
1

Integrals

Variational methods are closely connected to integrals. So, before
starting our variational adventures, let us recall some elements about
integrals and their numerical evaluation.

The history of infinite sums is such as integrals may be brought to
Zeno of Elea’s paradox about the grain of millet. As described by
Simplicius [FAI 98]:

Tell me, Protagoras, said he, does one grain of millet
make a noise when it falls, or does the ten-thousandth
part of a grain? On receiving the answer that it does not,
he went on: Does a measure of millet grains make a noise
when it falls, or not? He answered, it does make a noise.
Well, said Zeno, does not the statement about the
measure of millet apply to the one grain and the ten-
thousandth part of a grain? He assented, and Zeno
continued, Are not the statements as to the noise the same
in regard to each? For as are the things that make a
noise, so are the noises. Since this is the case, if the
measure of millet makes a noise, the one grain and the
ten-thousandth part of a grain make a noise.

Here, Zeno considers the problem of the sum of small negligible
components, what is the principle of the integration of infinitesimal

CO
PYRIG

HTED
 M

ATERIA
L

2 Variational Methods for Engineers with Matlab®

contributions. In these ancient times, the concept of the limit was not
known, so the notion of infinite sums and the evaluation of areas
remained unsolved. In fact, many philosophers considered the
question of limits, such as Antiphon the sophist, who argued that
continuously doubling the number of sides of a polygon inscribed in a
circle gives as result a polygon whose sides coincide with the
circumference and having the same area as the circle [PEN 02].
Eudoxus of Cnidus proposed a generalization which led to the
exhaustion method, which was extensively used for the evaluation of
areas for about 2 thousand years. Archimedes applied this method to
the evaluation of surfaces and volumes by considering sums of “lines”
[BAU 09, BLO 11]. Archimedes’ method was improved by Thabit ibn
Qurra and inspired Bonaventura Cavalieri and Gilles de Roberval,
namely the principle of indivisibles. Many researchers enriched the
works of Cavalieri. For instance, Evangelista Torricelli introduced
indivisibles having a thickness and Blaise Pascal considered triangular
and pyramidal sums of indivisibles leading to the evaluation of double
and triple integrals.

The differential and integral calculus introduced by Gottfried
Leibniz and Isaac Newton opened up a new era. Agustin-Louis
Cauchy introduced the concept of the definite integral and chose the
notation proposed by Jean-Baptiste Joseph Fourier, which is used
today. A complete formalization was proposed by Georg Riemann and
led to the Riemann sums and integrals.

At this moment, the horizon seemed clear, but clouds appeared
with the works of Karl Weierstrass and Richard Dedekind, which
drew attention to fundamental inconsistencies in the theory. Georg
Cantor, Camille Jordan and the proposition of a new set and measure
theory furnished a new impulse. Emile Borel, René Baire and Henri
Lebesgue formed the trinity that constructed a complete formalization
of the integrals in the new framework and that gave the impression of
taking away the difficulties raised by their predecessors.

But the adventure continues, since one of the most important
foundations of the actual theory is the axiom of choice, which

Integrals 3

generates a paradox which has not yet been solved: the Banach-Tarski
paradox, which establishes that a volume cannot be defined for a sphere
of radius one. Research regarding this paradox will probably lead to
new developments and evolutions in our understanding of these old
concepts of areas and volumes, issues that have concerned humanity for
millennia and whose complete solution eludes our sagacity every time
we think we are near to their complete understanding.

1.1. Riemann integrals

The first formal theory concerning integrals was proposed by
Riemann and was provoked by his interest in Fourier series. In 1807,
a paper by Siméon-Denis Poisson [POI 08] mentioned that Joseph
Fourier had proposed the representation of some functions by
trigonometric series. The ideas of Fourier immediately aroused
controversy. Much of the criticism was related to formal aspects. In
his book Théorie analytique de la chaleur [FOU 22], Fourier made the
following comment about trigonometric series:

One could doubt that there existed such a function, but
this issue will be clarified later.

In fact, as often in the history of science, the explanation furnished
by Fourier was not complete and has raised fundamental questions,
namely what are the functions that may be represented by a
trigonometric series and the evaluation of integrals for the
determination of the coefficients? Integrals were introduced by Isaac
Newton and Gottfried Leibniz in the 17th Century, but their theory
was the subject of discussion years before acceptation by the scientific
community. About one century after, integrals were being taught in
university courses, such as, for instance, those that Augustin-Louis
Cauchy presented [CAU 23, CAU 29], but the formal theory waited
for the works of Georg Friedrich Bernard Riemann about the
questions raised by Fourier, namely his habilitation thesis [RIE 67]. In
this thesis, Riemann introduced the fundamental elements for the
definition of an integral. Basically, the evaluation of

4 Variational Methods for Engineers with Matlab®

requires a subdivision of into a finite number of non-recovering
subsets, i.e. a partition of :

For instance, when and , we may consider a
family of N subintervals such that

. For each subinterval , the
function has a maximum and a minimum . Thus, we may
consider the Riemann sums:

which verify (see Figure 1.1).

Figure 1.1. Riemann sums: partitions of the horizontal axis

Integrals 5

Adding supplementary points to the partition increases and
decreases (Figure 1.1), so that, has as cluster point an upper
bound and has as cluster point a lower bound ,

. When both these values coincide, we say that their
common value is .

A practical estimation of the value of is:

i.e.

Figure 1.2. Adding supplementary points increases and decreases

6 Variational Methods for Engineers with Matlab®

In practice, the values of and are not determined exactly, but
are approximated by using the values and :

 [1.1]

This formula is known as the trapezoidal rule. A simple estimative
is furnished by the mean value approximation:

For or
, we may consider families of intervals associated with each

component and the Cartesian product of these families. Analogous
Riemann sums may be defined in this case.

1.2. Lebesgue integrals

Riemann’s theory was quickly challenged by the works of Richard
Dedekind and Karl Weierstrass. Their work on the foundations of
function theory led, on the one hand, to the development of set theory
by Georg Cantor and, on the other hand, to measure theory initiated by
Giuseppe Peano and Camille Jordan, then formalized by Emile Borel
and René Baire. Henri Lebesgue adopted the point of view of measure
theory in order to redefine integrals. The theory initiated by Lebesgue
is not yet the end of integration theory, since measure theory produces
sets that are not measurable (for instance, Vitali sets, presented in the
pamphlet [VIT 05]) and, as a consequence, functions that are not
measurable. These elements result straight from the axiom of choice
(see, for instance, [SOU 10]) and lead to fundamental difficulties,
from those presented Felix Hausdorff [HAU 14], and Stefan Banach
and Alfred Tarski [BAN 24]. These difficulties have not been solved
to date and promise interesting developments in the future.

