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Non-linear Signal Processing

We will summarize the evolution of signal processing by period, according to the
technology then available. The periods range from 1910 until the present day, where
technology evolved from vacuum tubes to FPGA, DSP and now QCA. The
analytical evolution ranges from the study of transfer functions to inverse linear
theory. From 1910 until 1940, Fourier [FOU 27], Laplace [LAP 14], Bode and
Nyquist [NYQ 24] were the main authors. From 1940 until 1960, we will cite Gabor
[GAB 46], Shannon [SHA 48] and Wiener [WIE 49]. From 1960 until 1980,
Oppenheim [OPP 99], Kailath, Kalmann [KAL 60], Slepian [SLE 74] and Cooley
and Tukey [COO 65] often appear in published articles. From 1980 until 2000, we
will cite Kennedy [KEN 11] and Eberhart [EBE 95].

From 2000 until the present, technologically, the evolution has taken two forms,
that of photonic crystals and that of quantum dot cells. [ANG 07] demonstrated the
possibility of implanting quantum gates with photonic crystal wave guides. The
photons confined in the photonic crystals and the wave guides formed by linear
chains doped by default with atoms or quantum dots can generate strong non-linear
interactions between the photons, thus enabling one or two qubit of quantum gates to
be implemented. The simplicity of the gate-switching mechanism, the experimental
feasibility of manufacturing two-dimensional photonic crystal devices and
integrating such devices with optoelectronic components offer promising new
possibilities for processing quantum and optic information networks.

[HEL 97] studied quantum dot cells (QCP) and demonstrated their convenience
for non-linear signal processing. [LEN 97] provided the construction of a computing
device with quantum dots. The base block of a QCa is a nanometric cell that
contains five quantum dots. Each cell contains two electrons, the two electrons are
on opposing dots in the cell due to Coulomb repulsion. The electrons can change
place from one dot to another by tunneling, so the electrons can have two different
states that correspond to the bits’ Boolean values. The quantum point cells have
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three advantages: a very fast execution speed and infinitely reduced dimensions and
energy consumption rates. The theoretical developments are sufficiently advanced.
However, manufacturing them poses enormous difficulties. This is due to their
quantum aspects, which should be taken into account. The only achievement to date
is the quantum dot cellular automaton (QCA) [WHI 07].

Period Physics Analytics Names
1910-1940 | Empty tubes, Impulse response, Transfer | Fourier, Laplace, Bode,
localized circuits | function, transformation Nyquist
methods
1940-1960 | Microwave Statistical concepts Gabor, Shannon, Wiener
circuits (correlation, adapted filters,

information theory)

1960-1980 | Integrated Digital filters, spectrum Kailath, Oppenheim,
computer, estimation, fast Fourier Slepian, Tukey
circuits, optical transform, inverse linear
technology theory.

1980-2000 | FPGA, DSP, DSP | Ultra-fast signal processing | Kennedy, Eberhart
in particle swarm

2000-2015 | QCP, QCA Quantum signal processing | Helsingius, Whitney, Athas

Table 1.1. Devices, topics and main discoverers

The simple QCAs at first reveal many problems in creating actual circuits.
Thermal noise can alter the state of different cells, its effect increases with the cell’s
dimensions and the temperature. Other problems limit the maximal dimensions of
individual circuits. Large circuits can themselves commute into undesirable states.
However, the recent discovery of adiabatic pipelines seem to compensate this
problem [ATH 94]. Large circuits can be divided into many small circuits. The
dimension of each small circuit is matched such that the thermal noise does not
disrupt the calculation. Another advantage of adiabatic pipelines lies in the
manufacturing of delay lines and finite state machines, this being an essential
advantage for most algorithms.

