and its 
rate ℜ  at that instant. The rate is the derivative in relation to time of the 
extent. If nk is the number of moles of the component Ak, we have: 
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=  [1.3a] 

and: 

d
d t
ξℜ =  [1.3b] 

In the case where multiple transformations take place in the system, 
equations [1.3a] and [1.3b] are replaced by: 
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and: 

d
d

k
k

n
t ρ ρ

ρ
ν= ℜ  [1.4b] 

In these expressions, d ,kn
ρ

 ρℜ and kρ
ν respectively denote the variation 

of the quantity of the component Ak due to the transformation ρ, the rate of 
the transformation ρ  and the stoichiometric number relative to component 
Ak in the transformation ρ. The sum of relation [1.4b] is found for all of the 
transformations taking place in the system under study. 

1.2. Entropy production during the course of a transformation in 
a closed system 

Consider the transformation [1R.1]. We respectively denote by di S  and 
de S  the contributions to the entropy variation made by the entropy 
production within the system and the exchanges with the external medium. 
The entropy balance at each moment can be written as: 

d dd
d d d

i eS SS
t t t

= +  [1.5] 

For our study, we choose as variables the p pertinent intensive variables 
kY  and the quantities of material whose fluxes are reduced, in a closed 

system, according to relation [1.3], to the derivative of the extent of the 
reaction. We can therefore express the entropy flux on the basis of those 
variables, so: 

1

dd d
d d d
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k

k k
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t Y t t

ξ
ξ=

∂ ∂= +
∂ ∂

 [1.6] 

In addition, the entropy contribution due to the exchanges with the 
external environment is linked to the exchanged heat, by: 

d 1 d
d d
e S Q
t T t

=  [1.7] 
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This exchanged heat is expressed as a function of the variables by way of 
the specific heat coefficients kχ , which enables us to write the following for 
the entropy flux exchanged: 

1

d d d
d d d

p
e k k T

k

S Y
t T t T t

χ χ ξ
=

= +  [1.8] 

By comparing expressions [1.6] and [1.8], we obtain the contribution of 
the internal production to the variation in entropy as a function of the system 
variables: 

1

d d d
d d d

p
i k k T

k k

S YS S
t Y T t T t

χ χ ξ
ξ=

∂ ∂= − + −
∂ ∂

 [1.9] 

According to the second law, this entropy production must be positive or 
null in any spontaneous transformation. If we envisage a transformation 
whereby the external intensive variables Yk are kept constant, if the 
transformation is spontaneous, it means that we satisfy the inequality: 

d d 0
d d
i TS S
t T t

χ ξ
ξ

∂= − ≥
∂

 [1.10] 

Thus, expression [1.10] is a condition needing to be fulfilled during any 
real transformation keeping the intensive variables kY constant. 

1.3. Affinity of a transformation 

We shall introduce a new value – the affinity – pertaining to any 
transformation. The variables for this affinity are the (intensive or extensive) 
Thermodynamic variables, the quantities of material and the extent of the 
transformation. 

1.3.1. Definition 

De Donder proposed to use the term affinity of the transformation, 
denoted as  A, for the entity: 

TST
T

∂= −
∂

χ
ξ

A  [1.11] 
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According to expression [1.10], the entropy production can be expressed 
on the basis of that activity by: 

d d
d d
i S
t T t

= ξA
 [1.12] 

On the basis of this definition, we shall be able to express the affinity 
another way. 

1.3.2. Affinity and characteristic functions 

The variation of internal energy is, according to the first law of 
thermodynamics: 

d dd d d d d d
d d d d d d d d

e iS SU Q W W S WT T T
t t t t t t t t

= + = + = − +  [1.13] 

If all the exchanges are reversible, apart from the transformation under 
study (we then say that the system is at physical equilibrium), then the work 
term is written: 

2

d
d

p

k k
k

W Y dX
t =

=  [1.14] 

The sum that appears in the above expression is extended to all couples of 
conjugate variables, with the exception of the temperature–entropy couple 
(which is why the index k begins at the value of 2). By substituting this back 
into expression [1.13] and taking account of relation [1.12], we obtain: 

2

dd d d
d d d d

p
k

k
k

XU SY T
t t t t=

= + − ξ
A  [1.15] 

This gives us a new expression of the affinity, which is therefore the 
opposite of the differential of the function U in relation to the fractional 
extent with constant entropy and extensive variables: 

, kS X

U∂= −
∂ξ

A  [1.16] 
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We can generalize this expression for any characteristic function Γ , 
defined by: 

