
1

Introduction: the Project

The project described in this book is at the very heart of linguistics; its
goal is to describe, exhaustively and with absolute precision, all the
sentences of a language likely to appear in written texts1. This project fulfills
two needs: it provides linguists with tools to help them describe languages
exhaustively (linguistics), and it aids in the building of software able to
automatically process texts written in natural language (natural language
processing, or NLP).

A linguistic project2 needs to have a theoretical and methodological
framework (how to describe this or that linguistic phenomenon; how to
organize the different levels of description); formal tools (how to write each
description); development tools to test and manage each description; and
engineering tools to be used in sharing, accumulating, and maintaining large
quantities of linguistic resources.

There are many potential applications of descriptive linguistics for NLP:
spell-checkers, intelligent search engines, information extractors and
annotators, automatic summary producers, automatic translators, etc. These
applications have the potential for considerable economic usefulness, and it
is therefore important for linguists to make use of these technologies and to
be able to contribute to them.

1 Non-written languages, such as speech or sign language, can be transcribed by using
specific alphabets, such as the International Phonetic Alphabet or the American Sign
Alphabet. The resulting transcribed text indeed constitutes a written text.
2 [SAU 16, BLO 33] were among the first to attempt to rationalize the description of languages.

CO
PYRIG

HTED
 M

ATERIA
L

2 Formalizing Natural Languages

For now, we must reduce the overall linguistic project of describing all
phenomena related to the use of language, to a much more modest project:
here, we will confine ourselves to seeking to describe the set of all of the
sentences that may be written or read in natural-language texts. The goal,
then, is simply to design a system capable of distinguishing between the two
sequences below:

a) Joe is eating an apple

b) Joe eating apple is an

Sequence (a) is a grammatical sentence, while sequence (b) is not.

This project constitutes the mandatory foundation for any more ambitious
linguistic projects. Indeed it would be fruitless to attempt to formalize text
styles (stylistics), the evolution of a language across the centuries
(etymology), variations in a language according to social class
(sociolinguistics), cognitive phenomena involved in the learning or
understanding of a language (psycholinguistics), etc. without a model, even a
rudimentary one, capable of characterizing sentences.

If the number of sentences were finite – that is, if there were a maximum
number of sentences in a language – we would be able to list them all and
arrange them in a database. To check whether an arbitrary sequence of words
is a sentence, all we would have to do is consult this database: it is a
sentence if it is in the database, and otherwise it is not. Unfortunately, there
are an infinite number of sentences in a natural language. To convince
ourselves of this, let us resort to a redictio ad absurdum: imagine for a
moment that there are n sentences in English.

Based on this finite number n of initial sentences, we can construct a
second set of sentences by putting the sequence Lea thinks that, for example,
before each of the initial sentences:

Joe is sleeping → Lea thinks that Joe is sleeping

The party is over → Lea thinks that the party is over

Using this simple mechanism, we have just doubled the number of
sentences, as shown in the figure below.

Introduction: the Project 3

Figure 1.1. The number of any set of sentences can be doubled

This mechanism can be generalized by using verbs other than the verb to
think; for example:

Lea (believes | claims | dreams | knows | realizes | thinks | …) that
Sentence.

There are several hundred verbs that could be used here. Likewise, we
could replace Lea with several thousand human nouns:

(The CEO | The employee | The neighbor | The teacher | …) thinks that
Sentence.

Whatever the size n of an initial set of sentences, we can thus construct
n × 100 × 1,000 sentences simply by inserting before each of the initial
sentences, sequences such as Lea thinks that, Their teacher claimed that, My
neighbor declared that, etc.

Language has other mechanisms that can be used to expand a set of
sentences exponentially. For example, based on n initial sentences, we can
construct n × n sentences by combining all of these sentences in pairs and
inserting the word and between them. For example:

It is raining + Joe is sleeping → It is raining and Joe is sleeping

Joe is sleeping

The children are gone

The party is over

My cat is cute

It is raining

Lea thinks that Joe is sleeping

Lea thinks that the children are gone

Lea thinks that the party is over

Lea thinks that my cat is cute

Lea thinks that it is raining

4 Formalizing Natural Languages

This mechanism can also be generalized by using several hundred
connectors; for example:

It is raining (but | nevertheless | therefore | where | while |…) Joe is
sleeping.

These two mechanisms (linking of sentences and use of connectors) can
be used multiple times in a row, as in the following:

Lea claims that Joe hoped that Ida was sleeping.
It was raining while Lea was sleeping, however Ida is now
waiting, but the weather should clear up as soon as night falls.

Thus these mechanisms are said to be recursive; the number of sentences
that can be constructed with recursive mechanisms is infinite. Therefore it
would be impossible to define all of these sentences in extenso. Another way
must be found to characterize the set of sentences.

1.1. Characterizing a set of infinite size

Mathematicians have known for a long time how to define sets of infinite
size. For example, the two rules below can be used to define the set of all
natural numbers ℕ:

(a) Each of the ten elements of set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is
a natural number;

(b) any word that can be written as xy is a natural number if and
only if its two constituents x and y are natural numbers.

These two rules constitute a formal definition of all natural numbers.

They make it possible to distinguish natural numbers from any other object
(decimal numbers or others). For example:

– Is the word “123” a natural number? Thanks to rule (a), we know that
“1” and “2” are natural numbers. Rule (b) allows us to deduce from this that
“12” is a natural number. Thanks to rule (a) we know that “3” is a natural
number; since “12” and “3” are natural numbers, then rule (b) allows us to
deduce that “123” is a natural number.

Introduction: the Project 5

– The word “2.5” is not a natural number. Rule (a) enables us to deduce
that “2” is a natural number, but it does not apply to the decimal point “.”.
Rule (b) can only apply to two natural numbers, therefore it does not apply
to the decimal point because it is not a natural number. In this case, “2.” is
not a natural number; therefore “2.5” is not a natural number either.

There is an interesting similarity between this definition of set ℕ and the
problem of characterizing the sentences in a language:

– Rule (a) describes in extenso the finite set of numerals that must be
used to form valid natural numbers. This rule resembles a dictionary in
which we would list all the words that make up the vocabulary of a
language.

– Rule (b) explains how numerals can be combined to construct an
infinite number of natural numbers. This rule is similar to grammatical rules
that specify how to combine words in order to construct an infinite number
of sentences.

To describe a natural language, then, we will proceed as follows: firstly
we will define in extenso the finite number of basic units in a language (its
vocabulary); and secondly, we will list the rules used to combine the
vocabulary elements in order to construct sentences (its grammar).