The evolution of signal processing to the non-linear domain is motivated by
technological advances in CMOS [HUN 10], new perspectives in micro-electronics
[LUR 04] and new logic gates [MEY 07] as well as nano-networks [AKY 11]. The
main works to tackle signal processing are the following: Kurth describes other
approaches to identify non-linearities in time series in geophysics and astrophysics.
His work consists of a data pretreatment and tests on signal stationarity and artifacts,
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for which he provides a robust non-linear method for reducing noise [KUR 94].
[KAT 06] discuss the problems and methodologies for systems and signals, with
particular attention on modeling, identifying and processing signals. It reveals some
common precepts between technologies. In his work, he summarizes the new
directions and predictions on systems and signals. In his published technical note,
Kijewski reports the increasing use of frequency conversion time for
analyzing and interpreting non-stationary and non-linear signals in a wide range of
scientific and technical techniques. He focuses his attention on continuous
wavelet transform and mode decomposition in tandem with Hilbert transform. His
study evaluates the performance of two approaches in analyzing a large variety of
classic non-linear signals. The fundamental difference between the two approaches
appears in the instantaneous frequency obtained using Hilbert transform, which
characterizes sub- and super-cyclic nonlinearities simultaneously, while the wavelet
based on the instantaneous frequency captures the super-cyclic nonlinearities with
an additional measure of the bandwidth characterizing the sub-cyclic nonlinearities
[K1J 07].

Among the works applied to the nonlinear analysis of medical signals using data
mining, we will cite [BOG 10]. Dougherty’s work on determining coefficients to
decide on the signal’s non-linear character deserves to be mentioned [DOU 00].
Diversity has been handled by Modarres using a Hammerstein filter [MOD 09].
Perez has detailed all the characteristics of Gaussian processes in a review article
[PER 13]. As for new developments, the future predictions expected in non-linear
signal processing are summarized by Gao [GAO 12].

Finally, we will cite a series of books that tackle non-linear signal processing
with a variety of methods [ARC 05, MOO 00, STO 05, PRA 08, ROC 04].

1.1. Distributions

When processing the signal, using distributions is fundamental. However, this
usage is not clearly defined: we must work with functions or distributions. Of course
this depends on the level of abstraction we are working with. Considering what is
known as Dirac comb or pseudo function, the best-adapted formalism is that of
distributions. Distribution theory in the mathematical sense of the term has been
developed by Schwartz [SCH 51]. The objective has therefore been to generalize the
notion of function, in order to give a correct mathematical meaning sense to the
objects handled manipulated by physicists, additionally retaining the possibility of
carrying out operations such as derivations, convolutions or Fourier or Laplace
transforms. This generalization of the notion of function has been pursued in various
directions, in particular the notion of the hyper-function, thanks to Sato [SAT 59,
SAT 60]. We will examine this notion in detail in the context of the evolution of
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Fourier transform, which will enable us to identify a significant aspect of non-linear
signal processing [SHA 13]. However, it is Gumbel’s works that have enabled the
distribution aspect, in the sense of the term relating to probability, to be clarified
[GUM 35, GUM 50, GUM 53, GUM 54, GUM 60, GUM 61, GUM 67].

A link exists between the probabilities and the distributions. In fact, if p is a
positive function defined over R, such as:

Tp(x)dle [1.1]

knowing the probability density enables the expected value of any function f of the
random variable X to be calculated.

E(9(X)) = [ 00)plx)dx [12]

we can say that p defines a regular distribution since p is therefore a fortiori
summable in L) (R) , and we have:

E(¢(x) =(p.9) [1.3]

Holmes, in his technical report on the role of group theory in signal processing’s
mathematical foundations, shows the usefulness and benefit of group theory,
through the Plancherel formula. The essential idea is to use special unit
transformation for compression and decorrelation. The suggestions given show that
nonabelian group filters can improve the standard methods of discreet Fourier
transform and fast Fourier transform (DFT and FFT) without increasing the
calculation’s complexity [HOL 87].