2

q

i i
i

U TS X YΓ
=

= − −  where 2 q p≤ ≤  [1.17] 

By differentiation of [1.17], we obtain: 

2 2
d d d d d

q q

i i i i
i i

U T S S T X Y Y dXΓ
= =

= − − − −  [1.18] 

Thus, when we consider relation [1.15]: 

2 1
d d d d

q p

i i m m
i m q

S T X Y Y dX
= = +

= − − + −Γ ξA  [1.19] 

we obtain a new expression of the affinity which generalizes relation [1.16]: 

m lX Y T

∂= −
∂
Γ
ξ

A  [1.20] 

In particular, for chemical systems with the variables pressure and 
temperature, the characteristic function is the Gibbs energy G. We obtain: 

,P T

G∂= −
∂ξ

A  [1.21] 

At constant pressure and temperature, the affinity is the opposite of the 
partial derivative of the Gibbs energy in relation to the extent. 

NOTE 1.1.– Expression [1.15] shows that the affinity, which is an extensive 
value, and the extent, which is an intensive value, are two conjugate values. 

1.3.3. Affinity and chemical potentials 

If we consider relation [1.3], we can write: 

, , , j

i i i
i iiP T P T n

G G
n

ν ν μ
ξ

∂ ∂= =
∂ ∂

 [1.22] 
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By substituting this back into relation [1.21], we obtain an expression of 
the affinity as a function of the chemical potentials of the components 
involved in the transformation: 

i i
i

= − ν μA  [1.23] 

The affinity of a transformation therefore depends only on the chemical 
potentials of the components involved in that transformation. 

Using expression [1.22], we can write: 

, ,

 
j

ii i r i i
i i ii P T n

G G G
n

ν ν ν μ∂ = = =
∂

 [1.24] 

Thus, by comparing this with relation [1.23]: 

rG = − A  [1.25] 

The affinity of a transformation is thus the opposite of the Gibbs energy 
associated with that transformation. 

These results can easily be generalized to any general Gibbs energy using 
the generalized chemical potentials which correspond to it. For example, for 
the electrochemical Gibbs energy and the electrochemical potentials, an 
expression such as [1.23] will give the electrochemical affinity of an 
electrochemical reaction. 

1.3.4. Affinity, reaction quotient and activities 

If, in relation [1.23], we explicitly state the chemical potentials of the 
species in solution in the form: 

0 R lni i iT aμ μ= +  [1.26] 

for the transformation [1R.1], we find the expression of the affinity as a 
function of the activities: 

0 R i
i i i

i i

T a= − − ∏ νν μA  [1.27] 
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If we define the value Qr, known as the reaction quotient of the 
transformation r, by the relation: 

i
r i

i
Q a= ∏   [1.28] 

then the affinity takes the form: 

R ln rT Q= −0A A   [1.29] 

Using relation [1.25], the Gibbs energy associated with the reaction takes 
the form: 

0 R lnr r rG G T Q= +   [1.30] 

The last two relations will be useful for the expression of the equilibrium 
constants (see section 3.1). 

1.3.5. Total differential of the affinity in variables Yl,  Xm, ξ 

As the affinity is a function of state, its differential, expressed on the 
basis of the chosen variables, will be of the form: 

d d d dl m
l ml m

Y X
Y X

∂ ∂ ∂= + +
∂ ∂ ∂

ξ
ξ

A A A A

 
 [1.31]

 

Using relation [1.20], we find: 

2

2

∂ ∂= −
∂ ∂

Γ
ξ ξ
A

 
 [1.32]

 

and by applying equation [1.23]: 

i
i

iZ Z
∂∂ = −

∂ ∂
μνA

 
 [1.33]

 

with Z being one of the variables in the set (Yl,Xm).  
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In the case where that set of variables comprises only intensive variables 
Yl, the differential of the affinity is written: 

d d dl
l l

Y
Y

∂ ∂= +
∂ ∂

ξ
ξ

A A A

 
 [1.34]

 
However, by applying relation [1.33] and the symmetry of the 

characteristic matrix, if Xl is the conjugate extensive value of Yl , we obtain: 

i

lXrlXi
lY ii

==
∂
∂ νA

 
 [1.35] 

This gives us the differential of the affinity in intensive variables (partial 
molar values) and extent: 

d d dr l lX Y ξ
ξ

∂= +
∂

A
A

 
 [1.36]

