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Introduction to Lifetime
Data and Regression Models

1.1. Basics

The principal aim of this book is to present a particular approach to the

regression analysis of lifetime data in detail, and to discuss its features and

advantages in comparison to older-established approaches. This objective will

first involve undertaking a general review of the various regression methods

that can be found in the literature.

This opening chapter provides a brief review of the basic features of

lifetime data and its modeling. First of all, what is meant by lifetime data? A

great deal of statisticians’ activity goes into studying whether or not an event

occurs and how various factors influence its occurrence. If we move on from

the simple yes/no fact of occurrence to also examining how long it takes until

the event occurs, we enter the realm of “time to event” or “lifetime” data.

Basic examples include how long a machine operates until it breaks down (the

event is the breakdown) and how long a patient lives after undergoing heart

transplantation (the event is death). These examples show two major areas of

application. One is in engineering and technology (where the subject is

usually known as reliability modeling) and the other is in biomedical sciences

(known as survival analysis). However, other areas of application include all

those in which statistics is used - in other words, in virtually every science. As

the two examples of a machine’s breakdown and a patient’s survival suggest,

applications of lifetime data analysis can have immense practical importance.

Well-known textbooks with wide coverage of lifetime data analysis include
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2 First Hitting Time Regression Models

Lawless [LAW 03], Collett [COL 14], Kalbfleisch and Prentice [KAL 02] and

Klein and Moeschberger [KLE 03]. A brief review was given by Hougaard

[HOU 99]. Other papers reviewing the analysis of lifetime data include Kiefer

[KIE 88] in economics and Chung et al. [CHU 91] in criminology.

In mathematical terms, lifetime is denoted by T . No two machines are

identical or operate under identical conditions; no two people are quite

alike. Consequently, we treat T as a random variable, which follows some

distribution in the relevant population of machines or people (in general, units).

We note that T must be non-negative. Furthermore, in this book, we will follow

the vast majority of the literature in treating the time scale as continuous.

Consequently, we suppose that T ∼ f(t), t > 0 for some probability density

function (pdf) f(.), and hence that F (t) = P (T ≤ t) =
∫ t
0 f(u)du. The

functions that present particular interest are the following:

– the survival function S(t) = F̄ (t) = 1 − F (t) = P (T > t) =∫∞
t f(u)du

– the hazard function h(t) = f(t)/S(t).

The former is P (T > t), the probability of survival for at least time t - the

probability that the machine is still operating, or that the patient is still alive,

after this time. In engineering and technological applications, this probability

is called reliability and the notation R(t) is usually used instead of S(t). The

term hazard function is replaced by failure rate. Other terms in use for the same

function include force of mortality (in demography) and intensity.

The survival function or reliability P (T > t) is a quantity of basic

scientific and practical importance. For example, in medical settings, a

patient’s prognosis might be expressed as his or her five-year survival

probability, and in manufacturing, reliability is obviously related to how long

a guarantee period can be offered for a product. The hazard function can be

interpreted as the instantaneous rate of failure at time t, given that the unit has

survived that long, and hence the term failure rate. However, it is important to

remember that the hazard refers to failure conditionally on survival to that

time (the unconditional failure rate is of course given by the pdf of the

lifetime distribution). More precisely, the hazard function gives the

conditional probability of failure in the next short interval of time (t, t + δt],
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for a unit that is still functioning at time t:

P (t < T ≤ t+ δt|T > t) = h(t)δt. [1.1]

Also useful and important is the cumulative hazard, H(t) =
∫ t
0 h(u)du =

− lnS(t) as well as the mean residual life, given by

μ(t) =

∫∞
t S(u)du

S(t)
,

which is the expected lifetime still to come for a unit that has already survived

until time t.

The functions f , F , S, h and H are all equivalent, in the sense that knowing

any one of them enables all the others to be deduced. Complete details can

be found in standard references (e.g. Lawless [LAW 03]), which also present

detailed expressions for the more widely used parametric lifetime distributions

f(.), such as the exponential, Weibull, gamma, log-normal and others. In the

following section, we present the best known parametric lifetime distribution

as an example, the Weibull distribution. Some details of another parametric

distribution - the inverse Gaussian distribution - can be found in section 2.5

and elsewhere in the text. Some general properties of lifetime distributions

are presented briefly by Olkin [OLK 16] and at length by Marshall and Olkin

[MAR 07].

Some aspects of these distributions that have major importance in the

analysis of lifetime data, such as the hazard function, present little interest in

other fields of statistics. Conversely, some properties of distributions that have

great general importance do not concern us much in lifetime data analysis.

The prime example is the mean of the distribution. This is because most

lifetime distributions are highly skew, with a long tail to the right. For a

distribution of this shape, the median is usually reported rather than the mean.

Furthermore, in practice, the restricted duration of a study may make it

difficult to estimate the mean accurately (see comments in section 1.9).

However, sometimes a restricted mean survival time (RMST) can be used. By

the definition of the mean μ of a distribution, and assuming that it exists, we

have

μ = E(T ) =

∫ ∞

0
tf(t)dt =

∫ ∞

0
S(t)dt.
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Adapting this, we define the RMST up to time t∗ as

μ(t∗) =
∫ t∗

0
S(t)dt.

This can also be written as μ(t∗) = E [min(T, t∗)]. The RMST thus

represents the expected duration of survival up to time t∗: in other words, how

much of the interval (0, t∗) an individual will survive, on average. RMSTs

can be computed for different values of t∗ and compared between groups of

subjects; this will be especially useful if the relation between survival in the

groups is not simple (e.g. the first group does better than the second initially,

but later on, the second group has the lower hazard). See for example A’hern

[AHE 16] and references therein.

Two further general comments about lifetime data must be made. First, it

is a characteristic feature of such data that not all the units under study will

actually experience the event during the study. Some patients will still be

alive when the medical researcher closes the data file for analysis; some

machines will still be functioning when the time allotted to the study runs out.

The lifetimes of these units are said to be right censored at the times when

they were observed. They provide information that must be taken into account

in the analysis even though this information takes the different form T > t
rather than T = t. This can only be done easily if the censoring process is

uninformative about the lifetime (see section 3.1). Other types of censoring as

well as the less common phenomenon of truncation are discussed in standard

references (see, for example, Lawless [LAW 03, Chapter 2]).

The second additional comment is the observation that a “lifetime” need

not correspond to clock time, or even be measured in units of time at all. For a

machine, the relevant time may be the time for which it is actually operating,

excluding periods when it is turned off or is idle. For a car, the operating “time”

would probably be measured better by how many kilometers it has covered

rather than by the calendar age of the vehicle, because this will be the more

important factor as far as wear and tear is concerned. Sometimes there may be

several alternatives: for an aircraft, for example, calendar age, flight hours and

number of landings could all be relevant measures of lifetime (see Duchesne

and Lawless [DUC 00]). The question of the appropriate time scale is also

discussed by Farewell and Cox [FAR 79], Oakes [OAK 95] and Kordonsky

and Gertsbakh [KOR 93, KOR 97] as well as others. Later on, we will see
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cases where overall “time” is a weighted sum of the durations of the periods

of time spent in different states (e.g. the movement of an employee through

different jobs with varying exposure to health risks).

Finally, we observe that the concept of a non-negative random variable

describing the point at which an event occurs can be adapted to cases where

the variable is not a time at all, but, for example, the load placed on a

structure. The load is increased until the structure fails.

1.2. The classic lifetime distribution: the Weibull distribution

Here, for the purpose of illustration, we provide details of the Weibull
distribution (named after the Swede Waloddi Weibull), which is the most

widely used parametric model for lifetime data. Empirically, it has been found

to fit well to data of many kinds, and in fact, its use with lifetime data can be

justified by theoretical arguments (see below).

The pdf of the Weibull distribution in one common parameterization is

f(t) = exp{−(t/α)η}ηtη−1/αη, t > 0,

where α > 0 is the scale parameter and η > 0 is the shape parameter. The

special case η = 1 gives the exponential distribution. The survival or reliability

function is

S(t) =

∫ ∞

t
e−(u/α)ηηα−1(u/α)η−1du

=

∫ ∞

(t/α)η
e−vdv [substituting v = (u/α)η]

=
[−e−v

]∞
(t/α)η

= exp{−(t/α)η}

and therefore the hazard function is

h(t) = η tη−1/αη, t > 0.
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The behavior of the hazard function is as follows:

h(t) =

⎧⎨
⎩

increasing, when η > 1
constant, when η = 1
decreasing, when η < 1.

This means that the Weibull distribution is quite flexible when it comes

to describing lifetime data. However, it is unable to capture various features

that are sometimes observed in hazard functions in real life, such as when the

hazard increases to a peak and then falls, or when it falls to a minimum and

then increases.

Figure 1.1 presents examples of the shapes of the Weibull pdf, survival

function and hazard function for various values of the parameters of the

distribution. Note that the distribution is skewed to the right, which is a

characteristic feature of lifetime distributions.

The expected value and the variance of the lifetime T can be found using

the following expression for the r-th moment of the distribution:

E(T r) =

∫ ∞

0
trf(t)dt

=

∫ ∞

0
αrur/ηe−udu [substituting u = (t/α)η]

= αr

∫ ∞

0
ur/ηe−udu

= αrΓ(1 + r/η),

where Γ(·) is the gamma function. Setting r = 1 and 2 gives

E(T ) = αΓ(1 + η−1) and E(T 2) = α2Γ(1 + 2η−1)

and hence, the variance of the lifetime T is

V (T ) = α2
[
Γ(1 + 2η−1)− {Γ(1 + η−1)}2] .
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Figure 1.1. Plots of the pdf (upper diagram), survival function (middle
diagram) and hazard function (lower diagram) of the Weibull distribution

for selected values of η, with α = 1
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The following alternative parameterization of the Weibull distribution is

also often seen in the literature:

f(t) = αβtβ−1e−αtβ , t > 0, α > 0, β > 0.

Countless examples of applications of the Weibull distribution can be

found in the literature, which mostly concern the lifetimes or strengths of

materials. One application of a different kind is by McDonald et al.
[MCD 96] to the lifetimes of a species of bird. By fitting a Weibull

distribution to lifetimes and finding that the shape parameter is greater than

one, they concluded that mortality rates increase with age - so-called actuarial

senescence. This was claimed to be the first demonstration of the

phenomenon in an unmanipulated, natural population and thus constituted the

first empirical evidence against a long-held assumption that mortality of birds

is generally independent of age.