1.2. Variance

Variance is a measure that serves to characterize a distribution’s dispersion. It
indicates how the statistical series or the random variable is dispersed around its
mean or its expected value. A zero variance shows that all the values are identical. A
small variance is a sign that the values are close to one another, while a high
variance is a sign that they are very distant.
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1.3. Covariance

Covariance is an extension of variance. Correlation is a normalized form of
covariance. This concept is naturally generalized to many variables (random vector)
by the covariance matrix.

For the stochastic processes that cover the evolution of a random variable,
covariance gives way to the concepts of auto-covariance and autocorrelation, then to
the estimation of spectral density for stationary processes.

Space time adaptive processing (STAP) normally requires knowledge of the
inverse covariance matrix (ICM) of unwanted signals to detect signals from the
desired target. The computational load for generating a reliable inverse covariance
matrix prevents an adaptive processing from being implemented in radar systems in
real time [DON 05].

1.4. Stationarity

It is often convenient to consider stationarity in a random process, this
constitutes a simplification if the process linked to the signal is considered as a
stationary process. Suppressing stationary and non-stationary noise in the case of
cardiac signals has been developed by [RAH 11].

1.5. Bayes inference

The procedures for statistical inference are applied when the available
information is less complete than that usually studied. In this case, the initial
information is taken to be a series of probability measures P. With an initial
probability measure, an estimation of the corresponding Bayes can be found. The
inference procedure recommended, when an initial group of probabilities P is
available, is to find a set of estimations corresponding to P. This is called an
achievable set of estimates [POT 83]. A practical case is developed in this book on
minimal mean square error (MMSE) [LAM 13]. Modern statistical approaches
accepted in communication theory use statistical inference in designing and
evaluating statistical tests [MET 54]. Farina et al. developed an algorithm built
around Bayes inference in identifying and tracking radar [FAR 02]. [TAK 05] show
that the Jeffreys prior plays an important role in statistical inference.

The statistical inference consists of estimating unknown characteristics of a
population from a sample taken from this population. The statistical inference is



8 Transitions from Digital Communications to Quantum Communications

therefore a set of methods enabling reliable conclusions to be drawn from data from
statistical samples.

Methods of statistical inference initially enabled fundamental notions of
probability to be deduced, as well as hypothesis tests and confidence intervals as
stipulated by [PEA 94], [PEA 01] and [WAL73]. Thereafter, re-sampling
techniques came to light with [ULA 04], [EFR 82] and [MIS 57].

Algorithms are sought for processing data or signals using models whose
parameters will be adjusted by the statistical use of data. The statistical approach
enables robust methods applicable to broad signal categories to be developed with
the processing of massive data. On the other hand, modeling complex space—time
phenomena is a difficult operation. Many processes can only be partially observed.
The latent state’s statistical inference (by data assimilation) becomes a problem of
paramount importance. Two large categories of space-time models are widespread in
the literature [MAN 12]:

— geostatistical models that use a statistical description of covariance functions as
a starting point;

— space-time models that enable partial differential equations or their stochastic
analogue to be generated from a physical description of the mechanism.

The calculation of the statistical inference can also be formulated as shown by
Pereyra et al. This has the advantage of resolving the difficulties posed by the
Cramer—Rao limit.

The image segmentation obtained by tomography in the case of the brain is
based on the differential evolution of the Bayes inference as shown by [WAN 11a].
Another example of the application of Bayes inference is given by [WAN 11b] on
the exponential distribution function or risk function in establishing Bayes
estimators.

Beyerer gives a generalized Bayesian inference process as shown in Figure 1.1.

Takahashi introduces a universal Bayes which is a Bayesian version of the
Martin-Lof test, it establishes a series of theorems linked to Bayes statistical
inference in terms of a random sequence [TAK 06].