 
Let us apply these results to chemical systems with variables –P, T, so 

then equation [1.35] gives us: 

i
rii SS

T i ==
∂
∂ νA

 
 [1.37]

 
In addition, we have: 

i
rii VV

P i −=−=
∂
∂ νA

 
 [1.38]

 
The differential of the affinity then becomes: 

ξ
ξ

dddd 2

2GPVTS rr −−=A

 
 [1.39]

 
NOTE 1.2.– Helmholtz’s second relation gives the derivative of the ratio μι /T 
with the temperature: 

2

,

i

i

i

P

HT
T T

ξ

μ∂
=

∂
 [1.40] 
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By coupling this relation with expression [1.23], we obtain: 

22

,

T
H

T

H

T
T ri

ii

P

i

==
ν

ξ

A

 
 [1.41] 

r H is the enthalpy associated with the transformation studied. 

1.3.6. Derivatives of the affinity in relation to the extent and the 
chemical potentials 

By deriving equation [1.23], we obtain: 

i
i

i

∂∂ = −
∂ ∂

μν
ξ ξ
A

 
 [1.42]

 
However, by taking account of relation [1.3], we can write: 

1

N
i k k i

k
k kk k

n
n n

μ μ μν
ξ ξ=

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

 
 [1.43]

 

Thus: 

i
k i

k i kn
∂∂ = −

∂ ∂
μν ν

ξ
A

 
 [1.44]

 

which can be expressed in the form: 

2
2

2
i i i

k i i
k k i ik i i

n
n n n≠

∂ ∂∂ = − +
∂ ∂ ∂

μ μν ν ν
ξ
A

 
 [1.45]

 

However, according to the Gibbs-Duhem relation, we have: 

i k
i k

k ii i

n n
n n
μ μ

≠

∂ ∂= −
∂ ∂

  [1.46a] 
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The symmetry of the characteristic matrix leads to: 

i k

k in n
μ μ∂ ∂=

∂ ∂
 [1.46b]  

Thus, by substituting the expressions [1.46a] and [1.46b] into 
expression [1.45], we find: 

2
2

i i k i
k i i

k k i i k ik i i

n n
n n n≠ ≠

∂ ∂∂ = − +
∂ ∂ ∂

μ μν ν ν
ξ
A

 
[1.47]

 
By decomposing the second term, this expression takes the form: 

2 2
2 2

2 2

1 1
2 2

i i i i i
k i i k

k k i i k i i k ik i i i k

n n
n n n n n≠ ≠ ≠

∂ ∂ ∂∂ = − − +
∂ ∂ ∂ ∂

μ μ μν ν ν ν
ξ
A  

We can verify that the above formula is equivalent to: 

2
1
2

i i k
i k

i k k i k

n n
n n n

∂∂ = −
∂ ∂

μ ν ν
ξ
A

 
[1.48] 

This expression gives us the derivative of the affinity in relation to the 
extent as a function of the derivatives of the chemical potentials of the 
components of the reaction in relation to the quantities of the other materials. 

1.4. De Donder’s inequality – direction of the transformations 
and equilibrium conditions 

The second principle, applied to relation [1R.1], gives us: 

d 0
dT t

≥ξA

 
[1.49]

 
In this inequality, we see the appearance of the rate of reaction 

(expression [1.2]), which is tantamount to writing that in order for a 
transformation to be possible, it is necessary for the affinity and rate to obey 
the condition: 

0ℜ ≥A

 
[1.50]
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This inequality constitutes de Donder’s inequality, which is a general 
formulation of the condition of transformation and does not depend on the 
set of variables chosen. 

We shall now discuss this inequality: 

– if the affinity is positive, we need to have a positive or null rate to 
respect the condition [1.50]. If the rate is positive, this means that the 
transformation takes place from left to right in the chosen formula. If the rate 
is zero, the transformation does not happen; 

– if the affinity is negative, the inequality gives a negative or null rate, 
and the transformation will take place spontaneously from right to left of the 
chosen formula, or will not take place; 

– if the affinity is null, then the rate is null because, if such were not the 
case, the system would be the seat of a reversible transformation (null 
entropy production) with a non-null rate, which is incompatible with the 
definition of a reversible transformation. 

