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Fluid Models and Energy Issues

Wireless sensor networks consist of hundreds to thousands of sensor nodes
with limited computational and energy resources. Sensors are densely
deployed over an area of interest, where they gather and disseminate local
data using multi-hop communications, i.e. using other nodes as relays. A
typical network configuration includes a large collection of stationary sensors
operating in an unattended mode, which need to send their data to a node
which collects the networks’ information, the so-called sink node.

Traditionally, network designers have used either computer simulations or
analytical frameworks to predict and analyze a system’s behavior. Modeling
large sensor networks, however, raises several challenges due to scalability
problems and high computational costs. With regard to simulations, several
software tools have been extended and developed to deal with large wireless
networks, see [ZEN 98, SIM 03, LEV 03] just to name a few. As for
analytical modeling, to the best of our knowledge, the only work dealing with
large sensor networks is presented in [DOU 04], which employs percolation
techniques.

This chapter presents spatial fluid-based models for the analysis of large-
scale wireless networks. The technique is said to be fluid-based because it
represents the sensor nodes as a fluid entity. Sensor location is smoothed out
in continuous space by introducing the concept of local sensor density, i.e. the
number of sensors per area unit at a given point.

The approach is applied to describe a network scenario where nodes are
static and need to send the result of their sensing activity to a sink node.
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Sensors may send packets to the sink in a multi-hop fashion. Although this
technique requires the introduction of simplified assumptions, that are
necessary to maintain the problem tractable, these models account for
(1) node energy consumption, (2) node contention over the radio channel and
(3) traffic routing.

By the end of the chapter, three fundamental contributions are provided
with respect to existing literature:

1) because of the fluid approach, very large networks can be studied while
maintaining the model complexity extremely low;

2) the behavior of the network can be studied as a function of
the bidimensional spatial distribution of the nodes, possibly under non-
homogeneous node deployment;

3) the approach provides a very flexible and powerful tool, which can
account for various routing strategies, sensor behaviors and network control
schemes, such as congestion control mechanisms.

1.1. The fluid-based approach

The fluid approach is motivated by the observation that large-scale sensor
networks can be represented by a continuous fluid entity distributed on the
network area. This section describes the general framework, and the notation
used to specify the model is summarized in Table 1.1.

Notation Description
ρ(r) Sensor density at r
λ(r) Local traffic generation rate density at r
Λ(r) Total traffic rate density at r
Λ�(r) Actual total traffic rate density at r
u(r′|r) Probability density of routing a packet from r to r′

s(r) Mean packet service time at r
q(r) Mean queueing delay at r
D(r) Mean delivery delay at r
PR(r) Mean packet retransmission probability at r
Pa Probability that a sensor is active

Table 1.1. Model notation
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1.1.1. Sensor density and traffic generation

Sensors are randomly placed over an area in the plane according to a
Poisson point process with local intensity ρ(r), hereinafter also called the
sensor density, which can vary from point to point. Let us identify each point
in the plane by means of its coordinates r = (x, y).

The Poisson assumption implies that the number of sensors contained in an
area A is distributed according to a Poisson distribution with parameter Γ(A),
defined as:

Γ(A) =

∫∫
A
ρ(r) dr.

The mean number of sensors present in the network is denoted by N , with∫∫
ρ(r) dr = N . As an example, to define a system where there are (an

average of) N sensors uniformly distributed over a disk of unit radius and the
sink is located at the center of the disk (i.e. Sink = (0, 0)), it is correct to
write:

ρ(r) =

{
0 if dist(r,Sink) > 1
N

π
if dist(r,Sink) ≤ 1

[1.1]

Finally, it is fair to assume that a sensor s in position r generates traffic at
rate λs(r). By aggregating all traffic generated by sensors over an infinitesimal
area centered at point r, the generation rate density is defined as λ(r), which
depends on the position r. This quantity, measured in packets per second per
area unit, is proportional to both the local generation rate of a sensor and the
local sensor density and corresponds to the mean number of packets per second
generated by an infinitesimal area. It is defined as:

λ(r) = λs(r)ρ(r) [1.2]

1.1.2. Data routing

The next hop used by a sensor to send a packet to the sink is determined in
a probabilistic way. Indeed, the exact location of the sensors is unknown, thus
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u(r′|r) can be defined as the probability density that a packet transmitted by a
sensor in position r uses a sensor in position r′ as its next hop. Since u(r′|r)
must be a valid probability density, it is correct to have:

∫∫
u(r′|r) dr′ = 1, ∀r [1.3]

Probability density u(r′|r) depends on the particular routing policy.

