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Fluid–Structure Interaction

1.1. Introduction

Recently, several new problems have been formulated in the area of

fluid–structure coupling, for example in the automotive industry with the

dynamics of airbag inflation and fluid sloshing inside tanks; in aeronautics

with the fluttering phenomenon affecting airplane wings, which involves a

coupling between the vibrational dynamics of a structure and the flow of a

fluid; and in the transportation industry with studies on noise reduction inside

vehicles based on vibroacoustic analysis.

Each and every structure in contact with a fluid is subject to phenomena

involving mechanical fluid–structure couplings to some extent. This kind of

multiphysics coupling often significantly affects the dynamic behavior of

mechanical systems. Taking it into account is one of the major challenges in

calculating the dimensions of structures, especially when the objective is to

ensure that their design meets the necessary safety requirements.

In this chapter, we will examine problems relating to the interaction of a

structure with fluids both at rest and in flow. We will give a description of the

motion of the fluid based on vibration theory, considering small vibrations in

the structure and fluctuations in the pressure of the fluid around a stable

equilibrium state, and we will present the relevant equations in the case of

flowing fluids and the corresponding numerical methods for calculating

couplings with dynamic structures.
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2 Fluid–Structure Interactions and Uncertainties

1.2. Fluid–structure interaction problem

The mechanical coupling between the two media acts in both directions at

their surface of contact: deformations in the structure resulting from the forces

applied by the fluid flow modify the state of the fluid–structure interface; this

affects the flow conditions of the fluid, which induces a change in the forces

exerted on the structure at the interface, thus bringing the interaction cycle to

a close.

Figure 1.1. Fluid–structure coupling mechanism. For a color version of
this figure, see www.iste.co.uk/elhami/interactions.zip

The fluid–structure interaction is described as the exchange of mechanical

energy between a fluid and structure. This definition encompasses a wide

range of problems. We can classify these problems using two criteria

according to the physics of the problem at hand. The first criterion, proposed

by Axisa [AXI 01], is based on the nature of the fluid flow. If the flow is

negligible or non-existent, we say that the fluid is stagnant. Otherwise, we say

that the fluid is flowing. In the first case, the objective is to describe small

movements of the fluid and the structure around an equilibrium rest state. In

these conditions, we choose to describe the dynamics of the interaction as a

function of frequency; the equations describing the behavior of the structure

and the fluid are written in terms of the reference (rest) state and generally

lead to linear problems. In the second case, the objective is to establish a

description of larger scale motion in the fluid and/or the structure. In these

conditions, we choose to describe the dynamics of the interaction as a

function of time; the equations describing the behavior of the structure and

the fluid are written in terms of the current state of the system and generally

lead to nonlinear problems.

The second criterion considers the coupling strength, which may be defined

as the magnitude of the interactions or exchanges between the two media.

A coupling is said to be strong if there are high levels of exchange between

the two media, i.e. the fluid has a significant impact on the structure, and vice

versa. A coupling is said to be weak if the effect of one of the media dominates

that of the other (Figure 1.2).
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Figure 1.2. Examples of fluid–structure interaction problems [GAU 11].
For a color version of this figure, see www.iste.co.uk/

elhami/interactions.zip

Three dimensionless numbers have been suggested to classify these

problems [DEL 01]:

– The mass number MA is defined as the ratio between the density of the

fluid ρf and that of the structure ρs:

MA =
ρf
ρs

[1.1]

This describes the significance of the inertial effects of the fluid and the

structure. If its value is close to one, the inertial effects of the fluid are

comparable to those of the structure, and so must be taken into account.

– The Cauchy number Cy is the ratio between the dynamic pressure and

the elasticity of the structure, which is quantified by Young’s modulus E.

Cy =
ρfV

2

E
[1.2]

This indicates the significance of the deformations induced by the flow. If

this number is small, i.e. if the structure is rigid or the fluid velocity is small,

structural deformations are negligible.
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– The reduced velocity Vr is the ratio between the characteristic flow

velocity and the velocity of wave propagation inside the structure:

Vr =
V√
E
ρs

=
V

cs
[1.3]

If this number is large, the fluid dominates the problem from the perspective

of time, and the dynamics of the structure are not important. By contrast, the

dynamics of the structure increasingly dominate as this number tends to zero.

If the number is close to 1, both dynamics carry similar weight in the problem.

These numbers are highly convenient for checking the importance of each

phenomenon within the context of a given problem. However, as is the case

for most dimensionless numbers, it is still difficult to define a priori threshold

values applicable to all problems. In each problem, the large or small terms in

the above will correspond to very different numerical values.

Using numerical simulations allows us to understand and predict the

dynamic behavior of structures coupled with fluids, which is valuable in a

number of industrial sectors. The numerical methods that we will use require

us to solve the mathematical equations that model the behavior of the coupled

fluid–structure system.

In general, the formulation of a coupled problem is based on the following

description:

– the structure problem is formulated in terms of the displacement; the goal

is to describe the behavior of the structure as a function of the displacement u,
strain ε(u), stress σ(u), and to solve the equations of this dynamic to find the

u, ε(u) and σ(u) fields in the structure domain;

– the fluid problem is formulated in terms of the pressure/velocity; the goal

is to describe the behavior of the fluid as a function of the pressure p and the

velocity v, to solve the equations of conservation of mass and momentum and

to find the p and v fields in the fluid domain;

– at the fluid–structure interface, the mechanical exchanges are

represented, on the one hand, by considering the force ϕ exerted by the fluid

as a boundary condition for the structure problem and, on the other and, by

considering the velocity ∂u
∂t imposed by the structure as a boundary condition

for the fluid problem.
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The energy exchanges between the fluid and the structure occur

simultaneously. This needs to be taken into account by the numerical

simulation. Coupled simulations can implement a single computational

program to simultaneously solve the equations of the fluid and structure

problems or alternatively can have two separate programs, one dedicated to

the fluid problem and the other to the structure problem. The degree of

complexity of the numerical simulation depends on the problem and methods

of spatial and temporal discretization used to solve the equations of the

problem.

Figure 1.3 proposes an overview of the most suitable general methods for

simulating fluid–structure interaction problems:

Figure 1.3. General methods for numerically
simulating fluid–structure interactions

1.2.1. Fluid–structure coupling methods

There are several suitable coupling methods for the kinds of problems that

we typically encounter. The following methods are used for stagnant fluids:

– The decoupled method finds the load or hydrostatic pressure on the

structure, and then uses the results as an input to solve the deformation in

the structure problem.

