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Integrals 

Variational methods are closely connected to integrals. So, before 
starting our variational adventures, let us recall some elements about 
integrals and their numerical evaluation. 

The history of infinite sums is such as integrals may be brought to 
Zeno of Elea’s paradox about the grain of millet. As described by 
Simplicius [FAI 98]: 

Tell me, Protagoras, said he, does one grain of millet 
make a noise when it falls, or does the ten-thousandth 
part of a grain? On receiving the answer that it does not, 
he went on: Does a measure of millet grains make a noise 
when it falls, or not? He answered, it does make a noise. 
Well, said Zeno, does not the statement about the 
measure of millet apply to the one grain and the ten-
thousandth part of a grain? He assented, and Zeno 
continued, Are not the statements as to the noise the same 
in regard to each? For as are the things that make a 
noise, so are the noises. Since this is the case, if the 
measure of millet makes a noise, the one grain and the 
ten-thousandth part of a grain make a noise. 

Here, Zeno considers the problem of the sum of small negligible 
components, what is the principle of the integration of infinitesimal  
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contributions. In these ancient times, the concept of the limit was not 
known, so the notion of infinite sums and the evaluation of areas 
remained unsolved. In fact, many philosophers considered the 
question of limits, such as Antiphon the sophist, who argued that 
continuously doubling the number of sides of a polygon inscribed in a 
circle gives as result a polygon whose sides coincide with the 
circumference and having the same area as the circle [PEN 02]. 
Eudoxus of Cnidus proposed a generalization which led to the 
exhaustion method, which was extensively used for the evaluation of 
areas for about 2 thousand years. Archimedes applied this method to 
the evaluation of surfaces and volumes by considering sums of “lines” 
[BAU 09, BLO 11]. Archimedes’ method was improved by Thabit ibn 
Qurra and inspired Bonaventura Cavalieri and Gilles de Roberval, 
namely the principle of indivisibles. Many researchers enriched the 
works of Cavalieri. For instance, Evangelista Torricelli introduced 
indivisibles having a thickness and Blaise Pascal considered triangular 
and pyramidal sums of indivisibles leading to the evaluation of double 
and triple integrals.  

The differential and integral calculus introduced by Gottfried 
Leibniz and Isaac Newton opened up a new era. Agustin-Louis 
Cauchy introduced the concept of the definite integral and chose the 
notation proposed by Jean-Baptiste Joseph Fourier, which is used 
today. A complete formalization was proposed by Georg Riemann and 
led to the Riemann sums and integrals. 

At this moment, the horizon seemed clear, but clouds appeared 
with the works of Karl Weierstrass and Richard Dedekind, which 
drew attention to fundamental inconsistencies in the theory. Georg 
Cantor, Camille Jordan and the proposition of a new set and measure 
theory furnished a new impulse. Emile Borel, René Baire and Henri 
Lebesgue formed the trinity that constructed a complete formalization 
of the integrals in the new framework and that gave the impression of 
taking away the difficulties raised by their predecessors. 

But the  adventure continues, since one of the most important 
foundations of the actual theory is the axiom of choice, which  
 
 



Integrals     3 

generates a paradox which has not yet been solved: the Banach-Tarski 
paradox, which establishes that a volume cannot be defined for a sphere 
of radius one. Research regarding this paradox will probably lead to 
new developments and evolutions in our understanding of these old 
concepts of areas and volumes, issues that have concerned humanity for 
millennia and whose complete solution eludes our sagacity every time 
we think we are near to their complete understanding. 

1.1. Riemann integrals 

The first formal theory concerning integrals was proposed by 
Riemann and was provoked by his interest in Fourier series. In 1807, 
a paper by Siméon-Denis Poisson [POI 08] mentioned that Joseph 
Fourier had proposed the representation of some functions by 
trigonometric series. The ideas of Fourier immediately aroused 
controversy. Much of the criticism was related to formal aspects. In 
his book Théorie analytique de la chaleur [FOU 22], Fourier made the 
following comment about trigonometric series: 

One could doubt that there existed such a function, but 
this issue will be clarified later. 

In fact, as often in the history of science, the explanation furnished 
by Fourier was not complete and has raised fundamental questions, 
namely what are the functions that may be represented by a 
trigonometric series and the evaluation of integrals for the 
determination of the coefficients? Integrals were introduced by Isaac 
Newton and Gottfried Leibniz in the 17th Century, but their theory 
was the subject of discussion years before acceptation by the scientific 
community.  About one century after, integrals were being taught  in 
university courses, such as, for instance, those that Augustin-Louis 
Cauchy presented [CAU 23, CAU 29], but the formal theory waited 
for the works of Georg Friedrich Bernard Riemann about the 
questions raised by Fourier, namely his habilitation thesis [RIE 67]. In 
this thesis, Riemann introduced the fundamental elements for the 
definition of an integral. Basically, the evaluation of  
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requires a subdivision of  into a finite number of non-recovering 
subsets, i.e. a partition of :  

  

For instance, when  and , we may consider a 
family of N subintervals  such that 

. For each subinterval , the 
function has a maximum  and a minimum . Thus, we may 
consider the Riemann sums: 

  

which verify  (see Figure 1.1). 

 

Figure 1.1. Riemann sums: partitions of the horizontal axis 
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Adding supplementary points to the partition increases  and 
decreases (Figure 1.1), so that,  has as cluster point an upper 
bound  and  has as cluster point a lower bound , 

. When both these values coincide, we say that their 
common value is  . 

A practical estimation of the value of  is: 

  

i.e. 

  

 

Figure 1.2. Adding supplementary points increases  and decreases  
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In practice, the values of  and  are not determined exactly, but 
are approximated by using the values  and  : 

 [1.1] 

This formula is known as the trapezoidal rule. A simple estimative 
is furnished by the mean value approximation: 

  

For   or  
, we may consider families of intervals associated with each 

component and the Cartesian product of these families. Analogous 
Riemann sums   may be defined in this case. 

1.2. Lebesgue integrals 

Riemann’s theory was quickly challenged by the works of Richard 
Dedekind and Karl Weierstrass. Their work on the foundations of 
function theory led, on the one hand, to the development of set theory 
by Georg Cantor and, on the other hand, to measure theory initiated by 
Giuseppe Peano and Camille Jordan, then formalized by Emile Borel 
and René Baire. Henri Lebesgue adopted the point of view of measure 
theory in order to redefine integrals. The theory initiated by Lebesgue 
is not yet the end of integration theory, since measure theory produces 
sets that are not measurable (for instance, Vitali sets, presented in the 
pamphlet [VIT 05]) and, as a consequence, functions that are not 
measurable.  These elements result straight from the axiom of choice 
(see, for instance, [SOU 10]) and lead to fundamental difficulties, 
from those presented Felix Hausdorff [HAU 14], and Stefan Banach 
and Alfred Tarski [BAN 24]. These difficulties have not been solved 
to date and promise interesting developments in the future. 

The numerical evaluation of the Lebesgue integral 
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requires more information than the evaluation of a Riemann integral; 
we need a partition  of  and a partition  

of the image . 

