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Introduction: the Project 

The project described in this book is at the very heart of linguistics; its 
goal is to describe, exhaustively and with absolute precision, all the 
sentences of a language likely to appear in written texts1. This project fulfills 
two needs: it provides linguists with tools to help them describe languages 
exhaustively (linguistics), and it aids in the building of software able to 
automatically process texts written in natural language (natural language 
processing, or NLP).  

A linguistic project2 needs to have a theoretical and methodological 
framework (how to describe this or that linguistic phenomenon; how to 
organize the different levels of description); formal tools (how to write each 
description); development tools to test and manage each description; and 
engineering tools to be used in sharing, accumulating, and maintaining large 
quantities of linguistic resources.  

There are many potential applications of descriptive linguistics for NLP: 
spell-checkers, intelligent search engines, information extractors and 
annotators, automatic summary producers, automatic translators, etc. These 
applications have the potential for considerable economic usefulness, and it 
is therefore important for linguists to make use of these technologies and to 
be able to contribute to them.   

                              
1 Non-written languages, such as speech or sign language, can be transcribed by using 
specific alphabets, such as the International Phonetic Alphabet or the American Sign 
Alphabet. The resulting transcribed text indeed constitutes a written text. 
2 [SAU 16, BLO 33] were among the first to attempt to rationalize the description of languages.  
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2   Formalizing Natural Languages 

For now, we must reduce the overall linguistic project of describing all 
phenomena related to the use of language, to a much more modest project: 
here, we will confine ourselves to seeking to describe the set of all of the 
sentences that may be written or read in natural-language texts. The goal, 
then, is simply to design a system capable of distinguishing between the two 
sequences below: 

a) Joe is eating an apple  

b) Joe eating apple is an 

Sequence (a) is a grammatical sentence, while sequence (b) is not. 

This project constitutes the mandatory foundation for any more ambitious 
linguistic projects. Indeed it would be fruitless to attempt to formalize text 
styles (stylistics), the evolution of a language across the centuries 
(etymology), variations in a language according to social class 
(sociolinguistics), cognitive phenomena involved in the learning or 
understanding of a language (psycholinguistics), etc. without a model, even a 
rudimentary one, capable of characterizing sentences.  

If the number of sentences were finite – that is, if there were a maximum 
number of sentences in a language – we would be able to list them all and 
arrange them in a database. To check whether an arbitrary sequence of words 
is a sentence, all we would have to do is consult this database: it is a 
sentence if it is in the database, and otherwise it is not. Unfortunately, there 
are an infinite number of sentences in a natural language. To convince 
ourselves of this, let us resort to a redictio ad absurdum: imagine for a 
moment that there are n sentences in English. 

Based on this finite number n of initial sentences, we can construct a 
second set of sentences by putting the sequence Lea thinks that, for example, 
before each of the initial sentences:  

Joe is sleeping → Lea thinks that Joe is sleeping 

The party is over → Lea thinks that the party is over 

Using this simple mechanism, we have just doubled the number of 
sentences, as shown in the figure below.  
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Figure 1.1. The number of any set of sentences can be doubled 

This mechanism can be generalized by using verbs other than the verb to 
think; for example:  

Lea (believes | claims | dreams | knows | realizes | thinks | …) that 
Sentence. 

There are several hundred verbs that could be used here. Likewise, we 
could replace Lea with several thousand human nouns:  

(The CEO | The employee | The neighbor | The teacher | …) thinks that 
Sentence. 

Whatever the size n of an initial set of sentences, we can thus construct  
n × 100 × 1,000 sentences simply by inserting before each of the initial 
sentences, sequences such as Lea thinks that, Their teacher claimed that, My 
neighbor declared that, etc. 

Language has other mechanisms that can be used to expand a set of 
sentences exponentially. For example, based on n initial sentences, we can 
construct n × n sentences by combining all of these sentences in pairs and 
inserting the word and between them. For example: 

It is raining + Joe is sleeping → It is raining and Joe is sleeping 

Joe is sleeping 

The children are gone 

The party is over 

My cat is cute 

It is raining 

Lea thinks that Joe is sleeping 

Lea thinks that the children are gone 

 
Lea thinks that the party is over 

Lea thinks that my cat is cute 

 
Lea thinks that  it is raining 
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This mechanism can also be generalized by using several hundred 
connectors; for example:  

It is raining (but | nevertheless | therefore | where | while |…) Joe is 
sleeping. 

These two mechanisms (linking of sentences and use of connectors) can 
be used multiple times in a row, as in the following:  

Lea claims that Joe hoped that Ida was sleeping.  
It was raining while Lea was sleeping, however Ida is now 
waiting, but the weather should clear up as soon as night falls. 

Thus these mechanisms are said to be recursive; the number of sentences 
that can be constructed with recursive mechanisms is infinite. Therefore it 
would be impossible to define all of these sentences in extenso. Another way 
must be found to characterize the set of sentences. 

1.1. Characterizing a set of infinite size 

Mathematicians have known for a long time how to define sets of infinite 
size. For example, the two rules below can be used to define the set of all 
natural numbers ℕ: 

(a) Each of the ten elements of set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is 
a natural number; 

(b) any word that can be written as xy is a natural number if and 
only if its two constituents x and y are natural numbers.  

 
These two rules constitute a formal definition of all natural numbers. 

They make it possible to distinguish natural numbers from any other object 
(decimal numbers or others). For example:  

– Is the word “123” a natural number? Thanks to rule (a), we know that 
“1” and “2” are natural numbers. Rule (b) allows us to deduce from this that 
“12” is a natural number. Thanks to rule (a) we know that “3” is a natural 
number; since “12” and “3” are natural numbers, then rule (b) allows us to 
deduce that “123” is a natural number. 
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– The word “2.5” is not a natural number. Rule (a) enables us to deduce 
that “2” is a natural number, but it does not apply to the decimal point “.”. 
Rule (b) can only apply to two natural numbers, therefore it does not apply 
to the decimal point because it is not a natural number. In this case, “2.” is 
not a natural number; therefore “2.5” is not a natural number either. 

There is an interesting similarity between this definition of set ℕ and the 
problem of characterizing the sentences in a language:  

– Rule (a) describes in extenso the finite set of numerals that must be 
used to form valid natural numbers. This rule resembles a dictionary in 
which we would list all the words that make up the vocabulary of a 
language. 