– Acoustic fluid formulations (in terms of frequency) allow small

displacements around the equilibrium position of a structure to be determined.

If the fluid is heavy, the vibrations of the structure and the fluid are strongly

coupled. This coupling is reflected in the distinct natural frequencies of the

modes, and the shapes of these modes. These methods use formulations

that can be either non-symmetric (u, p) or symmetric (u, p, ϕ). They were
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proposed by Morand and Ohayon [MOR 95] and illustrated by Sigrist

[SIG 11].

Frequency-based formulations of the fluid potential are applicable to

problems with stagnant fluids, but can also be used to describe the elevation

of a free surface subject to sloshing. The goal is to determine the motion of

the free surface in order to find the pressure variations along the walls. These

methods are similar to acoustic fluid formulations, which use either symmetric

or non-symmetric expressions for the coupling equations, written as (u, p0)
and (u, h, ϕ) [SIG 11].

In this book, we will consider fluids that are flowing. It is important to note

that the solutions of flow problems are based on Eulerian formulations. This

kind of formulation is particularly well suited to the study of flows and greatly

simplifies the process of solving the equations of the fluid problem.

Solving the deformation of a structure more naturally leads to a Lagrangian

description. Expressing the interaction problem between a flowing fluid and a

structure introduces an additional complication into the choice of formulation

for the problem, as this formulation must be compatible with the models of

both the fluid and the structure. Existing methods tackle this issue in different

ways, which allows different levels of interaction to be taken into account.

– Monolithic approaches solve the stated problem as a single block.

We can make a distinction between monolithic formulation and monolithic

solving. The former category of approach describes and solves the problem

with a formulation that is either Lagrangian or Eulerian. This gives the

closest solution to the actual physical problem, but this solution is also the

most difficult to formulate and solve. We can, for example, refer to the

work by Morinishi and Fukui [MOR 12], who used an Eulerian formulation,

and the work by Dermidzic and Muzaferija [DER 95], who additionally

consider thermal effects. The latter type of approach, monolithic solving,

describes the problem using both Eulerian and Lagrangian formulations

simultaneously. It then merges and solves these two formulations in a single

system. The methods commonly used for this are based on virtual domains

with Lagrange multipliers or penalty-based methods [DIN 07, AQU 04], and

immersed boundary methods [ZHA 07]. Hübner et al. [HÜB 04] implemented

monolithic solving by computing the advancement of time with a finite

element method that allows the fluid and structure equations to be solved

simultaneously.

Both approaches are particularly suitable for strongly coupled problems.

However, they are complex to implement, and currently they have been neither

implemented nor validated by any widely available programs.
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– Partitioned approaches separate the problem into fluid and structure

subproblems, each of which is solved using a dedicated program. These

two programs communicate with each other to exchange parameter values

(pressure on the structure, displacement of the fluid–structure interface)

required to perform the calculations. To improve the accuracy of the

calculation, internal loops are iteratively executed at each time step to allow

the parameter values exchanged by the fluid and structure solvers to converge.

Using two distinct programs allows us to choose the most suitable solving

method for each of the fluid and structure problems, and enables us to fully

utilize all of the tools available to us. The difficulty with these methods lies in

ensuring the quality of the coupling between the solvers and guaranteeing that

all solvers converge properly.

– Chained approaches are a simplified form of partitioned methods. The

same methods are generally used, but without internal iterations at each time

step. These methods are suitable for weak couplings in which the deformations

experienced by the structure are limited.

– Rigid body methods are used in cases where the transfer of mechanical

energy causes the structure to move, but with negligible deformation. Since

the motion is driven either by the flow or by gravity, there exists a coupling

between the motion of the solid and that of the fluid. These types of problem

are solved by finding the forces exerted by the fluid on the structure and using

them to solve an equation of motion with six degrees of freedom (DOF; three

translations and three rotations). There are two major methods for doing this.

The first, known as 6 DOF, is commonly available in general purpose Navier–

Stokes solvers. The second is the method of immersed boundaries, which is

more complex and less widely employed.

The quality of the coupling depends not only on the quality of the solution

of each system (fluid and structure), but also on the quality of the coupling

algorithm [PIP 95]. Consequently, to achieve higher order couplings, the fluid

and structure systems must have order greater than or equal to that of the

coupling algorithm in time and space, which shows the importance of the

choice of algorithm. These computation times are a consequence of the

complexity of the system of fluid mechanics equations that must be solved.

This system requires smaller time steps and a finer mesh than is usually

necessary for the fluid component, which determines the number of

unknowns of the problem. The computation time required by the dynamic

mesh depends strongly on the amplitude of the motion of the structure and the

algorithms used to calculate the displacement of the mesh nodes and

recalculate the mesh if necessary.
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To implement a partitioned coupling, we need coupling algorithms to

connect the fluid and structure programs together, as well as the actual solvers

themselves. These algorithms must allow the solvers to synchronize and

exchange data. Synchronization consists of sending the right data at the right

times, and executing iterative loops or establishing useful predictions. The

data exchange protocol needs to guarantee that the information sent from one

solver to the other is interpolated in an acceptable manner between the

meshes of the two solvers. These two families of algorithms are further

subdivided into the categories of temporal and spatial coupling.

1.2.2. Temporal coupling

Partitioned algorithms have the advantage of requiring less computation

time than other methods of temporal coupling. However, they introduce an

error into the information exchange between the fluid and structure

components. This error is reduced when using models with predictors

[FAR 98, PIP 95] and can be almost completely eliminated by using implicit

algorithms.

Explicit synchronous method

The coupling algorithm is illustrated schematically in Figure 1.4. In this

algorithm, the fluid and structure components are solved at the same time step

using the prediction of the displacement of the mesh at time tn+1 as a function

of the variables calculated at times tn and tn−1 [SOU 10]. There are several

possible forms of predictor; the choice of parameters affects the precision and

stability of the models [SIG 10].

The forces calculated by the fluid program are not directly transmitted to

the structure program; first, they are averaged: this allows the errors arising

from the prediction of the displacement to be reduced. The averaging methods

used for this are presented in [BEN 07].