The theoretical argument for the Weibull distribution’s widespread use in

practical situations is the following “weakest link” argument. Many of the

units that we study can be regarded as being made up of smaller components

or parts, and it may be reasonable to suppose that the durability or strength of

the whole is equal to the durability or strength of the weakest part, just as a

chain is made up of links and the chain’s strength is given by the strength of

its weakest link. Given this structure, the distribution of the unit’s lifetime is

determined by the distribution of the minimum of the set of random variables

that represent the lifetimes of the unit’s components. Statistical theory

demonstrates that only certain distributions have the necessary properties to

represent such a minimum. One of these extreme value distributions is the

Weibull.

The literature contains many lifetime distributions, most of which do not

see any practical application. For example, many extensions of the Weibull

distribution have been devised (see, for example, Caroni [CAR 14a]). In

gaining extra flexibility, these extensions lose appealing properties of the

Weibull distribution, such as the extreme value interpretation and the

properties of the regression models that will be discussed later on in this

chapter.
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1.3. Regression models for lifetimes

Although the fact that no two units can be identical means that there will

always be a random component in the lifetime, in part it may be possible to

predict the lifetime from the factors or covariates that describe the unit or the

conditions under which it has been operating. A patient’s prognosis after an

operation, for example, is likely to depend to some degree on his or her age, on

medical history and on the variables that describe the state of health at the time

of the operation. An older patient, in poor condition and with a long history of

ill health will be expected to have a shorter time-to-event (death, relapse) than

a younger patient who started out in better shape. Car tires would be expected

to wear out quicker if the vehicle is often driven off-road.

The concept of introducing the dependence of an outcome variable such

as the duration of a lifetime on the values of covariates is familiar from the

multiple linear regression model

y = β′x+ ε,

where x = (x0, x1, . . . , xp)
′ is the vector of covariates, with x0 ≡ 1. The

standard model takes the distribution of the random error term as

ε ∼ N(0, σ2), in which case the model for the dependent variable can be

written as

y ∼ N(μ, σ2) with μ = μ(x) = β′x. [1.2]

This expression suggests one way of extending a regression model to

situations where it is not reasonable to assume a normally distributed

dependent variable: select a more appropriate distribution (e.g. Poisson with

parameter μ) and link its parameters in some way to the linear predictor β′x
formed from the covariates (e.g. lnμ = β′x is often an appropriate choice in

combination with the Poisson distribution). In this way, we obtain the class of

generalized linear models (GLM) in which the mean parameter is related to

the linear predictor (see McCullagh and Nelder [MCC 89]). For example, the

GLM version of [1.2] when the dependent variable Y is a count of the

number of events and therefore might follow the Poisson distribution is

y ∼ Poisson (μ) with lnμ = β′x.
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In the much wider class of generalized additive models for location, scale

and shape (GAMLSS), as many as four parameters of the distribution can

depend on covariates (see Rigby and Stasinopoulos [RIG 05]).

The same approach can be taken to distributions that are often used in

modeling lifetime data. For example, the inverse Gaussian distribution and the

gamma distribution both belong to the exponential family that is modeled in

the standard framework of generalized linear models. The inverse Gaussian

distribution will be mentioned in this context in section 3.2. However, there

are other ways of approaching the matter in the context of lifetime data,

which give rise to the general classes of models that will be considered in the

following sections.

Parametric lifetime regression models are usually fitted by direct

maximization of a likelihood function using numerical methods. Given a

sample of n independent observations {(ti,xi, δi), i = 1, . . . , n}, where unit i
with covariates xi has lifetime ti and censoring indicator δi (=1 if ti is an

observed failure time, 0 if ti is a right censored observation time), the

likelihood is

L (θ) =

n∏
i=1

f(ti|xi,θ)
δiS(ti|xi,θ)

1−δi , [1.3]

where the parameter vector θ includes the regression coefficients. Using the

relationships between the probability density function, hazard function and

survival function, this likelihood can be written in various alternative forms,

if desired. For example, using h(t) = f(t)/S(t) to substitute for f(t), the

likelihood can be written in terms of the hazard and survival functions as

L (θ) =
n∏

i=1

h(ti|xi,θ)
δiS(ti|xi,θ),

which may sometimes be convenient.

1.4. Proportional hazards models

To illustrate one of the main approaches to the regression modeling of

lifetime data, we begin with the widely used Weibull distribution. Note that
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this does not fall within the framework of generalized linear models. Its

survival function is

S(t) = exp{−(t/α)η}, t > 0, α > 0, η > 0.

We introduce the effect of covariates x on the parameters of the model,

giving

S(t|x) = exp{−(t/α(x))η}.

The scale parameter α now depends on x. (This is the usual form of model,

although it is possible to allow the parameter η to depend on x instead, or to

let both the parameters depend on covariates at the same time. In the latter

case, the covariates affecting α and η do not need to be the same. A recent

paper by Burke and MacKenzie discusses the general approach where both the

parameters depend on the covariates for the Weibull distribution and in general

[BUR 16a]. See section 3.2.)

Let α(x) = αeβ
′x or simply α(x) = eβ

′x since the constant α can be

absorbed into the exponent. (Once again, this is the usual form of the model,

although not the only possibility.) Note that the function eβ
′x is positive, a

restriction that is necessary here.

The hazard function is readily obtained from h(t) = − d
dt lnS(t) as

h(t|x) = ηtη−1eθ
′x,

where θ = −ηβ. Now compare the hazard functions of the two units with

covariate vectors x1 and x2. Their ratio is

h(t|x1)

h(t|x2)
=

ηtη−1eθ
′x1

ηtη−1eθ
′x2

= eθ
′(x1−x2),

which does not depend on time. In other words, the hazard function of one

unit remains in constant proportion to the hazard of the other. This is the

proportional hazards (PH) model, which applies for any non-negative α(x),
not just eβ

′x. A particular version of the PH model - Cox’s semi-parametric

PH regression model - has virtually become the standard model for evaluating

biomedical lifetime data. This model will be described in section 1.14.
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Another example of a model that possesses the PH property is obtained

from the Gompertz distribution, which is described most simply by its hazard

function

h(t) = μφt, μ > 0,

which is decreasing in t for φ < 1, increasing for φ > 1 and constant for

φ = 1, in which case it reduces to the exponential distribution. The PH model

modifies the distribution into another Gompertz distribution with a different

value of μ but the same φ (see Hougaard [HOU 99]). The use of the Gompertz

distribution is restricted mainly to demography and actuarial science, where it

has a long history. It has been used, for example, to describe mortality among

adults. In these contexts, φ > 1 (increasing hazard - i.e. mortality - at older

ages).

Now consider what happens if φ < 1. In the survival function

S(t) = exp[−μ
(
φt − 1

)
/ lnφ ]

the term φt tends to zero, therefore the limit of S(t) as t tends to infinity is not

zero. In fact, with μ > 0 as before, the limit of S(t) is eξ where ξ = μ/ lnφ <
0 and hence 0 < S(∞) < 1. This version of the Gompertz distribution is

called the negative Gompertz distribution by Marshall and Olkin [MAR 07,

Chapter 10]). Because S(∞) < 1, it is an improper distribution or defective

distribution. However, this feature is not necessarily a defect as far as using the

distribution as a statistical model goes. The existence of a positive probability

mass at infinity can be interpreted to mean that the corresponding proportion

of the population will never die. This assumption is clearly meaningless in the

actuarial study of human mortality, but could possibly be very realistic in a

shorter-term study of mortality from a disease after a treatment. In the latter

case, those who “never die” (at least, from the disease under study) are those

who have been cured of the disease. Thus, the apparent defect becomes an

asset of the model in its ability to model data. Examples of the application of

the Gompertz distribution that exploit this characteristic include Cantor and

Shuster [CAN 92] and Gieser et al. [GIE 98].

This feature will be mentioned (under the name of cured fraction or long-

term survivors) quite often in this book, because it is shared by the inverse

Gaussian distribution, which, as will appear in due course, is a central topic.
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Both the basic examples of a distribution that possess the PH property, the

Weibull and the Gompertz distributions, have hazard functions that are

monotonic in t. This is not a necessary condition for a PH distribution. If we

write the PH property in its general form

h(t|x) = h0(t)g(x),

where h0(t) is a baseline hazard function, it is obvious that if the baseline

hazard function h0(t) has a maximum or a minimum at a value t0, then the

hazard functions h(t|x) for every x likewise have maxima or minima as the

case may be at this same value t0. For example, if the hazard function falls to

a minimum and thereafter increases - often claimed to be a realistic form in

various situations - then that minimum would have to occur at the same time

irrespective of the values of the covariates. This seems unlikely to be true in

practice.

Bagdonavic̆ius and Nikulin [BAG 99] proposed an extension of the PH

model to the generalized PH model. The hazard function can be written as

h(t|x) = r {x(t)} q {H(t|x)}h0(t),
where r and q are positive functions. Thus, the hazard rate at time t depends

not only on the current values of the covariates (as in PH) but also on their

history as expressed by the cumulative hazard H(t). One special case is the

generalized linear PH model, in which r(x) = eβ
′x as usual and

q {H(t|x)} = eγ H(t|x),

so that

h(t|x) = eβ
′x+γ H(t|x)h0(t).

Thus, the cumulative hazard up to this moment in time is treated as an

additional, unknown covariate. This model is examined further by

Bagdonavic̆ius et al. [BAG 05].

1.5. Checking the proportional hazards assumption

The theory that was outlined in the preceding paragraphs requires the

assumption of PH. If this assumption is inappropriate for the data, then it is
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meaningless to fit this particular regression model. How can we check that the

assumption is appropriate?

The hazard function

h(t|x) = h0(t)e
β′x

gives the survival function

S(t|x) = exp{−H0(t)e
β′x},

where H0(t) is the cumulative hazard function corresponding to the baseline

hazard function h0(t).

Consequently,

ln{− lnS(t|x)} − lnH0(t) = β′x

which means that the curves

ln{− lnS(t|x)}
for different values of x are simply the horizontally displaced versions of the

curve lnH0(t) when plotted against t. Consequently, all the curves

ln{− lnS(t|xi)} for different xi are parallel to each other.

This observation suggests a simple way of checking for PH:

– compute non-parametric Kaplan-Meier estimates of the survivor function

Ŝ(t|x) for selected x;

– plot ln{− ln Ŝ(t|x)} against t for each selected x.