– Rule (b) explains how numerals can be combined to construct an 
infinite number of natural numbers. This rule is similar to grammatical rules 
that specify how to combine words in order to construct an infinite number 
of sentences.  

To describe a natural language, then, we will proceed as follows: firstly 
we will define in extenso the finite number of basic units in a language (its 
vocabulary); and secondly, we will list the rules used to combine the 
vocabulary elements in order to construct sentences (its grammar).  

1.2. Computers and linguistics 

Computers are a vital tool for this linguistic project, for at least four 
reasons:  

– From a theoretical point of view, a computer is a device that can verify 
automatically that an element is part of a mathematically-defined set. Our 
goal is then to construct a device that can automatically verify whether a 
sequence of words is a valid sentence in a language. 

– From a methodological point of view, the computer will impose a 
framework to describe linguistic objects (words, for example) as well as the 
rules for use of these objects (such as syntactic rules). The way in  
which linguistic phenomena are described must be consistent with the 
system: any inconsistency in a description will inevitably produce an error 
(or “bug”). 
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– When linguistic descriptions have been entered into a computer, a 
computer can apply them to very large texts in order to extract from these 
texts examples or counterexamples that validate (or not) these descriptions. 
Thus a computer can be used as a scientific instrument (this is the corpus 
linguistics approach), as the telescope is in astronomy or the microscope in 
biology. 

– Describing a language requires a great deal of descriptive work; 
software is used to help with the development of databases containing 
numerous linguistic objects as well as numerous grammar rules, much like 
engineers use computer-aided design (CAD) software to design cars, 
electronic circuits, etc. from libraries of components.  

Finally, the description of certain linguistic phenomena makes it possible 
to construct NLP software applications. For example, if we have a complete 
list of the words in a language, we can build a spell-checker; if we have a list 
of rules of conjugation we can build an automatic conjugator. A list of 
morphological and phonological rules also makes it possible to suggest 
spelling corrections when the computer has detected errors, while a list of 
simple and compound terms can be used to build an automatic indexer. If we 
have bilingual dictionaries and grammars we can build an automatic 
translator, and so forth. Thus the computer has become an essential tool in 
linguistics, so much so that opposing “computational linguists” with “pure 
linguists” no longer makes sense.  

1.3. Levels of formalization 

When we characterize a phenomenon using mathematical rules, we 
formalize it. The formalization of a linguistic phenomenon consists of 
describing it, by storing both linguistic objects and rules in a computer. 
Languages are complicated to describe, partly because interactions between 
their phonological and writing systems have multiplied the number of 
objects to process, as well as the number of levels of combination rules. We 
can distinguish five fundamental levels of linguistic phenomena; each of 
these levels corresponds to a level of formalization.  

To analyze a written text, we access letters of the alphabet 
rather than words; thus it is necessary to describe the link 
between the alphabet and the orthographic forms we wish to 
process (spelling). Next, we must establish a link between the 
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orthographic forms and the corresponding vocabulary elements 
(morphology). Vocabulary elements are generally listed and 
described in a lexicon that must also show all potential 
ambiguities (lexicography). Vocabulary elements combine to 
build larger units such as phrases which then combine to form 
sentences; therefore rules of combination must be established 
(syntax). Finally, links between elements of meaning which 
form a predicate transcribed into an elementary sentence, as 
well as links between predicates in a complex sentence, must be 
established (semantics).  

1.4. Not applicable 

We do not always use language to represent and communicate 
information directly and simply; sometimes we play with language to create 
sonorous effects (for example in poetry). Sometimes we play with words, or 
leave some “obvious” information implicit because it stems from the culture 
shared by the speakers (anaphora). Sometimes we express one idea in order 
to suggest another (metaphor). Sometimes we use language to communicate 
statements about the real world or in scientific spheres, and sometimes we 
even say the opposite of what we really mean (irony).  

It is important to clearly distinguish problems that can be solved within a 
strictly linguistic analytical framework from those that require access to 
information from other spheres in order to be solved.  

1.4.1. Poetry and plays on words 

Writers, poets, and authors of word games often take the liberty of 
constructing texts that violate the syntactic or semantic constraints of 
language. For example, consider the following text3: 

For her this rhyme is penned, whose luminous eyes  

Brightly expressive as the twins of Leda,  

Shall find her own sweet name, that nesting lies,  

Upon the page, enwrapped from every reader. 
                              
3 From the poem A Valentine by Edgar Allan Poe. 
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This poem is an acrostic, meaning that it contains a puzzle which readers 
are invited to solve. We cannot rely on linguistic analysis to solve  
this puzzle. But, to even understand that the poem is a puzzle, the reader 
must figure out that this rhyme refers to the poem itself. Linguistic  
analysis is not intended to figure out what in the world this rhyme might be 
referring to; much less to decide among the possible candidates.  

… luminous eyes brightly expressive as the twins of Leda ... 

The association between the adjective luminous and eyes is not a standard 
semantic relationship; unless the eyes belong to a robot, eyes are not 
luminous. This association is, of course, metaphorical: we have to 
understand that luminous eyes means that the owner of the eyes has a 
luminous intelligence, and that we are perceiving this luminous intelligence 
by looking at her eyes.  

The twins of Leda are probably the mythological heroes Castor and 
Pollux (the twin sons of Leda, the wife of the king of Sparta), but they are 
not particularly known for being expressive. These two heroes gave their 
names to the constellation Gemini, but I confess that I do not understand 
what an expressive constellation might be. I suspect the author rather meant 
to write: 

… expressive eyes brightly luminous as the twins of Leda ... 

The associations between the noun name and the verbal forms lies, 
nestling, and enwrapped are no more direct; we need to understand that it is 
the written form of the name which is present on the physical page where the 
poem is written, and that it is hidden from the reader.  

If we wish to make a poetic analysis of this text, the first thing to do is 
thus to note these non-standard associations, so we will know where to run 
each poetic interpretive analysis. But if we do not even know that eyes are 
not supposed to be luminous, we will not be able to even figure out that there 
is a metaphor, therefore we will not be able to solve it (i.e. to compute that 
the woman in question is intelligent), and so we will have missed an 
important piece of information in the poem. More generally, in order to 
understand a poem’s meaning, we must first note the semantic violations it 
contains. To do this, we need a linguistic model capable of distinguishing  
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“standard” associations such as an intelligent woman, a bright constellation, 
a name written on a page, etc. from associations requiring poetic analysis, 
such as luminous eyes, an expressive constellation, a name lying upon a 
page. 