For instance, let us consider the situation where both  and  
are intervals. We define  by taking points

, where and 
. In practice,  and  may be 

approximations of these values satisfying where  
  and . 

Let us denote by   the Lebesgue measure, given by:  

, 
, … 

and 

  

 

Figure 1.3. Lebesgue’s approach to integration:   
partition of the vertical axis 
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We have: 

  

Let us introduce:  

  

Then 

  

and  

  

  

Thus, 

   

where the integral in this formula is a Riemann integral.  So,  

 [1.2] 

Analogously,  

  

Thus, we have 

  

and  

 [1.3] 
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Equations [1.2] and [1.3] show that:  

1

1

1 inf 1 1 inf 1 inf .
My

M M
y

I y y y y y dy  [1.4] 

Notice that, if   and  
,  then , while   

and we have: 

  

Let 

   

Then, 

   

and 

 
  

Thus, 

   

where the integral in this formula is a Riemann one.  So,  

 [1.5] 

Analogously,  
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so that 

 
  

Thus, we have:  

  

and  

[1.6] 

Equations [1.5] and [1.6] show that:  

1

1

1 sup 1 1 sup 1 sup .
My

M M
y

I y y y y y dy  [1.7] 

Notice that, if   and  
,  then , while   and we have: 

  

1.3. Matlab® classes for a Riemann integral by trapezoidal 
integration 

The one-dimensional (1D) trapezoidal rule is implemented in 
Matlab® in the intrinsic function trapz and may be extended to 
multidimensional situations. Assume that the structure p has fields 
p.x, p.y, p.z corresponding to the coordinates of the points 

 of the partitions of the intervals and p.dim corresponding to 
the dimension, while table F contains the values of  - , or 

, or , according to the dimension 
of the integral. Let us summarize the data in a structure data such  
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that data.points = p and data.values = F. Then we may 
use the class below (Program 1.1). 

classdef riemann 

    methods (Static, Access = private) 

        function v = trapz2(x1,x2,F) 

            sy = zeros(size(x1)); 

            for i = 1: length(sy) 

                sy(i) = trapz(x2,F(i,:)); 

            end; 

            v = trapz(x1,sy); 

        end 

        function v = trapz3(x1,x2,x3,F) 

            sz = zeros(length(x1),length(x2)); 

            for i = 1: length(x1) 

                for j = 1: length(x2) 

                    sz(i,j) = trapz(x3,F(i,j,:)); 

                end; 

            end; 

            sy = zeros(size(x1)); 

            for i = 1: length(x1) 

                sy(i) = trapz(x2,sz(i,:)); 

            end; 

            v = trapz(x1,sy); 

        end 

    end 

    methods(Static) 

        function v = trpzd(data)  

            p = data.points; 

            F = data.values; 

            n = p.dim; 

            switch n 

                case 1 

                    v = trapz(p.x,F); 

                case 2 

                    v = riemann.trapz2(p.x,p.y,F); 

                case 3 

                    v = riemann.trapz3(p.x,p.y,p. 

z,F); 
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                otherwise 

                    v = []; 

                    disp('error in arguments for 

trpzd'); 

            end 

        end  

        function v = mean_value(data)  

            p = data.points; 

            F = data.values; 

            n = p.dim; 

            switch n 

                case 1 

                    v = mean(F)*p.measure; 

                case 2 

                    v = mean(mean(F))*p.measure; 

                case 3 

                    v = 

mean(mean(mean(F)))*p.measure; 

                otherwise 

                    v = []; 

                    disp('error in arguments for 

mean value'); 

                end 

        end 

    end 

end 

Program 1.1. A class for the evaluation of Riemann integrals 

This class contains only trapezoidal and mean value integration 
methods, but it can be enriched by the user with other methods of 
numerical integration.   

EXAMPLE 1.1.– Let us evaluate:  

  

by using the points x=0:0.01:1; and y=0:0.01:2;. 
Assuming that F(i,j)=x(i)^2+y(j)^2;, the code: 
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p.x = x; 
p.y = y; 
p.dim  = 2; 
p.measure = 2; 
data.points = p; 
data.values = F; 
v1 = riemann.trpzd(data) 
v2 = riemann.mean_value(data) 

produces v1 = 3.3334, v2 = 3.3433.  The exact value is 
.   

EXAMPLE 1.2.– Let us evaluate:   

  

by using the points  x=0:0.01:1;,y=0:0.01:2;, z=0:0. 
01:3. Assuming that F(i,j,k)=x(i)^2+y(j)^2+z(k)^2, the 
code: 

p.x = x; 

p.y = y; 

p.z = z; 

p.dim  = 3; 

p.measure = 6; 

data.points = p; 

data.values = F3; 

v1 = riemann.trpzd(F3,p) 

v2 = riemann.mean_value(F3,p) 

produces v1 = 28.0003, v2 = 28.0600.  The exact value 
is .   

The creation of the tables F from a subprogram f evaluating a 
function is made by the following class: 
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classdef spam 

    properties 

    end 

    methods (Static, Access = private) 

        function v = vspam1(x,f) 

            v = zeros(size(x)); 

            for i = 1: length(x) 

                v(i) = f(x(i)); 

            end; 

        end 

        function v = vspam2(x,y,f) 

            v = zeros(length(x),length(y)); 

            for i = 1: length(x) 

                for j = 1: length(y) 

                    v(i,j) = f(x(i),y(j)); 

                end; 

            end; 

        end 

        function v = vspam3(x,y,z,f) 

            v = zeros(length(x),length(y),length(z)); 

            for i = 1: length(x) 

                for j = 1: length(y) 

                    for k = 1: length(z) 

                        v(i,j,k) = f(x(i),y(j),z(k)); 

                    end; 

                end; 

            end; 

        end 

        function v = tspam1(x,f) 

            v = zeros(size(x)); 

            for i = 1: length(x) 

                v(i) = f(x(i)); 

            end; 

        end 

        function v = tspam2(x,y,f) 

            v = zeros(size(x)); 

            for i = 1: size(x,1) 

                for j = 1: size(x,2) 

                    v(i,j) = f(x(i,j),y(i,j)); 

                end; 

            end;
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        end 

        function v = tspam3(x,y,z,f) 

            v = zeros(size(x)); 

            for i = 1: size(x,1) 

                for j = 1: size(x,2) 

                    for k = 1: size(x,3) 

                        v(i,j,k) = 

f(x(i,j,k),y(i,j,k),z(i,j,k)); 

                    end; 

                end; 

            end; 

        end 

    end 

    methods (Static) 

        function v = points(method,f,x,y,z) 

            n = nargin() - 2; 

            if isnumeric(f) 

                ff = @(x) f; 

            else 

                ff = f; 

            end; 

            switch method 

                case 'vector' 

                    switch n 

                        case 1 

                            v = spam.vspam1(x,ff); 

                        case 2 

                            fr = @(x,y) ff([x, y]); 

                            v = spam.vspam2(x,y,fr); 

                        case 3 

                            fr = @(x,y,z) ff([x, y, z]); 