If all the lines for the various x are indeed parallel to each other, then the

assumption of the proportional hazards is correct. This idea applies to any
PH model, but does not tell us which distribution is the appropriate one if

we are to carry out a parametric regression. Also, it does not require that the

proportionality be expressed by the multiplicative factor g(x) = eβ
′x; any

non-negative function g(x) would do.

However, we could plot against the appropriate function of time to help

determine the distribution. For example, if the lifetime distribution is thought

to be Weibull, then from S(t) = exp {− (t/α)η}, it follows that

ln{− ln Ŝ(t)} = η ln t− η lnα.
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The plot of ln{− ln Ŝ(t|x)} against ln t should give a straight line. It is

usually easier to see that straight lines are parallel rather than arbitrary curves.

The weakness of this procedure is that the estimates Ŝ(t|x) will only be

satisfactory for this purpose if they are based on sufficiently large numbers of

observations; otherwise, the sampling variability will be so large that it might

be hard to say whether the curves are parallel or not. This means that there must

be a reasonably large number of observations that share the same value of the

covariates. For this reason, the method can only be applied if the covariates are

few, or by carrying out suitable grouping of values of the covariates.

EXAMPLE 1.1.– Table 1.1 provides McCool’s data on hardened steel
specimens tested until failure at four different levels of stress [MCC 80].

Stress (106 psi) Ordered lifetimes
.87 : 1.67 2.20 2.51 3.00 3.90 4.70

7.53 14.70 27.80 37.40

.99 : 0.80 1.00 1.37 2.25 2.95 3.70

6.07 6.65 7.05 7.37

1.09 : 0.012 0.18 0.20 0.24 0.26 0.32

0.32 0.42 0.44 0.88

1.18 : 0.073 0.098 0.117 0.135 0.175 0.262

0.270 0.350 0.386 0.456

Table 1.1. McCool’s data on hardened steel specimens
tested until failure at four different levels of stress [MCC 80]

Figure 1.2 shows the results of carrying out the above graphical procedure

on these data. Remember that we are looking for parallel lines describing the

sets of points corresponding to these four stress levels in order to confirm the

PH assumption. If furthermore they are straight lines, then the Weibull

distribution seems to apply. For easier comparison, we have superimposed on

the diagram the lines obtained by fitting a Weibull distribution by maximum

likelihood to each sample separately. At first sight, it seems very doubtful that

the lines are parallel, although one could possibly say that, with only ten

observations per group, there will be quite a large sampling variation in the

four slopes. However, notice that there is one rather unusual data point,

namely the value of 0.012 in the third group, which appears in the bottom left

of the diagram. This very early failure seems to be an “outlier”, that is, an
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“observation that is not consistent with the model and the bulk of the data”

(see Nelson [NEL 90]). If we omit this point from the fitting, as in Figure 1.3,

then the line for the third group is very similar to that of the fourth. All the

lines are straight; therefore, it seems that the Weibull model, and hence PH,

are reasonable for these data, with the reservation that there is one outlying

observation.

Figure 1.2. Plot for checking the PH assumption for McCool’s data

We note here that outliers can have a major effect on the fit of statistical

models to data, and there is an enormous amount of literature on their detection

(see Barnett and Lewis [BAR 94]), although not much of it is applicable to

lifetime data. The first step when faced by a possible outlier is to check that

the value was recorded correctly and to try to find out if it was recorded under

conditions that differed in any way from the rest of the data. If it is confirmed

that the value is invalid, then it can be omitted. Otherwise, Nelson suggests that

it may be wise to analyze the data with and without this point, to see whether

it affects the results appreciably. However, he also points out that “in a sense,

suspect data are always right; that is, they reflect something real happening.

Only the model or our understanding is inadequate” [NEL 90, p. 209].
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Figure 1.3. Checking the proportional hazards assumption for
McCool’s data: one point at bottom left omitted from the fitting

In section 1.16, we look at another way of checking whether a model

provides an adequate description of the data, that is, by examining residuals.

As the method is not restricted to PH, but applies equally well to other

regression models, we will first look at the other prominent type, accelerated

failure time models, and several other less widely used regression models.

1.6. Accelerated failure time models

In order to describe the second main way of introducing dependence on

covariates into lifetime models, we begin by considering a model for lifetimes

in the form “systematic component + random error” suggested by the general

linear regression model given in section 1.3, with the dependent variable the

logarithm of lifetime T (thus avoiding the problem of restriction to

non-negative values):

lnTx = μ+ β′x+ σε, [1.4]

where the error term ε has location parameter zero and scale parameter 1. The

important case of the log-normal distribution arises from taking ε ∼ N(0, 1)
in the regression model for lnTx. The distribution of Tx is then log-normal
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for any x. Although the log-normal distribution is widely used because it often

provides a good fit to lifetime data, it has a feature that may be unrealistic

in many cases, namely that the hazard function increases to a peak and then

declines as time increases. On the other hand, the PH property usually implies

that the hazard function is monotonically increasing or decreasing (see section

1.4). Thus, we observe that the AFT model incorporates a much wider range

of behavior than the PH model is capable of doing. Other distributions for

T follow from other assumptions on ε. For example, T follows the Weibull

distribution if ε follows the Gumbel distribution (see section 1.13).

From the above equation for lnTx,

S(t|x) = P (Tx > t) = P (μ+ β′x+ σε > ln t), [1.5]

hence,

S(t|x) = P
(
lnT0 + β′x > ln t

)
= P

(
T0 > te−β′x

)
= S0

(
te−β′x

)
,

where S0 is a baseline survival function. Thus, the effect of the covariates x
is to change the time scale. The probability of survival beyond time t, given

x, is the same as the baseline probability of survival beyond time te−β′x. If

β′x < 0 this is a longer time than t, and therefore, the survival probability is

smaller and the effect of x is to bring the event forward to shorten lifetimes;

hence, the name accelerated failure time (AFT) model. On the other hand, if

β′x > 0, the effect is to tend to lengthen lifetimes (a deceleration of the time

scale).

The last expression above suggests an extended definition of an AFT model

in a more general form as S(t|x) = S0(tg(x)) for non-negative g, as in section

1.13. This form no longer corresponds to the familiar model [1.4].

Rewriting [1.5]

S(t|x) = P
(
ε >

(
ln t− μ− β′x

)
/σ

)
= Sε

((
ln t− μ− β′x

)
/σ

)
,
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where Sε denotes the survival function of an error term ε. It follows that

f(t|x) = 1

σt
fε

((
ln t− μ− β′x

)
/σ

)
and hence the likelihood [1.3] becomes

L =

n∏
i=1

(σti)
−δi [fε(εi)]

δi [Sε(εi)]
1−δi

where εi =
(
ln ti − μ− β′xi

)
/σ.

The AFT formulation has great appeal in the field of reliability, that is,

in the engineering and technological applications of lifetime data analysis. In

biostatistics, lifetime data are generally obtained from observational studies

and only rarely from experimental studies that involve the manipulation of

conditions to which units are exposed, with randomized trials providing one

notable exception. On the other hand, in reliability, where inanimate objects

can be treated in a way that is not possible with human and animal subjects,

there is a strong tradition of experimental work. This often involves operating

the experimental units under conditions more extreme than will be encountered

in normal usage, such as higher temperatures. The purpose is essentially to

cause failures to happen quicker than they would be expected to under normal

operating conditions. This means that data on a substantial number of failures

can be acquired within a rather short space of time. Compare, for example,

the lifetimes between the different stress levels in Table 1.1. A more extreme

example can be found in Schmee and Hahn’s early article about regression

with censored data, in which there were no failures at all at the lowest test

temperature [SCH 79]. Obtaining many failures at the standard level would

either require a study of very long duration - which conflicts with the need to

establish results before a product is put on the market or brought into service -

or a study including an impractically large number of units.

The design of experiments is, of course, a major field of statistics with a

vast literature. Although the general principles of experimental design

certainly apply to reliability experimentation, many of the details cannot be

carried over easily because of the presence of censoring in reliability data. For

extensive material on the design of experiments in reliability, see the books by

Meeker and Escobar [MEE 98a] and Nelson [NEL 90].
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1.7. Checking the accelerated failure time assumption

A graphical test for the suitability of the accelerated failure time assumption

can be derived as follows. The model supposes that

S(t|x) = S0(tg(x)),

where g(x) = e−β′x in the basic theory and S0 is the baseline survivor

function,

= P (T0 ≥ tg(x))

= P (lnT0 ≥ ln t+ ln g(x))

= S∗
0(y + ln g(x)),

where y = ln t and S∗
0 is the survivor function of the random variable

Y = lnT . This result implies that a plot of S(t|x) against ln t for particular x
should be a horizontal displacement of S∗

0 against ln t. Consequently, the

AFT assumption is verified if all the curves S(t|x) for different x differ from

each other only in horizontal displacement when plotted against ln t. To

construct these curves, it is necessary to have estimates Ŝ(t|x), usually

Kaplan-Meier. As in the case of the similar graphical test for the PH

assumption (see section 1.5), the method is feasible only if there are sufficient

data for good estimation of S for each x, or if the x can be grouped suitably

so that each group contains enough observations.

EXAMPLE 1.2.– Table 1.2 provides Nelson’s data on the time to breakdown
of an insulating fluid subjected to different voltages [NEL 72]. For simplicity
of illustration, three further voltages with a small number of observations are
excluded.

Figure 1.4 shows the plot for checking the AFT assumption for the four

groups of observations corresponding to the four voltages. We see that, instead

of all the four lines being parallel, the line for the 32 kV level cuts across the

others. Hence, the AFT assumption appears to be violated.

The functional form of g(x) could also be investigated graphically.

Although each unit’s lifetime T follows a different distribution, depending on

the value of x, the model requires that the quantities W = Tg(x) all have the
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same survival function, S0. Hence, the quantities

lnW = lnT + ln g(x)

are identically distributed, and consequently, the terms lnW in the equation

lnT = − ln g(x) + lnW

behave like a residual or error term. This means that plotting ln t against a

covariate could indicate the correct functional form of g. For example, if

g(x) = e−β′x, then ln t against x1 would be a straight line. On the other hand,

if x1 should be replaced by x21, then ln t against x21 would be a straight line.