The numerical evaluation of the Lebesgue integral

Integrals 7

requires more information than the evaluation of a Riemann integral;
we need a partition of and a partition

of the image .

For instance, let us consider the situation where both and
are intervals. We define by taking points

, where and
. In practice, and may be

approximations of these values satisfying where
 and .

Let us denote by the Lebesgue measure, given by:

,
, …

and

Figure 1.3. Lebesgue’s approach to integration:
partition of the vertical axis

8 Variational Methods for Engineers with Matlab®

We have:

Let us introduce:

Then

and

Thus,

where the integral in this formula is a Riemann integral. So,

 [1.2]

Analogously,

Thus, we have

and

 [1.3]

Integrals 9

Equations [1.2] and [1.3] show that:

1

1

1 inf 1 1 inf 1 inf .
My

M M
y

I y y y y y dy [1.4]

Notice that, if and
, then , while

and we have:

Let

Then,

and

Thus,

where the integral in this formula is a Riemann one. So,

 [1.5]

Analogously,

10 Variational Methods for Engineers with Matlab®

so that

Thus, we have:

and

[1.6]

Equations [1.5] and [1.6] show that:

1

1

1 sup 1 1 sup 1 sup .
My

M M
y

I y y y y y dy [1.7]

Notice that, if and
, then , while and we have:

1.3. Matlab® classes for a Riemann integral by trapezoidal
integration

The one-dimensional (1D) trapezoidal rule is implemented in
Matlab® in the intrinsic function trapz and may be extended to
multidimensional situations. Assume that the structure p has fields
p.x, p.y, p.z corresponding to the coordinates of the points

 of the partitions of the intervals and p.dim corresponding to
the dimension, while table F contains the values of - , or

, or , according to the dimension
of the integral. Let us summarize the data in a structure data such

Integrals 11

that data.points = p and data.values = F. Then we may
use the class below (Program 1.1).

classdef riemann

 methods (Static, Access = private)

 function v = trapz2(x1,x2,F)

 sy = zeros(size(x1));

 for i = 1: length(sy)

 sy(i) = trapz(x2,F(i,:));

 end;

 v = trapz(x1,sy);

 end

 function v = trapz3(x1,x2,x3,F)

 sz = zeros(length(x1),length(x2));

 for i = 1: length(x1)

 for j = 1: length(x2)

 sz(i,j) = trapz(x3,F(i,j,:));

 end;

 end;

 sy = zeros(size(x1));

 for i = 1: length(x1)

 sy(i) = trapz(x2,sz(i,:));

 end;

 v = trapz(x1,sy);

 end

 end

 methods(Static)

 function v = trpzd(data)

 p = data.points;

 F = data.values;

 n = p.dim;

 switch n

 case 1

 v = trapz(p.x,F);

 case 2

 v = riemann.trapz2(p.x,p.y,F);

 case 3

 v = riemann.trapz3(p.x,p.y,p.

z,F);

12 Variational Methods for Engineers with Matlab®

 otherwise

 v = [];

 disp('error in arguments for

trpzd');

 end

 end

 function v = mean_value(data)

 p = data.points;

 F = data.values;

 n = p.dim;

 switch n

 case 1

 v = mean(F)*p.measure;

 case 2

 v = mean(mean(F))*p.measure;

 case 3

 v =

mean(mean(mean(F)))*p.measure;

 otherwise

 v = [];

 disp('error in arguments for

mean value');

 end

 end

 end

end

Program 1.1. A class for the evaluation of Riemann integrals

This class contains only trapezoidal and mean value integration
methods, but it can be enriched by the user with other methods of
numerical integration.

EXAMPLE 1.1.– Let us evaluate:

by using the points x=0:0.01:1; and y=0:0.01:2;.
Assuming that F(i,j)=x(i)^2+y(j)^2;, the code:

Integrals 13

p.x = x;
p.y = y;
p.dim = 2;
p.measure = 2;
data.points = p;
data.values = F;
v1 = riemann.trpzd(data)
v2 = riemann.mean_value(data)

produces v1 = 3.3334, v2 = 3.3433. The exact value is
.

EXAMPLE 1.2.– Let us evaluate:

by using the points x=0:0.01:1;,y=0:0.01:2;, z=0:0.
01:3. Assuming that F(i,j,k)=x(i)^2+y(j)^2+z(k)^2, the
code:

p.x = x;

p.y = y;

p.z = z;

p.dim = 3;

p.measure = 6;

data.points = p;

data.values = F3;

v1 = riemann.trpzd(F3,p)

v2 = riemann.mean_value(F3,p)

produces v1 = 28.0003, v2 = 28.0600. The exact value
is .

The creation of the tables F from a subprogram f evaluating a
function is made by the following class:

14 Variational Methods for Engineers with Matlab®

classdef spam

 properties

 end

 methods (Static, Access = private)

 function v = vspam1(x,f)

 v = zeros(size(x));

 for i = 1: length(x)

 v(i) = f(x(i));

 end;

 end

 function v = vspam2(x,y,f)

 v = zeros(length(x),length(y));

 for i = 1: length(x)

 for j = 1: length(y)

 v(i,j) = f(x(i),y(j));

 end;

 end;

 end

 function v = vspam3(x,y,z,f)

 v = zeros(length(x),length(y),length(z));

 for i = 1: length(x)

 for j = 1: length(y)

 for k = 1: length(z)

 v(i,j,k) = f(x(i),y(j),z(k));

 end;

 end;

 end;

 end

 function v = tspam1(x,f)

 v = zeros(size(x));

 for i = 1: length(x)

 v(i) = f(x(i));

 end;

 end

 function v = tspam2(x,y,f)

 v = zeros(size(x));

 for i = 1: size(x,1)

 for j = 1: size(x,2)

 v(i,j) = f(x(i,j),y(i,j));

 end;

 end;

Integrals 15

 end

 function v = tspam3(x,y,z,f)

 v = zeros(size(x));

 for i = 1: size(x,1)

 for j = 1: size(x,2)

 for k = 1: size(x,3)

 v(i,j,k) =

f(x(i,j,k),y(i,j,k),z(i,j,k));

 end;

 end;

 end;

 end

 end

 methods (Static)

 function v = points(method,f,x,y,z)

 n = nargin() - 2;

 if isnumeric(f)

 ff = @(x) f;

 else

 ff = f;

 end;

 switch method

 case 'vector'

 switch n

 case 1

 v = spam.vspam1(x,ff);

 case 2

 fr = @(x,y) ff([x, y]);

 v = spam.vspam2(x,y,fr);

 case 3

 fr = @(x,y,z) ff([x, y, z]);

 v = spam.vspam3(x,y,z,fr);

 end;

 case 'table'

 switch n

 case 1

 v = spam.tspam1(x,ff);

 case 2

 fr = @(x,y) ff([x, y]);

 v = spam.tspam2(x,y,fr);