Let us now examine the reciprocal of our discussion: 

– if the rate is positive then inequality [1.50] necessarily leads to a 
positive affinity. The affinity cannot be null because we would still have a 
reversible transformation at non-null rate; 

– if the rate is negative, then the affinity is also negative, with the reverse 
reaction occurring; 

– if the rate is null, then the system is at equilibrium. We can therefore 
have either a null or a non-null affinity. In the first case (null affinity), we 
say that the system is at thermodynamic equilibrium. In the second  
case (non-null affinity), the system is said to be at false equilibrium. False 
equilibrium is thus encountered for a transformation which does not take 
place although its affinity is positive. For instance, we can cite the synthesis 
of water under normal conditions of temperature and pressure. The 
hydrogen-oxygen mixture does not react. Its rate is too slow for the reaction 
to be perceptible. In such a case, we could use a catalyst to carry out such a 
transformation, which would not alter the affinity but would modify the rate. 
The choice of a catalyzer is useless and ineffectual if the affinity is null or 
negative. 
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Thus, the necessary and sufficient condition of thermodynamic 
equilibrium is, by definition: 

0=A

 
[1.51] 

and the true meaning of the possibility of occurrence of the transformation is 
given by the condition: 

0>A

 
[1.52]

 
In light of relations [1.23] and [1.24], these conditions are also written: 

For thermodynamic equilibrium: 

0rG =
 

[1.53] 

or: 

1
0

N

k k
k

ν μ
=

=
 

[1.54]
 

For the direction of spontaneous reaction: 

0rG <
 

[1.55]
 

or: 

1
0

N

k k
k

ν μ
=

<
 

[1.56] 

These conditions are independent of the nature of the physico-chemical 
transformation and the variables chosen to define the system, provided that 
system is home only to a single transformation. 

1.5. Heats of transformation 

Usually, transformations involve heat exchanges with the outside 
environment, which may be due to heat being released (exothermic 
transformations) or absorbed (in the case of endothermic transformations). 
We shall express those heat exchanges in two important cases. 
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1.5.1. Heat of transformation at constant pressure and 
temperature 

We can express the elementary heat of a transformation in the form: 

d d de iQ T S T S T Sδ = = −  [1.57] 

By choosing all the variables (T, -P, ξ), we shall have: 

d d d di
S S SQ T T T P T T S
T P

δ ξ
ξ

∂ ∂ ∂= + + −
∂ ∂ ∂

 [1.58] 

At constant pressure and temperature, this gives us: 

d dP i
SQ T T Sδ ξ
ξ

∂= −
∂

 [1.59] 

However, as the generalized Gibbs energy Γ  is a function of state, we 
have, according to relation [1.19]: 

,, PP T

S
T

∂ ∂= −
∂ ∂ ξξ

A  [1.60] 

Thus, we can write relation [1.59] in the form: 

,

dP
P

Q T
T

∂= − +
∂ ξ

δ ξA
A  [1.61] 

By integrating this expression for the whole of the transformation, we 
obtain: 

,0
P P

P

Q Q T
T

=∞

=

∂= = − +
∂

ξ

ξξ

δ A
A  [1.62] 

By replacing the affinity with its expression [1.22], we find: 

k
P k k k

k k
Q T

T
μν ν μ∂= +

∂
 [1.63] 
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Thus, by using the symmetry of the characteristic matrix: 

kP k k k
k k

Q T Sν ν μ= +  [1.64] 

However, we know that we have: 

kk kk G H T Sμ = = −  [1.65] 

For the heat of reaction we find: 

HHQ r
k

kkP == ν  [1.66] 

Thus, the heat of transformation, at constant temperature and pressure, is 
equal to the enthalpy associated with the reaction. 

NOTE 1.3.– For a long time, chemists counted the heat released by an 
exothermic reaction positively. With this old convention, relation [1.66] was 
transformed into: 

P rQ H= −  

1.5.2. Heat of transformation at constant volume and 
temperature 

Let us look again at expression [1.58]. By choosing the set of variables 
(T, V, ξ), we obtain: 

d d d di
S S SQ T T T V T T S
T V

δ ξ
ξ

∂ ∂ ∂= + + −
∂ ∂ ∂

 [1.67] 

At constant volume and temperature we have: 

d dV i
SQ T T Sδ ξ
ξ

∂= −
∂

 [1.68] 
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By applying the same reasoning as in the previous section (see 
section 1.5.1), we find: 

, , j

V k k k
k kk V T n

SQ T
n

ν ν μ∂= +
∂

 [1.69] 

However, we know that: 

, , j

i
k V T n

F
n

μ ∂=
∂

 [1.70] 

Thus: 

, , , ,j j

V k k
k kk kV T n V T n

S FQ T
n n

ν ν∂ ∂= +
∂ ∂

 [1.71] 

and, taking account of: 

F U TS= −  [1.72] 

the heat of transformation is: 

U
n
UQ r

k nTVk
kV

j,,
== ν  [1.73] 

Thus, the heat of transformation, at constant temperature and volume, is 
equal to the internal energy associated with the reaction. 