Voltage Failure times
30kV : 7.74 17.05 20.46 21.02 22.66 43.40

47.30 139.07 144.12 175.88 194.90

32kV : 0.27 0.40 0.69 0.79 2.75 3.91

9.88 13.95 15.93 27.80 53.24 82.85

89.29 100.58 215.10

34kV : 0.19 0.78 0.96 1.31 2.78 3.16

4.15 4.67 4.85 6.50 7.35 8.01

8.27 12.06 31.75 32.52 33.91 36.71

72.89

36kV : 0.35 0.59 0.96 0.99 1.69 1.97

2.07 2.58 2.71 2.90 3.67 3.99

5.35 13.77 25.50

Table 1.2. Part of Nelson’s data on the time to breakdown of an
insulating fluid subjected to different voltages [NEL 72]

Actually, in the experiments in which AFT models are widely used, it is

often the case that theory or experience shows the correct functional form for

g(x). For example, when the accelerating factor (covariate) is temperature, it

is common to use the inverse of absolute temperature

1/(T + 273.16)

or the Arrhenius transformation

11604.83/(T + 273.16)

where the numerator is Boltzmann’s constant. When the accelerating factor is

a load or stress V , then an inverse power relationship V −α is often assumed.
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Figure 1.4. Plot for checking the accelerated failure time
assumption in Nelson’s data

1.8. Proportional odds models

Another well-known regression model for lifetime data is the proportional

odds (PO) model (see Bennett [BEN 83a, BEN 83b]), which is based on the

odds of the occurrence of the event by time t:

θ(t) =
F (t)

1− F (t)
=

1− S(t)

S(t)
.

The PO model specifies that

θ(t|x) = θ0(t)g(x),

where θ0(t) is the baseline odds and g(x) is a suitable non-negative function

as before. The usual choice g(x) = eβ
′x gives the model

ln θ(t|x) = ln θ0(t) + β′x,

which is a linear model for log odds, in other words, logistic regression. This

is the most commonly used regression model for binary data. Despite this
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appealing link, PO models have been used infrequently compared to others

since they were introduced by Bennett [BEN 83a, BEN 83b]. With the

exception of the regression model based on the log-logistic distribution,

which is both a PO model and an AFT model (see below), they are

mathematically and computationally more difficult to handle. Thus, they have

not been included in some of the computing packages, and therefore, we will

not be discussing them in detail here. Detailed discussions of PO models can

be found in Collett [COL 14] and Dauxois and Kirmani [DAU 03], for

example. The latter presents a graphical procedure for examining the

hypothesis of PO between groups of respondents and a formal test for the

case of two groups.

In order to see an important difference between PO and PH models,

consider the hazard function of a PO model. Solving the previous equations

for S(t|x) gives

S(t|x) = {1 + θ0(t)g(x)}−1

from which the ratio of the hazard functions for two units with different

covariate values is

h (t|x1)

h (t|x2)
=

g (x1)

1 + θ0(t)g(x1)
/

g (x2)

1 + θ0(t)g(x2)

→ 1 (t → ∞)

because θ0(t) → ∞ as t → ∞ (since S0(t) tends to zero), whereas g(.)
does not change with t. This fact - that the hazards for two different units tend

to equalize over time under the PO model - stands in major contrast to the

PH property that two units’ hazards remain in the same ratio forever. On the

one hand, the PO model says that initial differences disappear; on the other

hand, the PH model says that they never change. Depending on the context,

either postulate might be more appropriate. A badly made unit remains badly

made; therefore, the implication of the PO model seems unreasonable in such

situations. However, some treatments that a patient receives may only have a

temporary effect that wears off with time, and in a case like that, it is the PH

property - that initial differences in the covariates continue to have the same

effect for ever and ever - that seems unrealistic.
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All distributions of the Marshall-Olkin extended form [MAR 97] have the

PO property (see also [ECO 07, SAN 08, CAR 10]). The Marshall-Olkin

formula is

S∗(t|α) = αS(t)

1− ᾱS(t)
, [1.6]

where S is the survival function of the original distribution and S∗ is the

survival function of the new, extended distribution; α > 0 is a constant, and

ᾱ = 1 − α. Applying the formula again to [1.6] just results in a different

value of α; therefore, the family of distributions is closed. However, the PO

model states that

1− S (t|x)
S (t|x) = g(x)

1− S0 (t)

S0 (t)
,

which gives

S (t|x) =
1

g(x)S0 (t)

1−
(
1− 1

g(x)

)
S0(t)

,

and this is just the Marshall-Olkin form with α = 1/g (x). Therefore, all

Marshall-Olkin extended distributions are PO distributions. For example, the

Marshall-Olkin extended Weibull distribution (see Ghitany et al. [GHI 05];

Caroni [CAR 10]) is a PO distribution, although the Weibull distribution itself

is not a PO distribution.

Zucker and Yang [ZUC 06] note that the PO and PH models are both special

cases of the general form

h(S(t|x)) = h(S0(t)) exp
(
β′x

)
,

where h is a suitable monotonically decreasing function from [0, 1] to [0,∞].
For the PH model, h(s) = − ln(s), and for the PO model, h(s) = (1 − s)/s.

These are both included within the Box-Cox family

h(s, ρ) = ρ−1
(
s−ρ − 1

)
,

with the PH model arising when ρ → 0 and the PO model when ρ = 1.

Zucker and Yang give references to previous appearances of this family in
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the survival analysis literature; their contribution consists of two estimation

methods, although they observe that the model essentially cannot be fitted if

the event rate is low.

Further work on the PO model is reviewed by Chen et al. [CHE 12], who

extend the model by incorporating external time-varying covariates (see

section 4.2).

1.9. Proportional mean residual life models

The mean residual life (MRL) of a unit is defined conditionally on the unit’s

present age t and represents its expected lifetime beyond this point,

μ(t) = E[T − t|T ≥ t],

which, if it exists, is equal to

μ(t) =

∫∞
t S(u)du

S(t)
,

as in section 1.1. The proportional mean residual life (PMRL) model proposes

the relationship

μ(t|x) = g(x)μ0(t),

where μ0(t) is the baseline MRL function.

Oakes and Dasu [OAK 90, OAK 03] suggest that the MRL function

provides a more natural basis for modeling lifetime data than the hazard

function because it summarizes the entire remaining life distribution and not

just the immediate risk of failure. They claim that this is likely to be the more

important information for the design of maintenance and repair strategies.

The MRL is also used extensively in demography under the name life

expectancy. On the other hand, Hougaard [HOU 99] states that, in contrast to

these industrial and demographic applications, the evaluation of mean

lifetime in biostatistics is considered unacceptable. He gives three reasons for

this: one, the difficulty of estimating the right tail of the residual lifetime

distribution (exacerbated by censoring), which - as acknowledged by Oakes

and Dasu [OAK 03] - can have a strong influence on the mean; two, the
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possible tendency for readers to think in terms of the normal distribution

when they are presented with means, which could be very misleading; and

three, the fact that for some types of events, there may be a proportion of the

population that will never experience the event (see section 1.4 and

elsewhere), which makes it impossible to calculate a mean. The last of these

objections obviously does not apply in industrial and demographic

applications, because units will always fail and individuals will always die

eventually.

Further development of this model was taken up by Maguluri and Zhang

[MAG 94] and subsequently by others; see Chen and Cheng [CHE 05]. The

PMRL model does not seem to have entered general use at present. It is

noticeable that an extensive review of statistical estimation of the remaining

useful life of an item (Si et al. [SI 11]) does not mention the PMRL model

at all.

1.10. Proportional reversed hazard rate models

Yet another “proportional” model is the proportional reversed hazard rate

(PRHR) model (see Gupta and Gupta [GUP 07]), which is defined in a closely

similar way to the PH model. The reversed hazard rate r(t) is related to the

conditional probability that an event occurred in the interval of length δt before
time t, in contrast to the hazard that is related to the occurrence of the event in

the interval of length δt after time t as in equation [1.1]. Thus,

r(t)δt = P (t− δt < T ≤ t|T ≤ t) = f(t)δt/F (t),

and therefore, r(t) = (d/dt) lnF (t). The PRHR model defines a

multiplicative effect of covariates on the baseline function r0(t),

r(t|x) = g(x)r0(t).

Equivalently, the model may also be defined by the relation

F (t|x) = [F0(t)]
g(x) similar to the definition S(t|x) = [S0(t)]

g(x), which can

be derived for the PH model.

An example of a family of distributions with the PRHR property is the

exponentiated Weibull, which has baseline distribution function F (t|α) = [1−
exp(−tα)]θ [MUD 96].
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A PRHR model was first suggested, although not studied, by Kalbfleisch

and Lawless [KAL 89], who examined a problem in which occurrences were

ascertained after the event, in which case the retrospective nature of the

reversed hazard rate has a natural appeal.

1.11. The accelerated hazards model

The accelerated hazards (AccH) model incorporates ideas from both the PH

and AFT models. As seen earlier, the effect of covariates in the PH model can

be simply expressed by a multiplicative effect on the hazard function: in its

usual form, the model is

h(t|x) = h0(t)e
β′x.

In the AFT model, the effect of covariates is a shift of time scale, so that

the survival function becomes

S(t|x) = S0

(
teβ

′x
)
.

Adapting these ideas, the AccH model takes the time scale shift and places

it in the hazard function

h(t|x) = h0

(
teβ

′x
)
.

This model was introduced by Chen and Wang [CHE 00] for a two-group

comparison and extended to the more general regression case by Chen

[CHE 01a]. The motivation for the model was provided by a clinical trial, in

which there appeared to be no immediate difference in hazard rates between

the two treatment groups, whereas both the PH and AFT models imply that

covariates have an effect even at time zero. This implication is somewhat

problematic for randomized clinical trials, in which the groups should not

differ at baseline and the treatment is unlikely to have an instant effect. As the

trial progressed, an increasing difference between hazard rates was seen,

which is again in conflict with the PH property. Furthermore, after some time,

the two hazard functions crossed over, which is a feature that the PH model

cannot reproduce, although the AFT model can; neither PH nor AFT allows

survival functions to cross. The new AccH model, on the other hand, does
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allow hazard functions and survival functions to cross over, depending on the

form of the baseline hazard function. Conditions for crossovers in hazard

functions in the various models are given by Zhang and Peng [ZHA 09].

In the AFT model, the hazard function is

h(t|x) = eβ
′xh0

(
teβ

′x
)
,

which suggests a generalized model encompassing all the three PH, AFT and

AccH models:

h(t|x) = h0

(
teβ

′
1x
)
eβ

′
2x.

The PH model corresponds to β1 = 0, the AFT model to β1 = β2 and

the AccH model to β2 = 0. This model and its semi-parametric estimation

is studied by Chen and Jewell [CHE 01b], but in fact, the model had been

introduced and analyzed several years earlier by Ciampi and Etezadi-Amoli

[CIA 85, ETE 87] under the name extended hazard regression. Subsequently,

Shyur et al. discussed its applicability in the field of reliability [SHY 99].