1.2. Computers and linguistics

Computers are a vital tool for this linguistic project, for at least four
reasons:

– From a theoretical point of view, a computer is a device that can verify
automatically that an element is part of a mathematically-defined set. Our
goal is then to construct a device that can automatically verify whether a
sequence of words is a valid sentence in a language.

– From a methodological point of view, the computer will impose a
framework to describe linguistic objects (words, for example) as well as the
rules for use of these objects (such as syntactic rules). The way in
which linguistic phenomena are described must be consistent with the
system: any inconsistency in a description will inevitably produce an error
(or “bug”).

6 Formalizing Natural Languages

– When linguistic descriptions have been entered into a computer, a
computer can apply them to very large texts in order to extract from these
texts examples or counterexamples that validate (or not) these descriptions.
Thus a computer can be used as a scientific instrument (this is the corpus
linguistics approach), as the telescope is in astronomy or the microscope in
biology.

– Describing a language requires a great deal of descriptive work;
software is used to help with the development of databases containing
numerous linguistic objects as well as numerous grammar rules, much like
engineers use computer-aided design (CAD) software to design cars,
electronic circuits, etc. from libraries of components.

Finally, the description of certain linguistic phenomena makes it possible
to construct NLP software applications. For example, if we have a complete
list of the words in a language, we can build a spell-checker; if we have a list
of rules of conjugation we can build an automatic conjugator. A list of
morphological and phonological rules also makes it possible to suggest
spelling corrections when the computer has detected errors, while a list of
simple and compound terms can be used to build an automatic indexer. If we
have bilingual dictionaries and grammars we can build an automatic
translator, and so forth. Thus the computer has become an essential tool in
linguistics, so much so that opposing “computational linguists” with “pure
linguists” no longer makes sense.

1.3. Levels of formalization

When we characterize a phenomenon using mathematical rules, we
formalize it. The formalization of a linguistic phenomenon consists of
describing it, by storing both linguistic objects and rules in a computer.
Languages are complicated to describe, partly because interactions between
their phonological and writing systems have multiplied the number of
objects to process, as well as the number of levels of combination rules. We
can distinguish five fundamental levels of linguistic phenomena; each of
these levels corresponds to a level of formalization.

To analyze a written text, we access letters of the alphabet
rather than words; thus it is necessary to describe the link
between the alphabet and the orthographic forms we wish to
process (spelling). Next, we must establish a link between the

Introduction: the Project 7

orthographic forms and the corresponding vocabulary elements
(morphology). Vocabulary elements are generally listed and
described in a lexicon that must also show all potential
ambiguities (lexicography). Vocabulary elements combine to
build larger units such as phrases which then combine to form
sentences; therefore rules of combination must be established
(syntax). Finally, links between elements of meaning which
form a predicate transcribed into an elementary sentence, as
well as links between predicates in a complex sentence, must be
established (semantics).

1.4. Not applicable

We do not always use language to represent and communicate
information directly and simply; sometimes we play with language to create
sonorous effects (for example in poetry). Sometimes we play with words, or
leave some “obvious” information implicit because it stems from the culture
shared by the speakers (anaphora). Sometimes we express one idea in order
to suggest another (metaphor). Sometimes we use language to communicate
statements about the real world or in scientific spheres, and sometimes we
even say the opposite of what we really mean (irony).

It is important to clearly distinguish problems that can be solved within a
strictly linguistic analytical framework from those that require access to
information from other spheres in order to be solved.

1.4.1. Poetry and plays on words

Writers, poets, and authors of word games often take the liberty of
constructing texts that violate the syntactic or semantic constraints of
language. For example, consider the following text3:

For her this rhyme is penned, whose luminous eyes

Brightly expressive as the twins of Leda,

Shall find her own sweet name, that nesting lies,

Upon the page, enwrapped from every reader.

3 From the poem A Valentine by Edgar Allan Poe.

8 Formalizing Natural Languages

This poem is an acrostic, meaning that it contains a puzzle which readers
are invited to solve. We cannot rely on linguistic analysis to solve
this puzzle. But, to even understand that the poem is a puzzle, the reader
must figure out that this rhyme refers to the poem itself. Linguistic
analysis is not intended to figure out what in the world this rhyme might be
referring to; much less to decide among the possible candidates.

… luminous eyes brightly expressive as the twins of Leda ...

The association between the adjective luminous and eyes is not a standard
semantic relationship; unless the eyes belong to a robot, eyes are not
luminous. This association is, of course, metaphorical: we have to
understand that luminous eyes means that the owner of the eyes has a
luminous intelligence, and that we are perceiving this luminous intelligence
by looking at her eyes.

The twins of Leda are probably the mythological heroes Castor and
Pollux (the twin sons of Leda, the wife of the king of Sparta), but they are
not particularly known for being expressive. These two heroes gave their
names to the constellation Gemini, but I confess that I do not understand
what an expressive constellation might be. I suspect the author rather meant
to write:

… expressive eyes brightly luminous as the twins of Leda ...

The associations between the noun name and the verbal forms lies,
nestling, and enwrapped are no more direct; we need to understand that it is
the written form of the name which is present on the physical page where the
poem is written, and that it is hidden from the reader.

If we wish to make a poetic analysis of this text, the first thing to do is
thus to note these non-standard associations, so we will know where to run
each poetic interpretive analysis. But if we do not even know that eyes are
not supposed to be luminous, we will not be able to even figure out that there
is a metaphor, therefore we will not be able to solve it (i.e. to compute that
the woman in question is intelligent), and so we will have missed an
important piece of information in the poem. More generally, in order to
understand a poem’s meaning, we must first note the semantic violations it
contains. To do this, we need a linguistic model capable of distinguishing

Introduction: the Project 9

“standard” associations such as an intelligent woman, a bright constellation,
a name written on a page, etc. from associations requiring poetic analysis,
such as luminous eyes, an expressive constellation, a name lying upon a
page.

Analyzing poems can pose other difficulties, particularly at the lexical
and syntactic levels. In standard English, word order is less flexible than in
poems. To understand the meaning of this poem, a modern reader has to start
by rewriting (in his or her mind) the text in standard English, for example as
follows:

This rhyme is written for her, whose luminous eyes (as brightly
expressive as the twins of Leda) will find her own sweet name,
which lies on the page, nestling, enwrapped from every reader.

The objective of the project described in this book is to
formalize standard language without solving poetic puzzles, or
figuring out possible referents, or analyzing semantically non-
standard associations.