Explicit asynchronous or shifted method

In this algorithm, the fluid iterations are shifted relative to those of the

structure. The prediction is established for an intermediate time using a method

similar to the one described above. The algorithm is presented in Figure 1.5.

Implicit method

This algorithm introduces an iterative loop to ensure that the predicted and

calculated displacements converge (see Figure 1.6). This greatly reduces the
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errors arising from the prediction. Convergence criteria with higher levels of

precision require longer computation times. This solver is more stable than

explicit schemes.

Predict displacement at tn+1

Solve the fluid problem between tn and tn+1

Transfer forces

Solve the structure problem between tn and tn+1

Calculate displacement at tn+1
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Figure 1.4. Diagram of the explicit synchronous
temporal coupling algorithm

Predict displacement tn+1/2

Solve the fluid problem between tn−1/2 and tn+1/2

Transfer forces

Solve the structure problem between tn and tn+1

Calculate displacement at tn
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Figure 1.5. Diagram of the explicit temporal asynchronous
or shifted coupling algorithm

Instability arises when the effects of added mass are non-negligible and

the dimensions of the fluid domain are too large relative to the structure

[CAU 04]. Hybrid methods have been developed to improve the stability of

explicit methods [FER 05, FER 06, GER 03]. These methods determine the

coupling forces implicitly and other coupling terms explicitly.
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Figure 1.6. Diagram of the implicit temporal coupling algorithm

To evaluate the accuracy of the results, a comparative study of different

models was performed on a system with two masses connected by a spring

[BEN 07]. It was shown that the monolithic approach gives the best results, but

that the results of this approach are similar to those obtained from the implicit

method and same order as those obtained by explicit methods when the system

includes damping. It was also shown that the correction step is not necessarily

required for the forces in synchronous implicit and explicit methods, although

it remains useful for asynchronous explicit methods. Piperno [PIP 97] showed

that schemes with predictors are superior to schemes without predictors. On

the other hand, an explicit scheme with a predictor does not perfectly conserve

continuity in the displacements between the fluid and the structure.

Other studies [FAR 00] have shown that serial algorithms with predictors

that are chosen to conserve continuity conditions for the velocity at the

interface produce better results than other methods both with and without

predictors. They also show that parallel models are less stable than the

equivalent serial models, which further demonstrates that the choice of

predictor significantly affects the quality of the coupling. Piperno and Farhat

[PIP 00] show the benefit of predictors in both synchronous and asynchronous

explicit methods, allowing higher order coupling algorithms that better

conserve the energy balance of the coupled system to be found. Piperno et al.
[PIP 05] and Piperno and Farhat [PIP 01] present a comparison criterion for

temporal coupling models based on the energy exchanged at the interface.
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1.2.3. Spatial coupling

The forces exerted by the fluid on the structure and the displacements

induced by the structure on the fluid are exchanged through meshes of nodes.

The difficulty with spatial coupling is that information must be transmitted

losslessly between these meshes without introducing an error [FAR 98,

MAM 95]. In most cases, the structure and fluid meshes do not coincide.

Spatial coupling can therefore be thought of as two separate phases: first, the

nodes of one mesh are projected onto the other, and then the parameter values

are determined at these nodes.

Projecting nodes

The simplest method is to project the nodes of one mesh onto the other

along the normal of one of the two meshes. The choice of normal and

projected mesh is significant, as it will partially determine the quality of the

spatial coupling [MAM 95].

Figure 1.7 shows an example in which the nodes of a structure mesh have

been projected onto a fluid mesh. Note that projection is not possible for the

structure node S5. The value at this node is reassigned to the closest fluid node,

which is F8. There are two possible projections, d1 and d2, for the structure

node S2. We choose the smaller of the two, which in this case is d2. The fluid

element bounded by the nodes F2 and F3 does not contain any information

originating directly from the structure.

Figure 1.7. Example of projection between two meshes. For a color
version of this figure, see www.iste.co.uk/elhami/interactions.zip

In Figure 1.7, we chose to project the structure nodes onto the fluid mesh.

This solution results in fewer projections, since the structure mesh is usually

less dense; however, the reverse solution is also possible. Projecting the nodes
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of both meshes onto an intermediate coupling element has also been suggested

[FAR 98].

To improve the implementation of this method, we can subdivide the

interface into areas known as buckets. Each area may then be processed

independently of the others, with special algorithms to handle cases where

only one of the two interfaces is present in a given area. Figure 1.8 shows the

concept of buckets for the previous example.

Figure 1.8. Example of a projection with a buckets method. For a color
version of this figure, see www.iste.co.uk/elhami/interactions.zip

Determining the parameter values at each node

This presents the methods used by Ansys MFX to determine the

parameter values at each node. The first method, conservation of profile,

linearly interpolates parameter values at the projected nodes using an idea

similar to that proposed by Piperno [PIP 97]. This method conserves the

integral of the exchanged parameter value I (see Figure 1.9). The second

method, global conservation, determines the parameter values at the projected

nodes using a shape function. It conserves the sum of the parameter values

taken over the interface (see Figure 1.10).

As shown by Figures 1.9 and 1.10, the method of determining the

parameter values at the nodes strongly affects the error introduced into the

calculation by spatial discretization. The global method is usually better for

discrete values that do not need to be conserved exactly. However, for forces

and fluxes, keeping the integrals equal is important to ensure that the energy

exchanged by the fluid and the structure is conserved. Therefore, in these

cases, the method of conservation of profile is better.
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Figure 1.9. Method of profile’s conservation. For a color version of this
figure, see www.iste.co.uk/elhami/interactions.zip

Figure 1.10. Method of global conservation. For a color version of this
figure, see www.iste.co.uk/elhami/interactions.zip

General grid interface method

One variant of the global method is the general grid interface (GGI)

method. This method incorporates the steps of projection and interpolation.

Figure 1.11 shows how this method works in a simple example.

First, the faces of each element of the interface are divided by the number

of nodes on the face. These faces, which are described as IP, are converted

into polygons composed of rows and columns of pixels with a resolution of

100×100. The polygons thus created on the emitting face (which in this case is

the fluid mesh) are intersected with those on the receiving face. This constructs
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the control surfaces. These control surfaces may then be used to exchange

parameter values.