The two vectors of regression coefficients can be interpreted as measuring

different impacts of the covariates on survival. While the appropriate

component of β1 measures a specific covariate’s contribution to the

acceleration (or deceleration) factor, the corresponding component of β2

indicates its independent contribution to the relative hazards. In the example

used for illustration of the method by Etezadi-Amol and Ciampi (survival of

patients with ovarian cancer), two of the five covariates appeared to have a

simple PH effect; one had an AFT effect, and the remaining two had both the

effects. One of these, the patient’s age, had opposite signs of its two

coefficients, suggesting an increased hazard for older patients at any given

age, but slower tumor growth in older patients than in younger ones. This

structure, in which a covariate can affect lifetimes in two ways, has some

similarity to the first hitting time regression model based on an underlying

Wiener process, which is the main topic of this book and will be introduced in

the next chapter. The issue of opposing effects indicated by the signs of the

two coefficients associated with the same covariate will be mentioned in that

context too.

Although the general model may give a better description of the data than

any of the three separate models included in it, Chen and Jewell [CHE 01b]
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suggest that its main value may lie in bringing out the differences between

these three models. Earlier, Chen [CHE 01a] commented on the potential

usefulness of fitting the general model as a guide to which of the separate

models to fit. Of course, this will only become true in practice when the

readily available software makes it easy to fit the more general model, which

is not the case at the moment.

1.12. The additive hazards model

It can often be supposed that an organism or machine comprises many

components or parts that must all be operating; otherwise the organism dies

or the machine fails (a series system). If a particular component j has hazard

rate hj(t) at time t, then the overall hazard h(t) at this time is

h(t) =
∑
j

hj(t). Consequently, it may often seem natural to represent a

hazard function in additive form (see Elandt-Johnson [ELA 80]).

In the additive hazards model, the effect of the covariates on the baseline

hazard function h0(t) is additive

h(t|x) = h0(t) + β′x

instead of multiplicative as in the PH model. This model was first suggested

by Aalen [AAL 78] and further developed by Aalen [AAL 89] and others. Lin

and Ying [LIN 94] proposed a semi-parametric estimation method with h0(t)
unspecified, along the lines of the semi-parametric PH model. They take the

regression parameters β as fixed, whereas Aalen’s formulation allowed for

time-varying coefficients β(t).

For an example of the application of the additive hazards model in a

biostatistical context, with comparison of results between its different

versions and also with the Cox model, see Xie et al. [XIE 13]. They point out

that the multiplicative and additive hazards model address different questions.

While the PH model provides estimates of relative hazard, the additive

hazards model estimates absolute differences in hazard. Therefore, in the

latter case and assuming that the event rate is low, the differences between

cumulative hazards give an approximation to differences in cumulative

incidence. Thus, an estimate of attributable risk is obtained. This information

could be important for the purpose of public health planning and intervention.
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The application of the additive hazards model in the reliability context,

especially concerning repairable systems, is considered by Pijnenburg

[PIJ 91].

1.13. PH, AFT and PO distributions

Based on our choice of how to introduce covariates (PH, AFT or PO -

we will not be considering other models any further), we will find that some

lifetime distributions are much easier to use than others. Let us begin with the

Weibull distribution in a PH model. Since the baseline hazard is

h0(t) =
ηtη−1

αη
, t > 0,

we have

h(t|x) = h0(t)g(x) = ηtη−1α−ηeβ
′x =

ηtη−1(
αe−β′x/η

)η ,
which corresponds to another Weibull distribution. The shape parameter η is

the same as that of the baseline hazard, but the scale parameter is different: α
has become αe−β′x/η. Thus, PH implies that the lifetime distribution for any

unit is always Weibull when the baseline hazard is Weibull, and in this sense,

the Weibull is a “PH distribution”, and is therefore a natural choice to use in

the context of a PH model.

The AFT model in section 1.6 was formulated as a model for the logarithm

of T . If T ∼ Weibull(α, η), then lnT ∼ Gumbel with

S(t) = exp
(
−e(ln t−μ)/σ

)
,

where μ = lnα, σ = η−1. This implies that, if ε ∼ Gumbel(0, 1) in the AFT

model

lnTx = μ+ β′x+ σε,

then Tx ∼ Weibull for any x. Therefore, the Weibull is also an “AFT

distribution”, in addition to being a PH distribution; in fact, no other

distribution has this dual property (see below). The Weibull distribution is not

a PO distribution. As noted by Hougaard, the PH model modifies the
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Gompertz distribution with parameters μ and φ into another Gompertz

distribution with the same φ but different μ. However, the AFT model

changes both the parameters [HOU 99]. Thus, the PH and AFT models are

not equivalent for the Gompertz distribution.

Other important AFT distributions, which are not also PH, include the log-

normal and log-logistic distributions. T has a log-logistic distribution when

Y = lnT follows a logistic distribution. The survival function of the log-

logistic distribution is

S(t) = (1 + eκtγ)−1 , γ > 0, κ > 0,

and the hazard function is

h(t) =
γtγ−1eκ

1 + eκtγ
.

We take this as the baseline hazard function h0(t) in the following. Now

for any AFT model, we have

h(t|x) = f(t|x)
S(t|x) =

−d lnS(t|x)
dt

=
−d lnS0(te

−β′x)

dt

= e−β′xh0(te
−β′x) ;

therefore, in the case of the log-logistic distribution, we obtain

h(t|x) = e−β′xh0(te
−β′x)

=
e−β′xγ(te−β′x)γ−1eκ

1 + eκ(te−β′x)γ

=
γtγ−1eκ−γβ′x

1 + (eκ−γβ′x)tγ
,

which is still the hazard function of a log-logistic distribution, although the

parameter κ has changed to κ − γβ′x, with the shape parameter γ remaining

unchanged. Hence, the log-logistic is an AFT distribution.
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In the case of the PO model, a PO distribution will be one for which the

distribution of

θ(t|x) = g(x)θ0(t)

has the same functional form as the baseline odds function θ0(t). The simplest

example is the log-logistic distribution with survival function given above and

odds eκtγ . Then

θ(t|x) = g(x)eκtγ = eκ+ln g(x)tγ ,

which corresponds to a log-logistic distribution with parameter κ changed to

κ+ ln g(x) and shape γ unchanged. Thus, the log-logistic distribution is both

PO and AFT; in fact, it is unique in this respect (see below). It is not, however,

PH.

Proof of the unique status of the Weibull and log-logistic distributions in

possessing dual properties (PH and AFT for the Weibull, PO and AFT for

the log-logistic) is given by [LAW 86]. Define a general family of regression

models by

ψ1 {Sx(t)} = ψ1 {S0(t)}+ g1(x), t > 0,

where Sx(t) is a survival function for a unit with vector of covariates x and

baseline S0(t), and g1(0) = 0. This family includes PH models, for which

ψ1(u) = ln (− lnu) [1.7]

and also PO models, choosing

ψ1(u) = ln {(1− u)/u} . [1.8]

Furthermore, define a second family by

ψ2 {Qx(p)} = ψ2 {Q0(p)}+ g2(x), 0 < p < 1,

where Qx(p) is the quantile function of T given x, with baseline Q0(p), and

g2(0) = 0. This family includes AFT models, for which ψ2(u) = lnu.
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Lawless [LAW 86] shows that for given ψ1 and ψ2, the unique family

satisfying both [1.7] and [1.8] simultaneously is

S0(t) = ψ−1
1 {aψ2(t) + b} .

In particular, choosing ψ1(u) = ln (− lnu) (a PH model) and ψ2(u) = lnu
(an AFT model) gives

S0(t) = exp
(
−ebta

)
,

where a �= 0 and b are constants, which is a Weibull model. Hence, the Weibull

distribution, and no other, is both PH and AFT. The same ψ2 and ψ1(u) =
ln {(1− u)/u} (a PO model) gives

S0(t) =
(
1 + ebta

)−1
,

which is a log-logistic model. Hence, the log-logistic distribution, and no other,

is both AFT and PO.

1.14. Cox’s semi-parametric PH regression model

We present in this section the widely used version of the PH regression

model known as Cox’s semi-parametric regression model. First, we recall from

section 1.4 that the PH property requires that the hazard functions of two units,

with covariate vectors x1 and x2, must be in constant ratio to each other over

time. This is achieved if the hazard function takes the form

h(t|x) = h0(t)g(x),

where h0(t) is a baseline hazard and g(x) is a suitable non-negative function

of x. The baseline could be, for example, the hazard that applies to a unit with

x = 0 (although in many applications, this value cannot be realized). Cox

[COX 72] proposed taking the form of g(x) that we have already seen

g(x) = eβ
′x

but - and this is the model’s crucial feature - not specifying the functional

form of h0 at all. Only the part of the model that expresses dependence on the
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covariates is expressed parametrically (hence the description of the model as

semi-parametric) and in fact, only this part needs to be estimated.

Consider the set of units Ri that are at risk of failure at time t(i), where

t(1) < t(2) < · · · < t(k) are unique failure times recorded in a study of

n ≥ k units. This risk set Ri excludes any units that have already failed or

were censored earlier than t(i). From the definition of hazard rate, the

probability that unit j ∈ Ri with covariates xj fails in the time interval

(t(i), t(i) + δt) is

h0(t(i)) e
β′xjδt.

Hence, the conditional probability that it is unit j that fails at time t(i), given

that we know that one unit does fail at this time, is

h0(t(i)) e
β′xjδt∑

∈Ri
h0(t(i)) eβ

′x�δt
=

eβ
′xj∑

∈Ri
eβ

′x�
,

in which h0 ultimately does not appear at all. Taking the product of these

conditional probabilities over all the failure times
{
t(i) : i = 1, . . . , k

}
gives

the partial likelihood

k∏
i=1

{
eβ

′xi∑
∈Ri

eβ
′x�

}
.

This is treated as a standard likelihood, which is maximized over β in order

to obtain estimates of the effects of the covariates on the hazard rate, without

needing to estimate the hazard rate itself (although a non-parametric estimate

of h0(t) can be obtained if desired). The theory, which can be extended to

allow for tied failure times, is presented in detail in Therneau and Grambsch

[THE 00] and elsewhere. The justification for treating the partial likelihood

as a standard likelihood was presented intuitively in Cox’s initial paper on

this regression method [COX 72] and was subsequently placed on a firmer

foundation by Cox [COX 75] and others.