1.1.3. Local and relay traffic rates

Each sensor can be both a traffic source and a relay for other sensors. The
traffic rate density Λ(r) is equal to the sum of the traffic locally generated by
the sensors at point r, and the traffic relayed for other nodes. By assuming
that the system is stable, the total traffic rate density Λ(r) can be computed by
solving the following integral equation:

Λ(r) = λ(r) +

∫∫
Λ(r′)u(r′|r) dr′ [1.4]

where λ(r) accounts for the traffic locally generated, and the integral
computes the rate density of the relayed traffic using u(r′|r) introduced
above. Note that the expression in [1.4] represents the traffic rate density of
successfully transmitted packets. The actual traffic rate density must account
also for retransmissions, as explained in the following.

1.1.4. Channel contention and data transmission

The channel contention model computes the actual traffic rate density
Λ�(r) at a node in r, as well as the mean packet service time at the same
point, denoted by s(r). Packets that are not received correctly need to be
retransmitted by the sender. The average packet retransmission probability at
r is denoted by PR(r): it depends on the particular protocol adopted to
access the channel and is, in general, location dependent, i.e. it can be
different from point to point within the network area. By assuming that the



Fluid Models and Energy Issues 7

packet transmission process is memoryless, the actual traffic rate density at
point r, which also accounts for retransmitted packets, is given by

Λ�(r) =
Λ(r)

1− PR(r)
[1.5]

1.1.5. Mean packet delivery delay

To compute the mean time needed to deliver a packet to the sink, the mean
delivery delay is introduced at point r, D(r), and is defined as the time
required by a packet originated in r to reach the sink. By denoting with q(r)
the mean queueing delay experienced by a packet at point r, D(r) can be
expressed as

D(r) = q(r) + s(r) +

∫∫
D(r′)u(r′|r) dr′ [1.6]

where s(r) is the mean service time previously introduced. Equation [1.6]
states that the mean delivery delay at point r can be expressed as the sum of
the delay experienced by a packet at point r plus the mean delivery delay
associated with the next hop. The delivery delay in all different points of the
network can be computed recursively starting from D(0, 0) = 0, i.e. no delay
is experienced by a packet at the sink.

1.1.6. Sensor active/sleep behavior

The fluid model accounts for the active/sleep dynamics of the nodes by
introducing the probability Pa that a sensor is active. Since only active sensors
generate traffic, [1.2] becomes λ(r) = λs(r)Paρ(r), where the sensor density
ρ(r) has been multiplied by the probability that a sensor is active.

1.2. Network scenario

The fluid-based modeling is applied to the sensor characteristics and the
network scenario presented in this section together with the assumptions made
to describe the system under study. The system parameters are summarized in
Table 1.2.
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Parameter Description
N Mean number of sensors
dc, ds Maximum communication/carrier sensing ranges
Pi Power consumed by idle sensors
E(tx), E(rx) Energy spent to transmit/receive one packet
δs, δa, σ Time constants for the CSMA/CA scheme
CW Contention window for the CSMA/CA scheme
KMax Maximum number of next hops for minimum energy routing

Table 1.2. System parameters

1) Communication range: All nodes have a common, maximum
communication range equal to dc. Thus, any pair of nodes, say (i, j), can
communicate if they are within distance dc from each other, i.e. dist(i, j) ≤ dc,
where the notation dist(i, j) denotes the Euclidean distance between nodes i
and j. It is assumed that, when a sensor discovers a neighboring node and
a wireless link is established between the two nodes (i.e. a connection at the
link layer is created), the sensors can set their level of transmission power to be
used over that link. Note that sensors do not adjust over time their transmission
energy toward a neighbor, but rather the transmission level used by a node
over a link is set once upon the link establishment and remains unchanged
with time. This is a fair assumption since typically sensor nodes are simple,
low-cost devices.

2) Error model: The communication channel is assumed to be error-free,
although a channel error process could be easily included in the model.