1.4.2. Stylistics and rhetoric

Stylistics studies ways of formulating sentences in speech. For example,
in a text we study the use of understatements, metaphors, and metonymy
(“figures of style”), the order of the components of a sentence and that of
the sentences in a speech, and the use of anaphora. Here are a few examples
of stylistic phenomena that cannot be processed in a strictly linguistic
context:

Understatement: Joe was not the fastest runner in the race

Metaphor: The CEO is a real elephant

Metonymy: The entire table burst into laughter

In reality, the sentence Joe was not the fastest runner in the race could
mean here that Joe came in last; so, in a way, this sentence is not saying
what it is expressing! Unless we know the result of the race, or have access
to information about the real Joe, we cannot expect a purely linguistic
analysis system to detect understatements, irony or lies.

10 Formalizing Natural Languages

To understand the meaning of the sentence The CEO is a real elephant,
we need to know firstly that a CEO cannot really be an elephant, and
therefore that this is a metaphor. Next we need to figure out which
“characteristic property” of elephants is being used in the metaphor.
Elephants are known for several things: they are big, strong, and clumsy;
they have long memories; they are afraid of mice; they are an endangered
species; they have big ears; they love to take mud-baths; they live in Africa
or India, etc. Is the CEO clumsy? Is he/she afraid of mice? Does he/she love
mud-baths? Does he/she have a good memory? To understand this statement,
we would have to know the context in which the sentence was said, and we
might also need to know more about the CEO in question.

To understand the meaning of the sentence The entire table burst into
laughter, it is necessary first to know that a table is not really capable of
bursting into laughter, and then to infer that there are people gathered around
a table (during a meal or a work meeting) and that it is these people who
burst out laughing. The noun table is neither a collective human noun (such
as group or colony), nor a place that typically contains humans (such as
meeting room or restaurant), nor an organization (such as association or
bank); therefore using only the basic lexical properties associated with the
noun table will not be enough to comprehend the sentence.

It is quite reasonable to expect a linguistic system to detect that the
sentences The CEO is a real elephant and The entire table burst into
laugther are not standard sentences; for example, by describing CEO as a
human noun, describing table as a concrete noun, and requiring to burst into
laughter to have a human subject, we can learn from a linguistic analysis
that these sentences are not “standard”, and that it is therefore necessary to
initiate an extra-linguistic computation such as metaphor or metonymy
calculations in order to interpret them.

The linguistic project described in this book is not intended to
solve understatements, metaphors, or metonymy, but it must be
able to detect sentences that are deviant in comparison to the
standard language.

1.4.3. Anaphora, coreference resolution, and semantic
disambiguation

Coreference: Lea invited Ida for dinner. She brought a bottle of
wine.

Introduction: the Project 11

Anaphora: Phelps returned. The champion brought back 6
medals with him.

Semantic ambiguity: The round table is in room B17.

In order to understand that in the sentence She brought a bottle of wine,
she refers to Ida and not Lea, we need to know that it is usually the guest
who travels and brings a bottle of wine. This social convention is
commonplace throughout the modern Western world, but we would need to
be sure that this story does not take place in a society where it is the person
who invites who brings beverages.

In order to understand that The champion is a reference to Phelps, we
have to know that Phelps is a champion. Note that dozens of other nouns
could have been used in this anaphora: the American, the medal-winner, the
record-holder, the swimming superstar, the young man, the swimmer, the
former University of Florida student, the breakaway, the philanthropist, etc.

In order to eliminate the ambiguity of the sequence round table (between
“a table with a round shape” and “a meeting”), we would need to have
access to a wider context than the sentence alone.

The linguistic project described in this book is not intended to
resolve anaphora or semantic ambiguities.

NOTE. – I am not saying that it is impossible to process poetry, word games,
understatements, metaphors, metonymy, coreference, anaphora, and
semantic ambiguities; I am only saying that these phenomena lie outside the
narrow context of the project presented in this book. There are certainly
“lucky” cases in which linguistic software can automatically solve some of
these phenomena. For example, in the following sequence:

Joe invited Lea for dinner. She brought a bottle of wine

a simple verification of the pronoun’s gender would enable us to connect She
to Lea. Conversely, it is easy to build software which, based on the two
sentences Joe invited Lea to dinner and Lea brought a bottle of wine, would
produce the sentence She brought a bottle of wine. Likewise, in the sentence:

The round table is taking place in room B17

12 Formalizing Natural Languages

a linguistic parser could automatically figure out that the noun round table
refers to a meeting, provided that it has access to a dictionary in which the
noun round table is described as being an abstract noun (synonymous with
meeting), and the verb to take place is described as calling for an abstract
subject.

1.4.4. Extralinguistic calculations

Consider the following statements:

a) Two dollars plus three dollars make four dollars.

b) Clinton was already president in 1536.

c) The word God has four letters.

d) This sentence is false.

These statements are expressed using sentences that are well-formed
because they comply with the spelling, morphological, syntactic, and
semantic rules of the English language. However, they express statements
that are incorrect in terms of mathematics (a), history (b), spelling (c), or
logic (d). To detect these errors we would need to access knowledge that is
not part of our strictly linguistic project4.

The project described in this book is confined to the formalization
of language, without taking into account speakers’ knowledge
about the real world.

1.5. NLP applications

Of course, there are fantastic software applications capable of processing
extralinguistic problems! For example, the IBM computer Watson won on
the game show Jeopardy! in spectacular fashion in 2011; I have a lot of fun

4 Some linguists have put forward meta-linguistics examples of type (c) to demonstrate the
necessity of using unrestricted grammar to describe languages. In addition, many NLP
researchers use phenomena such as metaphors, resolution of anaphora, detection of
understatement, etc. to demonstrate the inadequacy of linguistic techniques to handle… what I
consider extralinguistic phenomena.

Introduction: the Project 13

asking my smart watch questions. In the car, I regularly ask Google Maps
to guide me verbally to my destination; my language-professor colleagues
have trouble keeping their students from using Google Translate; and the
subtitles added automatically to YouTube videos are a precious resource for
people who are hard of hearing [GRE 11], etc.

All of these software platforms have a NLP part, which analyzes or
produces a written or verbal statement, often accompanied by a specialized
module, for example a search engine or GPS navigation software. It is
important to distinguish between these components: just because we are
impressed by the fact that Google Maps gives us reliable directions, it does
not mean it speaks perfect English. It is very possible that IBM Watson can
answer a question correctly without having really “understood” the question.
Likewise, a software platform might automatically summarize a text using
simple techniques to filter out words, phrases or sentences it judges to be
unimportant [MAN 01]5. Word-recognition systems use signal processing
techniques to produce a sequence of phonemes and then determine the most
“probable” corresponding sequence of words by comparing it to a reference
database [JUR 00]6, etc.