Another example of inference is given us by mixing models in the statistical
segmentation of medical images. A Monte Carlo sampling combined with Markov
chains is used [WOO 06].
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Figure 1.1. Generalized Bayesian inference process

Qu and Hu, in a Bayesian framework for generalizing associative functional
networks (GAFN), detail a variational Bayes learning algorithm for assimilating
later distributions of associative network parameters. This algorithm means
statistical inferences can be avoided [QU 07].

An essential application for Bayesian inference is mitigating breakdowns in
launching space vehicles. It is cited under the subject “Bayesian anomaly”. Contrary
to classical inference, the mean estimations differ critically. The difference in the
probability of failure in the system’s performance is deduced from estimations taken
before the test or from real experiments. The probabilities calculated initially differ
drastically from the probabilities obtained afterwards [PHI 08].

A second application for Bayesian inference is made on an FPGA architecture.
This is made in checking spam in email content. The inference engine uses the
logarithmic number system (LNS) to simplify the naive Bayesian calculation. A
noise model for the inference engine is developed and the noise limits have been
analyzed in order to determine the accuracy of the inference [MAR 08].

Where non-Bayesian signals are concerned, two fairly efficient methods can be
used:

— the Cramer—Rao inequality (some call it the Cramer—Rao bound), expresses a
lower bound on the variance of an unbiased estimator based on Fisher information.
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It states that the reverse of the Fisher information 3(0), of a parameter 6, is a lower
bound of the variance of an unbiased estimator of this parameter, written 0.

-1
var(9) > 3(8)" = EK%ln L(X;é’ﬂ [1.4]
If the model is regular, the Cramer—Rao bound can be written:
. & :
3(6) =—E{wlnL(X;0} [1.5]

where L(X; 0) is the probability function;
— the maximum likelihood method [MOO 99]:

If a sample has produced the finite sequence of numbers x*;, x*,,x*, and if we
have chosen to model this situation using a n-sample X;, ..., X, of random
independent variables of the law 3(0), and if choosing the value of the parameter q
is the problem we are confronted with, we can consider the event:

E'={X =x..X,=x}, [1.6]
Generally:
E(x,..x,) ={X, =x... X, =x,} ={X, =x}n..n{X, =x} [1.7]
and its probability:
L(%prr%,30) = By (E (%000, )) = B ({X, =} X, = x,}) [1.8]
P,({x,=x})-B({Xx,=x1}) [1.9]

where this last inequality results from the independence hypothesis of the random
variables X;. The idea is that the choice 6* which it is sensible to make for 6, is that
for which this probability is maximal for the values x*,,...x*, obtained and to ask:

o = Argmaxg{L(x;‘,..,x;;e)} [1.10]
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*

If @ exists, it is unique, and it is the value for which 6+ L(x* X ;6’)is

12°9%n

maximal. This comes to resolve the following equation in 6:

oL, . .
%(xl,..,xn;ﬁ)zo [1.11]

By definition, the function L, (x1,..,X, ; 0) is:

for X, > L(@) is called the probability of law L:

L, (xx,:0)=T] B ({X =x1}) [1.12]

1.6. Tensors in signal processing

Tensor formulations are not usually used in signal processing. This is due to the
fact that signal processing practitioners have found solutions on second order tensors
using a symbolic matrix notation as an invariant representation. Examples are
provided by linear operators, dyadic products (correlation matrixes) and vector
functions derived by Jacobian matrixes [RUI 07]. The operation shown most often is
Kronecker’s tensor product; a high-dimension signal is obtained using two low
dimensions. This is commonly used to obtain a separable multidimensional base.

The systematic use of tensorial concepts in signal processing is motivated by the
field of higher order statistics. Thus, entities of higher order statistics such as higher
order moments and cumulants [GIA 87, CAR 90] and [CAR 91] are higher order
tensors. The mathematical framework is based on multilinear algebra, that is to say
generalizing matrix algebra to high-order tensors.

Interesting advances have been reported in this context in blind identification and
blind source separation. These advances are based on recent works on value
decomposition [BAS 07] and linked algebraic approaches, such as principal
component analysis and independent component analysis.