3) Topology: The network topologies are considered to be always
connected, i.e. there exists at least one path connecting each sensor to the sink.
Moreover, it is assumed that nodes that cannot reach the sink do not participate
in the network operation, thus they can be simply neglected.

4) Data generation: Each sensor generates data packets of constant size at a
given rate, which can be buffered while waiting for transmission. The system is
considered stable and the buffer of each sensor is modeled as a first-in first-out
queue. Also, by considering that the buffer is properly dimensioned so that the
loss probability due to overflow is negligible, it is fair to assume infinite buffer
capacity, though the case of finite buffer size could be easily incorporated in
the model.

5) Power consumption: Sensors consume a power equal to Pi while idle;
the energy expenditure due to a one-hop communication is modeled as follows.
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Given the transmitter–receiver pair (i, j), the energy consumed by i to transmit
a packet to j is equal to E(tx)(i, j) and the energy consumed by j to receive a
packet is equal to E(rx); the energy consumed while overhearing1 is assumed
to be equal to E(rx). Note that a sensor cannot simultaneously transmit and
receive, and the energy expenditures while transmitting/receiving/overhearing
are additional with respect to the energy spent by a sensor while idle.

6) Channel access scheme: Sensors access the channel by using a carrier
sense multiple access scheme with collision avoidance (CSMA/CA). The
carrier sensing range of each node is denoted by ds, where ds ≥ dc, i.e. the
carrier sensing range is larger than or equal to the communication range. When
a node has to transmit a packet, it senses the medium for a time interval δs. If
idle, the sensor accesses the channel. If busy, the sensor waits for the channel
to become idle; then, within an interval δs, the node selects a backoff counter
uniformly within its current contention window (CW ). The backoff counter is
decremented by one after the channel has been idle for the duration of a slot
σ, whereas it is frozen while the channel is busy. When the backoff counter
reaches zero, the sensor attempts to transmit. If a collision occurs, the sensor
doubles CW and repeats the procedure. If the data transmission is successful,
the sensor receives an acknowledgment message (ACK) from the receiver after
a time interval equal to δa (with δa shorter than δs), resets CW to the minimum
CW and extracts a new backoff value (the so-called post backoff). Note that
no handshaking messages are employed (i.e. request to send/clear to send are
not used). A node attempts to transmit a packet until the packet transmission
is successful; considering that buffers are of infinite capacity, this assumption
implies that all packets eventually reach the sink. Power capture effects are
not considered: whenever a node receives two or more packets sent by nodes
within its carrier sensing range, all of them are lost. On the other hand, if a
node senses a single packet, it can always receive it successfully, since we
assume an error-free channel (assumption (2)). Indeed, in CSMA networks the
MAC protocol ensures that, once a node gains access to the channel, there is
no interference in the absence of collisions. Finally, for analytical tractability
multiple collisions are neglected, i.e. if a packet transmission fails because of
a collision, the next attempt at transmitting that packet will be successful (in

1 A node is in overhearing mode when it listens to a packet transmitted over the channel for
which it is not the intended destination.
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the network scenario under study this is a reasonable assumption, as shown in
section 1.3.2).

7) Sensor sleep mode: Sensors may enter a low power operational state
(sleep mode), while in the sleep state it is assumed that their sensor board and
radio frequency circuitry are turned off, i.e. they do not generate, receive or
transmit any traffic. The sleep/activity cycles of the sensors are asynchronous,
and, when nodes enter or exit the sleep state, they announce the change in
operational mode to their neighbors. Note that, although sleep/activity cycles
for the sensors are asynchronous, it is supposed that at each time instant there
exists at least one active node among the sensors covering a certain area.
This is a fair assumption due to the large number of nodes composing the
network. Asynchronous schemes therefore give good performance, without
adding complexity to the control plane as maintaining synchronization among
sensors would require.