16 Variational Methods for Engineers with Matlab®

 case 3

 fr = @(x,y,z) ff([x, y, z]);

 v = spam.tspam3(x,y,z,fr);

 end;

 otherwise

 v = [];

 disp('invalid method for

spam.points');

 end

 end

 function v = partition(f,p)

 n = p.dim;

 switch n

 case 1

 v = spam.points('vector',f,p.x);

 case 2

 v = spam.points('vector',f,p.x,p.y);

 case 3

 v = spam.points('vector',f,p.x,

p.y,p.z);

 otherwise

 v = [];

 disp('invalid partition dim for

spam.partition');

 end;

 end

 end

end

Program 1.2. A class for the creation of the tables F

This class generates a table of values , ,
, , or ,

according to the data furnished. Data is stored in the structure p:
p.dim is the dimension, p.x, p.y, p.z are the coordinates.
Method takes the value “vector” or “array” according to the
dimensions of p.x, p.y, p.z. For instance, the code:

Integrals 17

x = 0:0.1:1;
y = 0:0.1:2;
f = @(x) sum(x.^2);
p.x = x;
p.y = y;
p.dim = 2;
[X,Y] = meshgrid(x,y);
xx = permute(X,[2 1]);
yy = permute(Y,[2 1]);
F1 = spam.partition(f,p);
F2 = spam.points('table',f,xx,yy);
v = sqrt(sum(sum((F1-F2).^2)));

produces as result v=0. Both the tables F1 and F2 coincide, but F1 is
generated by using vectors x and y, while F2 is generated using two-
dimensional (2D) arrays. Adding the lines:

z = 0:0.1:3;
p.z = z;
p.dim = 3;
[X,Y,Z] = meshgrid(x,y,z);
xx = permute(X,[2 1 3]);
yy = permute(Y,[2 1 3]);
zz = permute(Z,[2 1 3]);
F1 = spam.partition(f,p);
F2 = spam.points('table',f,xx,yy,zz);
v3 = sqrt(sum(sum(sum((F1-F2).^2))));

produces as result v3=0: the resulting arrays are equal. Here, F1 is
generated by using vectors x, y and z, while F2 is generated using
three-dimensional (3D) arrays.

Notice that the class Riemann requests data in the vector form.
The extension to data defined in the array form will be useful for
integration using the intrinsic functions of Matlab (see section 1.6).

1.4. Matlab® classes for Lebesgue’s integral

Equations [1.4] and [1.7] provide a practical method for the
evaluation of : the Lebesgue integral is replaced by a Riemann

18 Variational Methods for Engineers with Matlab®

one, which may be numerically evaluated by quadrature methods
using the values (when using equation
[1.4]) or (when using equation [1.7]). The
construction of the values of or is performed by using the
subdivision of : for each i, the measure of the part of belonging
to (respectively,) is estimated and added to
(respectively,). For instance, we may use the following class:

classdef lebesgue

 methods (Static, Access = private)

 function v = hexainds(i,j,k)

 v = [

 i j k

 i+1 j k

 i+1 j+1 k

 i j+1 k

 i j k+1

 i+1 j k+1

 i+1 j+1 k+1

 i j+1 k+1

];

 end

 function v = quadinds(i,j)

 v = [

 i j

 i+1 j

 i+1 j+1

 i j+1

];

 end

 function [m, flag] = inf1(y,x,yt)

 y2 = max(y);

 y1 = min(y);

 dx = x(2) - x(1);

 flag = 1;

 if yt < y1

 m = 0;

 flag = 0;

 elseif yt >= y2

 m = dx;

Integrals 19

 else

 if y1 == -Inf

 m = 0.5*dx;

 elseif y2 == Inf

 m = 0.5*dx;

 else

 slope = (y2- y1)/dx;

 m = (yt - y1)/slope;

 end;

 end;

 end

 function [m, flag] = sup1(y,x,yt)

 y2 = max(y);

 y1 = min(y);

 dx = x(2) - x(1);

 flag = 1;

 if yt > y2

 m = 0;

 flag = 0;

 elseif yt <= y1

 m = dx;

 else

 if y1 == -Inf

 m = 0.5*dx;

 elseif y2 == Inf

 m = 0.5*dx;

 else

 slope = (y2- y1)/dx;

 m = (y2 - yt)/slope;

 end;

 end;

 end

 function [m, flag] = m2(y,x,yt,m1)

 s = zeros(4,1);

 flg = zeros(4,1);

 [s(1),flg(1)] = m1(y(1:2),[0,1],yt);

 [s(2),flg(2)] = m1(y(2:3),[0,1],yt);

 [s(3),flg(3)] = m1(y(3:4),[0,1],yt);

 [s(4),flg(41)] = m1([y(1),y(4)],[0,1],yt);

 ta = x(2,:) - x(1,:);

 tb = x(4,:) - x(1,:);

20 Variational Methods for Engineers with Matlab®

 m = mean(s)*norm(ta)*norm(tb);

 flag = max(flg);

 end

 function [m,flag] = m3(y,x,yt,m1)

 s = zeros(6,1);

 flg = zeros(6,1);

 ind = [

 1 2 3 4

 2 3 7 6

 3 4 8 7

 1 4 8 5

 1 2 6 5

 5 6 7 8

];

 for i = 1: 6

[s(i),flg(i)] = lebesgue.m2(y(ind(i,:)),[0 0; 0 1; 1

1; 1 0],yt,m1);

 end;

 ta = x(2,:) - x(1,:);

 tb = x(3,:) - x(2,:);

 tc = x(5,:) - x(1,:);

 m = mean(s)*norm(ta)*norm(tb)*norm(tc);

 flag = max(flg);

 end

 function [m, flag] = inf_el(y,x,yt,dim)

 switch dim

 case 1

 [m, flag] = lebesgue.inf1(y,x,yt);

 case 2

 [m, flag] = lebesgue.m2(y,x,yt,

 @lebesgue.inf1);

 case 3

 [m, flag] = lebesgue.m3(y,x,yt,

 @lebesgue.inf1);

 end

 end

 function [m, flag] = sup_el(y,x,yt,dim)

 switch dim

 case 1

 [m, flag] = lebesgue.sup1(y,x,yt);