Analyzing poems can pose other difficulties, particularly at the lexical 
and syntactic levels. In standard English, word order is less flexible than in 
poems. To understand the meaning of this poem, a modern reader has to start 
by rewriting (in his or her mind) the text in standard English, for example as 
follows:  

This rhyme is written for her, whose luminous eyes (as brightly 
expressive as the twins of Leda) will find her own sweet name, 
which lies on the page, nestling, enwrapped from every reader. 

The objective of the project described in this book is to 
formalize standard language without solving poetic puzzles, or 
figuring out possible referents, or analyzing semantically non-
standard associations.  

1.4.2. Stylistics and rhetoric 

Stylistics studies ways of formulating sentences in speech. For example, 
in a text we study the use of understatements, metaphors, and metonymy 
(“figures of style”), the order of the components of a sentence and that of  
the sentences in a speech, and the use of anaphora. Here are a few examples 
of stylistic phenomena that cannot be processed in a strictly linguistic 
context:  

Understatement: Joe was not the fastest runner in the race  

Metaphor: The CEO is a real elephant  

Metonymy: The entire table burst into laughter 

In reality, the sentence Joe was not the fastest runner in the race could 
mean here that Joe came in last; so, in a way, this sentence is not saying 
what it is expressing! Unless we know the result of the race, or have access 
to information about the real Joe, we cannot expect a purely linguistic 
analysis system to detect understatements, irony or lies.  
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To understand the meaning of the sentence The CEO is a real elephant, 
we need to know firstly that a CEO cannot really be an elephant, and 
therefore that this is a metaphor. Next we need to figure out which 
“characteristic property” of elephants is being used in the metaphor. 
Elephants are known for several things: they are big, strong, and clumsy; 
they have long memories; they are afraid of mice; they are an endangered 
species; they have big ears; they love to take mud-baths; they live in Africa 
or India, etc. Is the CEO clumsy? Is he/she afraid of mice? Does he/she love 
mud-baths? Does he/she have a good memory? To understand this statement, 
we would have to know the context in which the sentence was said, and we 
might also need to know more about the CEO in question.  

To understand the meaning of the sentence The entire table burst into 
laughter, it is necessary first to know that a table is not really capable of 
bursting into laughter, and then to infer that there are people gathered around 
a table (during a meal or a work meeting) and that it is these people who 
burst out laughing. The noun table is neither a collective human noun (such 
as group or colony), nor a place that typically contains humans (such as 
meeting room or restaurant), nor an organization (such as association or 
bank); therefore using only the basic lexical properties associated with the 
noun table will not be enough to comprehend the sentence. 

It is quite reasonable to expect a linguistic system to detect that the 
sentences The CEO is a real elephant and The entire table burst into 
laugther are not standard sentences; for example, by describing CEO as a 
human noun, describing table as a concrete noun, and requiring to burst into 
laughter to have a human subject, we can learn from a linguistic analysis 
that these sentences are not “standard”, and that it is therefore necessary to 
initiate an extra-linguistic computation such as metaphor or metonymy 
calculations in order to interpret them.  

The linguistic project described in this book is not intended to 
solve understatements, metaphors, or metonymy, but it must be 
able to detect sentences that are deviant in comparison to the 
standard language.  

1.4.3. Anaphora, coreference resolution, and semantic 
disambiguation 

Coreference: Lea invited Ida for dinner. She brought a bottle of 
wine.  
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Anaphora: Phelps returned. The champion brought back 6 
medals with him.  

Semantic ambiguity: The round table is in room B17. 

In order to understand that in the sentence She brought a bottle of wine, 
she refers to Ida and not Lea, we need to know that it is usually the guest 
who travels and brings a bottle of wine. This social convention is 
commonplace throughout the modern Western world, but we would need to 
be sure that this story does not take place in a society where it is the person 
who invites who brings beverages. 

In order to understand that The champion is a reference to Phelps, we 
have to know that Phelps is a champion. Note that dozens of other nouns 
could have been used in this anaphora: the American, the medal-winner, the 
record-holder, the swimming superstar, the young man, the swimmer, the 
former University of Florida student, the breakaway, the philanthropist, etc.  

In order to eliminate the ambiguity of the sequence round table (between 
“a table with a round shape” and “a meeting”), we would need to have 
access to a wider context than the sentence alone.  

The linguistic project described in this book is not intended to 
resolve anaphora or semantic ambiguities.  

NOTE. – I am not saying that it is impossible to process poetry, word games, 
understatements, metaphors, metonymy, coreference, anaphora, and 
semantic ambiguities; I am only saying that these phenomena lie outside the 
narrow context of the project presented in this book. There are certainly 
“lucky” cases in which linguistic software can automatically solve some of 
these phenomena. For example, in the following sequence:  

Joe invited Lea for dinner. She brought a bottle of wine 

a simple verification of the pronoun’s gender would enable us to connect She 
to Lea. Conversely, it is easy to build software which, based on the two 
sentences Joe invited Lea to dinner and Lea brought a bottle of wine, would 
produce the sentence She brought a bottle of wine. Likewise, in the sentence:  

The round table is taking place in room B17 
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a linguistic parser could automatically figure out that the noun round table 
refers to a meeting, provided that it has access to a dictionary in which the 
noun round table is described as being an abstract noun (synonymous with 
meeting), and the verb to take place is described as calling for an abstract 
subject. 

1.4.4. Extralinguistic calculations 

Consider the following statements: 

a) Two dollars plus three dollars make four dollars. 

b) Clinton was already president in 1536. 

c) The word God has four letters. 

d) This sentence is false. 

These statements are expressed using sentences that are well-formed 
because they comply with the spelling, morphological, syntactic, and 
semantic rules of the English language. However, they express statements 
that are incorrect in terms of mathematics (a), history (b), spelling (c), or 
logic (d). To detect these errors we would need to access knowledge that is 
not part of our strictly linguistic project4. 

The project described in this book is confined to the formalization 
of language, without taking into account speakers’ knowledge 
about the real world.  