8) Multi-hop communication: To deliver their data, sensors may use multi-
hop paths, specifically minimum energy routing. When sensors are used on
the field, they undergo an initial configuration phase in which they compute
once and for all the next best available hops to reach the sink, using a variation
of the standard Bellman–Ford algorithm [BER 92]. In particular, each sensor
maintains an ordered routing table of up to KMax entries, each associated with
a different next hop, which record the total cost required to reach the sink
by following the corresponding next hop. The tables can be constructed in a
distributed fashion using a controlled flooding algorithm: starting from the
sink, sensors broadcast their routing tables to the neighbors, which in turn
update their tables and, if there is a change in at least one entry, rebroadcast
them. After a few iterations, the mechanism converges (i.e. the routing table
at each sensor does not change anymore). In the case of minimum energy
routing, an energy cost is assigned to each link connecting two nodes that
are within distance dc from each other. The cost ε(i, j) represents the total
energy required to transfer a packet from node i to node j (one-hop energy
cost) and is expressed by the sum of the cost at the transmitter and the cost
at the receiver: ε(i, j) = E(tx)(i, j) + E(rx). Due to assumption (7), the next
hop node that minimizes the total energy cost to reach the sink can be in a low
operational state, and thus not be available. In this case, we assume that the
transmitting node will use the second best minimum energy next hop. If this is
not active either, the routing algorithm will select the third one, and so on, up
to a maximum number of alternative next hops KMax. We assume that KMax
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is sufficiently large so that the probability that all KMax next hop sensors are
in the low-power operational state is negligible.

1.3. The sensor network model

The framework outlined in section 1.1 requires several functions to be
defined to account for the particular characteristics of the network scenario
considered in the previous section. In particular:

– section 1.3.1 specifies u(r′|r) for the case of minimum energy shortest
path routing;

– to account for channel contention using the CSMA/CA protocol, section
1.3.2 presents a detailed expression for the mean packet service time s(r) and
packet retransmission probability PR(r) at a node in r;

– section 1.3.3 introduces a queueing model to estimate the mean queueing
delay experienced by a packet at r (i.e. q(r)), which accounts for the sensors’
active/sleep dynamics. Recall that q(r) is required to compute the mean time
needed to deliver a packet to the sink starting at point r (i.e. D(r)).

1.3.1. A minimum energy routing strategy: computing u(r′|r)

To model the minimum energy routing scheme defined in section 3.1, it is
necessary to specify the routing function u(r′|r), taking into account the fact
that if the minimum energy next hop is in the low power operational state, then
the second best next hop is selected, and so on. The definition of u(r′|r) is
carried out through successive steps where auxiliary functions are defined. In
particular, the following derivations are computed:

1) the multi-hop energy cost, denoted by εm(r, r′), which is the energy
required to send a packet from point r to the sink using position r′ as next hop.
Note that this cost is defined regardless of the presence of sensors in positions
r and r′;

2) the cumulative probability F k
mE(e|r) that the energy required to send a

packet from a sensor in r to the sink using the k-th lowest energy route is less
than or equal to e;
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3) the cumulative probability FmE(e|r) that the minimum energy required
to send a packet from a sensor in r to the sink, using only active next hops, is
less than or equal to e;

4) the probability density ps;r(r
′|e) of finding a sensor in position r′ that

can be used as next hop by a sensor in r to send a packet to the sink with
energy expenditure e, conditioned to the fact that e is the minimum required
energy (using only active nodes);

5) the probability density u(r′|r) that a packet generated by a sensor in
position r uses a sensor in position r′ as its next hop.

1.3.1.1. Computing εm(r, r′)

The one-hop energy cost ε(r, r′) required to deliver a packet from a source
in r to a destination in r′ is defined as

ε(r, r′) = E(tx)(r, r′) + E(rx)

= 2
(
E(ele) + E(proc)

)
+ Cd · dist(r, r′)η [1.7]

where E(ele) and E(proc) account for the consumption due to the transceiver
electronics and to processing functions, respectively. These costs are present
at both the transmitter and the receiver; the amplifier cost affects only the
transmitter, and includes a constant factor Cd, the sender–receiver distance
dist(r, r′) and the exponential power decay factor η, that typically takes
values between 2 and 4 [RAP 96].