Most pieces of NLP software actually produce spectacular, almost
magical results, with a very low degree of linguistic competence. To produce
these results, the software uses “tricks”, often based on statistical methods
[MAN 99].

Unfortunately, the success of these software platforms is often used in
order to show that statistical techniques have made linguistics unnecessary7.
It is important, then, to understand their limitations. In the next two
sections I will take a closer look at the performances of the two “flagship”
statistical NLP software platforms: automatic translation and part-of-speech
tagging.

5 [MAN 01] introduces the field of automatic summarizing and its issues, in particular how to
detect the “important” information that should be included in a summary.
6 For the exception that proves the rule, see [RAY 06].
7 For an amusing read about the ravages of statistics in fields other than linguistics, see
[SMI 14].

14 Form

1.5.1. A

Toda
techniqu
regularl
everyon
therefor
solved.

8 For ex
Glasses: w

malizing Natural

Automatic

ay, the best
ues to sugge
ly cited as
ne has seen
re, that most
I do not agre

xample, here is
www.youtube.c

Languages

Fig

translation

t-known tra
est a transla
examples of

a “magica
people think

ee.

s a demonstrat
com/watch?v=p

gure 1.2. Rea

n

anslation sof
ation of texts
f the succes

al” translatio
k the problem

ion of the inst
pZKWW3rzT2Q

ally?

ftware platfo
s. These sof
ss of statisti
on demo8. I
m of translat

tantaneous tran
Q.

forms use s
ftware platfo
ical techniqu
It is not su
tion has alrea

nslation used b

statistical
orms are
ues, and

urprising,
ady been

by Google

For e
of an ar
text pro
him on
incorrec

Figu
obtained
translati
wrongly
instead
about th
work an

F

example, Fig
rticle in Vietn
oduced does
n the Navy’
ct constructio

ure 1.4 allow
d using a
ion gramma
y translated b
of The man
he second se
nd not I knew

Figure 1.3. Vie
with

gure 1.3 show
namese (ww
not make v

s generals”
ons (“could v

ws us to com
simple Ara

ar; see [BAN
by Google T
who fell wen
entence, wh

w a man who

etnamese–Eng
h Google Tran

ws how Goo
ww.thanhnieu
very much se

mean? The
very well shi

mpare Googl
abic–English
N 15]. For e
Translate as T
nt to work. G
ich means T
went to wor

Int

glish translatio
slate

ogle Translat
unnews.com,
ense; what d
e translated
ielded”, for e

le Translate’
h dictionary
example, the
The man who
Google Trans
The man tha
rk.

troduction: the P

on

te has transla
, October 20
does “I’m ta

text even
example).

’s results wi
and a ver

e first sente
o went down
slate was als
at you knew

Project 15

ated part
14). The
alking to
contains

ith those
ry basic
nce was

n to work
so wrong

went to

16 Formalizing Natural Languages

Figure 1.4. Translation with Google
Translate vs. with NooJ

When translating languages that are more similar, such as French into
English, the results produced by Google Translate are helpful, but still
could not be used in a professional context or to translate a novel,
a technical report, or even a simple letter, and especially not when
submitting a resumé.

Let u
the Eng

– Th
savoir h

– Th
presente
action.

– In
clinique
trials w
useable

– Th

To b
automat
techniqu
belief th

Figu
(Oc

us look in de
glish sentence

he first sente
has been tran

he second sen
ed... The term

the third sen
es avec des tr
with experim

 or useful an

he term resul

be fair, it sho
tic translatio
ues, such as
hat the reaso

ure 1.5. Article
ctober 2014) tr

etail at the re
es produced

ence has an
nslated as they

ntence has a
m action has

ntence, the v
raitements ex
ental treatm

nd not as used

lts is placed i

ould be noted
n software h

s the Europe
ons for Eurot

e from the new
ranslated with

esult produce
is correct:

opposite me
ey know it ins

an ungramma
s been wrong

verb summar
xperimentau

ments; and u
d.

incorrectly in

d that every a
has failed, inc
ean program
tra’s failure h

Int

wspaper Le M
Google Trans

ed by Googl

eaning; the e
stead of they

atical sequen
gly translated

rized is place
ux should be
tilizable sho

n the last sen

attempt to co
cluding thos

m Eurotra (19
have to do w

troduction: the P

Monde
slate

e Translate.

expression ils
make it know

nce ...which
d as share in

ed incorrectly
translated as

ould be trans

ntence.

onstruct good
e based on l
978–1992).

with certain s

Project 17

None of

ls le font
wn.

includes
nstead of

y; essais
s clinical
slated as

d-quality
inguistic
It is my
scientific

18 Formalizing Natural Languages

and technical choices (as well as real problems with management), and not
with a theoretical impossibility of using linguistics to do translations.

I will turn now to another flagship application, which is less “public-at-
large” than machine translation, but just as spectacular for NLP specialists:
part-of-speech tagging.

1.5.2. Part-of-speech (POS) tagging

Part-of-speech (POS) tagging is often presented as the basic application
of any piece of NLP software, and has historically justified the sidelining of
linguistic methods in favor of stochastic ones. The authors of tagging
software frequently speak of 95% precision; these results seem “magical”
too, since POS taggers use neither dictionaries nor grammars to analyze the
words of any text with such a great precision. Linguists have difficulty
justifying their painstaking descriptive work when shown what a computer
can do by itself and without linguistic data! It is also commonplace to hear
that taggers’ results prove that statistical techniques have bypassed linguistic
ones; for example:

Automatic part of speech tagging is an area of natural
language processing where statistical techniques have been
more successful than rule-based methods. [BRI 92]

In their course on NLP (available on YouTube as of December 2015),
Dan Jurafsky and Chris Manning consider the problem of the construction of
POS taggers as “mostly solved”; more generally, NLP researchers use the
spectacular results produced by statistical taggers to validate the massive use
of statistical techniques in all NLP applications, always to the detriment of
the linguistic approach.

A POS tagger is an automatic program that links each word in a text with a
“tag”, in practice its POS category: noun, verb, adjective, etc. To do this,
taggers use reference corpora which have been manually tagged9. To analyze a

9 Some people use terms such as “training data” or “machine learning” to indicate that the
tagger “learns” something when it “trains” on data. This fancy terminology is impressive, but
in fact what POS taggers do is nothing more than copying and pasting codes from a reference
text to the text they analyze.

Introduction: the Project 19

text, the tagger examines the context of each word in the text and compares it
with the contexts of the occurrences of this same word in the reference corpus
in order to deduce which tag should be linked with the word.