                            v = spam.vspam3(x,y,z,fr); 

                    end; 

                case 'table' 

                    switch n 

                        case 1 

                            v = spam.tspam1(x,ff); 

                        case 2 

                            fr = @(x,y) ff([x, y]); 

                            v = spam.tspam2(x,y,fr); 
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                        case 3 

                            fr = @(x,y,z) ff([x, y, z]); 

                            v = spam.tspam3(x,y,z,fr); 

                    end; 

                otherwise 

                    v = []; 

                    disp('invalid method for 

spam.points'); 

            end 

        end 

        function v = partition(f,p) 

            n = p.dim; 

            switch n 

                case 1 

                    v = spam.points('vector',f,p.x); 

                case 2 

                    v = spam.points('vector',f,p.x,p.y); 

                case 3 

                    v = spam.points('vector',f,p.x, 

p.y,p.z); 

                otherwise 

                    v = []; 

            disp('invalid partition dim for 

spam.partition'); 

            end; 

        end 

    end 

end

Program 1.2. A class for the creation of the tables F 

This class generates a table of values  , , 
, , or , 

according to the data furnished. Data is stored in the structure p: 
p.dim is the dimension, p.x, p.y, p.z are the coordinates. 
Method takes the value “vector” or “array” according to the 
dimensions of  p.x, p.y, p.z. For instance, the code: 
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x = 0:0.1:1; 
y = 0:0.1:2; 
f = @(x) sum(x.^2); 
p.x = x; 
p.y = y; 
p.dim  = 2; 
[X,Y] = meshgrid(x,y); 
xx = permute(X,[2 1]); 
yy = permute(Y,[2 1]); 
F1 = spam.partition(f,p); 
F2 = spam.points('table',f,xx,yy); 
v = sqrt(sum(sum((F1-F2).^2))); 

produces as result v=0. Both the tables F1 and F2 coincide, but F1 is 
generated by using vectors x and y, while F2 is generated using two-
dimensional (2D) arrays. Adding the lines: 

z = 0:0.1:3; 
p.z = z; 
p.dim = 3; 
[X,Y,Z] = meshgrid(x,y,z); 
xx =  permute(X,[2 1 3]); 
yy  =  permute(Y,[2 1 3]); 
zz =  permute(Z,[2 1 3]); 
F1 = spam.partition(f,p); 
F2 = spam.points('table',f,xx,yy,zz); 
v3 = sqrt(sum(sum(sum((F1-F2).^2)))); 

produces as result v3=0: the resulting arrays are equal. Here, F1 is 
generated by using vectors x, y and z, while F2 is generated using 
three-dimensional (3D) arrays. 

Notice that the class Riemann requests data in the vector form. 
The extension to data defined in the array form will be useful for 
integration using the intrinsic functions of Matlab (see section 1.6). 

1.4. Matlab® classes for Lebesgue’s integral 

Equations [1.4] and [1.7] provide a practical method for the 
evaluation of : the Lebesgue integral is replaced by a Riemann  



18     Variational Methods for Engineers with Matlab® 

one, which may be numerically evaluated by quadrature methods 
using the values  (when using equation  
[1.4]) or  (when using equation [1.7]). The 
construction of the values of   or  is performed by using the 
subdivision of : for each i, the measure of the part of  belonging 
to  (respectively,  ) is estimated and added to  
(respectively, ). For instance, we may use the following class: 

classdef lebesgue 

    methods  (Static, Access = private) 

        function v =  hexainds(i,j,k) 

            v = [ 

                i j k 

                i+1 j k 

                i+1 j+1 k 

                i j+1 k 

                i j k+1 

                i+1 j k+1 

                i+1 j+1 k+1 

                i j+1 k+1 

                ]; 

        end 

        function v = quadinds(i,j) 

            v = [ 

                i j 

                i+1 j 

                i+1 j+1 

                i j+1 

                ]; 

        end 

        function [m, flag] = inf1(y,x,yt) 

            y2 = max(y); 

            y1 = min(y); 

            dx = x(2) - x(1); 

            flag = 1; 

            if yt < y1 

                m = 0; 

                flag = 0; 

            elseif yt >= y2 

                m = dx;
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            else 

                if y1 == -Inf 

                    m = 0.5*dx; 

                elseif y2 == Inf 

                    m = 0.5*dx; 

                else 

                    slope = (y2- y1)/dx; 

                    m = (yt - y1)/slope; 

                end; 

            end; 

        end 

        function [m, flag] = sup1(y,x,yt) 

            y2 = max(y); 

            y1 = min(y); 

            dx = x(2) - x(1); 

            flag = 1; 

            if yt > y2 

                m = 0; 

                flag = 0; 

            elseif yt <= y1 

                m = dx; 

            else 

                if y1 == -Inf 

                    m = 0.5*dx; 

                elseif y2 == Inf 

                    m = 0.5*dx; 

                else 

                    slope = (y2- y1)/dx; 

                    m = (y2 - yt)/slope; 

                end; 

            end; 

        end 

        function [m, flag]  = m2(y,x,yt,m1) 

            s = zeros(4,1); 

            flg = zeros(4,1); 

            [s(1),flg(1)] = m1(y(1:2),[0,1],yt); 

            [s(2),flg(2)] = m1(y(2:3),[0,1],yt); 

            [s(3),flg(3)] = m1(y(3:4),[0,1],yt); 

            [s(4),flg(41)] = m1([y(1),y(4)],[0,1],yt); 

            ta = x(2,:) - x(1,:); 

            tb = x(4,:) - x(1,:);
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            m = mean(s)*norm(ta)*norm(tb); 

            flag = max(flg); 

        end 

        function [m,flag] = m3(y,x,yt,m1) 

            s = zeros(6,1); 

            flg = zeros(6,1); 

            ind = [ 

                1 2 3 4 

                2 3 7 6 

                3 4 8 7 

                1 4 8 5 

                1 2 6 5 

                5 6 7 8 

                ]; 

            for i = 1: 6 

[s(i),flg(i)] = lebesgue.m2(y(ind(i,:)),[0 0; 0 1; 1 

1; 1 0],yt,m1); 

            end; 

            ta = x(2,:) - x(1,:); 

            tb = x(3,:) - x(2,:); 

            tc = x(5,:) - x(1,:); 

            m = mean(s)*norm(ta)*norm(tb)*norm(tc); 

            flag = max(flg); 

        end 

        function [m, flag] = inf_el(y,x,yt,dim) 

            switch dim 

                case 1 

                    [m, flag] =  lebesgue.inf1(y,x,yt); 

                case 2 

                    [m, flag] = lebesgue.m2(y,x,yt, 

 @lebesgue.inf1); 

                case 3 

                    [m, flag] = lebesgue.m3(y,x,yt, 

 @lebesgue.inf1); 

            end 

        end 

        function [m, flag] = sup_el(y,x,yt,dim) 

            switch dim 

                case 1 

                    [m, flag] = lebesgue.sup1(y,x,yt); 
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                case 2 