1.5. NLP applications 

Of course, there are fantastic software applications capable of processing 
extralinguistic problems! For example, the IBM computer Watson won on 
the game show Jeopardy! in spectacular fashion in 2011; I have a lot of fun  
 
 
                              
4 Some linguists have put forward meta-linguistics examples of type (c) to demonstrate the 
necessity of using unrestricted grammar to describe languages. In addition, many NLP 
researchers use phenomena such as metaphors, resolution of anaphora, detection of 
understatement, etc. to demonstrate the inadequacy of linguistic techniques to handle… what I 
consider extralinguistic phenomena.  



Introduction: the Project   13 

asking my smart watch questions. In the car, I regularly ask Google Maps  
to guide me verbally to my destination; my language-professor colleagues 
have trouble keeping their students from using Google Translate; and the 
subtitles added automatically to YouTube videos are a precious resource for 
people who are hard of hearing [GRE 11], etc. 

All of these software platforms have a NLP part, which analyzes or 
produces a written or verbal statement, often accompanied by a specialized 
module, for example a search engine or GPS navigation software. It is 
important to distinguish between these components: just because we are 
impressed by the fact that Google Maps gives us reliable directions, it does 
not mean it speaks perfect English. It is very possible that IBM Watson can 
answer a question correctly without having really “understood” the question. 
Likewise, a software platform might automatically summarize a text using 
simple techniques to filter out words, phrases or sentences it judges to be 
unimportant [MAN 01]5. Word-recognition systems use signal processing 
techniques to produce a sequence of phonemes and then determine the most 
“probable” corresponding sequence of words by comparing it to a reference 
database [JUR 00]6, etc. 

Most pieces of NLP software actually produce spectacular, almost 
magical results, with a very low degree of linguistic competence. To produce 
these results, the software uses “tricks”, often based on statistical methods  
[MAN 99]. 

Unfortunately, the success of these software platforms is often used in 
order to show that statistical techniques have made linguistics unnecessary7. 
It is important, then, to understand their limitations. In the next two  
sections I will take a closer look at the performances of the two “flagship” 
statistical NLP software platforms: automatic translation and part-of-speech 
tagging.  

                              
5 [MAN 01] introduces the field of automatic summarizing and its issues, in particular how to 
detect the “important” information that should be included in a summary.  
6 For the exception that proves the rule, see [RAY 06]. 
7 For an amusing read about the ravages of statistics in fields other than linguistics, see  
[SMI 14]. 
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Figure 1.4. Translation with Google  
Translate vs. with NooJ 

When translating languages that are more similar, such as French into 
English, the results produced by Google Translate are helpful, but still  
could not be used in a professional context or to translate a novel,  
a technical report, or even a simple letter, and especially not when 
submitting a resumé.  
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and technical choices (as well as real problems with management), and not 
with a theoretical impossibility of using linguistics to do translations.  

I will turn now to another flagship application, which is less “public-at-
large” than machine translation, but just as spectacular for NLP specialists: 
part-of-speech tagging. 

1.5.2. Part-of-speech (POS) tagging 

Part-of-speech (POS) tagging is often presented as the basic application 
of any piece of NLP software, and has historically justified the sidelining of 
linguistic methods in favor of stochastic ones. The authors of tagging 
software frequently speak of 95% precision; these results seem “magical” 
too, since POS taggers use neither dictionaries nor grammars to analyze the 
words of any text with such a great precision. Linguists have difficulty 
justifying their painstaking descriptive work when shown what a computer 
can do by itself and without linguistic data! It is also commonplace to hear 
that taggers’ results prove that statistical techniques have bypassed linguistic 
ones; for example:  

Automatic part of speech tagging is an area of natural 
language processing where statistical techniques have been 
more successful than rule-based methods. [BRI 92] 

In their course on NLP (available on YouTube as of December 2015), 
Dan Jurafsky and Chris Manning consider the problem of the construction of 
POS taggers as “mostly solved”; more generally, NLP researchers use the 
spectacular results produced by statistical taggers to validate the massive use 
of statistical techniques in all NLP applications, always to the detriment of 
the linguistic approach.  

A POS tagger is an automatic program that links each word in a text with a 
“tag”, in practice its POS category: noun, verb, adjective, etc. To do this, 
taggers use reference corpora which have been manually tagged9. To analyze a  
 

                              
9 Some people use terms such as “training data” or “machine learning” to indicate that the 
tagger “learns” something when it “trains” on data. This fancy terminology is impressive, but 
in fact what POS taggers do is nothing more than copying and pasting codes from a reference 
text to the text they analyze. 
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text, the tagger examines the context of each word in the text and compares it 
with the contexts of the occurrences of this same word in the reference corpus 
in order to deduce which tag should be linked with the word.  

Figure 1.6 shows, for example, an extract from Penn Treebank, which is 
one of the reference corpora10 used by English POS taggers. 

Battle-tested/SingularProperName Japanese/SingularProperName 

industrial/Adjective managers/PluralNoun here/Adverb always/Adverb 

buck/Verb up/Preposition nervous/Adjective newcomers/PluralNoun 

with/Preposition the/Determiner tale/SingularNoun of/Preposition 

the/Determiner first/Adjective of/Preposition their/PossessivePronoun 

countrymen/PluralNoun to/TO visit/Verb Mexico/SingularProperName ,/, 

a/Determiner boatload/SingularNoun of/Preposition samurai/PluralNoun 

warriors/PluralNoun blown/PastParticiple ashore/Adverb 375/Number 

years/PluralNoun ago/Adverb ./. 

From/Preposition the/Determiner beginning/SingularNoun ,/, 

it/PersonalPronoun took/PreteritVerb a/Determiner man/SingularNoun 

with/Preposition extraordinary/Adjective qualities/PluralNoun to/TO 

succeed/Verb in/Preposition Mexico/SingularProperName ,/, ”/” 

says/Present3rdSingularVerb Kimihide/SingularProperName 

Takimura/SingularProperName ,/, president/SingularNoun of/Preposition 

Mitsui/PluralNoun group/SingularNoun ’s/Possessive 

Kensetsu/SingularProperName Engineering/SingularProperName 

Inc./SingularProperName unit/SingularNoun ./. 

Figure 1.6. Extract from Penn Treebank 

I do not believe that taggers should be considered as successes, and here 
are my reasons why.  

1.5.2.1. The results of statistical methods are not actually so 
spectacular  

The number of unambiguous words is so large compared to the very 
small number of tags used by taggers that a simple software application that  
 

                              
10 This extract is described in [MAR 93]. I have replaced the original codes (for example 
“JJ”) with clearer codes (“Adjective”).  
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would tag words just by copying the most frequent tag in the reference 
corpus would already have a degree of precision greater than 90%  
[CHA 97]. 