Figure 1.11. General grid interface (GGI) exchange method. For a
color version of this figure, see www.iste.co.uk/elhami/interactions.zip

Other methods are possible, such as the closest neighbor method, which

assigns the value of the projected node to the closest node in the receiving

mesh. Other interpolation methods can also be used. Using a consistent

method (i.e. the truncation error tends to zero as the grid spacing decreases)

significantly improves the robustness and accuracy of the results [FAR 98].

1.3. Vibroacoustics

In many situations, sound is created by the interaction between the

vibration of a structure and its acoustic radiation. This field of study, known

by the name of vibroacoustics, has an extremely wide and diverse range of

applications, from musical instruments to ultrasound scanning and active

vibration control to the transmission of vibrations and sound between media

with distinct propagation properties, or in the form of acoustic radiation.

Studying the history of a field allows us to understand how both teaching and

research have progressed within it. The classical approach to teaching

vibrations focused on the mechanical response of a structure subjected to an

idealized stimulus, neglecting to consider the surrounding environment. Later,

the properties of fluids satisfying the assumption of incompressibility (sound

waves do not propagate) were taken into account. Finally, the study of

coupling phenomena and fluid–structure interactions led to vibroacoustics as

we know it today.
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Several different reasons motivated these shifts in perspective:

– difficulties encountered in the fields of nuclear, spatial and aeronautical

research, and later also in land-based forms of transport, inspired a large

amount of research into improving the reliability of mechanical systems;

– the development of increasingly powerful software tools in the 1970s

made it possible to apply a number of very old conceptual tools (ranging

from Helmholtz’s radiation integral from 1865 to Courant finite elements

from 1940). These tools also enabled the development of increasingly refined

models and led to highly efficient experimental methods for signal processing;

– the introduction of a number of national and international regulations

created the need to reduce noise levels in both the industrial and construction

sectors;

– competition prompted manufacturers to research, innovate and adopt new

technologies, even in the absence of regulations (for example in the area of

internal noise levels in cars, trains and planes).

The concepts of acoustic quality and sound design currently represent the

culmination of these developments. By the very nature of the couplings on

which it is based, the field of vibroacoustics requires a cross-disciplinary

approach. Whether to study a musical instrument, or to estimate the level of

internal noise in an airplane, the researcher must take into account each of the

various sources and how they correlate with each other, the propagation

pathways of the vibrational and acoustic energy, the properties of materials

and systems assumed to be decoupled, and the type of coupling involved in

order to ultimately formulate a description of the vibrational response of these

structures, the pressure, the acoustic intensity, and the radiated power. When

modeling the propagation through real environments, we can distinguish

between two different cases. The first is the case of an interface between two

propagating media. The reader would therefore be correct in suspecting that

the second is that of an interface between one propagating and one

non-propagating medium. In fact, the distinction is slightly more subtle, as in

the first case we are only interested in propagating media of same type (two

fluids), whereas in most cases physical problems involve propagation between

two propagating media of different types, typically a fluid and an elastic solid.

The complexity of vibrational coupling phenomena involving waves with

different types of behavior makes them highly difficult to understand.

1.3.1. Vibrations of three-dimensional solids

Wave propagation in elastic media differs significantly from wave

propagation in fluid media. For example, in a fluid, there is only one type of
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wave, whereas in an infinite homogeneous and isotropic elastic solid there can

be both longitudinal waves, in which the particles move in the direction of

propagation, and independent transverse waves, in which the particles move

orthogonally to the direction of propagation. These two types of wave are

coupled through phenomena that occur near discontinuities (geometrical or

mechanical). Most internal source mechanisms generate both types of wave

simultaneously.

Mechanical wave propagation equation
Consider a homogeneous and isotropic solid with density ρ, Young’s

modulus (E), Poisson’s ratio (ν) and Lamé coefficients (λ, μ), satisfying:

λ =
Eν

(1− 2ν)(1 + ν)
; μ =

E

2(1 + ν)

Similarly to the fluid case, we are interested in how a perturbation

propagates throughout the solid. In most cases, this hypothesis enables us to

neglect all but the linear part of the motion, and we can assume that the

displacements and strains that occur within the solid are sufficiently small.

Given these assumptions, we know that the relation between the strain

experienced by each point in the solid and the stress applied to these points is

given by Hooke’s law, which in the homogeneous and isotropic case may be

written as:

σ = λTr(D) + 2μD [1.4]

Recall the equation of conservation of momentum (with Einstein’s

summation convention for repeated indices) in terms of Euler variables:

ρ
∂2ui

∂t2
+

∂(ρuiuj − σij)

∂xj
= Fi [1.5]

where ui are the components of the displacement field of the solid, σij are

the components of the stress tensor and Fi are the components of the applied

force.

Assuming that the strain is small, we can linearize this equation, which

amounts to neglecting the uiuj term. From Hooke’s law, we deduce that:

∂σij

∂xj
=

∂λdllδij + 2μdij
∂xj

= λ
∂dll
∂xi

+ 2μ
∂dij
∂xj
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where

dij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
[1.6]

Let:

∂σij

∂xj
= λ

∂2uj

∂xi∂xj
+ μ

(
∂2uj

∂x2
j

+
∂2uj

∂xi∂xj

)

= (λ+ μ)
∂2uj

∂xi∂xj
+ μ

∂2u2

∂x2
j

We substitute this expression into the law of conservation of momentum.

We obtain

ρ
∂2ui

∂t2
− (λ+ μ)

∂2uj

∂xi∂xj
− μ

∂2u2

∂x2
j

= Fi [1.7]

This is the linearized equation of elastic wave propagation.

1.3.2. Acoustics of fluids

In order to ensure that the mathematical problem that models the

propagation of sound is well posed when the domain in which propagation

occurs contains obstacles, we need to introduce boundary conditions at the

edges in the wave equation. If the domain is infinite, we impose “outgoing

wave” type boundary conditions to satisfy the principle of conservation of

energy. This essentially says that energy cannot come from infinity. In

particular, when we calculate the Green’s functions, we will choose the

elementary solution that satisfies this condition.

The vibrational behavior of a fluid (small fluctuations around an

equilibrium state) assumed to be homogeneous, perfect and initially at rest

may be described by a scalar variable that characterizes the state of the fluid.