                    [m, flag] = lebesgue.m2(y,x,yt, 

@lebesgue.sup1); 

                case 3 

                    [m, flag] = lebesgue.m3(y,x,yt, 

@lebesgue.sup1); 

            end 

        end 

        function mu = msre(mes,y,data,pas,hw) 

            p = data.points; 

            f = data.values; 

            n = p.dim; 

            ny = length(y); 

            mu = zeros(ny,1); 

            switch n 

                case 1 

                    x1 = p.x; 

                    n1 = length(x1); 

                    for i =  1:  n1 - 1 

                        xe = [x1(i) , x1(i+1)]; 

                        ye = [f(i) , f(i+1)]; 

                        flag = 1; 

                        if pas > 0 

                            ind = 1; 

                        else 

                            ind = ny; 

                        end; 

  while flag > 0 && ((ind > 1 && pas < 0)  || (ind < 

ny && pas > 0)) 

                            [m, flag] = 

mes(ye,xe,y(ind),n); 

                            mu(ind) = mu(ind) +  m; 

                            ind = ind + pas; 

                        end; 

                        wx = i/n1; 

         text = [sprintf(' %4.1f ',fix(1000*wx)/10),' 

% generated']; 

                        if pas > 0 

                            waitbar(wx,hw,['\mu_{sup} 

:',text]); 

                        else
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                            waitbar(wx,hw,['\mu_{inf} 

:',text]); 

                        end; 

                    end; 

                    close(hw) 

                case 2 

                    x1 = p.x; 

                    x2 = p.y; 

                    n1 = length(x1); 

                    n2 = length(x2); 

                    nt = n1*n2; 

                    for i =  1:  n1 - 1 

                        for j = 1: n2 - 1 

                            ind = lebesgue.quadinds 

(i,j); 

                            xe = [ x1(ind(:,1))'  

x2(ind(:,2))']; 

                            ye = zeros(4,1); 

                            for ii =  1:  4 

                                ye(ii) = f(ind(ii,1), 

ind(ii,2)); 

                            end; 

                            flag = 1; 

                            if pas > 0 

                                ind = 1; 

                            else 

                                ind = ny; 

                            end; 

   while flag > 0 && ((ind > 1 && pas < 0) || (ind < 

ny && pas > 0)) 

                                [m, flag] = mes(ye,xe, 

y(ind),n); 

                                mu(ind) = mu(ind) +  

m; 

                                ind = ind + pas; 

                            end; 

                            wx = (j + (i-1)*n2)/nt; 

        text = [sprintf(' %4.1f ',fix(1000*wx)/10),' % 

generated']; 

                            if pas > 0 
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                                waitbar(wx,hw, 

['\mu_{sup} :',text]); 

                            else 

                                waitbar(wx,hw, 

['\mu_{inf} :',text]); 

                            end; 

                        end; 

                    end; 

                    close(hw) 

                case 3 

                    x1 = p.x; 

                    x2 = p.y; 

                    x3 = p.z; 

                    n1 = length(x1); 

                    n2 = length(x2); 

                    n3 = length(x3); 

                    nt = n1*n2*n3; 

                    for i =  1:  n1 - 1 

                        for j = 1: n2 - 1 

                            for k = 1:n3 - 1 
                                ind = 
lebesgue.hexainds(i,j,k); 
                xe = [ x1(ind(:,1))'  x2(ind(:,2))' 
x3(ind(:,3))']; 
                                ye = zeros(8,1); 
                                for ii =  1:  8 
                 ye(ii) = f(ind(ii,1), ind(ii,2), 
ind(ii,3)); 
                                end; 
                                flag = 1; 
                                if pas > 0 
                                    ind = 1; 
                                else 
                                    ind = ny; 
                                end; 
   while flag > 0 && ((ind > 1 && pas < 0) || (ind < 
ny && pas > 0)) 
                                    [m, flag] = 
mes(ye,xe,y(ind),n); 
                                    mu(ind) = mu(ind) 
+  m; 

                                    ind = ind + pas;
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                                end; 

                wx = (k + (j-1)*n3 + (i-1)*n2*n3)/nt; 

        text = [sprintf(' %4.1f ',fix(1000*wx)/10),' % 

generated']; 

                                if pas > 0 

                                waitbar(wx,hw, 

['\mu_{sup} :',text]); 

                                else 

                                waitbar(wx,hw, 

['\mu_{inf} :',text]); 

                                end; 

                            end; 

                        end; 

                    end; 

                    close(hw) 

                otherwise 

                    mu = []; 

                    disp('error in args for measure'); 

                    close(hw) 

            end 

        end 

        function mu = mesinf(y,data,hw) 

            if nargin() < 3 

 hw = waitbar(0,'0 % generated','Name','Lebesgue inf 

measure'); 

            end; 

            mu = lebesgue.msre(@lebesgue.inf_el, 

            y,data,-1,hw); 

        end 

        function mu = messup(y,data,hw) 

            if nargin() < 3 

 hw = waitbar(0,'0 % generated','Name','Lebesgue sup 

measure'); 

            end; 

            mu = lebesgue.msre(@lebesgue.sup_el, 

y,data,1,hw); 

        end 

        function v = intinf(y,data,interpmet,hw) 

            if nargin() < 4 

hw = waitbar(0,'0 % generated','Name','intinf: 

Lebesgue inf meas');
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            end 

            mu1 = lebesgue.mesinf(y,data,hw); 

            ff = @(t) interp1(y,mu1,t,interpmet);  

     v = y(end)*mu1(end) - y(1)*mu1(1) - 

integral(ff,y(1),y(end)); 

        end 

        function v = intsup(y,data,interpmet,hw) 

            if nargin() < 4 

hw = waitbar(0,'0 % generated','Name','intsup: 

Lebesgue sup meas'); 

            end 

            mu2 = lebesgue.messup(y,data,hw); 

            ff = @(t) interp1(y,mu2,t,interpmet);  

   v = y(1)*mu2(1) - y(end)*mu2(end) + 

integral(ff,y(1),y(end)); 

        end 

    end 

    methods (Static) 

        function mu1 = measure_inf(y,data,interpmet) 

            aux = lebesgue.mesinf(y,data); 

            mu1 = @(t) interp1(y,aux,t,interpmet);  

        end 

        function mu2 = measure_sup(y,data,interpmet) 

            aux = lebesgue.messup(y,data); 

            mu2 = @(t) interp1(y,aux,t,interpmet);  

        end 

        function v = integrate(y,data, metod, 

 interpmet) 

            switch metod 

                case 'inferior' 

                    switch interpmet 

                        case 'none' 

                            mu1 = lebesgue.mesinf 

 (y,data); 

                            v = trapz(y,mu1); 

                        otherwise 

                            v = 

lebesgue.intinf(y,data,interpmet); 

                    end 

                case 'superior' 

                    switch interpmet
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                        case 'none' 

                            mu2 = lebesgue.messup 

(y,data); 

                            v = trapz(y,mu2); 

                        otherwise 

                            v = 

lebesgue.intsup(y,data,interpmet); 

                    end 

                case 'mean' 

                    switch interpmet 

                        case 'none' 

                            mu1 = 

lebesgue.mesinf(y,data); 