By using a recursive expression, it can be defined:

εm(r, r′) =
{
min (ε(r,Sink), ε(r, r′) + εm(r′, r′′)) if dist(r,Sink) ≤ dc
ε(r, r′) + εm(r′, r′′) otherwise [1.8]

where r′′ is the point that minimizes the energy required to send a packet from
r′ to the sink. Note that, if point r is within distance dc from the sink, either
a one-hop or a multi-hop communication may take place, depending on their
energy cost. When a multi-hop communication is required, the definition of r′′
turns out to be exceedingly complicated. Thus, εm(r′, r′′) is aproximated with
εmin(r

′) that is the minimum possible energy needed to send a packet from r′
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to the sink. As described in the following section, εmin(r
′) can be computed

as:

εmin(r
′)=2h

(
E(ele) + E(proc)

)
+ Cd

dist(r′,Sink)η

hη−1
[1.9]

with

h = max

(
h∗,

⌈
dist(r′,Sink)

dc

⌉)

where

h∗ = argmin
k∈N

[
2k

(
E(ele) + E(proc)

)
+ Cd

dist(r′,Sink)η

(h∗)η−1

]

By inserting [1.9] into [1.8], εm(r, r′) can be rewritten as

εm(r, r′) =
{
min (ε(r,Sink), ε(r, r′) + εmin(r

′)) if dist(r,Sink) ≤ dc
ε(r, r′) + εmin(r

′) otherwise [1.10]

Equation [1.10] states that, in case of multi-hop communication, the energy
required to deliver a packet from r to the sink using r′ as next hop is equal
to the energy required to transfer a packet from r to r′, plus the minimum
energy required to send a packet from r′ to the sink. Note that [1.10] is defined
regardless of the presence of sensors in positions r and r′.

1.3.1.2. Computing F k
mE(e|r)

Given a sensor at point r, the cumulative probability F k
mE(e|r) that the

energy required to send a packet from the sensor to the sink, using a node that
provides the kth minimum energy route, is less than or equal to e, is given by2:

F k
mE(e|r) = P

{
Poisson

(∫∫
r’:εm(r,r’)≤e

ρ(r′) dr′
)

≥ k

}
[1.11]

2 Poisson(ν) represents a Poisson random variable with mean ν.
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Equation [1.11] states that the probability of having the kth minimum
energy path requiring expenditure less than or equal to e corresponds to the
probability of finding at least k relay sensors in an area through which a
packet can be transferred to the sink with energy cost less than or equal to e.

1.3.1.3. Computation of the minimum energy path (equation [1.9])

Here, it is proved that the minimum possible energy required to send a
packet to the sink from a point r is given by [1.9]. The proof is carried on
into three steps: first it is proved that all sensors on the route must be aligned,
and then that the distance between two consecutive sensors must be the same;
finally, it is shown how to determine the minimum number of hops required to
reach the sink.

As a first step, assume that the minimum number of hops required to reach
the sink from point r is known and equal to h. Let
ξ(r) = (r0, r1, . . . , rk, . . . rh) (with r0 = r and rh = Sink) be a sequence
of points, such that dist(rj , rj+1) ≤ dc, 0 ≤ j < h. The energy required to
send a packet from r to the sink using as relays the sensors located at the
points of ξ(r) is given by

E(ξ(r)) =

h−1∑
j=0

[
2
(
E(ele) + E(proc)

)
+ Cd · dist(rj , rj+1)

η
]

= 2h
(
E(ele) + E(proc)

)
+ Cd

h−1∑
j=0

dist(rj , rj+1)
η

It can be proved that on the minimum energy path all points in ξ(r) stay
on the line connecting r to the sink. Suppose for simplicity that all points are
aligned except point rk. Let us call r′k the projection of point rk on the line.
Notice that r′k is aligned with the other points. Let us call
ξ′(r) = (r0, . . . , r

′
k, . . . , rh). By construction, it is fair to write:

dist(rk−1, r
′
k)

η ≤ dist(rk−1, rk)
η and dist(r′k, rk+1)

η ≤ dist(rk, rk+1)
η.