The problem equations are obtained by linearizing the general equations for

the fluid flow [AXI 01, GIB 86, MOR 95] (Navier–Stokes equations). These

equations express the principles of conservation of mass and momentum, and

may be written in the following forms:
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– conservation of mass

∂ρ

∂t
+

∂(ρvj)

∂xj
= 0 [1.8]

– conservation of momentum

∂(ρvi)

∂t
+

∂(ρvivj)

∂xj
= − ∂p

∂xi
+ μ

∂2vj
∂x2

j

[1.9]

where p and v = (vi) are the pressure and velocity fields of the fluid.

These equations are supplemented by the equation of state of the fluid,

which may, for example, be written as:

p = ψ(ρ)

Linear vibrations of the fluid may be described using formulations based

on the displacement [BER 04, HAM 78], the velocity potential [SIG 11], the

displacement potential [BOU 87, SAN 88] or the pressure [MAR 78, SIG 07].

In the last of these cases, we examine changes in the pressure p and density ρ
of a non-viscous fluid (i.e. such that μ = 0) starting from some initial state.

These values can be written using the following decomposition:

p(x, t) = p0(x) + p′(x, t) ρ(x, t) = ρ0(x) + ρ′(x, t)

in which we separate the fluctuating component (p′, ρ′) from the steady

component (p0, ρ0), which characterizes the initial state of the fluid.

1.3.3. Numerical methods for calculating a structure coupled with
a stagnant fluid

Modeling assumptions

In this section, we will discuss the numerical methods that may be used to

solve a coupled fluid/structure problem in the case where the fluid is stagnant.

The analysis framework is based on the vibrations in the structure and the fluid;

in the fluid, we consider the propagation of waves arising from gravitational

effects (at low frequencies) or compressibility (at high frequencies).

The state of the coupled systems is described by the value of the

displacement field in the structure domain and by the value of the pressure
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field in the fluid domain. The method of finite elements is useful for

describing vibrations in elastic structures; it is equally suitable for describing

vibrations in a fluid (gravitational or compressional waves) for continuous

fluids (bounded domains) contained inside a structure; in this case, finite

element (structure)/finite element (fluid) coupling can be used to solve the

coupled problem. This type of method can be implemented using a finite

elements approach: a coupling operator gives a rigorous description of the

interaction in terms of action/reaction.

In the case of a fluid that contains a structure (non-bounded domains), the

method of finite elements ceases to be applicable: the boundary element

method may instead be used to take into account effects arising from the fact

that the fluid domain is infinite. Finite element (structure)/boundary element

(fluid) coupling can be used to solve the coupled problem: this category of

method generally requires two distinct computational programs to be coupled

together (one program for the finite elements and another for the boundary

elements).

Vibrational analysis of elastic structures

In linear problems involving small movements, the vibrations of the

structure are expressed in terms of frequency; the local equilibrium equation,

which is obtained from the fundamental principle of dynamics without

external forces, can be written as follows in a Cartesian coordinate system:

ω2ρSui +
∂σij(u)

∂xj
= 0 in ΩS [1.10]

Initially, the structure is considered on its own, i.e. without the fluid, so

that Γ = ∅. The boundary conditions on the constrained boundary and the

stress-free boundary may be written as:

ui = 0 on ΓS0 [1.11]

σij(u)n
S
j = 0 on ΓSσ

[1.12]

Grouping together equations [3.155]–[3.157], we deduce an equation for

the displacement field only (Navier equation):

ρSω
2ui + (λ+ μ)

∂

∂x

(
∂uj

∂xj

)
+ μ

∂2ui

∂xj∂xj
= 0 [1.13]
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In the general case, it is not possible to find an analytical solution to

equation [3.160] with boundary conditions [3.158] and [3.159]; an

approximate solution can be obtained by discretizing a formulation based on

weighted integrals that is equivalent to the initial problem. This formulation is

derived using the method of test functions by considering an arbitrary

displacement field δu, known as the virtual displacement field, that satisfies

the boundary condition [3.158]. Multiplying [3.157] by δu and integrating

over the domain, we can write:

−ω2

∫
Ω

ρuiδuidΩ−
∫
Ω

∂σij(u)

∂xj
δuidΩ = 0 [1.14]

Using generalized integration by parts and taking into account the boundary

conditions [3.158] and [3.159], we deduce the following integral formulation

satisfied by any field δu:

−ω2

∫
ΩS

ρSuiδuidΩS +

∫
ΩS

σij(u)εij(δu)dΩS = 0 [1.15]

This integral formulation can then be discretized using numerical methods.

While many approaches are possible (finite differences, boundary elements,

distinct elements, etc.), the finite element method [BAT 82, ZIE 89, BEL 00]

is currently the most widely employed in computational programs.

Vibrational analysis of stagnant fluids

The Helmholtz equation describes the propagation of sound waves as a

function of frequency:

−ω2

c2
p− ∂2p

∂xi∂xi
= 0 in ΩF [1.16]

This equation comes with boundary conditions of the form:

∂p

∂xj
nF
j = 0 on ΓFπ [1.17]

p = 0 on ΓF0 [1.18]
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The boundary condition [1.17] models the presence of a fixed wall

bounding the fluid domain: it says that the fluid flux at the wall is zero in the

normal direction, but that fluid motion is possible in the tangential direction

and independently from the motion of the wall (perfect fluid). This condition

is also used to formulate a symmetry condition for the fluid problem. The

boundary condition [1.18] models the existence of an acoustic free surface: it

says that on this free surface, the (absolute) pressure is fixed at a given value

by external factors, and so the pressure fluctuations are equal to zero. This

condition is also used to formulate an antisymmetry condition for the fluid

problem. Analytical solutions can sometimes be found for problems

determined by the above equations, usually for elementary geometries. In the

general case, approximate solutions can be found using numerical methods.

The finite element method is particularly well suited to the problem as stated

here; it requires us to pass via the weighted integral formulation, which is

equivalent to [1.16]–[1.18]. This formulation is derived using the method of

test functions by considering an arbitrary pressure field δp that satisfies the

boundary condition [1.18]. By multiplying [1.16] by δp and integrating over

the domain using generalized integration by parts and taking into account the

boundary conditions [1.17] and [1.18], we deduce the following integral

formulation satisfied by any field δp:

−ω2

∫
ΩF

pδp

c2
dΩF +

∫
ΩF

∂p

∂xi

∂δp

∂xi
dΩF = 0 [1.19]

1.4. Aerodynamics

In general, aeroelasticity is the area of applied mechanics that deals with

the motion of deformable bodies in gaseous flows (or hydroelasticity for fluid

flows). Although aeroelasticity was originally studied in connection with

aeronautics, because the types of problem considered by aeroelasticity proved

to be critical in the early days of propulsion-based flight, aeroelastic

phenomena have also played a very important role in other fields of applied

science. For instance, civil engineering has a history of undertaking projects

with ever bolder designs and ever higher flexibility (buildings, bridges,

towers, power lines, etc.). Similarly, when designing turbomachines,

hydroelectric projects, land or sea vehicles, etc., aeroelastic and hydroelastic

problems are becoming ever more relevant. Hence, the field of aerolasticity

remains highly significant in scientific and industrial research to this day.