Figure 1.6 shows, for example, an extract from Penn Treebank, which is
one of the reference corpora10 used by English POS taggers.

Battle-tested/SingularProperName Japanese/SingularProperName

industrial/Adjective managers/PluralNoun here/Adverb always/Adverb

buck/Verb up/Preposition nervous/Adjective newcomers/PluralNoun

with/Preposition the/Determiner tale/SingularNoun of/Preposition

the/Determiner first/Adjective of/Preposition their/PossessivePronoun

countrymen/PluralNoun to/TO visit/Verb Mexico/SingularProperName ,/,

a/Determiner boatload/SingularNoun of/Preposition samurai/PluralNoun

warriors/PluralNoun blown/PastParticiple ashore/Adverb 375/Number

years/PluralNoun ago/Adverb ./.

From/Preposition the/Determiner beginning/SingularNoun ,/,

it/PersonalPronoun took/PreteritVerb a/Determiner man/SingularNoun

with/Preposition extraordinary/Adjective qualities/PluralNoun to/TO

succeed/Verb in/Preposition Mexico/SingularProperName ,/, ”/”

says/Present3rdSingularVerb Kimihide/SingularProperName

Takimura/SingularProperName ,/, president/SingularNoun of/Preposition

Mitsui/PluralNoun group/SingularNoun ’s/Possessive

Kensetsu/SingularProperName Engineering/SingularProperName

Inc./SingularProperName unit/SingularNoun ./.

Figure 1.6. Extract from Penn Treebank

I do not believe that taggers should be considered as successes, and here
are my reasons why.

1.5.2.1. The results of statistical methods are not actually so
spectacular

The number of unambiguous words is so large compared to the very
small number of tags used by taggers that a simple software application that

10 This extract is described in [MAR 93]. I have replaced the original codes (for example
“JJ”) with clearer codes (“Adjective”).

20 Formalizing Natural Languages

would tag words just by copying the most frequent tag in the reference
corpus would already have a degree of precision greater than 90%
[CHA 97].

For example, in English the words my, his, the (always determiners), at,
from, of, with (always prepositions), him, himself, it, me, she, them, you
(always pronouns), and, or (always conjunctions), again, always, not,
rather, too (always adverbs), am, be, do, have (always verbs), and day, life,
moment, thing (always nouns) are extremely frequent but have only a single
possible tag, and thus are always tagged correctly.

The vast majority of ambiguous words are actually favored in terms of
analysis; for example, in most of their occurrences, the forms age, band,
card, detail, eye, etc. represent nouns and not the verbs to age, to band, to
card, to detail, to eye, etc. A software platform systematically disregarding
the rare verbal hypothesis for these words will therefore almost never be
wrong.

In these conditions, obtaining a 95% correct result when a simple copy
already yields 90% precision is not really spectacular; on average we get one
correct result out of two for difficult cases, which is more like a coin-toss
than a feat of “learning”.

The degree of precision claimed by taggers is, in reality, not that
impressive.

1.5.2.2. POS taggers disregard the existence of multiword units

Taggers do not take into account multiword units or expressions, though
these frequently occur in texts11. In the Penn Treebank extract shown in
Figure 1.6, the compound noun industrial managers, the phrasal verb to
buck up, the compound determiner a boatload of, the compound noun
samurai warrior, the expression to blow N ashore, the adverb from the
beginning, and the expression it takes N to V-inf have all simply been
disregarded.

However, processing industrial manager as a sequence of two linguistic
units does not make any sense: an industrial manager is not a manager who

11 [SIL 95] shows that up to one-third of the forms present in the texts of the newspaper Le
Monde are in fact composed of multiword units or expressions.

Introduction: the Project 21

has been bred or made with industrial methods. Yet this analysis is the
general analysis for the adjective industrial, for example as in industrial
diamond, industrial food, industrial soap, industrial chicken, etc. Likewise,
the phrasal verb to buck up (which means to encourage) should not be
analyzed word-for-word as to buck (which means to oppose) followed by the
locative preposition up. The head word of the noun phrase a boatload of
samurai warriors is warriors, therefore a boatload of should be treated as a
determiner, and above all boatload should not be treated as the head word of
the noun phrase.

More generally, systematically tagging texts without taking into account
multiword units, phrasal verbs and expressions eliminates any possibility of
conducting meaningful linguistic analyses on the resulting tagged text. For
example, tagging the sequence blue/Adjective collar/Noun even when it
means manual laborer would block the analysis of sentences such as The
blue collars finally accepted their offer, since the verb to accept expects a
human subject, and not a part of a shirt. Likewise, disregarding the adverb
all of a sudden by tagging it as all/Pronoun of/Preposition

a/Determiner sudden/Adjective would make a syntactic parser crash,
since this sequence of categories does not exist in English grammar.

The same is true for expressions, which are extremely numerous in
vocabulary and texts: taggers simply disregard them. It is typical to see texts
labeled as follows:

The/Determiner CEO/Noun took/Verb our/Determiner
request/Noun into/Preposition account/Noun

in which the expression to take … into account has not been represented. It is
hard to imagine how this tagged text will be processed, or even translated, if
the computer really thinks that it is dealing with the verb to take (as in Joe
took his pen) and the noun account (as in an email account).

I argue in this book that systematically disregarding multiword units and
expressions inevitably leads to the production of incorrect analyses that are
useless for most NLP applications, including search engines and automatic
translation; imagine the quality of a translation in which the French

22 Formalizing Natural Languages

multiword units tout de suite [right now] or carte bleue [visa card] were
translated word for word:

Je cherche ma carte bleue tout de suite → * I look for my blue
card all of rest

In practice, if multiword units and expressions were taken into account in
order to assess the precision of POS taggers, that precision would fall below
70%, meaning that it would be inferior to the precision of a simple program
that would access a dictionary that contains all of the multiword units and
expressions in a language.

By not processing frequent multiword units and expressions
even though they constitute a non-negligible subset of
vocabulary, taggers produce useless results.

1.5.2.3. Statistical methods are costly

We often hear that linguistic methods are costly to implement because
they require the construction of dictionaries and grammars. However,
statistical methods also require a great deal of work to manually construct
their reference corpora. In the end, tagging a corpus is necessarily much
more labor-intensive than constructing the equivalent dictionary, since a
given word occurs multiple times in a corpus but only once in a dictionary,
and it would be necessary to manually tag an extremely large corpus if we
wished to cover only the standard vocabulary of a language (i.e. to construct
a reference corpus in which each use of each standard word occurred at least
once).

The construction of the reference corpus required by taggers is
an expensive operation.