                            aux1 = trapz(y,mu1); 

                            mu2 = 

lebesgue.messup(y,data); 

                            aux2 = trapz(y,mu2); 

                        otherwise 

hw = waitbar(0,'0 % generated','Name','intmean: 

Lebesgue inf meas'); 

                      aux1 = 

lebesgue.intinf(y,data,interpmet,hw); 

hw = waitbar(0,'0 % generated','Name','intmean: 

Lebesgue sup meas'); 

                      aux2 = 

lebesgue.intsup(y,data,interpmet,hw); 

                    end 

                    v = 0.5*(aux1+aux2); 

                otherwise 

                    v = []; 

                    disp('error in args for 

integral'); 

            end 

        end 

    end 

end

Program 1.3. A class for the evaluation of Lebesgue integrals 

At a glance, we see that this class is more complex than the class 
Riemann.  This is due to the fact that two partitions are requested and 
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must be treated.  Methods inf_el and sup_el determine the part 
of which belongs to   and , 
respectively. These subprograms return approximations of the 
Lebesgue measure of the part of  lying in the region of 
interest (  for mes_inf or  for mes_sup). The 
special cases where either  or  are treated by  
considering that a half of the interval  belongs to the region of 
interest – this choice is arbitrary and may be modified by the user. For 
the standard situation where both  and  are real numbers, a linear 
interpolation determines the part of the interval belonging to the 
region of interest – this choice may also be modified by the user. 
When using this class, the evaluation of the integral involves the 
choices, on the one hand, the choice of the evaluation points (vector 
y) and, on the other hand, the choice among the use of (equation 
[1.4]), of  (equation [1.7]) or the arithmetic mean of these results. 
In addition, it is possible to reduce the time of computation by 
evaluating these measures in a limited number of points and using the 
interpolation function interp1 for the evaluation of the integral. 
The functions ,  are evaluated, respectively, by the methods  
measure inf and measure_sup, both returning a function 
generated by interpolation of the evaluated values, using interp1 
and the interpolation method interpmet. 

EXAMPLE 1.3.–  Let us consider  and . Then, 

 

For , , , , 
, the code:  

hx = (b-a)/N; 
x = a + hx*(0:N); 
f = x.^2; 
p.x = x; 
p.dim = 1; 
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data.points = p; 
data.values = f; 
mu1 = lebesgue.measure_inf(y,data,'linear'); 
mu2 = lebesgue.measure_sup(y,data,'linear'); 

furnishes 

 

Figure 1.4. Lebesgue measure obtained in example 1.3 

The code: 

I1 = lebesgue.integrate(y,data,'inferior', 
'linear'); 
I2 = lebesgue.integrate(y,data,'superior', 
'linear'); 
I3 = lebesgue.integrate(y,data,'mean','linear') 

furnishes I1 = 0.66746, I2 = 0.66746 and I3 = 
0.66746. The exact value is 2/3  0.66667. These results 
may be improved by refining the partitions, namely on the vertical 
axis. For instance, ,  lead to I1 = 0.66677, 
I2 = 0.66677 and I3 = 0.66677.   
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When regular functions are considered – this is the case in example 
1.3 – Lebesgue’s approach is not the more efficient one.  For instance, 
Riemann’s approach furnishes more precise results. However, for 
functions having discontinuity points, Lebesgue’s approach may be 
interesting (see examples below). 

EXAMPLE 1.4.–  Let us consider  and . Then, 

 

Using M = 256, , ,  N = 4096, we obtain  
I1 = 2.7905, I2 = 2.7906, I3 = 2.7906, while the 
trapezoidal rule trapz(x,f) returns the value Inf.  The exact 
value is 2*sqrt(2)  2.8284. For M = 1024, N = 4096, we 
have I1 = I2 = I3 = 2.7959 and trapz (x,f)returns the 
value Inf. The measures  and  are in Figure 1.5.       

 

Figure 1.5. Results for example 1.4 

 

calculated
exact

0 50 100

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

calculated
exact

0.2

0

2

 

0 50 100

0.4 

0.6 
0.8 

1 
1.2

1.4

1.6

1.8

0.2 
0 

2



30     Variational Methods for Engineers with Matlab® 

EXAMPLE 1.5.– Let us consider  and 
. Then, 

  

  

In this case, when using N = 1024,  , ,   
M = 256, we obtain I1 = I2 = I3  =-10.121, while 
trapz(x,f) returns the value-Inf. For N = 4096,  , 

,  M = 1024, the values are I1 = -14.3736, I2 =  
-14.3733, I3 = -14.3735 and  trapz(x,f) returns the 
value-Inf.  The measures  and  are in Figure 1.6.        

 

Figure 1.6. Lebesgue measure in example 1.5 
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EXAMPLE 1.6.– Let us consider and 
. Then, 

  

In this case, using N = 1024, , ,  M = 256, 
we obtain I1= I2 = I3 =0.0097659 and trapz(x,f) 
returns the value 0.0098.  The exact value is 0. The measures  
and  are given in Figure 1.7.                                          

 

Figure 1.7. Results for Lebesgue measure in example 1.6 

One of the interesting features of Lebesgue integrals is the fact that 
multidimensional integration reduces to 1D integration: indeed, only 
the evaluation of  involves multidimensional calculations. 
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Once these quantities are obtained, equation [1.4] or equation [1.7] is 
used in order to evaluate the integral – only 1D integration is involved 
in this calculation. Examples are given below. 

EXAMPLE 1.7.– Let us evaluate:  

   

by using the points  x=0:step:1; and y=0:step:2; with  
step = 0.01. Assuming that F(i,j)=x(i)^2+y(j)^2, the 
code: 

p.x = x; 
p.y = y; 
p.dim  = 2; 
yleb = 0:0.1:5; 
data.points = p; 
data.values = F; 
I1 = lebesgue.integrate(yleb,data,'inferior','linear'); 

I2 = lebesgue.integrate(yleb,data,'superior','linear'); 

I3 = lebesgue.integrate(yleb,data,'mean','linear') 

produces I1=I2=I3=3.3334.  The exact value is .   

EXAMPLE 1.8.– Let us evaluate:   

  

by using the points  x=0:step:1;,y=0:step:2;, 
z=0:step:3;, with step = 0.05. Assuming that 
F(i,j,k)=x(i)^2+y(j)^2+z(k)^2, the code: 

p.x = x; 
p.y = y; 
p.z = z; 
p.dim  = 3; 
yleb = 0:0.2:14; 
data.points = p; 
data.values = F; 
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I1 = lebesgue.integrate(yleb,data,'inferior','linear'); 

I2 = lebesgue.integrate(yleb,data,'superior','linear'); 

I3 = lebesgue.integrate(yleb,data,'mean','linear') 

produces I1=I2=I3=28.0094. 

Using as interpolation method 'cubic' (or 'pchip', for newer 
versions of Matlab®) produces the result 28.0090. The exact value is 
28.                      

1.5. Matlab® classes for evaluation of the integrals when  
is defined by a subprogram 

Let us assume that the values of  are furnished by a 
subprogram f.m which receives as argument a vector x and returns a 
value f (x).  