For example, in English the words my, his, the (always determiners), at, 
from, of, with (always prepositions), him, himself, it, me, she, them, you 
(always pronouns), and, or (always conjunctions), again, always, not, 
rather, too (always adverbs), am, be, do, have (always verbs), and day, life, 
moment, thing (always nouns) are extremely frequent but have only a single 
possible tag, and thus are always tagged correctly.  

The vast majority of ambiguous words are actually favored in terms of 
analysis; for example, in most of their occurrences, the forms age, band, 
card, detail, eye, etc. represent nouns and not the verbs to age, to band, to 
card, to detail, to eye, etc. A software platform systematically disregarding 
the rare verbal hypothesis for these words will therefore almost never be 
wrong.  

In these conditions, obtaining a 95% correct result when a simple copy 
already yields 90% precision is not really spectacular; on average we get one 
correct result out of two for difficult cases, which is more like a coin-toss 
than a feat of “learning”.  

The degree of precision claimed by taggers is, in reality, not that 
impressive. 

1.5.2.2. POS taggers disregard the existence of multiword units 

Taggers do not take into account multiword units or expressions, though 
these frequently occur in texts11. In the Penn Treebank extract shown in 
Figure 1.6, the compound noun industrial managers, the phrasal verb to 
buck up, the compound determiner a boatload of, the compound noun 
samurai warrior, the expression to blow N ashore, the adverb from the 
beginning, and the expression it takes N to V-inf have all simply been 
disregarded. 

However, processing industrial manager as a sequence of two linguistic 
units does not make any sense: an industrial manager is not a manager who  
 
                              
11 [SIL 95] shows that up to one-third of the forms present in the texts of the newspaper Le 
Monde are in fact composed of multiword units or expressions.  
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has been bred or made with industrial methods. Yet this analysis is the 
general analysis for the adjective industrial, for example as in industrial 
diamond, industrial food, industrial soap, industrial chicken, etc. Likewise, 
the phrasal verb to buck up (which means to encourage) should not be 
analyzed word-for-word as to buck (which means to oppose) followed by the 
locative preposition up. The head word of the noun phrase a boatload of 
samurai warriors is warriors, therefore a boatload of should be treated as a 
determiner, and above all boatload should not be treated as the head word of 
the noun phrase. 

More generally, systematically tagging texts without taking into account 
multiword units, phrasal verbs and expressions eliminates any possibility of 
conducting meaningful linguistic analyses on the resulting tagged text. For 
example, tagging the sequence blue/Adjective collar/Noun even when it 
means manual laborer would block the analysis of sentences such as The 
blue collars finally accepted their offer, since the verb to accept expects a 
human subject, and not a part of a shirt. Likewise, disregarding the adverb 
all of a sudden by tagging it as all/Pronoun of/Preposition 

a/Determiner sudden/Adjective would make a syntactic parser crash, 
since this sequence of categories does not exist in English grammar.  

The same is true for expressions, which are extremely numerous in 
vocabulary and texts: taggers simply disregard them. It is typical to see texts 
labeled as follows:  

The/Determiner CEO/Noun took/Verb our/Determiner 
request/Noun into/Preposition account/Noun 

in which the expression to take … into account has not been represented. It is 
hard to imagine how this tagged text will be processed, or even translated, if 
the computer really thinks that it is dealing with the verb to take (as in Joe 
took his pen) and the noun account (as in an email account). 

I argue in this book that systematically disregarding multiword units and 
expressions inevitably leads to the production of incorrect analyses that are 
useless for most NLP applications, including search engines and automatic 
translation; imagine the quality of a translation in which the French  
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multiword units tout de suite [right now] or carte bleue [visa card] were 
translated word for word: 

Je cherche ma carte bleue tout de suite → * I look for my blue 
card all of rest 

In practice, if multiword units and expressions were taken into account in 
order to assess the precision of POS taggers, that precision would fall below 
70%, meaning that it would be inferior to the precision of a simple program 
that would access a dictionary that contains all of the multiword units and 
expressions in a language.  

By not processing frequent multiword units and expressions 
even though they constitute a non-negligible subset of 
vocabulary, taggers produce useless results.  

1.5.2.3. Statistical methods are costly 

We often hear that linguistic methods are costly to implement because 
they require the construction of dictionaries and grammars. However, 
statistical methods also require a great deal of work to manually construct 
their reference corpora. In the end, tagging a corpus is necessarily much 
more labor-intensive than constructing the equivalent dictionary, since a 
given word occurs multiple times in a corpus but only once in a dictionary, 
and it would be necessary to manually tag an extremely large corpus if we 
wished to cover only the standard vocabulary of a language (i.e. to construct 
a reference corpus in which each use of each standard word occurred at least 
once).  

The construction of the reference corpus required by taggers is 
an expensive operation.  

1.5.2.4. Reference corpora are not reliable 

One answer to the argument above is that the people who manually tag a 
reference corpus do not possess a level of qualification comparable to those 
who construct dictionaries and grammars, and can therefore be hired at a 
lower cost. In practice, the consequence of this cynical attitude is that most 
so-called “reference” corpora contain a high number of errors. For example, 
note the mistakes in the Penn Treebank extract shown in Figure 1.6: Battle-
tested and Japanese should have been tagged as adjectives (and not proper 
nouns); up is a particle (and not a preposition), Mitsui is a proper name (not 
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a plural common noun); Engineering is a common noun; and Inc. is an 
adjective. A corpus considered as the “reference” by just about the entire 
NLP community in fact contains a large number of errors. 

The fact that “reference corpora” contain errors is well known to NLP 
researchers, to the extent that the study of errors in reference corpora has 
become a sub-field of NLP research12. If reference corpora contain so many 
errors, we cannot expect the programs that use them to provide usable 
results.  

The reference corpora used by taggers are not reliable.  

1.5.2.5. Statistical taggers are not generalizable 

A text in which word tags are to be figured out must be similar enough to 
the reference corpus used to train the tagger, otherwise the quality of the 
results will be significantly impacted. As soon as a new word occurs in the 
text to be tagged, or a word occurs in the text to be tagged with a context 
different from those present in the reference corpus, the tagger will produce 
an error. To construct a tagger capable of producing correct results for any 
sentence in any type of text, it would be necessary to construct a reference 
corpus that contains all possible uses of each word in a language, which does 
not exist.  