Then, it can be shown that

E(ξ′(r)) ≤ E(ξ(r))
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E(ξ′(r))=2h
(
E(ele) + E(proc)

)
+ Cd ·(

h−1∑
j=0,j �=k−1,k

dist(rj , rj+1)
η + dist(rk−1, r

′
k)

η

+dist(r′k, rk+1)
η

)
≤ 2h

(
E(ele) + E(proc)

)
+ Cd ·

(
h−1∑

j=0,j �=k−1,k

dist(rj , rj+1)
η + dist(rk−1, rk)

η

+dist(rk, rk+1)
η

)
= E(ξ(r))

Now it can be assumed that all points of the route are aligned and it can be
proved that the distance between two consecutive points is constant and equal
to α = dist(r0,rh)

h . Consider a generic sequence ξ(r) of h points aligned on
the same segment. The distance between two consecutive points is written as:
dist(rj , rj+1) = αj , with 0 ≤ j ≤ h − 2, and the one between the last two
points as: dist(rh−1, rh) = dist(r0, rh)−

∑h−2
j=0 αj . Then, it follows that

E(ξ(r)) = 2h(Eele + Eproc) + Cd

⎡
⎣h−2∑
j=0

αη
j +

⎛
⎝dist(r0, rn)−

h−2∑
j=0

αj

⎞
⎠

η⎤
⎦

The partial derivatives of E(ξ(r)) along αj , 0 ≤ j ≤ h− 2, are as follows,

∂E(ξ(r))

∂αj
= Cd

⎡
⎣ηαη−1

j − η

⎛
⎝dist(r0, rh)−

h−2∑
j=0

αj

⎞
⎠

η−1⎤
⎦

It can be easily seen that all partial derivatives are equal to 0 if the distance
between any two consecutive nodes αj is constant and equal to
α = dist(r0,rh)

h .



16 Analytical Modeling of Wireless Communication Systems

So far it has been proven that along the minimum energy path, all points
are aligned and equidistant. If the number of points is equal to h, then it is fair
to write

Emin(r, h)=2h
(
E(ele) + E(proc)

)
+ Cd

dist(r,Sink)η

hη−1
[1.12]

Now a valid value for h that minimizes the energy cost of the path has to
be derived. If [1.12] is considered to be continuous on h, its derivative can
be computed and it is easy to obtain the minimum of the function for h =

dist(r0, rh) η

√
Cd

2(E(ele)+E(proc))
. Since h must be an integer, we define h∗ to be

the nearest integer to h that minimizes the energy. However, the constraint that
α = dist(r,Sink)

h ≤ dc, that is h ≥
⌈
dist(r,Sink)

dc

⌉
has to be satisfied.

1.3.1.4. Computing FmE(e|r)
Given the probability Pa that a node is active, it is computed the

cumulative probability FmE(e|r) that the minimum energy required to send a
packet from a sensor to the sink, using only active nodes, is less than or equal
to e, conditioned to the sensor being at r. Given KMax possible routes, the
kth path (with 2 ≤ k ≤ KMax) will be used only if the next hop on route k is
active and all previous k− 1 routes are unavailable because the corresponding
next hops are asleep.

Therefore, FmE(e|r) is written as:

FmE(e|r) = Pa

KMax∑
k=1

(1− Pa)
k−1 F k

mE(e|r). [1.13]

Note that lime→∞ FmE(e|r) ≤ 1, and tends to one only if KMax → ∞.
Since KMax is assumed to be large enough so that the probability that none of
the possible next hops are available is negligible, we have:
lime→∞ FmE(e|r) ≈ 1.

1.3.1.5. Computing ps;r(r
′|e)

ps;r(r
′|e) is defined as the probability density that a sensor in r selects a

sensor in position r′ as next hop to send its packet to the sink with energy
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expenditure e, conditioned to the fact that e is the minimum required energy.
Clearly, ps;r(r′|e) is equal to 0 if the energy required to send a packet from
position r to the sink (using as next hop a node in position r′) is different from
e. Otherwise, it can be computed based on the following observations: (1)
the next hop is selected with uniform probability among all possible sensors
that are suitable for the task, (2) the spatial density of active sensors in r′
is ρ(r′)Pa, (3) the spatial density of active sensors that allow a packet to be
transferred from r to the sink with energy cost equal to e is computed in this
manner:

ps;r(r’|e) = ρ(r’)δ(εm(r, r’)− e)∫∫
ρ(r”)δ(εm(r, r”)− e)dr”

[1.14]

where the Dirac delta function, δ(·), ensures that ps;r(r’|e) is a proper
probability distribution.

1.3.1.6. Computing u(r′|r)
Finally, using [1.13] and [1.14], the routing function u(r′|r) is given by:

u(r′|r) =
∫
e
ps;r(r

′|e) dFmE(e|r)
de

de [1.15]

Indeed, the probability density that the next hop chosen by a sensor in r
is located at r′ can be obtained by deconditioning [1.14] with respect to the
probability density that the minimum energy needed to send a packet from r
to the sink (using only active nodes) is equal to e.