The internal functions for numerical integration are given in  
Table 1.1. Notice that ay,by,az, bz are function handles, i.e. 
anonymous functions or subprograms evaluating functions.  

In order to use these intrinsic functions of Matlab®, we must 
transform f. Indeed, the intrinsic functions of Matlab® assume as 
arguments (x,y) or (x,y,z) and not a vector x.  Moreover, they 
assume that the functions may receive multidimensional arrays of data 
and return a corresponding array of results. The adaptation is made by 
the subprograms of class spam. For instance, we may use the class 
given in program 1.4. 

Intrinsic function evaluates 

integral(f,a,b) or 

quadgk(f,a,b) 

integral2(f,ax,bx,ay,by) or 

quad2d(f,ax,bx,ay,by) 

integral3(f,ax,bx,ay,by,az,bz) 

Table 1.1. Intrinsic functions for the evaluation of integrals 
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classdef subprogram_integration  

    properties 

        limits 

        integrand 

    end 

    properties(Dependent) 

        result 

    end 

    % 

    methods 

        function obj = subprogram_integration(f,xlim) 

            if isnumeric(f) 

                f = @(x) f; 

            end; 

            obj.integrand = f; 

            obj.limits = xlim; 

        end 

        function v = get.result(obj) 

            f = obj.integrand; 

            xlim = obj.limits; 

            a = xlim.lower; 

            b = xlim.upper; 

            n = xlim.dim; 

            switch n 

                case 1 

                    fs = @(x) spam.points('table', 

f,x); 

                    v = integral(fs,a.x,b.x); 

                case 2 

                    fs = @(x,y) spam.points('table', 

f,x,y); 

                    if isnumeric(a.y) 

                        a.y = @(x) a.y; 

                    end; 

                    ymin = @(x) spam.points('table', 

a.y,x); 

                    if isnumeric(b.y) 

                        b.y = @(x) b.y; 

                    end; 

                    ymax = @(x) spam.points('table', 

b.y,x); 
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                    v = integral2(fs,a.x,b.x, 

ymin,ymax); 

                    %   or quad2d(fs,a.x,b.x, 

ymin,ymax); 

                    %   or dblquad(fs,a.x,b.x, 

a.y,b.y); 

                case 3 

                    fs = @(x,y,z) spam.points('table', 

f,x,y,z); 

                    if isnumeric(a.y) 

a.y = @(x) a.y; 

                    end; 

                    ymin = @(x) spam.points('table', 

a.y,x); 

                    if isnumeric(b.y) 

b.y = @(x) b.y; 

                    end; 

                    ymax = @(x) spam.points('table', 

b.y,x); 

                    if isnumeric(a.z) 

                        a.z = @(x) a.z; 

                    end; 

                    zmin = @(x,y) spam.points('table', 

a.z,x,y); 

                    if isnumeric(b.z) 

                        b.z = @(x) b.z; 

                    end; 

                    zmax = @(x,y) 

spam.points('table',b.z,x,y); 

                    v = 

integral3(fs,a.x,b.x,ymin,ymax,zmin,zmax); 

                    %  or 

triplequad(fs,a.x,b.x,a.y,b.y,a.z,b.z); 

            end; 

        end 

    end 

end 

Program 1.4. A class for the integration of functions  
defined by subprograms 
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In this program, limits (or xlim) is a data structure with the 
properties dim, lower, upper, which define dimension, lower 
and upper bounds for the integral, respectively.  

EXAMPLE 1.9.– Let us consider the integration of: 

 

In this case, 

xlim.lower.x = 0; 
xlim.lower.y = 0; 
xlim.upper.x = 1; 
xlim.upper.y = @(x) x; 
xlim.dim = 2; 
f = @(x) x(1)*exp(-x(2)); 
sp = subprogram_integration(f,xlim); 
v = sp.result 

Program 1.5. An example of evaluation 

This program produces v = 0.2358.  The exact value is  
 .                         

EXAMPLE 1.10.– Let us consider the evaluation of the volume of a 
sphere. The code: 

xlim.lower.x = -1; 
xlim.lower.y = @(x) -sqrt(1- x(1)^2); 
xlim.lower.z = @(x) -sqrt(1- x(1)^2  -x(2)^2); 
xlim.upper.x = 1; 
xlim.upper.y = @(x) sqrt(1- x(1)^2); 
xlim.upper.z = @(x,y) sqrt(1- x(1)^2  - x(2)^2); 
xlim.dim = 3; 
f = 1; 
sp = subprogram_integration(f,xlim); 
v = sp.result 

Program 1.6. Evaluation of a 3D  integral 

produces the result v = 4.1888. The exact result is . 
But the code:  
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xlim.lower.x = -1; 
xlim.lower.y = -1; 
xlim.lower.z = -1; 
xlim.upper.x = 1; 
xlim.upper.y = 1; 
xlim.upper.z = 1; 
xlim.dim = 3; 
f = @(x) 1*(sum(x.^2)<1); 
sp = subprogram_integration(f,xlim); 
v = sp.result 

Program 1.7. Evaluation of a 3d integral with a discontinuous function 

produces an unsuccessful run: the result is v = NaN.  

The intrinsic functions for older versions of Matlab® are given in  
Table 1.2. triplequad adapts to the same use as integral3 by  
considering a box containing the region of integration and extending 
the integrand by zero outside the region of integration.  

Notice that both dblquad and triplequad  assume that f 
accepts as input a vector x and scalars y and z and returns a vector 
of results, so that the preceding functions spam2 and spam3 have to 
be modified in order to satisfy these requirements. 

Intrinsic function evaluates 

quad(f,a,b) orquadgk(f,a,b)  

quad2d(f,ax,bx,ay,by)  

dblquad(f,ax,bx,ay,by)  

triplequad(f,ax,bx,ay,by,az,bz)  

Table 1.2. Intrinsic function for older versions of Matlab®0 
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1.6. Matlab® classes for partitions including the evaluation 
of the integrals 

Partitions may be assimilated to finite element meshes. For 
instance, in Matlab®, we may define classes having convenient 
properties and methods. For the situation where , an 
example of such a class is given in program 1.8. Notice that the class 
includes a method for integration (it assumes finite values for all the 
elements of F). 