1.5.3. Variations in the heat of transformation at constant 
pressure with changing temperature – Kirchhoff relation 

According to equation [1.66], we can write: 

j

kP
k

kP P

Q H
T T

ν∂ ∂=
∂ ∂

 [1.74] 



18     Chemical Equilibria 

However, the differential of the partial molar enthalpy can be expressed 
in the form: 

d d d dk kk k k
k

H T S V P nμ= + +  [1.75] 

Thus, at a given pressure and extent, we obtain: 

k

j j

k k
P

P P

H ST C
T T

∂ ∂= =
∂ ∂

 [1.76] 

By substituting that equation back into relation [1.74], we find: 

Pr
k

Pk
P

P CC
T
Q

k == ν  [1.77] 

This relation constitutes what we call the Kirchhoff relation. An 
equivalent relation would give the variation of the heat of transformation at 
constant volume with the temperature as a function of the molar specific heat 
capacity at constant volume associated with the transformation. 

1.6. Set of points representing the equilibrium states of a 
transformation 

Consider a transformation at thermodynamic equilibrium for given values 
of the variables of state. Its affinity is null. If we vary one or more of the 
variables of state by an infinitesimal amount, the affinity takes on a new 
value d+A A . In order for that new state to also be a state of equilibrium of 
transformation, it is necessary for that new value of the affinity to be null, 
so: 

d 0+ =A A

 
[1.78]

  
This leads us to: 

d 0=A

 
[1.79]
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By stating the affinity on the basis of the chemical potentials of the N 
components involved in the transformation, the condition becomes: 

1
d 0

N

k k
k

ν μ
=

=
 

[1.80]
 

Either of these last two expressions, [1.79] and [1.80], enables us to 
define the set of equilibrium states of the transformation. 

1.7. Closed systems accommodating multiple reactions 

Consider a system in which, between the components, there are R 
possible transformations. A component may not necessarily be involved in 
multiple kinds of transformations (in a transformation in which it is not 
involved, its stoichiometric coefficient will be zero). For the ρth 
transformation, we can define an affinity according to relation [1.11], and by 
applying relation [1.23], we find: 

k k
k

= −
ρρ ν μA

 
[1.81]

 

If kρ
ν is the stoichiometric number of component Ak in the ρth  

transformation, then by pursuing the same reasoning as in section 1.3.2, with 
ρξ  representing the extent of the reaction ρ, we obtain: 

∂= −
∂ρ

ρ

Γ
ξ

A  [1.82] 

The real transformation condition, therefore, will be: 

d d 0= − ≤ρ ρ
ρ

Γ ξA

 
[1.83]

 

and consequently: 

d
0

d t
= ℜ ≥ρ

ρ ρ ρ
ρ ρ

ξ
A A  [1.84] 
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This inequality is a generalization of De Donder’s inequality (see 
section 1.4). We can see that, for a transformation to be possible, it is no 
longer necessary for inequality [1.50] to be satisfied, if that transformation 
occurs in a system which contains multiple transformations, and such that 
relation [1.84] will, itself, be satisfied. This phenomenon of a reaction which 
is impossible on its own but is possible within a set of transformations, in the 
same conditions, is known as chemical coupling. 

At thermodynamic equilibrium, the sum appearing in relation [1.83] must 
be zero, implying that all the individual terms ρA  are zero regardless of the 
transformation at hand. The condition of equilibrium of transformations in 
the system, for any transformation ρ belonging to the set R, will therefore be: 

0=ρA   [1.85] 

NOTE 1.4.– We shall see (in section 2.2) that this condition is sufficient but 
not necessary if not all the transformations are independent. 

1.8. Direction of evolution and equilibrium conditions in an open 
system 

In an open system, the variations dnk in the amount of component Ak are 
no longer linked to one another by the transformation; these quantities can 
also change because of exchanges of matter with the external environment. 
In a chemical system, the variation of Gibbs energy is written in the form: 

1
d d d d

N

k k
k

G S T V P nμ
=

= − + +  [1.86] 

For equilibria at temperature and pressure that are both kept constant, the 
Gibbs energy is a potential function and therefore in order for the system to 
be able to evolve spontaneously, we need: 

1
d d 0

N

k k
k

G nμ
=

= ≤  [1.87] 

At thermodynamic equilibrium, the potential function reaches an 
extremum. If that extremum is a minimum, then the equilibrium is stable. If 
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the extremum is a maximum, then the equilibrium is unstable (see section 
2.6.2).  