Nevertheless, aerospace manufacturing is the area in which aeroelastic

phenomena are most prominent. Consequently, since the Second World War,
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great emphasis has been placed on aeroelastic phenomena when building

high-speed (transonic and supersonic) and large-scale aircraft (gliders, etc.).

In particular, for high-speed aircraft, it has been necessary to modify the

geometry of the wings and introduce servocontrols, which has inspired new

problems. The emergence of new materials (such as composite materials) has

also prompted an increase in scale (and flexibility) in all categories of aircraft,

which increases the significance of aeroelastic effects.

Aeroelasticity belongs to the family of phenomena with interactions

between a flow and a structure. One characteristic feature of this kind of

phenomenon is that, in some cases, the fluid can supply an indefinite quantity

of energy to the structure, which leads to system instability. There is another

way to characterize these phenomena. We can distinguish phenomena in

which:

– the fluid and the structure have comparable densities. This is, for

example, the case with immersed structures and physiological flows;

– the fluid and the structure have very different densities: usually, the

density of the fluid is lower than that of the structure.

The aeroelastic phenomena that we will consider here belong to the second

category, as the fluid is significantly “lighter” than the structure. One final

property can be used to characterize aeroelasticity problems: the distinct

spatial separation between the fluid and the structure. It is important to

emphasize this feature, as it plays an important role in the choice of numerical

method when computing these phenomena. Aeroelasticity may therefore be

defined as the study of the elastic behavior of structures whose motion within

the flow generates induced stress. This topic combines three disciplines:

– aerodynamics, to predict the forces experienced by the structure;

– elasticity, to determine alterations to the structure (displacements and

deformations);

– structural dynamics, to determine the inertia matrices and modal

properties (modes, natural frequencies) and in some cases the inertial forces

(for motion involving non-uniform acceleration).

We will study two major phenomena:

– static phenomena: the structure experiences strain as a result of the

aerodynamic forces that it applies to itself.
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– dynamic phenomena: the fluid supplies energy to the structure, which

may either amplify oscillatory motion or cause the system to break up if the

maximal tolerances are exceeded. This phenomenon is called fluttering.

1.4.1. Aeroelastic problems

Aeroelastic problems arise from the interaction of different types of force:

– elastic forces, which are structural in origin;

– inertial forces, which are also structural;

– aerodynamic forces, which are induced by strain (steady or oscillatory)

in the structure, and are the result of external perturbations.

Aeroelastic problems only arise because the aircraft structure is not

perfectly rigid when an air flow is applied to it. Aircraft structures are always

flexible to a greater or lesser extent, and this flexibility is the underlying cause

of each observable aeroelastic phenomenon.

Inertial effects can also play a very important role, and so we will

differentiate between dynamic aeroelasticity, which involves all three of the

forces listed above, and static aeroelasticity, which only involves elastic and

aerodynamic forces.

Classically, aeroelastic phenomena are classified using Collar’s triangle of

forces (Figure 1.12). The three types of force arising from motion (elastic,

aerodynamic and inertial) are represented by the three vertices of the triangle.

Each aeroelastic phenomenon can be situated on this diagram according to

how it relates to each vertex. For instance, phenomena relating to dynamic

aeroelasticity are located at the center of the triangle, whereas effects relating

to static aeroelasticity are located on the left-hand side. The right-hand side

groups together phenomena that only involve aerodynamic and inertial forces,

such as the dynamics of rigid aircraft studied in flight mechanics. The base of

the triangle corresponds to vibrational problems from structural dynamics.

The most important phenomenon of static aeroelasticity is divergence:

above a certain speed, the equilibrium between aerodynamic forces and

elastic spring forces becomes unstable, which leads to a sudden collapse of

the structure.
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Figure 1.12. Aeroelasticity triangle

Dynamic aeroelasticity includes, in particular, the following phenomena:

– fluttering: this is an example of dynamic instability, coupling an unsteady

flow with the vibratory motion of the structure, which either dampens or

amplifies this vibration.

– dynamic response: the flexibility of the aircraft can significantly alter its

response to atmospheric perturbations (gusts, turbulence) and fast maneuvers.

From a mathematical perspective, the study of instability is

complementary to that of dynamic response. Indeed, instability conditions are

generally determined by the presence of non-trivial solutions in a system of

homogeneous equations, whereas the dynamic response is obtained by

solving these same equations after adding a source term.

In air flows around a structure in motion, three (or more) dimensionless

quantities can be used to classify the nature of the mechanisms that can be

expected to occur:

– The Reynolds number is the ratio between the convected kinetic energy

and the energy that is emitted and dissipated by friction in the fluid, defined as:

Re =
V L

ν

where L is the wing length (in m), V is the wind speed (in m/s) and ν is the

kinematic viscosity (in m/s).
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– The Strouhal numberl is related to the instability of boundary layers, and

represents the ratio between the characteristic length and the distance travelled

by a fluid particle at the characteristic speed over one characteristic period of

the flow:

St =
L

VrefTref

– The reduced frequency f r determines which mode of operation is most

appropriate for studying fluid–structure interaction phenomena in the presence

of a flow. It is defined as the ratio between two characteristic periods of the

system, the first of which is the time taken by a fluid particle to travel across

the structure (Tf ), and the second of which is the natural period of vibration of

the structure (Ts =
1
fs

). We therefore have that:

fr =
Tf

Ts
=

L
V

Ts
=

Lfs
V

The inverse of the reduced frequency is known as the reduced speed. fr is

sometimes also defined in terms of the angular frequency instead of the natural

frequency. From the perspective of aeroelastics, three different regimes can be

distinguished according to their reduced frequency:

– if fr � 1, physically this means that the motion of the fluid is slow

relative to the motion of the structure. This domain is studied by the field of

acoustics, or aeroacoustics if the fluid velocity is taken into consideration;

– if fr � 1, we are in the regime of strong interactions. In this regime,

there exists some form of resonance, since each medium exerts stress upon the

other with similar frequencies. This is the most complex regime and by far the

most difficult to solve;

– when fr � 1, the motion of the structure is slow relative to that of the

fluid, which allows us to estimate the stresses applied to the structure by means

of a permanent flow. This greatly simplifies the analysis and the formulations

involved. This is the domain of quasi-steady aeroelasticity, which is extremely

common in industrial applications, and for which a great number of reliable

strategies have been developed and perfected.