Statistical POS taggers produce non-generalizable results.  

The only reasonable alternative is to describe the whole vocabulary in a 
dictionary; this description would be solid, and if it contained errors or gaps 
these could be easily corrected, which would allow for the accumulation of 
data on the language.  

1.5.2.6. POS taggers use poor linguistic resources without admitting it 

It is wrong to claim that statistical taggers (as opposed to linguistic ones) 
do not use dictionaries or grammars: a tagger consults the reference corpus 
in search of potential tags for each word being tagged, and thus there is 
indeed an implicit dictionary in the reference corpus. This dictionary can 
easily be made explicit, by extracting the tagged words from the reference 
corpus and sorting them in alphabetical order. However, the resulting 

                              
12 See for example [DIC 05, GRE 10, VOL 11]. 
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dictionary is of much lower quality than a “real” dictionary constructed by 
professional linguists [KUP 08]. 

We will see in Chapter 4 that dictionaries constructed by linguists 
distinguish, at the very minimum, the various uses of words; for example 
reader (+Hum) in an avid reader versus reader (-Hum) in a magnetic reader; 
to give (+ditransitive) in Joe gave his pen to Lea versus to give (+intransitive) 
in The door finally gave, etc. This basic level of precision bears no 
resemblance to the set of tags used by POS taggers. 

Taggers use very low-quality implicit dictionaries and produce 
very low-quality results. 

1.5.2.7. Rules of disambiguation are fundamentally incorrect  

The same is true for grammar: taggers do use a grammar, made up of the 
list of contexts of the words that occur in the reference corpus. For example, 
based on examples such as I think that art is a worthwhile endeavor, a tagger 
will typically decide that the word that should be tagged as “Conjunction” 
since it is preceded by the word think and followed by the word art, which is 
equivalent to the grammar rule below:  

think that art → that/CONJUNCTION 

The grammars used by taggers are automatically computed, based on 
sequences of successive words taken from the manually tagged reference 
corpus. These grammars are incorrect, and it is easy to produce 
counterexamples for each of their “rules”. For example, in the sentence I 
think that art is hung too low, the word that is a determiner, not a 
conjunction, even though it appears between the words think and art. 

In fact, the very principle of tagging – disambiguating each word, taking 
only its immediate context into account – is naïve in the extreme. The ten 
rules of disambiguation (called “patches”) computed automatically by the 
tagger introduced in [BRI 92] are all incorrect: any linguist would consider it 
ridiculous to claim that in English, a capitalized word must be followed by a 
conjuguated verb in the preterite tense, or that a verbal form is necessarily in 
the past participle if the word had appears near it in a three-word context; for 
example in I had to come, come is not a past participle. 
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Taggers overlook the fundamental linguistic principle that sentences are 
structured objects, and that virtually any category of word can be inserted 
anywhere in a sentence without changing its structure. For example, after the 
verbal form sees, we might find an adjective (e.g. Joe sees red apples), an 
adverb (e.g. Joe sees very well), a determiner (e.g. Joe sees that apple), a 
coordinating conjunction (Joe sees but says nothing), a subordinating 
conjunction (Joe sees that Lea is happy), a noun (Joe sees flowers), a 
preposition (Joe sees behind himself), a pronoun (Joe sees that), a relative 
pronoun (Joe sees where Lea is going), or a verbal form (Joe sees destroyed 
buildings). In these conditions, disambiguating the word form sees (or any 
verbal form) on the basis of its contexts in a reference corpus – which 
necessarily possesses only a limited sample of all potential contexts – will 
produce a large number of errors.  

Rules computed automatically by taggers are incorrect, and the grammars 
in which these rules are collected have neither the precision, nor the degree 
of generality, let alone any scientific value comparable to the grammars 
designed by linguists13. 

Sentences are structured objects; any category of words can be 
inserted anywhere in a sentence without changing its structure. 
A grammar is not a collection of limited contexts of words and 
category.  

1.5.2.8. You cannot add apples to oranges 

This is a basic principle: you cannot add together (or calculate averages 
of) number of objects of different types. Yet this is what is done by most 
statistical taggers or automatic learning programs. For example, when a 
statistical program parses the two sentences below:  

Joe/ProperName writes/Verb. He/Pronoun writes/Verb 
a/Determiner novel/Noun. 

it will deduce that the verb to write occurs sometimes without a complement 
(here: one time out of two), and sometimes with a direct object complement 
(here: one time out of two). Now if the same program parses the following 
text: 

                              
13 For an example of a real French grammar painstakingly created for the construction of an 
automatic software translation platform, see [SAL 99]. 
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Joe/ProperName is/Aux running/Verb a/Determiner 

test/Noun. Lea/ProperName is/Aux running/Verb 

in/Preposition the/Determiner woods/Noun. 

it will deduce, in the same way, that the verb to run sometimes occurs with a 
direct object complement, and sometimes with a prepositional 
complement… But this has nothing to do with it! In the first case, we can 
say that the verb to write has an optional direct object complement, but in the 
second case, it must be said that there are two homographic verbs to run14: 
the first is transitive, while the second is intransitive. We cannot simply add 
up the number of occurrences of the two verbs to run simply because they 
are spelled in the same way, just as we cannot say that the two forms steel 
and steal constitute the same linguistic unit just because they are pronounced 
in the same way.  

We cannot add up the number of occurrences of word forms 
that represent distinct elements of the vocabulary. 

1.5.2.9. Tagging does not allow for addressing syntactic or semantic 
ambiguities  

It is easy to construct examples of superficially identical word sequences 
that can be tagged correctly only after an overall syntactic analysis of the 
sentence, or even after a semantic analysis. A well known example, the form 
like, must be tagged “Verb” in the sentence These horse flies like his arrow 
and “Preposition” in the sentence This horse flies like his arrow. A simple 
examination of the immediate context of the word like, in other words, is not 
sufficient to determine whether it is a verb or a preposition. Taggers produce 
necessarily unreliable results in every case of ambiguity which only a 
syntactic or semantic analysis could solve.  

In the general case, word ambiguity cannot be resolved until a 
syntactic or semantic analysis has been carried out. 