At equilibrium, we therefore ought to have: 

1
d 0

N

k k
k

nμ
=

=  [1.88] 

This relation is a generalization of relation [1.54], which takes that form 
when we remember that, in a closed environment where only a single 
transformation takes place, by definition we have the following formula for 
the extent: 

d dk kn ν ξ=  [1.89] 

1.9. Azeotropic transformations 

A closed system undergoes an azeotropic transformation when, during the 
course of the transformation, the masses of some of the phases increase at the 
expense of others, without a change in the composition of the phases. This is 
expressed, for all phases α and all compositions, by the property: 

( ) 0( )
k kx x=  [1.90] 

0( )
kx  denotes the molar fraction of component Ak in phase α at the initial 

time of the transformation and ( )
kx  its molar fraction at any given moment 

during the transformation. 

By deriving equation [1.90] in relation to time, we find the following for 
any component Ak in any phase α: 

( )d 0
d

kx
t

=  [1.91] 

In view of the definition of the molar fractions, this relation is written as: 

( ) ( )
0( )

1

d d 0
d d

N
k i

k
i

n nx
t t=

− =  [1.92] 
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We can apply this condition to a system with only one transformation 
with the fractional extent ξ. We then obtain: 

( )0( )

1

d d 0
d d

N

k i
i

x
t t
ξ ξ ν

=

= =  [1.93] 

or: 

( )
0( )

1

k
k N

i
i

x ν

ν
=

=  [1.94] 

At the initial time, all of the components must be in stoichiometric 
proportions in each phase. 

Another case encountered when we look at phase-change in multi-
component systems is when each component is involved in only one 
transformation, and its stoichiometric number is 1. Thus, in a phase α, we 
have: 

( ) ( )
0( )

1

d d
d d

N
k i

k i
i

x
t t

ξ ξν
=

=  [1.95] 

This can also be written as: 

( )

( )

0( )

0( )

d
d

d
d

i

i

kk

xt
x

t

ξ

ξ
=  [1.96] 

This means that the transformation rates of two components are in a 
constant ratio to one another, with the value of that ratio being determined 
by the initial conditions. 

In addition, if we consider two phases α and β, by applying relation 
[1.92] for component Ak in the two phases and adding together the 
expressions obtained, we find: 

( ) ( ) ( ) ( )
0( ) 0( )

1 1

d d d d 0
d d d d

N N
k k i i

k k
i i

n n n nx x
t t t t= =

+ − − =  [1.97] 
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However, as we are dealing with the case where there is only one 
transformation per component, we necessarily have stoichiometric numbers 
of 1: 

( ) ( )d d
d d

k kn n
t t

= −  [1.98] 

and: 
( ) ( )

1 1

d d
d d

N N
i i

i i

n n
t t= =

= −  [1.99] 

Finally, we deduce from this: 

0( ) 0( )
k kx x=  [1.100] 

In the initial state, the molar fractions are the same in both phases. 

Thus, the necessary and sufficient conditions for a phase change to be an 
azeotropic transformation are that: 

– the system starts in an equi-content initial state; 

– the ratio of the transfer rates is constant over time. 

NOTE 1.5.– The azeotropic nature of the transformation pertains only to the 
compositions of the phases; it is independent of the external intensive 
variables (temperature, pressure, etc.) insofar as the azeotropic nature of the 
process only covers the compositions of phases; it is not dependent on 
external intensive variables (temperature, pressure, etc.), because all the 
kinetic laws of transition from one phase to another are identical functions of 
these variables. 

The results in this section never entail the hypothesis that the 
transformations are at equilibrium; they are just as applicable for true 
transformations as for reversible transformations. In the latter case, the rates 
are null, and we are left with the condition of equi-content [1.100]. 

An example of azeotropic transformations, besides certain phase changes, 
includes the transformation: 

{ }{ } { }{ }3 4HCl NH NH Cl+ =< >  [1R.4] 
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If we start with the three components, the gaseous phase is equimolecular 
in ammonia and hydrogen chloride. 

Another example is given by the decomposition of calcium carbonate: 

{ }3 2Ca CO CaO CO< >=< > +  [1R.5] 

If, at the initial time, we begin with a mixture of the three components in 
arbitrary proportions because they belong to different phases, the 
transformation is always azeotropic. 