1.5.2.4. Reference corpora are not reliable

One answer to the argument above is that the people who manually tag a
reference corpus do not possess a level of qualification comparable to those
who construct dictionaries and grammars, and can therefore be hired at a
lower cost. In practice, the consequence of this cynical attitude is that most
so-called “reference” corpora contain a high number of errors. For example,
note the mistakes in the Penn Treebank extract shown in Figure 1.6: Battle-
tested and Japanese should have been tagged as adjectives (and not proper
nouns); up is a particle (and not a preposition), Mitsui is a proper name (not

Introduction: the Project 23

a plural common noun); Engineering is a common noun; and Inc. is an
adjective. A corpus considered as the “reference” by just about the entire
NLP community in fact contains a large number of errors.

The fact that “reference corpora” contain errors is well known to NLP
researchers, to the extent that the study of errors in reference corpora has
become a sub-field of NLP research12. If reference corpora contain so many
errors, we cannot expect the programs that use them to provide usable
results.

The reference corpora used by taggers are not reliable.

1.5.2.5. Statistical taggers are not generalizable

A text in which word tags are to be figured out must be similar enough to
the reference corpus used to train the tagger, otherwise the quality of the
results will be significantly impacted. As soon as a new word occurs in the
text to be tagged, or a word occurs in the text to be tagged with a context
different from those present in the reference corpus, the tagger will produce
an error. To construct a tagger capable of producing correct results for any
sentence in any type of text, it would be necessary to construct a reference
corpus that contains all possible uses of each word in a language, which does
not exist.

Statistical POS taggers produce non-generalizable results.

The only reasonable alternative is to describe the whole vocabulary in a
dictionary; this description would be solid, and if it contained errors or gaps
these could be easily corrected, which would allow for the accumulation of
data on the language.

1.5.2.6. POS taggers use poor linguistic resources without admitting it

It is wrong to claim that statistical taggers (as opposed to linguistic ones)
do not use dictionaries or grammars: a tagger consults the reference corpus
in search of potential tags for each word being tagged, and thus there is
indeed an implicit dictionary in the reference corpus. This dictionary can
easily be made explicit, by extracting the tagged words from the reference
corpus and sorting them in alphabetical order. However, the resulting

12 See for example [DIC 05, GRE 10, VOL 11].

24 Formalizing Natural Languages

dictionary is of much lower quality than a “real” dictionary constructed by
professional linguists [KUP 08].

We will see in Chapter 4 that dictionaries constructed by linguists
distinguish, at the very minimum, the various uses of words; for example
reader (+Hum) in an avid reader versus reader (-Hum) in a magnetic reader;
to give (+ditransitive) in Joe gave his pen to Lea versus to give (+intransitive)
in The door finally gave, etc. This basic level of precision bears no
resemblance to the set of tags used by POS taggers.

Taggers use very low-quality implicit dictionaries and produce
very low-quality results.

1.5.2.7. Rules of disambiguation are fundamentally incorrect

The same is true for grammar: taggers do use a grammar, made up of the
list of contexts of the words that occur in the reference corpus. For example,
based on examples such as I think that art is a worthwhile endeavor, a tagger
will typically decide that the word that should be tagged as “Conjunction”
since it is preceded by the word think and followed by the word art, which is
equivalent to the grammar rule below:

think that art → that/CONJUNCTION

The grammars used by taggers are automatically computed, based on
sequences of successive words taken from the manually tagged reference
corpus. These grammars are incorrect, and it is easy to produce
counterexamples for each of their “rules”. For example, in the sentence I
think that art is hung too low, the word that is a determiner, not a
conjunction, even though it appears between the words think and art.

In fact, the very principle of tagging – disambiguating each word, taking
only its immediate context into account – is naïve in the extreme. The ten
rules of disambiguation (called “patches”) computed automatically by the
tagger introduced in [BRI 92] are all incorrect: any linguist would consider it
ridiculous to claim that in English, a capitalized word must be followed by a
conjuguated verb in the preterite tense, or that a verbal form is necessarily in
the past participle if the word had appears near it in a three-word context; for
example in I had to come, come is not a past participle.

Introduction: the Project 25

Taggers overlook the fundamental linguistic principle that sentences are
structured objects, and that virtually any category of word can be inserted
anywhere in a sentence without changing its structure. For example, after the
verbal form sees, we might find an adjective (e.g. Joe sees red apples), an
adverb (e.g. Joe sees very well), a determiner (e.g. Joe sees that apple), a
coordinating conjunction (Joe sees but says nothing), a subordinating
conjunction (Joe sees that Lea is happy), a noun (Joe sees flowers), a
preposition (Joe sees behind himself), a pronoun (Joe sees that), a relative
pronoun (Joe sees where Lea is going), or a verbal form (Joe sees destroyed
buildings). In these conditions, disambiguating the word form sees (or any
verbal form) on the basis of its contexts in a reference corpus – which
necessarily possesses only a limited sample of all potential contexts – will
produce a large number of errors.

Rules computed automatically by taggers are incorrect, and the grammars
in which these rules are collected have neither the precision, nor the degree
of generality, let alone any scientific value comparable to the grammars
designed by linguists13.

Sentences are structured objects; any category of words can be
inserted anywhere in a sentence without changing its structure.
A grammar is not a collection of limited contexts of words and
category.

1.5.2.8. You cannot add apples to oranges

This is a basic principle: you cannot add together (or calculate averages
of) number of objects of different types. Yet this is what is done by most
statistical taggers or automatic learning programs. For example, when a
statistical program parses the two sentences below:

Joe/ProperName writes/Verb. He/Pronoun writes/Verb
a/Determiner novel/Noun.

it will deduce that the verb to write occurs sometimes without a complement
(here: one time out of two), and sometimes with a direct object complement
(here: one time out of two). Now if the same program parses the following
text:

13 For an example of a real French grammar painstakingly created for the construction of an
automatic software translation platform, see [SAL 99].

26 Formalizing Natural Languages

Joe/ProperName is/Aux running/Verb a/Determiner

test/Noun. Lea/ProperName is/Aux running/Verb

in/Preposition the/Determiner woods/Noun.

it will deduce, in the same way, that the verb to run sometimes occurs with a
direct object complement, and sometimes with a prepositional
complement… But this has nothing to do with it! In the first case, we can
say that the verb to write has an optional direct object complement, but in the
second case, it must be said that there are two homographic verbs to run14:
the first is transitive, while the second is intransitive. We cannot simply add
up the number of occurrences of the two verbs to run simply because they
are spelled in the same way, just as we cannot say that the two forms steel
and steal constitute the same linguistic unit just because they are pronounced
in the same way.