The remarkable simplicity that is made possible by using the partial

likelihood method is one of the features behind the widespread adoption of

Cox’s semi-parametric PH regression model (often referred to simply as Cox
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regression), at least in the biomedical sciences where it has become virtually

the default approach toward analyzing lifetime data. It also has an advantage

of apparently easy interpretability. From h(t|x) = h0(t)e
β′x, the effect of a

unit increase in the value of the jth covariate xj (the familiar way of

interpreting the size of a regression coefficient) is to multiply the hazard by

eβ̂j . This is very similar to the interpretation of the coefficients of logistic

regression, which is another almost-default method of analysis of biomedical

data.

In sharp contrast to the remarkably high level of use of Cox’s PH model in

biostatistics, it is not often seen in the field of reliability. A few illustrative

applications can be found in, for example, Bendell et al. [BEN 86, BEN 91],

Dale [DAL 85], Elsayed and Chan [ELS 90], Krivtsov et al. [KRI 02] and

Madeira et al. [MAD 13]. Some reviews warn against the unthinking transfer

of biostatistical methods to reliability analysis (see Bendell et al. [BEN 91]

and Kumar and Klefsjö [KUM 94]), particularly because of the

preponderance of repairable systems in the latter field, and hence the need to

find realistic models for recurrent events, that is, repeated events occurring in

the same unit. The preference in the field of reliability for parametric AFT

models is undoubtedly related to the importance of analysis of experiments in

which one or more factors (such as the operating temperature) have been

manipulated specifically in order to bring forward the times of failure. The

concept of the AFT formulation is a natural fit to the nature of such data.

Elsayed and Chan remark in their presentation of Cox modeling in a

reliability problem in electronics that “The proportional hazards relation has

not been used much for modeling the hazard (failure) rate of electronic

devices because there appears to be no physical basis for hazard-rate scaling”

[ELS 90, p.331], in contrast to the familiar concept of time scaling in the AFT

model. However, they go on to interpret the PH relation in terms of one of the

reliability models taken from the literature.

1.15. PH versus AFT

The dominance of PH models in biostatistics and AFT in reliability has led

to much consideration of the differences between the two and

recommendations for which model is preferable in the given circumstances.

The rapid adoption of Cox’s PH model in biostatistics to the relative neglect

of the AFT model, and the converse situation in reliability, gave rise to a
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number of articles in the literature, whose main purpose is to encourage

readers who are used to one formulation not to ignore the other. The papers in

the reliability literature on the Cox model - for example, those cited in section

1.14 - tend to be of this type. Conversely, papers appear in the biostatistical

literature promoting the virtues of alternatives to the Cox model, notably AFT

models. One example where an AFT model makes more sense than a PH

model is in a trial of a drug for influenza (see Kay and Kinnersley [KAY 02]

and Patel et al. [PAT 06]). The effect of the drug is to shorten the duration of

the illness in treated patients compared to untreated patients, but almost all

the patients would be expected to recover from their symptoms during the

course of the trial, irrespective of the treatment. Therefore, a PH model - with

constant hazards throughout - is an illogical structure, whereas the AFT

framework describes the effect (acceleration of recovery) more appropriately.

In another example, Argyropoulos et al. [ARG 09] discuss the survival of

hemodialysis patients and argue against the PH model because it evaluates the

effect of a covariate at particular time points rather than considering its

history. If a covariate acts through “accumulated damage”, then AFT rather

than PH would be appropriate.

In situations where prior considerations lead to preference for neither

model over the other, model-checking methods should be applied as in all the

applications of statistical analyses. A wide range of diagnostics - some based

on analogies with linear regression, others founded on the particular

properties of the survival analysis context - exists for the Cox PH model (see,

for example, Therneau and Grambsch [THE 00] and Caroni [CAR 04]). Nardi

and Schemper [NAR 03] illustrate the use of residuals in examining Cox and

parametric AFT models. However, most published applications do not present

an investigation of the validity of the assumptions underlying Cox’s model.

For example, Altman et al. [ALT 95] found that the assumptions were

checked in only 2/43 (5%) of the papers that they examined, and none

assessed goodness of fit. Similarly, Ford et al. [FOR 95, p.745] stated that

“model validation is an important prerequisite to the interpretation of

parameter estimates. In this respect, the almost de facto assumption of the

Cox model in the analysis of survival data is a cause for concern”.

If the basic PH assumption appears to be violated, a number of solutions

are available while remaining within a general PH framework (see Therneau

and Grambsch [THE 00]). One popular method is stratification. If the PH

assumption does not hold for a particular covariate, then the model can be
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fitted (without any additional technical difficulty) stratifying by values of that

covariate. The model in the mth stratum becomes

hm(t|x) = eβ
′xhm0(t),

where hm0(t) is the baseline hazard function in stratum m, thus allowing

different baseline hazards in each stratum, but assuming common effects of

the other covariates in every stratum. With obvious extension of the notation

of section 1.14, the log partial likelihood for events in the mth stratum is

�m(β) =

km∑
i=1

β′xmi −
km∑
i=1

ln

⎧⎨
⎩

∑
∈Rmi

eβ
′xm�

⎫⎬
⎭ ,

and the overall log partial likelihood for all s strata is

�(β) =
s∑

m=1

�m(β) =

s∑
m=1

km∑
i=1

β′xmi −
s∑

m=1

km∑
i=1

ln

⎧⎨
⎩

∑
∈Rmi

eβ
′xm�

⎫⎬
⎭ .

This can be maximized with no more difficulty than for the single-stratum

model. A drawback of this formulation is that it does not yield a direct estimate

of the effect of the stratification factor on lifetimes.

Important general results on the properties of PH and AFT models have

been obtained, particularly with regard to the robustness of estimates against

misspecification of the model. It is known that omitting a relevant covariate

from a model that is truly PH induces a model that is no longer PH. The

estimated regression coefficients, their standard errors and the ratios of

coefficients to standard errors all tend to be smaller than the corresponding

quantities obtained by estimation under the true model. Unlike linear

regression, this is true even if the omitted covariates are orthogonal to those

that are included. References relevant to this topic include Gail et al.
[GAI 84], Struthers and Kalbfleisch [STR 86], Schumacher et al. [SCH 87],

Schmoor and Schumacher [SCH 97] and Gerds and Schumacher [GER 01].

An extensive study in the context of fully parametric PH and AFT models

was reported by Hutton and Monaghan [HUT 02]. A key conclusion is that

estimates from a misspecified PH model can be seriously biased, and the

apparent shape of the hazard function can be misleading. Furthermore, the

size of Wald tests is underestimated. On the other hand, AFT models are more
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robust to misspecification, a property which is attributed to their log-linear

form. Hougaard [HOU 99, p. 22] says “the accelerated failure parameter η is

robust toward neglected covariates, whereas the proportional hazards

parameter β is not .... It is a major drawback of the PH model...”. As far as

estimated survival is concerned, bias in the lower and upper percentiles can be

substantial from a misspecified model, less so for the median.

There are however results that show that some similarity of results

between PH and AFT regressions can be expected. Fitting a PH model when

the true model is AFT leaves the relative importance of covariates unchanged

to first order under conditions (see Solomon [SOL 84] and Struthers and

Kalbfleisch [STR 86]). Under the AFT model, the hazard function given

covariates x takes the form

hAFT (t|x) = eβ
′xh0(e

β′x t)

for baseline hazard h0. Now, following Kwong and Hutton, take a Taylor series

expansion in eβ
′x about β = 0 to first order:

hAFT (t|x) ≈ eβ
′xh0

{
(1 + β′x) t

}
= eβ

′xh0(t+ tβ′x)

≈ eβ
′x {h0(t) + β′x t h′0(t)

}
,

where the second approximation is obtained from a first order Taylor series

expansion about t. Consequently, we have

hAFT (t|x) ≈ eβ
′xh0(t) + eβ

′xβ′x t h′0(t)

= hPH(t|x) + eβ
′xβ′x t h′0(t),

where hPH(t|x) is the hazard function that holds for a unit with covariates x
under the PH assumption. This expression implies that hazards derived under

AFT and PH will not differ greatly so long as (a) covariate effects β are small,

and (b) the hazard function h0 varies slowly so that t h′0(t) is small [KWO 03].

As the Cox model is semi-parametric, it might be expected that it would

yield less efficient parameter estimates than an appropriate fully parametric

model. This has been investigated by Oakes [OAK 77] and Efron [EFR 77],
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among others. Nardi and Schemper [NAR 03] summarize the conditions for

this to be true as follows:

a) if parameter values are not close to zero;

b) if follow-up depends on the values of the covariates;

c) if the covariates show a strong time trend.

Furthermore, as expected, the loss in precision is greater for small samples.

It is often remarked that the PH model is not based on any persuasive

rationale, and that its popularity is to a large extent due to its apparent

simplicity. For example, according to Oakes [OAK 13, p.453]: “Cox (1972)

emphasized that there is usually no simple physical or biological motivation

for the assumption of PH. The appeal of this model arises rather from the

intuitive interpretation of the hazard ratio in terms of conditional risks, and

from the simplicity and numerical stability of the algorithms used to fit the

model. However in particular situations other approaches may be preferable”.

Cox himself, in his original presentation, claimed that his model was

“intended as a representation of the behaviour of failure-time that is

convenient, flexible and yet entirely empirical” [COX 72, p.200], and

concluded the paper with the claim that the model “as a basis for rather

empirical data reduction ... seems flexible and satisfactory” [COX 72, p.201].

However, Freedman’s objection seems entirely reasonable: “if the model is

wrong, why are the parameter estimates a good summary of the data?”

[FRE 08, p.117].

1.16. Residuals

One basic way of checking the suitability of a statistical model is to inspect

the residuals after the model has been fitted. Examination of the residuals can

show if the model’s assumptions are satisfied and how well the model fits the

data, not just overall but for each point individually. In the familiar case of

linear regression, the residuals are

ε̂i = yi − ŷi

= yi − β̂
′
xi,
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in other words, the difference between the observed value yi and the predicted

ŷi. These residuals can be examined in various ways, often graphically. For

example, their distribution can be investigated, or possible outliers can be

identified.

However, most statistical models do not give rise to residuals of this

familiar form. Consequently, Cox and Snell [COX 68] proposed generalized
residuals. Suppose that the random variable Zi for unit i has a distribution

that depends on covariates xi and parameters θ. If there exist functions

wi(Zi|xi,θ),

independently and identically distributed, following a distribution that does not

depend on unknown parameters, then

ε̂i = wi(Zi|xi, θ̂)

can fulfill the role of residuals.