When the reduced frequency takes very low values, we can justifiably

assume that the oscillations do not produce any effect on the flow around the

structure, and that changes in the motion of the solid are instantaneously

applicable to the flow and the stresses exerted by it. Quasi-steady theory uses
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static aerodynamic coefficients, i.e. coefficients evaluated on a stationary

structure, to calculate changes in the fluttering.

1.4.2. Aerodynamic loads

Aerodynamic loads can be evaluated locally on a structure using the

pressure distribution at the wall, or alternatively using a stress torsor.

Action of the pressure and pressure coefficients

The pressure acts according to Cauchy’s principle along the normal to the

wall and is proportional to the static pressure p. The elementary force dF
exerted by a surface element with unit normal vector N may simply be

written as:

dF = −pNds

The minus sign is included by convention and depends on the choice of

direction for the vector N .

However, the action of the static pressure is not the only force applied

locally. Viscous fluid flow creates a boundary layer characterized by its

velocity gradient at the wall. Given the assumption of a Newtonian fluid, this

gradient is linear and so results in shear stress. This adds an additional friction

term to the pressure force that is ultimately due to the viscosity of the fluid.

In practice, for non-profiled structures, this friction term is negligible

relative to the action of the pressure. But for structures with specific profiles

such as the wings of an aircraft, the friction term contributes in equal measure

to the drag force, and cannot be neglected.

In practice, the pressure is written in dimensionless form. Since it depends

on the flow velocity, it is often expressed as a pressure coefficient Cp given by:

Cp =
p− pref
qref

where qref = 1
2ρV

2
ref .

The characteristic values are averages that are usually determined prior to

modeling, for example using a Prandtl tube. The reference pressure that is

chosen in practice is often the static pressure as determined in advance. Hence,
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the pressure coefficient will never have a value greater than 1, as it follows

from Bernouilli’s theorem for steady flows that the maximum possible value

of p is the stagnation pressure p0, which indeed has a maximum possible value

of 1.

At the rear end of non-profiled structures, the pressure coefficient is

negative, and does not have a theoretical lower bound. The drag of this type of

structure is primarily caused by a low-pressure area in a phenomenon known

as the base flow effect.

The pressure coefficient is a parameter that is generally independent of the

flow rate, and depends solely on the geometry of the structure. It can depend

on the Reynolds number, in particular due to variations in the positions of the

points at which the boundary layer detaches and reattaches on non-profiled

structures.

Aerodynamic forces and moments

If the pressure distribution along the wall is known, it is relatively

straightforward to integrate it to find the global forces. But in some situations

we might also wish to measure these forces directly using aerodynamic

moments. In this case, it is essential to first define the reference point with

respect to which the torque is defined. Researchers in aerodynamics

traditionally express the forces in terms of wind coordinates (by convention

the Eiffel coordinate system), but when computing the structure it is often

more convenient to work in structure coordinates (known as the Lilienthal

coordinate system) [DES 08]. Using the notation in Figure 1.13, the wind

coordinate system with axes (O,D) and (O,L) is obtained by rotating

through angle α from the structure coordinate system with axes (O, x) and

(O, z). In the three-dimensional case, we can add the (O, y) axis, which is

perpendicular to the plane shown in the figure. All of these are examples of

right-handed coordinate systems. The angle α is the angle of incidence.

The three-dimensional stress torsor in structure coordinates is composed of

three forces:

– Fx: drag force;

– Fy: cross-wind force;

– Fz: lift force;

and three moments:

– Mx: rolling moment;
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– My: pitching moment;

– Mz: yawing moment.

Figure 1.13. Notation of two-dimensional coordinate systems

In the two-dimensional case, if we consider the vertical plane, only the

drag and lift forces and the pitching moment are significant. The aerodynamic

forces are usually given in the form of dimensionless coefficients, which makes

it easy to transpose forces measured on models over to physical structures. We

thus define the force coefficients as:

Cx =
Fx

1
2ρV

2
refS

[1.20]

Cy =
Fy

1
2ρV

2
refS

[1.21]

Cz =
Fz

1
2ρV

2
refS

[1.22]

where S is a reference surface, for example the deck surface of a bridge.

When the forces are given in two dimensions, the forces are given per unit

length and the reference surface S is usually replaced with the width B of the

structure. The drag and lift coefficients in wind coordinates are written as CD

and CL, respectively.

The moment coefficients are given by:

CL =
Mx

1
2ρV

2
refSB

[1.23]

CM =
My

1
2ρV

2
refSB

[1.24]
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CN =
Mz

1
2ρV

2
refSB

[1.25]

In two dimensions, only the pitching coefficient CM is useful; it

characterizes the torque per unit length. In general, we choose the axis that

passes through the center of the structure to define the pitching coefficient.

1.4.3. Problem equations

To model aeroelastic phenomena, we have to simultaneously solve the fluid

mechanics equations and the structural mechanics equations.

Flow equations

The description of fluid flows is generally based on an Eulerian formulation

that allows us to examine the flow properties in each of the different regions of

the fluid domain. We will restrict ourselves to the case of linear viscous fluids,

commonly known as Newtonian fluids, which are by far the most important in

practical applications. Newtonian fluids are characterized by their behavioral

equations, such as the fact that the relation between the viscous stress σ and

the strain is linear:

σij = μ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3

∂vk
∂xk

δij

)
− pδij [1.26]

where vi is the velocity vector with Cartesian coordinates xi, p is the pressure,

μ is the dynamic viscosity and δij is the Kronecker symbol.