Integrals 21

 case 2

 [m, flag] = lebesgue.m2(y,x,yt,

@lebesgue.sup1);

 case 3

 [m, flag] = lebesgue.m3(y,x,yt,

@lebesgue.sup1);

 end

 end

 function mu = msre(mes,y,data,pas,hw)

 p = data.points;

 f = data.values;

 n = p.dim;

 ny = length(y);

 mu = zeros(ny,1);

 switch n

 case 1

 x1 = p.x;

 n1 = length(x1);

 for i = 1: n1 - 1

 xe = [x1(i) , x1(i+1)];

 ye = [f(i) , f(i+1)];

 flag = 1;

 if pas > 0

 ind = 1;

 else

 ind = ny;

 end;

 while flag > 0 && ((ind > 1 && pas < 0) || (ind <

ny && pas > 0))

 [m, flag] =

mes(ye,xe,y(ind),n);

 mu(ind) = mu(ind) + m;

 ind = ind + pas;

 end;

 wx = i/n1;

 text = [sprintf(' %4.1f ',fix(1000*wx)/10),'

% generated'];

 if pas > 0

 waitbar(wx,hw,['\mu_{sup}

:',text]);

 else

22 Variational Methods for Engineers with Matlab®

 waitbar(wx,hw,['\mu_{inf}

:',text]);

 end;

 end;

 close(hw)

 case 2

 x1 = p.x;

 x2 = p.y;

 n1 = length(x1);

 n2 = length(x2);

 nt = n1*n2;

 for i = 1: n1 - 1

 for j = 1: n2 - 1

 ind = lebesgue.quadinds

(i,j);

 xe = [x1(ind(:,1))'

x2(ind(:,2))'];

 ye = zeros(4,1);

 for ii = 1: 4

 ye(ii) = f(ind(ii,1),

ind(ii,2));

 end;

 flag = 1;

 if pas > 0

 ind = 1;

 else

 ind = ny;

 end;

 while flag > 0 && ((ind > 1 && pas < 0) || (ind <

ny && pas > 0))

 [m, flag] = mes(ye,xe,

y(ind),n);

 mu(ind) = mu(ind) +

m;

 ind = ind + pas;

 end;

 wx = (j + (i-1)*n2)/nt;

 text = [sprintf(' %4.1f ',fix(1000*wx)/10),' %

generated'];

 if pas > 0

Integrals 23

 waitbar(wx,hw,

['\mu_{sup} :',text]);

 else

 waitbar(wx,hw,

['\mu_{inf} :',text]);

 end;

 end;

 end;

 close(hw)

 case 3

 x1 = p.x;

 x2 = p.y;

 x3 = p.z;

 n1 = length(x1);

 n2 = length(x2);

 n3 = length(x3);

 nt = n1*n2*n3;

 for i = 1: n1 - 1

 for j = 1: n2 - 1

 for k = 1:n3 - 1
 ind =
lebesgue.hexainds(i,j,k);
 xe = [x1(ind(:,1))' x2(ind(:,2))'
x3(ind(:,3))'];
 ye = zeros(8,1);
 for ii = 1: 8
 ye(ii) = f(ind(ii,1), ind(ii,2),
ind(ii,3));
 end;
 flag = 1;
 if pas > 0
 ind = 1;
 else
 ind = ny;
 end;
 while flag > 0 && ((ind > 1 && pas < 0) || (ind <
ny && pas > 0))
 [m, flag] =
mes(ye,xe,y(ind),n);
 mu(ind) = mu(ind)
+ m;

 ind = ind + pas;

24 Variational Methods for Engineers with Matlab®

 end;

 wx = (k + (j-1)*n3 + (i-1)*n2*n3)/nt;

 text = [sprintf(' %4.1f ',fix(1000*wx)/10),' %

generated'];

 if pas > 0

 waitbar(wx,hw,

['\mu_{sup} :',text]);

 else

 waitbar(wx,hw,

['\mu_{inf} :',text]);

 end;

 end;

 end;

 end;

 close(hw)

 otherwise

 mu = [];

 disp('error in args for measure');

 close(hw)

 end

 end

 function mu = mesinf(y,data,hw)

 if nargin() < 3

 hw = waitbar(0,'0 % generated','Name','Lebesgue inf

measure');

 end;

 mu = lebesgue.msre(@lebesgue.inf_el,

 y,data,-1,hw);

 end

 function mu = messup(y,data,hw)

 if nargin() < 3

 hw = waitbar(0,'0 % generated','Name','Lebesgue sup

measure');

 end;

 mu = lebesgue.msre(@lebesgue.sup_el,

y,data,1,hw);

 end

 function v = intinf(y,data,interpmet,hw)

 if nargin() < 4

hw = waitbar(0,'0 % generated','Name','intinf:

Lebesgue inf meas');

Integrals 25

 end

 mu1 = lebesgue.mesinf(y,data,hw);

 ff = @(t) interp1(y,mu1,t,interpmet);

 v = y(end)*mu1(end) - y(1)*mu1(1) -

integral(ff,y(1),y(end));

 end

 function v = intsup(y,data,interpmet,hw)

 if nargin() < 4

hw = waitbar(0,'0 % generated','Name','intsup:

Lebesgue sup meas');

 end

 mu2 = lebesgue.messup(y,data,hw);

 ff = @(t) interp1(y,mu2,t,interpmet);

 v = y(1)*mu2(1) - y(end)*mu2(end) +

integral(ff,y(1),y(end));

 end

 end

 methods (Static)

 function mu1 = measure_inf(y,data,interpmet)

 aux = lebesgue.mesinf(y,data);

 mu1 = @(t) interp1(y,aux,t,interpmet);

 end

 function mu2 = measure_sup(y,data,interpmet)

 aux = lebesgue.messup(y,data);

 mu2 = @(t) interp1(y,aux,t,interpmet);

 end

 function v = integrate(y,data, metod,

 interpmet)

 switch metod

 case 'inferior'

 switch interpmet

 case 'none'

 mu1 = lebesgue.mesinf

 (y,data);

 v = trapz(y,mu1);

 otherwise

 v =

lebesgue.intinf(y,data,interpmet);

 end

 case 'superior'

 switch interpmet

26 Variational Methods for Engineers with Matlab®

 case 'none'

 mu2 = lebesgue.messup

(y,data);

 v = trapz(y,mu2);

 otherwise

 v =

lebesgue.intsup(y,data,interpmet);

 end

 case 'mean'

 switch interpmet

 case 'none'

 mu1 =

lebesgue.mesinf(y,data);

 aux1 = trapz(y,mu1);

 mu2 =

lebesgue.messup(y,data);

 aux2 = trapz(y,mu2);

 otherwise

hw = waitbar(0,'0 % generated','Name','intmean:

Lebesgue inf meas');

 aux1 =

lebesgue.intinf(y,data,interpmet,hw);

hw = waitbar(0,'0 % generated','Name','intmean:

Lebesgue sup meas');

 aux2 =

lebesgue.intsup(y,data,interpmet,hw);

 end

 v = 0.5*(aux1+aux2);

 otherwise

 v = [];

 disp('error in args for

integral');

 end

 end

 end

end

Program 1.3. A class for the evaluation of Lebesgue integrals

At a glance, we see that this class is more complex than the class
Riemann. This is due to the fact that two partitions are requested and

Integrals 27

must be treated. Methods inf_el and sup_el determine the part
of which belongs to and ,
respectively. These subprograms return approximations of the
Lebesgue measure of the part of lying in the region of
interest (for mes_inf or for mes_sup). The
special cases where either or are treated by
considering that a half of the interval belongs to the region of
interest – this choice is arbitrary and may be modified by the user. For
the standard situation where both and are real numbers, a linear
interpolation determines the part of the interval belonging to the
region of interest – this choice may also be modified by the user.
When using this class, the evaluation of the integral involves the
choices, on the one hand, the choice of the evaluation points (vector
y) and, on the other hand, the choice among the use of (equation
[1.4]), of (equation [1.7]) or the arithmetic mean of these results.
In addition, it is possible to reduce the time of computation by
evaluating these measures in a limited number of points and using the
interpolation function interp1 for the evaluation of the integral.
The functions , are evaluated, respectively, by the methods
measure inf and measure_sup, both returning a function
generated by interpolation of the evaluated values, using interp1
and the interpolation method interpmet.

EXAMPLE 1.3.– Let us consider and . Then,

For , , , ,
, the code:

hx = (b-a)/N;
x = a + hx*(0:N);
f = x.^2;
p.x = x;
p.dim = 1;

28 Variational Methods for Engineers with Matlab®

data.points = p;
data.values = f;
mu1 = lebesgue.measure_inf(y,data,'linear');
mu2 = lebesgue.measure_sup(y,data,'linear');

furnishes

Figure 1.4. Lebesgue measure obtained in example 1.3

The code:

I1 = lebesgue.integrate(y,data,'inferior',
'linear');
I2 = lebesgue.integrate(y,data,'superior',
'linear');
I3 = lebesgue.integrate(y,data,'mean','linear')

furnishes I1 = 0.66746, I2 = 0.66746 and I3 =
0.66746. The exact value is 2/3 0.66667. These results
may be improved by refining the partitions, namely on the vertical
axis. For instance, , lead to I1 = 0.66677,
I2 = 0.66677 and I3 = 0.66677.

calculated
exact

calculated
exact

0 0.5 1 1.5-0.50 0.5 1 1.5-0.5

-0.5

0

0.5

1

1.5

2

2.5

-0.5

0

0.5

1

1.5

2

2.5

Integrals 29

When regular functions are considered – this is the case in example
1.3 – Lebesgue’s approach is not the more efficient one. For instance,
Riemann’s approach furnishes more precise results. However, for
functions having discontinuity points, Lebesgue’s approach may be
interesting (see examples below).

EXAMPLE 1.4.– Let us consider and . Then,

Using M = 256, , , N = 4096, we obtain
I1 = 2.7905, I2 = 2.7906, I3 = 2.7906, while the
trapezoidal rule trapz(x,f) returns the value Inf. The exact
value is 2*sqrt(2) 2.8284. For M = 1024, N = 4096, we
have I1 = I2 = I3 = 2.7959 and trapz (x,f)returns the
value Inf. The measures and are in Figure 1.5.

Figure 1.5. Results for example 1.4

calculated
exact

0 50 100

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

calculated
exact

0.2

0

2

0 50 100

0.4

0.6
0.8

1
1.2

1.4

1.6

1.8

0.2
0

2

30 Variational Methods for Engineers with Matlab®

EXAMPLE 1.5.– Let us consider and
. Then,

In this case, when using N = 1024, , ,
M = 256, we obtain I1 = I2 = I3 =-10.121, while
trapz(x,f) returns the value-Inf. For N = 4096, ,

, M = 1024, the values are I1 = -14.3736, I2 =
-14.3733, I3 = -14.3735 and trapz(x,f) returns the
value-Inf. The measures and are in Figure 1.6.

Figure 1.6. Lebesgue measure in example 1.5

calculated
exact

-3 -2 0

4

6

8

10

12

14

16

18

calculated
exact

2

0

20

-1 1 -3 -2 0

4

6

8

10
12

14

16

18

2

0

20

-1 1

Integrals 31

EXAMPLE 1.6.– Let us consider and
. Then,

In this case, using N = 1024, , , M = 256,
we obtain I1= I2 = I3 =0.0097659 and trapz(x,f)
returns the value 0.0098. The exact value is 0. The measures
and are given in Figure 1.7.

Figure 1.7. Results for Lebesgue measure in example 1.6

One of the interesting features of Lebesgue integrals is the fact that
multidimensional integration reduces to 1D integration: indeed, only
the evaluation of involves multidimensional calculations.

calculated
exact

4

6

8

10

12

14

16

18 calculated
exact

2

0

20

-2 -1 1

4

6

8

10

12

14

16

18

2

0

20

0 2 -2 -1 10 2

32 Variational Methods for Engineers with Matlab®

Once these quantities are obtained, equation [1.4] or equation [1.7] is
used in order to evaluate the integral – only 1D integration is involved
in this calculation. Examples are given below.

EXAMPLE 1.7.– Let us evaluate:

by using the points x=0:step:1; and y=0:step:2; with
step = 0.01. Assuming that F(i,j)=x(i)^2+y(j)^2, the
code:

p.x = x;
p.y = y;
p.dim = 2;
yleb = 0:0.1:5;
data.points = p;
data.values = F;
I1 = lebesgue.integrate(yleb,data,'inferior','linear');

I2 = lebesgue.integrate(yleb,data,'superior','linear');

I3 = lebesgue.integrate(yleb,data,'mean','linear')

produces I1=I2=I3=3.3334. The exact value is .

EXAMPLE 1.8.– Let us evaluate:

by using the points x=0:step:1;,y=0:step:2;,
z=0:step:3;, with step = 0.05. Assuming that
F(i,j,k)=x(i)^2+y(j)^2+z(k)^2, the code:

p.x = x;
p.y = y;
p.z = z;
p.dim = 3;
yleb = 0:0.2:14;
data.points = p;
data.values = F;

Integrals 33

I1 = lebesgue.integrate(yleb,data,'inferior','linear');

I2 = lebesgue.integrate(yleb,data,'superior','linear');

I3 = lebesgue.integrate(yleb,data,'mean','linear')

produces I1=I2=I3=28.0094.

Using as interpolation method 'cubic' (or 'pchip', for newer
versions of Matlab®) produces the result 28.0090. The exact value is
28.