Suitable functions for this task can be found using the general result that,

if Y is a random variable with distribution function F (.), then the random

variable

V = F (Y ) ∼ U(0, 1).

It follows that the random variable U = − ln(1− F (Y )) has pdf

g(u) = e−u, u > 0,

which is the exponential distribution with parameter 1. Since

S(t) = 1− F (t),

the residuals in a lifetime data model could be the values

− ln Ŝ(ti) = Ĥ(ti) = ε̂i

where Ŝ(.) and Ĥ(.) are estimates of the survival function and the baseline

cumulative hazard function, respectively. In the case of a parametric model

such as Weibull regression, Ĥ(.) follows simply from the estimation of the
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parameters of the model. These Cox-Snell residuals are regarded as very useful

in parametric models.

When an observation is right-censored, then

1− ln Ŝ(ti)

is usually used as that observation’s residual. The reason for this is as follows.

Since the right-censored observation ti is less than the unknown true value,

− ln Ŝ(ti) is likewise less than it should be. The difference between − ln Ŝ(ti)
and its true value is similar to a residual lifetime (see section 1.9) and is a

random variable that follows the exponential distribution with parameter 1.

Consequently, its expected value is 1, and we add on this value in order to

estimate the residual that would have been obtained if the observation had

not been censored. Making this adjustment for the censored observations, the

set of residuals can be examined in a probability plot against the exponential

distribution with parameter 1.

EXAMPLE 1.3.– To illustrate the use of residuals, we fit a Weibull regression
model to the set of experimental data given in Table 1.3. These are the failure
times of glass capacitors in a 4 × 2 factorial experiment (four levels of
voltage, two temperatures) with eight replications. Note that “Type II”
censoring was applied: the experiment at each temperature/voltage
combination ran until four of the eight units had failed. The remaining four
were right censored at that time. The original analysis fitted exponential
distributions with a guarantee parameter. (A guarantee parameter is in effect
a minimum possible lifetime. The exponential distribution modified in this
way has pdf f(t) = λ exp(−λ(t− τ)) with t ≥ τ .)

We fit the Weibull regression model to the data including the

right-censored observations, with covariates voltage V and temperature T .

We treat V as a quantitative measurement without transformation. Since T
takes only two values, it makes no real difference whether we treat it as

quantitative or categorical. Fitting is by maximum likelihood, and likelihood

ratio tests confirm that both V and T should be included in the model.

Figure 1.5 shows the probability plot, against the exponential (1)

distribution, of the Cox-Snell residuals (corrected for right censoring where

necessary) from the analysis that includes both covariates V and T . The plot

is reasonably close to the expected straight line.
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Applied voltage
Temperature 200 250 300 350

170oC 439 572 315 258

904 690 315 258

1092 904 439 347

1105 1090 628 588

1105∗ 1090∗ 628∗ 588∗

1105∗ 1090∗ 628∗ 588∗

1105∗ 1090∗ 628∗ 588∗

1105∗ 1090∗ 628∗ 588∗

180oC 959 216 241 241

1065 315 315 241

1065 455 332 435

1087 473 380 455

1087∗ 473∗ 380∗ 455∗

1087∗ 473∗ 380∗ 455∗

1087∗ 473∗ 380∗ 455∗

1087∗ 473∗ 380∗ 455∗

Table 1.3. Zelen’s data from life tests of capacitors (lifetimes in hours)
[ZEL 59]. Asterisks denote right-censored observations

Figure 1.5. Probability plot of corrected Cox-Snell residuals from
Weibull regression model fitted to the data of Table 1.3
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1.17. Cured fraction or long-term survivors

As already noted in the discussion of the Gompertz distribution in section

1.4, it is a characteristic feature of lifetime data - present in most studies - that

the data are incomplete, in the sense that some of the units under study have

not experienced the event. Therefore, they contribute right-censored lifetimes.

Very often, this happens because it is not feasible to allow data collection to

continue until all units have failed, because that could take years in contexts

such as studies of highly reliable machines or human survival. However, it is

implied by the form of the basic models for lifetime data analysis that every

unit is susceptible to failure. Therefore, the event would have been recorded

for every unit if only the observation could have gone on long enough.

There are many contexts, however, in which it is possible that not every

unit is in fact susceptible to failure. The obvious examples come from

medical studies of the time from the end of treatment until relapse or death

from the disease. If a complete cure is a possibility, then individuals who have

been cured by the treatment are free of the disease and therefore will not

relapse and will not die from the disease. Having been cured, they are no

longer susceptible. The proportion of the population that is no longer

susceptible after treatment is called the cured fraction. Other terminologies

are immunes and - recognizing that, in practice, no lifetime is infinite -

long-term survivors.

If there is a cured fraction, then it follows that the usual condition on the

survival function S(t) → 0 (t → ∞) does not hold: this was also remarked in

the discussion of the Gompertz distribution. Sometimes, this can be seen in

the appearance of the estimated survival function. Figure 1.6 shows an

example from a study of the time to graduation of 15,541 undergraduate

students in a Greek technical university (see Caroni [CAR 11b]). Starting

from the minimum duration of studies of five years, the number of surviving

students (i.e. those who have not graduated yet) falls steeply for about two

years, but much more gradually thereafter. Rather than tending towards zero,

it looks as if S(t) tends towards a limit of the order of 10%. (In fact, the

analysis gives an estimate of 12.4% with a standard error of 0.4.) This is a

significant proportion of the student intake, and it should be represented

somehow in the model that describes the data.
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Figure 1.6. Proportion of students who have not yet graduated, by time
since commencement of studies (15541 students in a Greek technical

university [CAR 11b])

The credit for the first attempt to tackle the issue of the presence of a cured

fraction is usually given to Boag [BOA 49] who proposed a mixture model

with survival function:

S(t) = (1− π) + πS0(t),

where π is the proportion of the population that is susceptible and 1 − π the

proportion that is non-susceptible. S0 is the survival function among those

who are susceptible, which, in Boag’s application to data on breast cancer, is

given by the log-normal distribution. Mixture models are also known as split-

population models [CHU 91].

Many applications on these lines have appeared (see Maller and Zhou

[MAL 96]). A large number of them concern the follow-up of disease, where

the concepts of cure and immunity have clear meanings. There are also

applications in the social sciences, for example, the study of recidivism (see

for example, [CHU 91]): how long until someone released from prison

re-offends? In that case, however, the mixture model is open to question. Is it
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plausible to suppose that everyone can be firmly characterized at the moment

of release as either susceptible or immune to re-offending? It seems more

realistic to suppose that re-offending, or avoiding re-offending, is an outcome

of what happens after the release from prison, rather than being a fate that is

already fixed at the moment of release. Similarly, in the analysis of the time

until a student’s graduation, it is hard to accept a model that characterizes

some students from the beginning of their studies as ones who will never

graduate. It is much more believable that failure to complete studies arises

because of what happens along the way: other life events (marriage,

parenthood); fading interest in the subject of study; finding a job that leaves

no time for studies, and so on. Farewell [FAR 82, FAR 86] cautioned against

the use of mixture models unless there was a clear scientific basis for the

existence of an immune proportion.

As already noted in the discussion of the Gompertz distribution, we will

see in the following chapter how it is possible for long-term survival to arise

as a feature of a model that describes lifetimes, without the need to split the

population into groups as in the mixture model.

1.18. Frailty

Covariates are introduced into a statistical model in order to account for

heterogeneity between units. However, it is often doubtful that the available

covariates are sufficient to represent the heterogeneity completely. There may

be other covariates that should ideally have been taken into account, but either

were not recorded for some reason, or could not be recorded. An example

that is often given of the latter is a genetic factor that is presumed to affect a

patient’s outcome but cannot be measured.

This unobserved heterogeneity may be introduced into the model by

supposing that it can be represented by an individual random effect,

specifically each individual’s value λ of an unobserved non-negative random

variable Λ, which in survival analysis is called the frailty (see Vaupel et al.
[VAU 79]). The effect of frailty enters the model in a similar way to the effect

of covariates. Thus, in a PH context, the hazard function for this individual

becomes

h(t|λ) = λh0(t),
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where h0 is the baseline hazard function as usual. Observed covariates may

be included in the same model. Distributions of Λ that are commonly assumed

include the gamma distribution (as in the example below), the inverse Gaussian

distribution and the positive stable distribution (see Hougaard [HOU 95]).

It is particularly important to allow for all sources of heterogeneity in

hazard-based modeling. Without suitable adjustment, a strong selection effect

operates: individuals with high frailty λ will tend to die first, leaving a

population with relatively low frailty and therefore lower hazard. This gives

the impression of a decreasing hazard rate over time; however, this describes

the study cohort and should not be misinterpreted as a decline in the risk

faced by an individual member of that cohort. The fact that the hazard rate

depends on these selection effects as well as on any actual variation in

individuals’ risk means that, according to Aalen, “the hazard rate is a rather

more obscure concept than one should wish, and must be interpreted with

great caution” [AAL 94, p. 227]. Selection effects are discussed in detail by

Vaupel et al. [VAU 79] and Vaupel and Yashin [VAU 85], among others.

However, it should be noted that the frailty term in a PH regression model

cannot be used as a handy means of gathering up all the variation that is not

accounted for by the measured covariates, including the heterogeneity that

would have been accounted for by the unmeasured covariates if they had been

available. This is because omitting relevant covariates always results in the

attenuation of estimates for the covariates that have been included, as

remarked in section 1.15. It has been argued by Hougaard et al. [HOU 94]

and Keiding et al. [KEI 97] that from this point of view, it is preferable to use

an AFT model rather than a PH frailty model.

Frailty can also be a very useful device in the analysis of multivariate

survival data. Multivariate data can arise when units fall into groups, and

common (although unmeasured) factors are expected to be affecting each

member of the group: for example, a pair of human twins forms a group of

this kind (see Hougaard et al. [HOU 92]). This correlation may be represented

by each group member having the same value λ of the frailty, even though

they possibly differ in values of the measured covariates. Correlation would

also be expected between repeated times-to-event measured on the same unit,

and the device of introducing an individual random effect may therefore also

be useful for recurrent events data (see section 4.5).
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EXAMPLE 1.4.– Suppose that the basic lifetime distribution is Weibull with
pdf

S0(t) = exp{−(t/α)η}

and the frailty distribution is a gamma distribution

g(λ) =
1

Γ(ν)
λν−1e−λ

with shape parameter ν and scale parameter 1. Because S(t|λ) = S0(t)
λ, the

unconditional survival or reliability function of the lifetime is

S(t) =

∫ ∞

λ=0

λν−1e−λe−λu

Γ(ν)
dλ [where u = (t/α)η]

=

∫ ∞

λ=0

λν−1e−λ(1+u)

Γ(ν)
dλ

=
1

(1 + u)ν

∫ ∞

λ=0

(1 + u)νλν−1e−λ(1+u)

Γ(ν)
dλ

=
1

(1 + u)ν

=
1

{1 + (t/α)η}ν

since the integral integrates the pdf of a gamma distribution with parameters
1 + u and ν over its entire range, and therefore equals one. The distribution
with this survival function is known as the Burr distribution.