                              
14 Statistical analysis programs are based on an absolute belief in the reliability of spelling. 
However, if one day a spelling reform were to decide that the noun a bass (in the sense of a 
deep voice) should be spelled a basse to distinguish it from the noun a bass (the fish), it 
would change nothing about the structure or meaning of texts, but it would change the 
“grammar rules” produced by statistical taggers.  
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1.5.2.10. The scientific approach 

Even if the rules automatically produced by a tagger were correct, they 
would not have much scientific value; it is a bit like noting that in the work 
of Edgar Allan Poe, nouns containing an “a” and an “n” are all followed by a 
phrasal verb using particle “in”: this remark has no generality, teaches us 
nothing about American literature, the English language, or Edgar Allan Poe 
himself, and is quite simply of no scientific interest.  

Linguistics seek to understand how a language functions. Therefore even 
a “magical” statistical tool that could be used to build spectacular NLP 
applications but did not explain anything about the language is of little 
interest to us. 

1.5.3. Linguistic rather than stochastic analysis  

I am wary of the results produced by current stochastic methods in the 
field of NLP, especially when they are compared, on a truly level playing 
field, to those of linguistic methods.  

I find it unfortunate that decision-makers in the NLP domain tend to 
favor stochastic methods that do not cause our understanding of language to 
advance a single step, to the detriment of projects aimed at building 
linguistic resources. Formalizing the lexical, morphological, syntactic, and 
distributional properties of the standard English vocabulary would  
require the work of a dedicated team, much smaller than the gigantic  
groups assigned to the construction of tagged corpora for statistical  
NLP applications (statistical tagging or translation). A project like this  
would be beneficial for the whole linguistic community and would enable 
the development of NLP software with unequalled precision. I hope  
this book will show that such a project is not just useful, but feasible as  
well.  

1.6. Linguistic formalisms: NooJ 

To formalize a language, we use mathematical models (referred  
to as formalisms). The vital question, posed by [CHO 57], is therefore: 
“Which mathematical model do we need in order to describe  
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languages?” Chomsky introduces a hierarchy of increasingly powerful 
grammars capable of describing increasingly complex linguistic 
phenomena15, and hypothesizes that there is a “universal” formal model that 
can be used to describe any human language.  

Paradoxically, this original issue has given rise to the creation of 
numerous incompatible linguistic formalisms. Today, linguists wishing to 
formalize linguistic phenomena can choose from among more than a dozen 
formalisms16, including CCG, GPSG, HG, HFST, HPSG, LFG, LIG, 
OpenFst, RG, SFG, SFST, TAG, XFST, etc. 

Each of these formalisms and their variants has individual strong and 
weak points. XFST (or HFST, or SFST) will be of more interest to 
morphologists, while GPSG, TAG or LFG are better suited to syntacticians, 
and semanticians will often use RG or SFG, while HPSG, as the most 
powerful formalism of the group, is typically used by theoreticians and 
linguists seeking to describe phenomena at the limit of linguistics, such as 
anaphora. Unfortunately, none of these tools makes it possible to describe in 
a simple manner the wide variety of linguistic phenomena (often quite 
trivial) that come into play when “real” texts are to be analyzed (such as 
journalistic texts or novels), and it is not possible to combine them since 
their formalisms, their development environments, and IT tools are largely 
incompatible17. 

The search for a single formalism capable of addressing all types of 
linguistic phenomena in all languages does not fall within the parameters of 
the project described in this book; our goal is rather to describe the largest 
number of linguistic phenomena in their diversity, using the best-suited tools 
in order to construct simple descriptions, i.e. those that are the simplest to 
develop, understand, accumulate, share, and manage. 

                              
15 We will look in detail at the Chomsky-Schützenberger hierarchy in Chapter 5. 
16 See the Internet links at the end of this chapter. 
17 An exception that proves the rule is the Urdu parser in the ParGram project (based on 
LFG) which used XFST as a preprocessing tool to transliterate Urdo or Devanagari characters 
and recognize repetitions; see [BÖG 07]. However, the XFST descriptions did not interact 
with those of LFG. 
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Figure 1.7. A single tool for formalization: NooJ 

It was by abandoning the idea of a universal formalism that I designed the 
linguistic platform NooJ18. With NooJ, orthographic variation in Chinese is 
not described with the same tools as morphological derivation in Arabic. 
Neither is agglutination described with the same tools as inflection, which is 
not described in the same way as syntax, etc. NooJ guarantees high 
integration of all levels of description thanks to compatible notations and a 
unified representation for all linguistic analysis results (the text annotated 
structure or TAS, see Chapter 10), enabling different analyzers at different 
linguistic levels to communicate with one another. For example, the 
following transformation:  

Lea donates her blood → Lea is a blood donor 

brings various levels of linguistic phenomena into play: it is necessary to 
verify that the verb to donate will admit a nominalization (thanks to a lexical 
property); we must describe the inflectional rule that produces to donate 
from donates, the derivational rule that produces donor from donate, a 
distributional constraint to verify that Lea is a human subject and that blood 
falls under the category of parts of the body (a person donates his/her heart, a 
kidney, etc.), a syntactic rule to verify that Lea is the subject of donates, and 
then a restructuration rule to move the noun blood from the role of direct 
object complement to the role of complement of the noun donor. No single 
formalism could make it possible to describe all these linguistic phenomena 
in a simple way. 

                              
18 See [SIL 03a]. NooJ is a linguistic development environment that operates on Windows, 
Mac OSX, LINUX and Unix, available at no cost at the website www. 
noo4nlp.net. An open source environment, it is supported by the European project 
METANET-CESAR. 
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Thanks to the suitability (and thus simplicity) of each individual tool used 
to describe each level of linguistic phenomenon, it is now possible to 
construct, test, accumulate and combine linguistic resources of diverse types, 
and this for many languages. Through the integration of all levels of analysis 
in the TAS (see Chapter 10), we will see that it becomes possible to carry 
out complex analyses of a text by performing a series of different analyses, 
each of them quite simple19. 

In this book, we will use the NooJ notation to describe linguistic 
phenomena in their diversity. Using only one notation will simplify their 
understanding, as the reader does not need to master half a dozen different 
formalisms to understand how to formalize all types of linguistic 
phenomena. NooJ also has the advantage of being very easy to use; one can 
learn NooJ in just a few hours, and even become an “expert” after a week of 
training20. 