1.5. Matlab® classes for evaluation of the integrals when
is defined by a subprogram

Let us assume that the values of are furnished by a
subprogram f.m which receives as argument a vector x and returns a
value f (x).

The internal functions for numerical integration are given in
Table 1.1. Notice that ay,by,az, bz are function handles, i.e.
anonymous functions or subprograms evaluating functions.

In order to use these intrinsic functions of Matlab®, we must
transform f. Indeed, the intrinsic functions of Matlab® assume as
arguments (x,y) or (x,y,z) and not a vector x. Moreover, they
assume that the functions may receive multidimensional arrays of data
and return a corresponding array of results. The adaptation is made by
the subprograms of class spam. For instance, we may use the class
given in program 1.4.

Intrinsic function evaluates

integral(f,a,b) or

quadgk(f,a,b)

integral2(f,ax,bx,ay,by) or

quad2d(f,ax,bx,ay,by)

integral3(f,ax,bx,ay,by,az,bz)

Table 1.1. Intrinsic functions for the evaluation of integrals

34 Variational Methods for Engineers with Matlab®

classdef subprogram_integration

 properties

 limits

 integrand

 end

 properties(Dependent)

 result

 end

 %

 methods

 function obj = subprogram_integration(f,xlim)

 if isnumeric(f)

 f = @(x) f;

 end;

 obj.integrand = f;

 obj.limits = xlim;

 end

 function v = get.result(obj)

 f = obj.integrand;

 xlim = obj.limits;

 a = xlim.lower;

 b = xlim.upper;

 n = xlim.dim;

 switch n

 case 1

 fs = @(x) spam.points('table',

f,x);

 v = integral(fs,a.x,b.x);

 case 2

 fs = @(x,y) spam.points('table',

f,x,y);

 if isnumeric(a.y)

 a.y = @(x) a.y;

 end;

 ymin = @(x) spam.points('table',

a.y,x);

 if isnumeric(b.y)

 b.y = @(x) b.y;

 end;

 ymax = @(x) spam.points('table',

b.y,x);

Integrals 35

 v = integral2(fs,a.x,b.x,

ymin,ymax);

 % or quad2d(fs,a.x,b.x,

ymin,ymax);

 % or dblquad(fs,a.x,b.x,

a.y,b.y);

 case 3

 fs = @(x,y,z) spam.points('table',

f,x,y,z);

 if isnumeric(a.y)

a.y = @(x) a.y;

 end;

 ymin = @(x) spam.points('table',

a.y,x);

 if isnumeric(b.y)

b.y = @(x) b.y;

 end;

 ymax = @(x) spam.points('table',

b.y,x);

 if isnumeric(a.z)

 a.z = @(x) a.z;

 end;

 zmin = @(x,y) spam.points('table',

a.z,x,y);

 if isnumeric(b.z)

 b.z = @(x) b.z;

 end;

 zmax = @(x,y)

spam.points('table',b.z,x,y);

 v =

integral3(fs,a.x,b.x,ymin,ymax,zmin,zmax);

 % or

triplequad(fs,a.x,b.x,a.y,b.y,a.z,b.z);

 end;

 end

 end

end

Program 1.4. A class for the integration of functions
defined by subprograms

36 Variational Methods for Engineers with Matlab®

In this program, limits (or xlim) is a data structure with the
properties dim, lower, upper, which define dimension, lower
and upper bounds for the integral, respectively.

EXAMPLE 1.9.– Let us consider the integration of:

In this case,

xlim.lower.x = 0;
xlim.lower.y = 0;
xlim.upper.x = 1;
xlim.upper.y = @(x) x;
xlim.dim = 2;
f = @(x) x(1)*exp(-x(2));
sp = subprogram_integration(f,xlim);
v = sp.result

Program 1.5. An example of evaluation

This program produces v = 0.2358. The exact value is
 .

EXAMPLE 1.10.– Let us consider the evaluation of the volume of a
sphere. The code:

xlim.lower.x = -1;
xlim.lower.y = @(x) -sqrt(1- x(1)^2);
xlim.lower.z = @(x) -sqrt(1- x(1)^2 -x(2)^2);
xlim.upper.x = 1;
xlim.upper.y = @(x) sqrt(1- x(1)^2);
xlim.upper.z = @(x,y) sqrt(1- x(1)^2 - x(2)^2);
xlim.dim = 3;
f = 1;
sp = subprogram_integration(f,xlim);
v = sp.result

Program 1.6. Evaluation of a 3D integral

produces the result v = 4.1888. The exact result is .
But the code:

Integrals 37

xlim.lower.x = -1;
xlim.lower.y = -1;
xlim.lower.z = -1;
xlim.upper.x = 1;
xlim.upper.y = 1;
xlim.upper.z = 1;
xlim.dim = 3;
f = @(x) 1*(sum(x.^2)<1);
sp = subprogram_integration(f,xlim);
v = sp.result

Program 1.7. Evaluation of a 3d integral with a discontinuous function

produces an unsuccessful run: the result is v = NaN.

The intrinsic functions for older versions of Matlab® are given in
Table 1.2. triplequad adapts to the same use as integral3 by
considering a box containing the region of integration and extending
the integrand by zero outside the region of integration.

Notice that both dblquad and triplequad assume that f
accepts as input a vector x and scalars y and z and returns a vector
of results, so that the preceding functions spam2 and spam3 have to
be modified in order to satisfy these requirements.

Intrinsic function evaluates

quad(f,a,b) orquadgk(f,a,b)

quad2d(f,ax,bx,ay,by)

dblquad(f,ax,bx,ay,by)

triplequad(f,ax,bx,ay,by,az,bz)

Table 1.2. Intrinsic function for older versions of Matlab®0

38 Variational Methods for Engineers with Matlab®

1.6. Matlab® classes for partitions including the evaluation
of the integrals

Partitions may be assimilated to finite element meshes. For
instance, in Matlab®, we may define classes having convenient
properties and methods. For the situation where , an
example of such a class is given in program 1.8. Notice that the class
includes a method for integration (it assumes finite values for all the
elements of F).

classdef interval_partition

 properties

 x

 end

 properties(Constant)

 dim = 1

 end

 properties(Dependent)

 min

 max

 number_points

 number_intervals

 measure

 end

 methods

 function obj = interval_partition(points)

 obj.x = points;

 end

 function v =

integration(obj,method,F,np,metod,interpmetod)

 data.points = obj;

 data.values = F;

 switch method

 case 'riemann'

 v = riemann.trpzd(data);

 case 'mean'

 v = riemann.mean_value(data);

 case 'lebesgue'

 m1 = min(F);

 m2 = max(F);

 pas = (m2 - m1)/np;