We cannot add up the number of occurrences of word forms
that represent distinct elements of the vocabulary.

1.5.2.9. Tagging does not allow for addressing syntactic or semantic
ambiguities

It is easy to construct examples of superficially identical word sequences
that can be tagged correctly only after an overall syntactic analysis of the
sentence, or even after a semantic analysis. A well known example, the form
like, must be tagged “Verb” in the sentence These horse flies like his arrow
and “Preposition” in the sentence This horse flies like his arrow. A simple
examination of the immediate context of the word like, in other words, is not
sufficient to determine whether it is a verb or a preposition. Taggers produce
necessarily unreliable results in every case of ambiguity which only a
syntactic or semantic analysis could solve.

In the general case, word ambiguity cannot be resolved until a
syntactic or semantic analysis has been carried out.

14 Statistical analysis programs are based on an absolute belief in the reliability of spelling.
However, if one day a spelling reform were to decide that the noun a bass (in the sense of a
deep voice) should be spelled a basse to distinguish it from the noun a bass (the fish), it
would change nothing about the structure or meaning of texts, but it would change the
“grammar rules” produced by statistical taggers.

Introduction: the Project 27

1.5.2.10. The scientific approach

Even if the rules automatically produced by a tagger were correct, they
would not have much scientific value; it is a bit like noting that in the work
of Edgar Allan Poe, nouns containing an “a” and an “n” are all followed by a
phrasal verb using particle “in”: this remark has no generality, teaches us
nothing about American literature, the English language, or Edgar Allan Poe
himself, and is quite simply of no scientific interest.

Linguistics seek to understand how a language functions. Therefore even
a “magical” statistical tool that could be used to build spectacular NLP
applications but did not explain anything about the language is of little
interest to us.

1.5.3. Linguistic rather than stochastic analysis

I am wary of the results produced by current stochastic methods in the
field of NLP, especially when they are compared, on a truly level playing
field, to those of linguistic methods.

I find it unfortunate that decision-makers in the NLP domain tend to
favor stochastic methods that do not cause our understanding of language to
advance a single step, to the detriment of projects aimed at building
linguistic resources. Formalizing the lexical, morphological, syntactic, and
distributional properties of the standard English vocabulary would
require the work of a dedicated team, much smaller than the gigantic
groups assigned to the construction of tagged corpora for statistical
NLP applications (statistical tagging or translation). A project like this
would be beneficial for the whole linguistic community and would enable
the development of NLP software with unequalled precision. I hope
this book will show that such a project is not just useful, but feasible as
well.

1.6. Linguistic formalisms: NooJ

To formalize a language, we use mathematical models (referred
to as formalisms). The vital question, posed by [CHO 57], is therefore:
“Which mathematical model do we need in order to describe

28 Formalizing Natural Languages

languages?” Chomsky introduces a hierarchy of increasingly powerful
grammars capable of describing increasingly complex linguistic
phenomena15, and hypothesizes that there is a “universal” formal model that
can be used to describe any human language.

Paradoxically, this original issue has given rise to the creation of
numerous incompatible linguistic formalisms. Today, linguists wishing to
formalize linguistic phenomena can choose from among more than a dozen
formalisms16, including CCG, GPSG, HG, HFST, HPSG, LFG, LIG,
OpenFst, RG, SFG, SFST, TAG, XFST, etc.

Each of these formalisms and their variants has individual strong and
weak points. XFST (or HFST, or SFST) will be of more interest to
morphologists, while GPSG, TAG or LFG are better suited to syntacticians,
and semanticians will often use RG or SFG, while HPSG, as the most
powerful formalism of the group, is typically used by theoreticians and
linguists seeking to describe phenomena at the limit of linguistics, such as
anaphora. Unfortunately, none of these tools makes it possible to describe in
a simple manner the wide variety of linguistic phenomena (often quite
trivial) that come into play when “real” texts are to be analyzed (such as
journalistic texts or novels), and it is not possible to combine them since
their formalisms, their development environments, and IT tools are largely
incompatible17.

The search for a single formalism capable of addressing all types of
linguistic phenomena in all languages does not fall within the parameters of
the project described in this book; our goal is rather to describe the largest
number of linguistic phenomena in their diversity, using the best-suited tools
in order to construct simple descriptions, i.e. those that are the simplest to
develop, understand, accumulate, share, and manage.

15 We will look in detail at the Chomsky-Schützenberger hierarchy in Chapter 5.
16 See the Internet links at the end of this chapter.
17 An exception that proves the rule is the Urdu parser in the ParGram project (based on
LFG) which used XFST as a preprocessing tool to transliterate Urdo or Devanagari characters
and recognize repetitions; see [BÖG 07]. However, the XFST descriptions did not interact
with those of LFG.

Introduction: the Project 29

Figure 1.7. A single tool for formalization: NooJ

It was by abandoning the idea of a universal formalism that I designed the
linguistic platform NooJ18. With NooJ, orthographic variation in Chinese is
not described with the same tools as morphological derivation in Arabic.
Neither is agglutination described with the same tools as inflection, which is
not described in the same way as syntax, etc. NooJ guarantees high
integration of all levels of description thanks to compatible notations and a
unified representation for all linguistic analysis results (the text annotated
structure or TAS, see Chapter 10), enabling different analyzers at different
linguistic levels to communicate with one another. For example, the
following transformation:

Lea donates her blood → Lea is a blood donor

brings various levels of linguistic phenomena into play: it is necessary to
verify that the verb to donate will admit a nominalization (thanks to a lexical
property); we must describe the inflectional rule that produces to donate
from donates, the derivational rule that produces donor from donate, a
distributional constraint to verify that Lea is a human subject and that blood
falls under the category of parts of the body (a person donates his/her heart, a
kidney, etc.), a syntactic rule to verify that Lea is the subject of donates, and
then a restructuration rule to move the noun blood from the role of direct
object complement to the role of complement of the noun donor. No single
formalism could make it possible to describe all these linguistic phenomena
in a simple way.

18 See [SIL 03a]. NooJ is a linguistic development environment that operates on Windows,
Mac OSX, LINUX and Unix, available at no cost at the website www.
noo4nlp.net. An open source environment, it is supported by the European project
METANET-CESAR.

30 Formalizing Natural Languages

Thanks to the suitability (and thus simplicity) of each individual tool used
to describe each level of linguistic phenomenon, it is now possible to
construct, test, accumulate and combine linguistic resources of diverse types,
and this for many languages. Through the integration of all levels of analysis
in the TAS (see Chapter 10), we will see that it becomes possible to carry
out complex analyses of a text by performing a series of different analyses,
each of them quite simple19.