classdef interval_partition  

    properties 

        x 

    end 

    properties(Constant) 

        dim = 1 

    end 

    properties(Dependent) 

        min 

        max 

        number_points 

        number_intervals 

        measure 

    end 

    methods 

        function obj = interval_partition(points) 

            obj.x = points; 

        end 

      function v = 

integration(obj,method,F,np,metod,interpmetod)  

            data.points = obj; 

            data.values = F; 

            switch method 

                case 'riemann' 

                    v = riemann.trpzd(data);  

                case 'mean' 

                    v = riemann.mean_value(data); 

                case 'lebesgue' 

                    m1 = min(F); 

                    m2 = max(F); 

                    pas = (m2 - m1)/np;
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                    y = m1:pas:m2; 

             v = lebesgue.integrate(y,data,metod, 

interpmetod); 

            end 

        end 

        function obj = set.x(obj,coordinates) 

            xx = sort(coordinates); 

            obj.x = xx; 

        end 

        function v = get.min(obj) 

            v = min(obj.x); 

        end 

        function v = get.max(obj) 

            v = max(obj.x); 

        end 

        function v = get.number_points(obj) 

            v = length(obj.x); 

        end 

        function v = get.number_intervals(obj) 

            v = length(obj.x)-1; 

        end  

        function v = get.measure(obj) 

            v = max(obj.x) - min(obj.x); 

        end 

    end 

end 

Program 1.8. Definition of a class for partition of intervals 

For instance, the code: 

pas = 0.05; 
x = 0:pas:1; 
p = interval_partition(x); 

creates the structure p of  type interval_partition. Then,  

f = @(x) exp(x); 
F = spam.mapspam('vector',f,x); 
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v1 = p.integration('riemann',F) 
v2 = p.integration('lebesgue',F,20,'inferior','pchip') 

v3 = p.integration('mean',F) 

evaluates the integral  using the 
trapezoidal rule or Lebesgue’s method with 20 intervals on the vertical  
axis. For the points given, the result is v1 = 1.7186, v2 = 
1.7187, v3=1.7253. It may be improved by considering a 
partition containing a larger number of points. For instance, if pas = 
0.01; the result is v1 = v2 = 1.7183, v3 = 1.7197. 

For  , we may define a class as follows: 

classdef rectangle_partition 

    properties 

        x 

        y 

    end 

    properties(Constant) 

        dim = 2 

    end 

    properties(Dependent) 

        number_points 

        measure 

    end 

    methods(Access = private) 

        function v = quadinds(obj,i,j) 

            v = [ 

                i j 

                i+1 j 

                i+1 j+1 

                i j+1 

                ]; 

        end 

        function [ind1, ind2] = tri24(obj,i,j) 

            ind1 = [ i j; i+1 j; i j+1 ]; 

            ind2 = [ i+1 j; i+1 j+1; i j+1 ]; 

        end 
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        function [ind1, ind2] = tri13(obj,i,j) 

            ind1 = [ i j; i+1 j+1; i j+1 ]; 

            ind2 = [ i j; i+1 j; i+1 j+1 ]; 

        end 

        function v = sumind(obj,F,ind) 

            v = 0; 

            for i = 1:size(ind,1) 

                aux = F(ind(i,1), ind(i,2)); 

                v = v + aux; 

            end; 

        end 

        function v = st24(obj,F) 

            xx =  obj.x; 

            yy = obj.y; 

            s = 0; 

            for i = 1: length(xx)-1 

                hx = xx(i+1) - xx(i); 

                for j = 1: length(yy)-1 

                    hy = yy(j+1) - yy(j); 

                    [ind1, ind2] = obj.tri24(i,j); 

                    surft = hx*hy/2; 

                    aux1 = obj.sumind(F,ind1); 

                    aux2 = obj.sumind(F,ind2); 

                    s = s + (aux1 + aux2)*surft; 

                end 

            end; 

            v = s/3; 

        end 

        function v = st13(obj,F) 

            xx =  obj.x; 

            yy = obj.y; 

            s = 0; 

            for i = 1: length(xx)-1 

                hx = xx(i+1) - xx(i); 

                for j = 1: length(yy)-1 

                    hy = yy(j+1) - yy(j); 

                    surft = hx*hy/2; 

                    [ind1, ind2] = obj.tri13(i,j); 

                    aux1 = obj.sumind(F,ind1); 

                    aux2 = obj.sumind(F,ind2); 

                    s = s + (aux1 + aux2)*surft;
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                end 

            end; 

            v = s/3; 

        end 

        function v = sq4(obj,F) 

            xx = obj.x; 

            yy = obj.y; 

            s = 0; 

            for i = 1: length(xx)-1 

                hx = xx(i+1) - xx(i); 

                for j = 1: length(yy)-1 

                    hy = yy(j+1) - yy(j); 

                    surfq = hx*hy; 

                    ind = obj.quadinds(i,j); 

                    saux = obj.sumind(F,ind); 

                    aux = saux*surfq; 

                    s = s + aux; 

                end 

            end; 

            v = s/4; 

        end 

    end 

    methods 

        function obj = rectangle_partition(x1,x2) 

            obj.x = x1; 

            obj.y = x2; 

        end 

      function v = 

integration(obj,method,F,np,metod,interpmetod)  

            data.points = obj; 

            data.values = F; 

            switch method 

                case 'trapezoid' 

                    v = riemann.trpzd(data);  

                case 'mean' 

                    v = riemann.mean_value(data); 

                case 'tri24' 

                    v = obj.st24(F); 

                case 'tri13' 

                    v = obj.st13(F); 

                case 'quad'
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                    v = obj.sq4(F); 

                case 'lebesgue' 

                    m1 = min(min(F)); 

                    m2 = max(max(F)); 

                    pas =  (m2 - m1)/np; 

                    yy = m1:pas:m2; 

              v = 

lebesgue.integrate(yy,data,metod,interpmetod); 

                otherwise 

                    v = []; 

                    disp('invalid method'); 

            end; 

        end 

        function v = get.number_points(obj) 

            v.x =length(obj.x); 

            v.y =length(obj.y); 

        end  

        function v = get.measure(obj) 

            dx = max(obj.x) - min(obj.x); 

            dy = max(obj.y) - min(obj.y); 

            v = dx*dy; 

        end 

    end 

end 

Program 1.9. A class for partitions of rectangles 

For instance, the code: 

pas = 0.05; 
x = 0:pas:1; 
y = 0:pas:2; 
pp = rectangular_partition(x,y); 

creates the structure pp of type rectangular_partition and 
the code: 

f = @(x) exp(x(1) - x(2)); 
F = spam.mapspam('vector',f,pp); 
v1 = pp.integration('trapezoid',F); 
v2 = pp.integration('tri13',F); 
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v3 = pp.integration('tri24',F); 
v4 = pp.integration('quad',F); 
v5= pp.integration('lebesgue',F,40,'inferior','pchip'); 

v6= pp.integration('lebesgue',F,40,'superior','pchip'); 

v7 = pp.integration('lebesgue',F,40,'mean','pchip'); 

produces v1 = v4 = 1.4864, v2 = 1.4860, v3 = 
1.4867, v5 = v6 = v7 = 1.4861. The exact value is

. When using pas = 0.01, the result is  
v1 = v2 = v3 = v4 = 1.4858, v5=v6=v7=1.4856. 

EXAMPLE 1.11.– Let us consider the integration of 
on . The exact value of the integral is 

. Using pas = 0.05, the results are 
v1=v2=v4=v5=3.1946, v2=0.8597, v6=3.1942. For 
pas=0.01, v1=v2=v4=v5=3.1946, v3=3.1945, 
v6=3.1942, v7=3.1944.  

EXAMPLE 1.12.– Let us consider the integration of 

  

on . This situation corresponds to the integration 
of 

 

and the exact value of the integral is . Using pas = 
0.01 and np=100 intervals on the vertical axis, the results are 
v1=v2=v4=0.2344, v3=0.2345, v5 = 0.2363, v6 = 
0.2344, v7 = 0.2354. Due to discontinuity, finer partitions are 
requested for a good precision.   