Integrals 39

 y = m1:pas:m2;

 v = lebesgue.integrate(y,data,metod,

interpmetod);

 end

 end

 function obj = set.x(obj,coordinates)

 xx = sort(coordinates);

 obj.x = xx;

 end

 function v = get.min(obj)

 v = min(obj.x);

 end

 function v = get.max(obj)

 v = max(obj.x);

 end

 function v = get.number_points(obj)

 v = length(obj.x);

 end

 function v = get.number_intervals(obj)

 v = length(obj.x)-1;

 end

 function v = get.measure(obj)

 v = max(obj.x) - min(obj.x);

 end

 end

end

Program 1.8. Definition of a class for partition of intervals

For instance, the code:

pas = 0.05;
x = 0:pas:1;
p = interval_partition(x);

creates the structure p of type interval_partition. Then,

f = @(x) exp(x);
F = spam.mapspam('vector',f,x);

40 Variational Methods for Engineers with Matlab®

v1 = p.integration('riemann',F)
v2 = p.integration('lebesgue',F,20,'inferior','pchip')

v3 = p.integration('mean',F)

evaluates the integral using the
trapezoidal rule or Lebesgue’s method with 20 intervals on the vertical
axis. For the points given, the result is v1 = 1.7186, v2 =
1.7187, v3=1.7253. It may be improved by considering a
partition containing a larger number of points. For instance, if pas =
0.01; the result is v1 = v2 = 1.7183, v3 = 1.7197.

For , we may define a class as follows:

classdef rectangle_partition

 properties

 x

 y

 end

 properties(Constant)

 dim = 2

 end

 properties(Dependent)

 number_points

 measure

 end

 methods(Access = private)

 function v = quadinds(obj,i,j)

 v = [

 i j

 i+1 j

 i+1 j+1

 i j+1

];

 end

 function [ind1, ind2] = tri24(obj,i,j)

 ind1 = [i j; i+1 j; i j+1];

 ind2 = [i+1 j; i+1 j+1; i j+1];

 end

Integrals 41

 function [ind1, ind2] = tri13(obj,i,j)

 ind1 = [i j; i+1 j+1; i j+1];

 ind2 = [i j; i+1 j; i+1 j+1];

 end

 function v = sumind(obj,F,ind)

 v = 0;

 for i = 1:size(ind,1)

 aux = F(ind(i,1), ind(i,2));

 v = v + aux;

 end;

 end

 function v = st24(obj,F)

 xx = obj.x;

 yy = obj.y;

 s = 0;

 for i = 1: length(xx)-1

 hx = xx(i+1) - xx(i);

 for j = 1: length(yy)-1

 hy = yy(j+1) - yy(j);

 [ind1, ind2] = obj.tri24(i,j);

 surft = hx*hy/2;

 aux1 = obj.sumind(F,ind1);

 aux2 = obj.sumind(F,ind2);

 s = s + (aux1 + aux2)*surft;

 end

 end;

 v = s/3;

 end

 function v = st13(obj,F)

 xx = obj.x;

 yy = obj.y;

 s = 0;

 for i = 1: length(xx)-1

 hx = xx(i+1) - xx(i);

 for j = 1: length(yy)-1

 hy = yy(j+1) - yy(j);

 surft = hx*hy/2;

 [ind1, ind2] = obj.tri13(i,j);

 aux1 = obj.sumind(F,ind1);

 aux2 = obj.sumind(F,ind2);

 s = s + (aux1 + aux2)*surft;

42 Variational Methods for Engineers with Matlab®

 end

 end;

 v = s/3;

 end

 function v = sq4(obj,F)

 xx = obj.x;

 yy = obj.y;

 s = 0;

 for i = 1: length(xx)-1

 hx = xx(i+1) - xx(i);

 for j = 1: length(yy)-1

 hy = yy(j+1) - yy(j);

 surfq = hx*hy;

 ind = obj.quadinds(i,j);

 saux = obj.sumind(F,ind);

 aux = saux*surfq;

 s = s + aux;

 end

 end;

 v = s/4;

 end

 end

 methods

 function obj = rectangle_partition(x1,x2)

 obj.x = x1;

 obj.y = x2;

 end

 function v =

integration(obj,method,F,np,metod,interpmetod)

 data.points = obj;

 data.values = F;

 switch method

 case 'trapezoid'

 v = riemann.trpzd(data);

 case 'mean'

 v = riemann.mean_value(data);

 case 'tri24'

 v = obj.st24(F);

 case 'tri13'

 v = obj.st13(F);

 case 'quad'

Integrals 43

 v = obj.sq4(F);

 case 'lebesgue'

 m1 = min(min(F));

 m2 = max(max(F));

 pas = (m2 - m1)/np;

 yy = m1:pas:m2;

 v =

lebesgue.integrate(yy,data,metod,interpmetod);

 otherwise

 v = [];

 disp('invalid method');

 end;

 end

 function v = get.number_points(obj)

 v.x =length(obj.x);

 v.y =length(obj.y);

 end

 function v = get.measure(obj)

 dx = max(obj.x) - min(obj.x);

 dy = max(obj.y) - min(obj.y);

 v = dx*dy;

 end

 end

end

Program 1.9. A class for partitions of rectangles

For instance, the code:

pas = 0.05;
x = 0:pas:1;
y = 0:pas:2;
pp = rectangular_partition(x,y);

creates the structure pp of type rectangular_partition and
the code:

f = @(x) exp(x(1) - x(2));
F = spam.mapspam('vector',f,pp);
v1 = pp.integration('trapezoid',F);
v2 = pp.integration('tri13',F);

44 Variational Methods for Engineers with Matlab®

v3 = pp.integration('tri24',F);
v4 = pp.integration('quad',F);
v5= pp.integration('lebesgue',F,40,'inferior','pchip');

v6= pp.integration('lebesgue',F,40,'superior','pchip');

v7 = pp.integration('lebesgue',F,40,'mean','pchip');

produces v1 = v4 = 1.4864, v2 = 1.4860, v3 =
1.4867, v5 = v6 = v7 = 1.4861. The exact value is

. When using pas = 0.01, the result is
v1 = v2 = v3 = v4 = 1.4858, v5=v6=v7=1.4856.

EXAMPLE 1.11.– Let us consider the integration of
on . The exact value of the integral is

. Using pas = 0.05, the results are
v1=v2=v4=v5=3.1946, v2=0.8597, v6=3.1942. For
pas=0.01, v1=v2=v4=v5=3.1946, v3=3.1945,
v6=3.1942, v7=3.1944.