1.3.2. Channel contention and data transmission: computing s(r)
and PR(r)

The channel access scheme described in section 3.1 is modeled as follows.

Consider a sensor in position r wishing to transmit a packet; the objective
is to compute the average service time s(r) and the average packet
retransmission probability PR(r).
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Since the packet service time depends on the traffic load over the wireless
channel, one fundamental variable that we need to compute is the probability
PB(r) that a sensor in r senses the channel as busy. Using this quantity, the
average packet service time at a node in r, s(r) is expressed as

s(r) = [1− PB(r)]sI(r) + PB(r)sB(r) [1.16]

where sB(r) (sI(r)) is the average service time when a sensor in r observes
a busy (idle) channel. Similarly, the average packet retransmission probability
is given by:

PR(r) = [1− PB(r)] pcI(r) + PB(r) pcB(r) [1.17]

where pBc (r) (pIc(r)) is the collision probability when a sensor in r observes a
busy (idle) channel.

PB(r) can be derived as follows. The average probability that a sensor in
r′ occupies the channel can be written as the ratio of the actual traffic rate in
r′ to the available channel rate. It is assumed that the probability of finding
the channel busy at one point in time is close to the time stationary probability.
By denoting the available channel rate (expressed in packets/s) by Bw and
considering all sensors within the carrier sensing range of the node at r, it
follows that:

PB(r) =

∫∫
|r′−r|≤ds

Λ�(r′)
Bw

dr′ [1.18]

The quantities sB(r) and sI(r) are computed as functions of the collision
probabilities when the channel is busy/idle and parameters of the CSMA/CA
protocol. The expression of pBc (r) and pIc(r) will be provided later; assume,
for now, that these quantities are known.

For the sake of brevity, the sum of the duration of a data transmission, δa
and the duration of an ACK transmission is denoted by L. Note that the
duration of a data (ACK) transmission depends on the data (ACK) size and
the available channel rate. The mean service time is derived by considering
that the probability of multiple collisions is negligible [HEU 03]. To verify
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such an assumption, simulations with N = 400 nodes have been run, in the
case where all sensors are active. The integral over the network area of the
traffic generation rate λs(r) of the sensors has been set to 0.1, and the
probability that a packet experiences one or more retransmissions has been
evaluated (see section 1.4.1 for a description of the simulator). The results
presented in Figure 1.1 show that the probability of having multiple collisions
can indeed be neglected.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Pr
ob

ab
ili

ty

Distance from sink [m]

no. retransmissions/packet = 1
no. retransmissions/packet > 1
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experiences one or more retransmissions, as a function of the node

distance from the sink

The mean service time when the channel is sensed idle can be expressed as

sI(r)=
(
1− pIc(r)

)
(δs + L) + pIc(r)

(
2δs + 2L+

CW

2
+ f · L

)
[1.19]

=(δs + L)
(
1 + pIc(r)

)
+

(
CW

2
+ f · L

)
pIc(r) [1.20]

where δs is the time interval during which a node senses the channel, CW is
the CW size and f is the mean number of transmissions that make the backoff
in r freeze (see section 3.1). The first term on the right-hand side of [1.19]
accounts for the case where the node accessing the channel does not collide
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with any other node. The second term represents the case where a collision
occurs, the tagged node extracts a backoff value (the mean value of the backoff
time is equal to CW/2 and the backoff is frozen for a time equal to f ·L) and the
packet is retransmitted. The quantity f can be evaluated as f = m(r)

2 , where
m(r) is the mean number of sensors in the proximity of r contending for the
channel; the complete derivation of f is given in the following section. Because
of the Poisson distribution of sensors in the area, m(r) can be computed as:

m(r) =

∫∫
|r′−r|≤ds

Λ�(r′)
Bw

ρ(r′) dr′ [1.21]

Similarly, sB(r) is given by

sB(r)=
(
1− pBc (r)

)[L
2
+ δs +

CW

2
+ L(1 + f)

]
+ pBc (r)

[L
2
+ δs +

CW

2

+ L(1 + f) + δs + CW ++L(1 + f)
]