The laws of conservation of mass, motion and energy may therefore be

written as:

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0 [1.27]

∂(ρvi)

∂t
+

∂(ρvivj)

∂xj
=

∂

∂xj

[
μ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3

∂vk
∂xk

δij

)]
− ∂p

∂xi
+ ρfi

[1.28]

∂(ρe)

∂t
+

∂(ρvie)

∂xi
= μ

[
∂vi
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3

(
∂vi
∂xi

)2
]

−p
∂vi
∂xi

+
∂

∂xi

(
κ
∂T

∂xi

)
+ ρq [1.29]
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where ρ is the density of the fluid, e is the specific internal energy, the fi are

the external forces and q represents the heat sources.

For the heat flux hi in the scalar equation [1.29], we used Fourier’s law:

hi = −κf
∂T

∂xi
[1.30]

where κf is the thermal conductivity, the specific heat capacity is assumed

to be constant, and the work performed by the pressure and friction forces is

neglected. System [1.27]–[1.29] needs to be completed by two equations of

state of the form:

p = p(ρ, T ) and e = e(ρ, T ) [1.31]

These relations determine the thermodynamic properties of the fluid. They

are known as the thermal and caloric equations of state.

Usually, it is not necessary to solve the system of equations in its general

form, and additional assumptions can be made to simplify the system. From a

practical standpoint, the most useful assumptions are those of

incompressibility and non-viscosity [SIG 11].

We will consider the Navier–Stokes equations describing the flow of

incompressible Newtonian viscous fluids. This equations can be expressed in

the fluid-filled domain Ωf using the equations of conservation of momentum

and the incompressibility condition:

ρf (
∂v

∂t
+ v · ∇v) = −∇p+ μfΔv + ρfbf [1.32]

∇ · v = 0 [1.33]

Equations [3.80] and [3.81] can be further expressed in dimensionless form

by setting:

va =
v

V
, xa =

x

L
, pa =

p− p0
ρ0V 2

, bfa =
bfL

V 2
and ta =

tV

L
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where x are the spatial coordinates, p0 is a reference pressure, L and V are

the characteristic length and velocity, respectively. Hence, by applying these

relations to [3.80] and [3.81] and omitting the a index, we obtain the following

equations:

∂v

∂t
+ v · ∇v = −∇p+

1

Re
Δv + bf [1.34]

∇ · v = 0 [1.35]

We write ΓD (or ΓN ) the boundary of Ωf to which the Dirichlet boundary

conditions (or surface stress conditions) are applied.

On ΓD, writing v̄|ΓD
for the Dirichlet data functions, we have

v = v̄|ΓD
[1.36]

By definition, the function tf that describes the density of the contact forces

on the fluid may be written as:

tf = σfnf [1.37]

where nf is the outward unit normal vector on ΓN .

On the edge ΓN , we take boundary conditions [PIR 89, DEV 02] such that:

tf = −pIn + 2μfd(v)n = t̄

where n = nf and t̄ is an imposed stress on ΓN .

Equations describing the dynamics of elastic solids

In structural mechanics, in general, the goal is to determine the strain in a

solid body induced by the action of various forces and to deduce the

corresponding stresses, which are very important in a number of applications.

There are many different laws that describe the various material properties.

Combined with the equations describing the dynamics, these laws produce

complex systems that enable us to find the strain (or the displacement).
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Fundamental equations

In the field of structural dynamics, a distinction is usually made between

linear and nonlinear models, which can either be geometric or physical. From a

geometric perspective, linear problems are characterized by the linear relation

between the stress and the strain, such that the following expression holds for

the strain tensor εij :

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
[1.38]

where ui is the displacement vector. Physically, linear problems are based on

a material law involving a linear relation between the strain and the stress. We

will restrict ourselves to the case of linear elasticity, which is the most relevant

in many industrial applications.

The theory of linear elasticity is geometrically and physically linear. As

stated above, there is no need to distinguish between Eulerian and Lagrangian

descriptions in the context of a geometrically linear theory.

The equations of linear elasticity theory are derived from linear stress–

strain relations [1.38], which are conservation laws formulated in terms of the

displacement [3.165] (known as equations of motion),

ρ
D2ui

Dt2
=

∂σsij

∂xj
+ ρsfi [1.39]

and the assumption of linear elasticity in the material behavior, which is

expressed by a constitutive equation of the form:

σSij = λεkkδij + 2μεij [1.40]

Finally, by eliminating εij and Tij , equations [1.38], [3.85] and [3.87] may

be rewritten in the form of the following system of differential equations based

on the displacement ui:

ρS
D2ui

Dt2
= (λ+ μ)

∂2uj

∂xi∂xj
+ μ

∂2ui

∂xj∂xi
+ ρsfi [1.41]
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These (unsteady) equations are known as the Navier–Cauchy equations for

linear elasticity. In steady problems, we have that:

(λ+ μ)
∂2uj

∂xi∂xj
+ μ

∂2ui

∂xj∂xi
+ ρSfi = 0 [1.42]

In the solid, we denote Γs
D the edge with the Dirichlet boundary condition

and Γs
N the section of the edge with surface stress conditions. Thus, on Γs

D,

we can write that:

u = ū|Γs
D

[1.43]

Depending on the type of geometric model that will be considered later,

we can fix internal conditions that complement the Dirichlet condition on the

surface of the structure. Similarly, we denote ts the density of the contact forces

on Γs
N such that:

ts = σsns [1.44]

where ns is the outward unit normal vector from the solid.

Boundary conditions at the interface

The fluid–structure interaction describes the mechanical problem of the

contact between an elastic solid body and a viscous fluid in motion. This

essential step in our problem requires us to specify additional boundary

conditions to describe the dialog between the fluid and the solid. Consider

two domains, one fluid domain Ωf and another solid domain Ωs, in contact

with each other along the interface ΓI . We will use two conditions at the

interface (Figure 1.14). On the one hand, we assume that the velocities are

continuous with respect to time at the interface. This implies that

v = u̇ on ΓI(t) [1.45]

On the other hand, we assume that the interface is in mechanical

equilibrium

tf + ts = 0 on ΓI(t) [1.46]
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This second equation expresses the principle of the reciprocal action of

forces at the interface.

Figure 1.14. Fluid–structure interface

At the interface, the normal vectors are linked by the relation:

n = nf = −ns [1.47]

From [1.37], [1.44], [1.46] and [1.47], we can deduce that:

(σf − σs)n = 0 on ΓI(t). [1.48]