In recent years, interest in developing tensorial methods has grown. This interest
is boosted by new medical imaging methods, such as the diffusion tensor in
magnetic resonance imaging and the need to obtain these tensors and visualize them
as images. Currently, detection methods (sensing) provide tensorial data that are
usually arranged as sampled, multidimensional signals. However, none of these
measures is entirely reliable, since every tensor gives degraded and noisy data.
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Processing for multidimensional data generally begins with cutting the tensor
into vectors or observation matrixes, so that second order methods are applicable.
These methods are essentially based on the covariance matrix, and more recently on
higher order statistics. The processed data are then fused to find the initial tensor’s
dimension [MUT 07].

The tensors produced by diffusion tensor magnetic resonance imaging represent
the covariance in a Brownian model. In this physical interpretation, the diffusion
tensors should be defined as symmetric and positive. However, this current approach
to the statistical analysis of tensor diffusion, which handles these linear items do not
take account of the positive symmetry constraint. The difficulty results from the fact
that the diffusion tensor space is not the same shape as a vectorial space. It has been
demonstrated that diffusion tensor space is a type of curve known as a symmetric
Riemann space. Methods have been developed to produce statistics called means
and modes variety in this space. It is also shown that these statistics conserve these
tensors’ geometric properties by including the constraints that are true positive
values. Formulating symmetrical space also leads us to a natural definition of
diffusion tensors and to new anisotropic measurement methods [FLE 07].

The benefit of measuring anisotropy is also stated in Castano’s article [CAS 07].
A useful generalization is also suggested. In fact, his approach is articulated
theoretically properties of the space of multivariate normal distributions where it is
possible to define a invariant Riemanian and affine metric and to express statistics
on the varieties of defined positive and symmetric matrixes. The contribution gives
tools for anisotropic filtering and regularizing tensor fields. Real and synthetic
diffusion tensor data are validated.

Other very important works on theory have been produced by the following
authors [WES 94, KOL 08, LAT 97, LAT 00b, CIC 08, CIC 14a, CIC 14b]. These
works define the framework of a new era for tensorial signal processing on the basis
of what are called tensor networks. The applications obtained by tensorial signal
processing also cover CDMA, radar and wireless communications [NIO 10,
LAT 07, ALM 07].

1.7. Processing the quantum signal
Quantum signal processing comprises two parts, classic processing and tensorial
processing. For classic processing, we will refer to Eldar’s work [ELD 02], in this

article, on the basis of existing or new signal processing algorithms.

For tensorial processing, Zanardi et al. show that the division of quantum
systems into subsystems is dictated by the measures and interactions accessible. The
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emergence of a multi-part tensorial structure of the state-space and the notion of
quantum entanglement are therefore the observables induced. A general algebraic
framework is developed, it formalizes the concept of multi-part tensors. Two
essential aspects in the quantum domain are analyzed, the quantum information
processing and decoherence control [ZAN 04]. Quantum tensor formulation was
established by Hardy [HAR 12].

Another aspect that can ensure the transition from the classic to the quantum
aspect is tackled by Le Bihan in his works on the contribution to the processing of
valued-symbols on non-communicative algebraic structures. These works are
articulated on the signals’ quaternion character, which ensures the transition from
classic to Clifford algebra, which is a fundamental element for developing
calculations in quantum mechanics [BIH 11a, BIH 11b, BIH 11c].

The targeted applications are the quantum information processing (quantum
memories and calculators).

Processing quantum signals promises to contribute to designing the first
generation of quantum information processors, noting what represents the biggest
challenge at the moment for pioneers in quantum information: understanding
electronic noise [KNI 02, KVE 03].

We are interested in the way in which the signals’ quantum properties, arising
from such devices, can be interpreted by classic instruments. Experiments will
enable us the question of compatibility between quantum processors and the
computers of today to be examined more deeply [BEH 94, KEI 06].