EXAMPLE 1.12.– Let us consider the integration of

on . This situation corresponds to the integration
of

and the exact value of the integral is . Using pas =
0.01 and np=100 intervals on the vertical axis, the results are
v1=v2=v4=0.2344, v3=0.2345, v5 = 0.2363, v6 =
0.2344, v7 = 0.2354. Due to discontinuity, finer partitions are
requested for a good precision.

In 3D situations, , we may
define a class containing methods for integration by trapezoidal rule or
integration using a tetrahedral or hexahedral mesh as follows:

Integrals 45

classdef cobble_partition

 properties

 x

 y

 z

 end

 properties(Constant)

 dim = 3

 end

 properties(Dependent)

 number_points

 measure

 end

 %

 methods(Static, Access = Private)

 function v = hexainds(i,j,k)

 v = [

 i j k

 i+1 j k

 i+1 j+1 k

 i j+1 k

 i j k+1

 i+1 j k+1

 i+1 j+1 k+1

 i j+1 k+1

];

 end

 function v = tetra5()

 v = [

 1 2 4 5

 2 3 4 7

 2 7 5 6

 4 5 7 8

 2 4 5 7

];

 end

 function v = tetra6()

 v = [

 3 8 4 2

 1 8 2 4

 7 2 8 3

46 Variational Methods for Engineers with Matlab®

 1 2 8 5

 2 5 6 8

 2 8 6 7

];

 end

 function v = sumind(obj,F,ind)

 v = 0;

 for i = 1:size(ind,1)

 aux = F(ind(i,1), ind(i,2), ind(i,3));

 v = v + aux;

 end;

 end

 function v = vol_tetra(obj,x,y,z,ind)

 xx = x(ind(:,1));

 yy = y(ind(:,2));

 zz = z(ind(:,3));

 v = abs(det([xx' yy' zz' ones(size

(xx'))]))/6;

 end

 function v = sumtetra(obj,x,y,z,F,

ind,tetras,volh)

 v = 0;

 sv = 0;

 for iaux = 1: size(tetras,1)

 iii = ind(tetras(iaux,:),:);

 saux = obj.sumind(F,iii);

 volt = obj.vol_tetra(x,y,z,iii);

 sv = sv + volt;

 v = v + saux*volt;

 end

 v = v*volh/sv;

 end

 function v = st5(obj,F)

 x = obj.x;

 y = obj.y;

 z = obj.z;

 tetras = obj.tetra5();

 s = 0;

 for i = 1: length(x)-1

 for j = 1: length(y)-1

Integrals 47

 for k = 1: length(z)-1

 ind = obj.hexainds(i,j,k);

 hx = x(i+1) - x(i);

 hy = y(j+1) - y(j);

 hz = z(k+1) - z(k);

 volh = hx*hy*hz;

 saux =

obj.sumtetra(x,y,z,F,ind,tetras,volh);

 s = s + saux;

 end;

 end

 end;

 v = 0.25*s;

 end

 function v = st6(obj,F)

 x = obj.x;

 y = obj.y;

 z = obj.z;

 tetras = obj.tetra6();

 s = 0;

 for i = 1: length(x)-1

 for j = 1: length(y)-1

 for k = 1: length(z) - 1

 ind = obj.hexainds(i,j,k);

 hx = x(i+1) - x(i);

 hy = y(j+1) - y(j);

 hz = z(k+1) - z(k);

 volh = hx*hy*hz;

 saux =

obj.sumtetra(x,y,z,F,ind,tetras,volh);

 s = s + saux;

 end;

 end

 end;

 v = 0.25*s;

 end

 function v = sh8(obj,F)

 x = obj.x;

 y = obj.y;

 z = obj.z;

 s = 0;

48 Variational Methods for Engineers with Matlab®

 for i = 1: length(x)-1

 hx = x(i+1) - x(i);

 for j = 1: length(y)-1

 hy = y(j+1) - y(j);

 for k = 1: length(z) - 1

 hz = z(k+1) - z(k);

 volh = hx*hy*hz;

 ind = obj.hexainds(i,j,k);

 saux = obj.sumind(F,ind);

 s = s + saux*volh;

 end

 end;

 end;

 v = s/8;

 end

 end

 methods

 function obj = cobble_partition(x1,x2,x3)

 obj.x = x1;

 obj.y = x2;

 obj.z = x3;

 end

 function v =

integration(obj,method,F,np,metod,interpmetod)

 data.points = obj;

 data.values = F;

 switch method

 case 'trapezoid'

 v = riemann.trpzd(data);

 case 'mean'

 v = riemann.mean_value(data);

 case 'tetra5'

 v = obj.st5(F);

 case 'tetra6'

 v = obj.st6(F);

 case 'hexa'

 v = obj.sh8(F);

 case 'lebesgue'

 m1 = min(min(min(F)));

 m2 = max(max(max(F)));

 pas = (m2 - m1)/np;

Integrals 49

 yy = m1:pas:m2;

 v =

lebesgue.integrate(yy,data,metod,interpmetod);

 otherwise

 v = [];

 disp('invalid method');

 end;

 end

 function v = get.number_points(obj)

 v.x =length(obj.x);

 v.y =length(obj.y);

 v.z =length(obj.z);

 end

 function v = get.measure(obj)

 dx = max(obj.x) - min(obj.x);

 dy = max(obj.y) - min(obj.y);

 dz = max(obj.z) - min(obj.z);

 v = dx*dy*dz;

 end

 end

end

Program 1.10. A class for three-dimensional partitions

For instance, the code:

pas = 0.05;
x = 0:pas:1;
y = 0:pas:2;
z = 0:pas:3;
ppp = cobble_partition(x,y,z);

creates the structure pp of type cobble partition. The code:

v1 = ppp.integration('trapezoid',F);
v2 = ppp.integration('tetra5',F);
v3 = ppp.integration('tetra6',F);
v4 = ppp.integration('hexa',F);
v5=ppp.integration('lebesgue',F,40,'inferior','pchip');

v6=ppp.integration('lebesgue',F,40,'superior','pchip');

50 Variational Methods for Engineers with Matlab®

v7=ppp.integration('lebesgue',F,40,'mean','pchip');

produces v1 = v4 = 13.3791, v2 = 13.3789, v3 =
13.3763, v4 = 13.3791, v5 = 13.4117, v6
=13.4086, v7 = 13.4102. The exact value is

.

EXAMPLE 1.13.– Let us consider the evaluation of the 3D integral:

We may consider and

Then, we evaluate:

Using pas = 0.05, the result obtained is v1 = v2 = v3
= v4 = 4.1714, v5 = v6 = v7 = 4.1724. The exact
result is .

REMARK.– In some situations, the available data is not on a grid, but
just on sparse points. This situation is considered in Chapter 3.