In this book, we will use the NooJ notation to describe linguistic
phenomena in their diversity. Using only one notation will simplify their
understanding, as the reader does not need to master half a dozen different
formalisms to understand how to formalize all types of linguistic
phenomena. NooJ also has the advantage of being very easy to use; one can
learn NooJ in just a few hours, and even become an “expert” after a week of
training20.

It goes without saying that each of the linguistic phenomena mentioned in
this book can be described with one of the formalisms traditionally used in
linguistics; for example, XFST could be used to construct the morphological
parser introduced in Chapter 11, GPSG to construct syntax trees, LFG to
describe agreement constraints such as those shown in Chapter 12, and
HPSG to formalize the transformations discussed in Chapter 13.

1.7. Conclusion and structure of this book

The goal of the project depicted in this chapter is to describe natural
languages very precisely and mathematically, or more specifically, to
formalize the set of sentences that may appear in written texts.

19 NooJ shares several characteristics with other integrated toolboxes such as the General
Architecture for Text Engineering (GATE) and the Stanford Core NLP. It consists of
independent modules applied in cascade (or pipeline) in a bottom-up approach that
communicate via a text annotation structure (the TAS, see Chapter 10). The main differences
between NooJ and these NLP toolboxes are that NooJ is a pure linguistic tool (for instance,
there is no statistical tagger in NooJ) and that all its modules are formalized via descriptive
grammars rather than implemented via software programs. In other words, Nooj follows a
purely descriptive, rather than algorithmic approach.
20 A growing number of NooJ users are not linguists, but rather historians, scholars of
literature, psychologists, and sociologists, who typically use NooJ to extract “interesting”
information from their corpora.

Introduction: the Project 31

Although the number of sentences in a language is infinite, it is
nevertheless possible to describe it, starting by using a finite number of basic
linguistic elements (letters, morphemes, or words), which I will do in Part 1
of this book. Chapter 2 shows how to formalize the alphabet of a language;
Chapter 3 discusses how to delineate its vocabulary; and Chapter 4 shows
how to formalize a vocabulary using electronic dictionaries.

Next we must equip ourselves with mechanisms for describing how those
basic linguistic elements combine to construct higher-level elements (word
forms, phrases or sentences). Part 2 of this book introduces the concepts of
formal language, generative grammar, and machines. I will introduce these
concepts as well as the Chomsky-Schützenberger hierarchy in Chapter 5,
while Chapters 6 to 9 present the four types of languages/grammars/machines.

Part 3 of this book (Chapters 10 to 13) is dedicated to the automatic
linguistic analysis of texts. In Chapter 10, I will introduce the TAS used to
represent, in a unified manner, the results produced by all linguistic analyses.
Chapter 11 is devoted to automatic lexical analysis. Chapter 12 introduces
two types of syntactic analysis: local analysis and structural analysis.
Chapter 13 presents an automatic transformational analyzer, which can be
seen as a linguistic semantic analyzer (that is, providing an analysis of
meaning based solely on language, without real-world knowledge or
inference).

1.8. Exercises

1) Based on the model of the definition of ℕ seen in section 1.1,
characterize the set ॰ that contains all the decimal numbers.

2) Take the sentence: His great uncle was let go on the spot. Describe the
linguistic analyses of this sentence in informal lexical, morphological,
syntactic, and semantic terms.

3) Consider the text: Lea invited Ida for dinner. The graduate student
brought a bottle of wine. How can we figure out to whom the noun graduate
student is referring? Can this calculation be made using linguistic analyses?

4) How can we improve the translation of the first sentence in Figure 1.5,
using only a bilingual dictionary, and without any grammar?

32 Formalizing Natural Languages

5) Construct the dictionary implicitly given in the reference corpus of
Figure 1.6. Compare the content of this dictionary with the content of an
editorial dictionary.

1.9. Internet links

The Wikipedia page for the field of linguistics: en.wikipedia.
org/wiki/Linguistics

The Wikipedia page for Natural Language Processing: en.wikipedia.
org/wiki/Natural_language_processing

An NLP course taught by Dan Jurafsky and Chris Manning, Stanford
University, is available on YouTube atwww.youtube.com/watch?v=
nfoudtpBV68.

The Jeopardy! program of April 11, 2001, which the computer IBM
Watson won in spectacular fashion, has been the subject of numerous
documentaries, for example: www.youtube.com/watch?v=5Gpaf6NaUEw.

To test a few pieces of machine translation software, such
astranslate.google.com, www.systranet.com/translate, www.reverso.net,
www.freetranslation.com, etc. you can enter a short paragraph in English,
translate it into another language, copy and paste the result, and retranslate
that into English.

There are many automatic text-tagging software platforms; see
en.wikipedia.org/wiki/Part-of-speech_tagging. Tagging software requires a
reference corpus, such as Penn Treebank which can be found at
www.cis.upenn.edu/~treebank. Many annotated text corpora can be obtained
from the Linguistic Data Consortium at www.ldc.upenn.edu.

Two integrated toolboxes used for building NLP software applications
(mostly taggers and annotators) are the General Architecture for Text
Engineering (Gate) (gate.ac.uk) and the Stanford CoreNLP: nlp.stanford.edu/
software/corenlp.shtml.

The formalisms traditionally used by linguists are:

– CCG (Combinatory Categorial Grammar): groups.inf.ed.ac.uk/ccg/

Introduction: the Project 33

– HFST (Helsinki Finite-State Transducer): www.ling.helsinki.fi/kielite
knologia/ tutkimus/hfst

– HG (Head Grammar): en.wikipedia.org/wiki/Head_grammar

– HPSG (Head-Driven Phrase Structure Grammar): hpsg.stanford.edu

– LFG (Lexical Functional Grammar): www.essex.ac.uk/linguistics/
external/LFG

– LIG (Linear Indexed Grammar): www.inf.ed.ac.uk/teaching/courses/
inf2a/slides/2011_inf2a_L21_slides.pdf

– OpenFST: www.openfst.org

– RG (Relational Grammar): en.wikipedia.org/wiki/Relational_grammar

– SFST (Stuttgart Finite-State Transducer): code.google.com/p/
cistern/wiki/SFST

– TAG (Tree-adjoining grammar): www.cis.upenn.edu/~xtag/tech-
report/node6.html

– XFST (Xerox Finite-State Tool): www.cis.upenn.edu/~cis639/docs/
xfst.html

The linguistic development environment that will be used to describe all
the linguistic phenomena in this book is NooJ, a free and open-source
software platform made available under GPL license by the European
Community program META-SHARE; see www.nooj4nlp.net.