In 3D situations, , we may 
define a class containing methods for integration by trapezoidal rule or 
integration using a tetrahedral or hexahedral mesh as follows: 
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classdef cobble_partition 

    properties 

        x 

        y 

        z 

    end 

    properties(Constant) 

        dim = 3 

    end 

    properties(Dependent) 

        number_points 

        measure 

    end 

    % 

    methods(Static, Access = Private) 

        function v =  hexainds(i,j,k) 

            v = [ 

                i j k 

                i+1 j k 

                i+1 j+1 k 

                i j+1 k 

                i j k+1 

                i+1 j k+1 

                i+1 j+1 k+1 

                i j+1 k+1 

                ]; 

        end 

        function v = tetra5() 

            v = [ 

                1 2 4 5 

                2 3 4 7 

                2 7 5 6 

                4 5 7 8 

                2 4 5 7 

                ]; 

        end 

        function v = tetra6() 

            v = [ 

                3 8 4 2 

                1 8 2 4 

                7 2 8 3
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                1 2 8 5 

                2 5 6 8 

                2 8 6 7 

                ]; 

        end 

        function v = sumind(obj,F,ind) 

            v = 0; 

            for i = 1:size(ind,1) 

                aux = F(ind(i,1), ind(i,2), ind(i,3)); 

                v = v + aux; 

            end; 

        end 

        function v = vol_tetra(obj,x,y,z,ind) 

            xx = x(ind(:,1)); 

            yy = y(ind(:,2)); 

            zz = z(ind(:,3)); 

            v = abs(det([xx' yy' zz' ones(size 

(xx'))]))/6; 

        end 

        function v = sumtetra(obj,x,y,z,F, 

ind,tetras,volh) 

            v = 0; 

            sv = 0; 

            for iaux = 1: size(tetras,1) 

                iii = ind(tetras(iaux,:),:); 

                saux = obj.sumind(F,iii); 

                volt = obj.vol_tetra(x,y,z,iii); 

                sv = sv + volt; 

                v = v + saux*volt; 

            end 

            v = v*volh/sv; 

        end 

        function v = st5(obj,F)  

            x = obj.x; 

            y = obj.y; 

            z = obj.z; 

            tetras = obj.tetra5(); 

            s = 0; 

            for i = 1: length(x)-1 

                for j = 1: length(y)-1 
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                    for k = 1: length(z)-1 

                        ind = obj.hexainds(i,j,k); 

                        hx = x(i+1) - x(i); 

                        hy = y(j+1) - y(j); 

                        hz = z(k+1) - z(k); 

                        volh = hx*hy*hz; 

                      saux = 

obj.sumtetra(x,y,z,F,ind,tetras,volh); 

                        s = s + saux; 

                    end; 

                end 

            end; 

            v = 0.25*s; 

        end 

        function v = st6(obj,F)  

            x = obj.x; 

            y = obj.y; 

            z = obj.z; 

            tetras = obj.tetra6(); 

            s = 0; 

            for i = 1: length(x)-1 

                for j = 1: length(y)-1 

                    for k = 1: length(z) - 1 

                        ind = obj.hexainds(i,j,k); 

                        hx = x(i+1) - x(i); 

                        hy = y(j+1) - y(j); 

                        hz = z(k+1) - z(k); 

                        volh = hx*hy*hz; 

                      saux = 

obj.sumtetra(x,y,z,F,ind,tetras,volh); 

                        s = s + saux; 

                    end; 

                end 

            end; 

            v = 0.25*s; 

        end 

        function v = sh8(obj,F)  

            x = obj.x; 

            y = obj.y; 

            z = obj.z; 

            s = 0; 
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            for i = 1: length(x)-1 

                hx = x(i+1) - x(i); 

                for j = 1: length(y)-1 

                    hy = y(j+1) - y(j); 

                    for k = 1: length(z) - 1 

                        hz = z(k+1) - z(k); 

                        volh = hx*hy*hz; 

                        ind = obj.hexainds(i,j,k); 

                        saux = obj.sumind(F,ind); 

                        s = s + saux*volh; 

                    end 

                end; 

            end; 

            v = s/8; 

        end 

    end 

    methods 

        function obj = cobble_partition(x1,x2,x3) 

            obj.x = x1; 

            obj.y = x2; 

            obj.z = x3; 

        end 

        function v = 

integration(obj,method,F,np,metod,interpmetod) 

            data.points = obj; 

            data.values = F; 

            switch method 

                case 'trapezoid' 

                    v = riemann.trpzd(data);  

                case 'mean' 

                    v = riemann.mean_value(data); 

                case 'tetra5' 

                    v = obj.st5(F); 

                case 'tetra6' 

                    v = obj.st6(F); 

                case 'hexa' 

                    v = obj.sh8(F); 

                case 'lebesgue' 

                    m1 = min(min(min(F))); 

                    m2 = max(max(max(F))); 

                    pas =  (m2 - m1)/np;
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                    yy = m1:pas:m2; 

                v = 

lebesgue.integrate(yy,data,metod,interpmetod); 

                otherwise 

                    v = []; 

                    disp('invalid method'); 

            end; 

        end 

        function v = get.number_points(obj) 

            v.x =length(obj.x); 

            v.y =length(obj.y); 

            v.z =length(obj.z); 

        end  

        function v = get.measure(obj) 

            dx = max(obj.x) - min(obj.x); 

            dy = max(obj.y) - min(obj.y); 

            dz = max(obj.z) - min(obj.z); 

            v = dx*dy*dz; 

        end 

    end 

end 

Program 1.10. A class for three-dimensional partitions 

For instance, the code: 

pas = 0.05; 
x = 0:pas:1; 
y = 0:pas:2; 
z = 0:pas:3; 
ppp = cobble_partition(x,y,z); 

creates the structure pp of type cobble partition. The code: 

v1 = ppp.integration('trapezoid',F); 
v2 = ppp.integration('tetra5',F); 
v3 = ppp.integration('tetra6',F); 
v4 = ppp.integration('hexa',F); 
v5=ppp.integration('lebesgue',F,40,'inferior','pchip'); 

v6=ppp.integration('lebesgue',F,40,'superior','pchip'); 
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v7=ppp.integration('lebesgue',F,40,'mean','pchip'); 

produces v1 = v4 = 13.3791, v2 = 13.3789, v3 = 
13.3763, v4 = 13.3791, v5 = 13.4117, v6 
=13.4086, v7 = 13.4102. The exact value is

. 

EXAMPLE 1.13.– Let us consider the evaluation of the 3D integral: 

  

We may consider and 

  

Then, we evaluate: 

  

Using pas = 0.05, the result obtained is v1 = v2 = v3 
= v4 = 4.1714, v5 = v6 = v7 = 4.1724. The exact 
result is   .                           

REMARK.– In some situations, the available data is not on a grid, but 
just on sparse points. This situation is considered in Chapter 3.   