1.19. Models for discrete lifetime data

The models that have been discussed so far in this Chapter assume that the

time measurement T is a continuous random variable. This is usually true, but

two other possibilities need to be at least mentioned, although their relative

lack of practical importance can be judged by the small number of pages

allotted to them even in such a comprehensive text as Lawless [LAW 03]. One

of these possibilities is that the “time” variable is inherently discrete; the other

is that it is a continuous measurement that has been grouped into categories.
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Inherently discrete measurements of the time until an event occurs may

correspond to an operational time such as how often a machine has been used.

Another example is how many times something has been attempted before

success, or for how many semesters a student has been enrolled until

obtaining a degree. Even inherently discrete time variables, however, may

often be satisfactorily treated as continuous in order to gain access to the rich

array of models for continuous times, few of which have any counterpart in

discrete time. The main exception is when the lifetime is short. For a simple

analogy, a standard model for a count variable is the Poisson distribution,

which can often be adequately approximated by a continuous distribution, but

certainly not when the parameter value implies that the count variable

typically takes small integer values.

Not many useful discrete distributions are available for modeling lifetimes.

The simplest one is the familiar geometric distribution that can model the time

to the first success in a sequence of independent Bernoulli trials with constant

probabilities of success p and failure q = 1− p:

P (T = t) = qt−1p, t = 1, 2, 3, . . .

For a discrete distribution, the hazard rate at time t is defined as the

conditional probability of failure at this moment, given survival so far:

ht = P (T = t|T ≥ t) = pt/St,

where pt is the probability distribution and St = P (T ≥ t). For the geometric

distribution, St = qt−1, therefore ht = p, which is constant for all t.
Consequently, the geometric distribution can be regarded as the discrete

equivalent of the continuous exponential distribution in that it preserves the

property of constant hazard. There have been attempts to define equivalents of

other well-known lifetime distributions, such as a discrete Weibull

distribution. Since the exponential distribution’s survival function is

S(t) = e−λt = (e−λ)t

and the Weibull’s is

S(t) = e−(t/a)η = (e−λ)t
η
,
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where λ = α−η, a “discrete Weibull distribution” could be defined by the

survival function

St = q(t−1)β , t = 1, 2, . . .

(see Nakagawa and Osaki [NAK 75]).

Further extensions and applications of these ideas are so few that it is not

worthwhile pursuing them here. In particular, adapting the regression models

presented in the preceding sections from continuous time to discrete time is

generally difficult. It is awkward to define a time-transformation method

equivalent to AFT that observes the restriction of the time variable to a set of

specific discrete values. PH models can be used, but need to be adapted so

that the hazards, which are probabilities in the context of discrete time,

correctly observe the restriction to the (0, 1) range. (Continuous hazard rates

can take any non-negative value.) On the other hand, a PO specification is

quite natural for discrete times. In general, the possible models are rather

close to generalized linear models (see Lawless [LAW 03]).

Grouped and interval censored data

The second possible form of discrete data arises when all the observations

have been recorded in the same intervals. (Grouping may also be used for

easier presentation of a large dataset, but if the original observations are

available, they should be used in the analysis.) A familiar example of such

grouped data is the life table, showing the declining size of a population or

cohort year-by-year. Life tables have formed part of the statistical literature

for 500 years. Discussion and references on their analysis can be found in

Lawless [LAW 03]. An issue that has to be considered is the handling of

censored data if the time of censoring is not known exactly, but only known to

lie within an interval.

A related form of data arises from interval censoring [SUN 06]. This again

means that observations of a continuous time variable have not been recorded

exactly, but in intervals. However, the intervals are not necessarily the same

throughout the dataset. (It is true of course that it can be claimed that all our

apparently continuous measurements are in fact interval censored, with

intervals corresponding to the accuracy of our measuring and recording -

nearest minute, nearest hour, etc. However, this is rarely a problem; otherwise
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we would never be able to use the basic tools of statistical analysis.) Grouping

of times arises most commonly because individuals are not being observed

continuously but only at specific times. Suppose in general that unit i is

inspected at a prespecified sequence of times (e.g. a person in a study has

monthly appointments at a clinic) until it is found at one of these inspections

that the unit has failed (the event of interest has occurred) during the time that

has elapsed since the previous inspection. The information available on the

lifetime Ti of this unit is Ui < Ti ≤ Vi, where (Ui, Vi] denotes the interval in

which the failure took place. For a unit that had already failed by the time of

the first inspection after entering the study, Ui = 0 and the observation is left

censored. If a unit is still operating at the final inspection before the study is

terminated, then Vi = ∞ and the observation is right censored. Clearly, the

probability of failure in the interval (Ui, Vi] is F (Vi)− F (Ui), where F is the

distribution function of lifetimes, with F (0) = 0 and F (∞) = 1 as usual.

Therefore, the likelihood of the data is simply

L =
∏
i

[F (Vi)− F (Ui)] . [1.9]

Note that for a fully parametric model - including regression specifications

- this likelihood can be maximized with the same effort as is required for

maximizing the likelihood [1.3]. In this respect, interval censoring presents no

analytical difficulty whatsoever. As mentioned for grouped data above,

however, care is required in formulating the problem if any observations were

censored within intervals (e.g. after some point, a patient in the study failed to

turn up for further appointments) or when the next inspection time is not

prespecified or even determined independently of the lifetime process, but

instead depends in some way on the unit’s condition at the previous

inspection. Further details can be found in Lawless [LAW 03].

However, it should be pointed out that, in contrast to fully parametric

models, the maximization of [1.9] becomes notably difficult for the

semi-parametric Cox PH model, because the remarkable simplification that is

provided by the reduction to partial likelihood does not work for

interval-censored data. (This is because the unspecified baseline hazard h0(t)
does not cancel out.) Consequently, this basic tool of many medical

investigators is unavailable for a research design that they quite commonly

use. Some approaches to this problem are reviewed by Caroni [CAR 11a].
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New methods have been proposed recently by Sun et al. [SUN 15] and Wang

et al. [WAN 16].

One special case of interval-censored data that is, however, of major

importance and consequently has largely developed its own literature is

current status data. This arises when there is only one inspection of each unit.

This means that all that is known for each unit is the inspection time and

whether or not the unit had failed at this time. Every observation must be

either left censored (if the unit has already failed) or right censored (not yet

failed). For reviews of the topic, see, for example, Diamond and McDonald

[DIA 92] and Jewell and van der Laan [JEW 03]. It is interesting to note that

common practice in biostatistics involves some contradiction in handling

these data. Suppose that all units are inspected after the same time, t0. Given

the binary dependent variable (failed/not failed) and a covariate vector x, the

routine methodology calls for fitting a logistic regression model, so that the

Bernoulli probability πx of failure is modeled as depending on x through the

logit link function

ln

{
πx

1− πx

}
= β′x.

However, the same practitioners might routinely use the Cox PH model in

the same research area if they had lifetimes recorded exactly. Under PH,

1− πx = S(t0|x)
= exp

{
−eβ

′xH0(t0)
}

for baseline cumulative hazard function H0(t). However, H0(t0), being the

same for all units, can be absorbed into the linear predictor β′x, giving

1− πx = exp
(
−eβ

′x
)

which can be rewritten as

ln (− ln(1− πx)) = β′x.

In other words, the generalized linear model for current status data that

corresponds to the Cox PH model should not use the logit link function, but
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the complementary log-log link function instead. Using the logit link (logistic

regression) matches the use of the PO model for exactly observed lifetimes,

not PH. Of course, as is well known, the logit and complementary log-log

transformations are so similar over most of their range that the practical

importance of the discrepancy that we have noted is minimal.

1.20. Conclusions

This introductory chapter has aimed to present, at least in outline, the main

ways of approaching the regression analysis of lifetime data; that is, how

covariates that influence lifetimes can be included in an empirical model. As

seen, the most important ways (at least, in terms of the frequency of their

application) are by means of the PH model - often equated with Cox’s

semi-parametric version of the model - and by the AFT model. In addition,

the PO model is sometimes seen, and occasionally the additive hazards

model, but the others are hardly ever seen. As noted, the great appeal of Cox’s

model is attributable to the apparent ease of interpretation of the regression

coefficients and also to its semi-parametric nature, which avoids the need to

specify the parametric form of the baseline hazard function. Although the PH

model was initially motivated in section 1.4 by appeal to the device of making

a Weibull distribution’s parameters depend on the covariates - as is widely

done in statistical modeling - the consequence that hazard functions of

different units are proportional to each other is a very attractive property.

Subsequently, as seen in several sections of this chapter, other “proportional”

models have been defined in terms of other functions derived from the

distribution of lifetimes, such as the MRL. Because of the need to compete

with the predominant semi-parametric Cox model, the promoters of these

alternatives have put much effort into their semi-parametric estimation. In

fact, in all lifetime data models with non-informative right censoring, fully

parametric modeling offers no difficulty in principle. All that is required is to

state the model, write down the likelihood for the uncensored and

right-censored cases and maximize it numerically.

The AFT model occupies a rather different position. First, it can be written

in the form of a familiar regression model, with the logarithm of lifetime as

dependent variable and with a suitable error distribution replacing the normal.

Second, it is generally used in the fully parametric form, which seems

appropriate for its association with experimental data and other reliability
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data. However, as noted earlier in this chapter, because of its various desirable

properties, it should be more widely used in biostatistical applications as

various authors have pointed out.

Neither the AFT nor the PH model includes a representation of the process

by which the covariates act upon lifetimes. The same applies to the other

regression models that have been mentioned in this chapter. The major

objective of this book is to present an alternative class of models that sets out

to model the lifetime as the observed outcome of some underlying process.

Modeling the mechanism may lead to a more satisfactory model offering

greater scope for scientific insight than is possible from strictly empirical

models.