It goes without saying that each of the linguistic phenomena mentioned in 
this book can be described with one of the formalisms traditionally used in 
linguistics; for example, XFST could be used to construct the morphological 
parser introduced in Chapter 11, GPSG to construct syntax trees, LFG to 
describe agreement constraints such as those shown in Chapter 12, and 
HPSG to formalize the transformations discussed in Chapter 13. 

1.7. Conclusion and structure of this book 

The goal of the project depicted in this chapter is to describe natural 
languages very precisely and mathematically, or more specifically, to 
formalize the set of sentences that may appear in written texts. 

                              
19 NooJ shares several characteristics with other integrated toolboxes such as the General 
Architecture for Text Engineering (GATE) and the Stanford Core NLP. It consists of 
independent modules applied in cascade (or pipeline) in a bottom-up approach that 
communicate via a text annotation structure (the TAS, see Chapter 10). The main differences 
between NooJ and these NLP toolboxes are that NooJ is a pure linguistic tool (for instance, 
there is no statistical tagger in NooJ) and that all its modules are formalized via descriptive 
grammars rather than implemented via software programs. In other words, Nooj follows a 
purely descriptive, rather than algorithmic approach. 
20 A growing number of NooJ users are not linguists, but rather historians, scholars of 
literature, psychologists, and sociologists, who typically use NooJ to extract “interesting” 
information from their corpora. 
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Although the number of sentences in a language is infinite, it is 
nevertheless possible to describe it, starting by using a finite number of basic 
linguistic elements (letters, morphemes, or words), which I will do in Part 1 
of this book. Chapter 2 shows how to formalize the alphabet of a language; 
Chapter 3 discusses how to delineate its vocabulary; and Chapter 4 shows 
how to formalize a vocabulary using electronic dictionaries. 

Next we must equip ourselves with mechanisms for describing how those 
basic linguistic elements combine to construct higher-level elements (word 
forms, phrases or sentences). Part 2 of this book introduces the concepts of 
formal language, generative grammar, and machines. I will introduce these 
concepts as well as the Chomsky-Schützenberger hierarchy in Chapter 5, 
while Chapters 6 to 9 present the four types of languages/grammars/machines.  

Part 3 of this book (Chapters 10 to 13) is dedicated to the automatic 
linguistic analysis of texts. In Chapter 10, I will introduce the TAS used to 
represent, in a unified manner, the results produced by all linguistic analyses. 
Chapter 11 is devoted to automatic lexical analysis. Chapter 12 introduces 
two types of syntactic analysis: local analysis and structural analysis. 
Chapter 13 presents an automatic transformational analyzer, which can be 
seen as a linguistic semantic analyzer (that is, providing an analysis of 
meaning based solely on language, without real-world knowledge or 
inference). 

1.8. Exercises 

1) Based on the model of the definition of ℕ seen in section 1.1, 
characterize the set ॰ that contains all the decimal numbers. 

2) Take the sentence: His great uncle was let go on the spot. Describe the 
linguistic analyses of this sentence in informal lexical, morphological, 
syntactic, and semantic terms.  

3) Consider the text: Lea invited Ida for dinner. The graduate student 
brought a bottle of wine. How can we figure out to whom the noun graduate 
student is referring? Can this calculation be made using linguistic analyses? 

4) How can we improve the translation of the first sentence in Figure 1.5, 
using only a bilingual dictionary, and without any grammar?  
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5) Construct the dictionary implicitly given in the reference corpus of 
Figure 1.6. Compare the content of this dictionary with the content of an 
editorial dictionary.  

1.9. Internet links 

The Wikipedia page for the field of linguistics: en.wikipedia. 
org/wiki/Linguistics 

The Wikipedia page for Natural Language Processing: en.wikipedia. 
org/wiki/Natural_language_processing 

An NLP course taught by Dan Jurafsky and Chris Manning, Stanford 
University, is available on YouTube atwww.youtube.com/watch?v= 
nfoudtpBV68. 

The Jeopardy! program of April 11, 2001, which the computer IBM 
Watson won in spectacular fashion, has been the subject of numerous 
documentaries, for example: www.youtube.com/watch?v=5Gpaf6NaUEw. 

To test a few pieces of machine translation software, such 
astranslate.google.com, www.systranet.com/translate, www.reverso.net, 
www.freetranslation.com, etc. you can enter a short paragraph in English, 
translate it into another language, copy and paste the result, and retranslate 
that into English. 

There are many automatic text-tagging software platforms; see 
en.wikipedia.org/wiki/Part-of-speech_tagging. Tagging software requires a 
reference corpus, such as Penn Treebank which can be found at 
www.cis.upenn.edu/~treebank. Many annotated text corpora can be obtained 
from the Linguistic Data Consortium at www.ldc.upenn.edu.  

Two integrated toolboxes used for building NLP software applications 
(mostly taggers and annotators) are the General Architecture for Text 
Engineering (Gate) (gate.ac.uk) and the Stanford CoreNLP: nlp.stanford.edu/ 
software/corenlp.shtml. 

The formalisms traditionally used by linguists are:  

– CCG (Combinatory Categorial Grammar): groups.inf.ed.ac.uk/ccg/ 
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– HFST (Helsinki Finite-State Transducer): www.ling.helsinki.fi/kielite 
knologia/ tutkimus/hfst 

– HG (Head Grammar): en.wikipedia.org/wiki/Head_grammar 

– HPSG (Head-Driven Phrase Structure Grammar): hpsg.stanford.edu 

– LFG (Lexical Functional Grammar): www.essex.ac.uk/linguistics/ 
external/LFG 

– LIG (Linear Indexed Grammar): www.inf.ed.ac.uk/teaching/courses/ 
inf2a/slides/2011_inf2a_L21_slides.pdf 

– OpenFST: www.openfst.org 

– RG (Relational Grammar): en.wikipedia.org/wiki/Relational_grammar 

– SFST (Stuttgart Finite-State Transducer): code.google.com/p/ 
cistern/wiki/SFST 

– TAG (Tree-adjoining grammar): www.cis.upenn.edu/~xtag/tech-
report/node6.html 

– XFST (Xerox Finite-State Tool): www.cis.upenn.edu/~cis639/docs/ 
xfst.html 

The linguistic development environment that will be used to describe all 
the linguistic phenomena in this book is NooJ, a free and open-source 
software platform made available under GPL license by the European 
Community program META-SHARE; see www.nooj4nlp.net. 



 