[1.22]

=

[
δs +

CW

2
+ L(1 + f)

] (
1 + pBc (r)

)
+

CW

2
pBc (r) +

L

2
[1.23]

Equation [1.22] can be explained as follows. Since the channel is sensed
to be busy, first the node has to wait for the current transmission to end, i.e. on
average a time interval equal to L/2; then, after a time δs, it extracts the
backoff time (whose average value is equal to CW/2). Again, during the
backoff procedure other nodes may access the channel thus making the
backoff freeze (for an average time duration of f · L). If a collision takes
place, an additional backoff procedure has to be performed and the packet has
to be retransmitted. Note that, at the second backoff extraction, the value of
CW is doubled, thus the average value of backoff to be considered is equal to
CW .

In order to compute the expressions above, the following equations are
applied: pIc(r) and pBc (r):

pIc(r)=

∫∫
u(r′|r)

∫∫
|r′′−r′|≤ds

Λ�(r′′)
Bw

dr′′ dr′ [1.24]
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Equation [1.24] is derived considering that, when the channel is idle, a
node’s transmission collides if any other node located within the carrier
sensing range of the receiver is transmitting. In [1.24], u(r′|r) is the
probability that the next hop of the transmitter in r is located in r′, while the
inner integrals represent the probability that the next hop (i.e. the receiver)
observes a busy channel.

When the channel is busy, a collision occurs if two or more nodes within
the radio range of the receiver extract the same backoff value, thus accessing
the channel at the same time. Because of the fact that multiple collisions are
neglected, it can be assumed that all nodes set the size of their CW to the same
value CW . Thus, given that 1/CW is the probability that a contending sensor
selects the same backoff as the tagged node, it is fair to write:

pBc (r)=

∫∫
u(r′|r)

∞∑
k=0

[
1−

(
1− 1

CW

)k
]
e−m(r′)(m(r′))k

k!
dr′ [1.25]

Again, u(r′|r) accounts for the probability that the tagged sensor (located
in r) uses the node in r′ as next hop, while m(r′) is the average number of
sensors in the proximity of r′ contending for the channel.

The average probability to retransmit a packet at r, PR(r), can be computed
using [1.17]. Finally, to be consistent with the assumption that packets are
retransmitted at most once, [1.5] can be rewritten as,

Λ�(r) = Λ(r)[1 + PR(r)], [1.26]

which provides the actual traffic rate density at point r.

Equations [1.17], [1.18], [1.21] and [1.24]–[1.26] all depend on each
other; therefore, these equations are solved by means of a fixed point
approximation (FPA) procedure. At the first iteration of the FPA procedure,
Λ�(r) is considered to be equal to Λ(r), and [1.17], [1.18], [1.21], [1.24] and
[1.25] are solved in the same order as listed here. Then, [1.26] is used to
obtain a new value of Λ�(r), and then the procedure is repeated until
convergence on the parameter estimates is reached. Note that very few
iterations are needed to reach convergence (namely, 3 and 4).
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1.3.2.1. Computation of the mean number of transmissions freezing

the backoff counter

The probability that a sensor draws one out of the CW backoff values is
1/CW . Now, consider that a node has drawn the backoff value j, with 0 ≤
j < CW . The probability that the decrease in the node backoff counter is
interrupted by i transmissions is the probability that i out of the k contending
nodes have selected a smaller backoff value, i.e. j/(CW − 1). The number
of contending nodes k is distributed according to a Poisson distribution with
mean m(r). It follows that the average number of transmissions that make the
backoff counter of the sensor freeze can be computed as

f =
1

CW

∞∑
k=0

e−m(r)(m(r))k

k!

CW−1∑
j=0

k∑
i=0

i

(
k

i

)(
j

CW − 1

)i

×
(
CW − j − 1

CW − 1

)k

=
∞∑
k=0

e−m(r)(m(r))k

k!
k

∑CW−1
j=0 j

CW (CW − 1)

=
1

2

∞∑
k=0

k
e−m(r)(m(r))k

k!
=

m(r)

2

1.3.3. Mean packet delivery delay: computing q(r)

In section 1.1, the mean packet delivery delay and [1.6] are derived to
compute this quantity; the equation contains one term representing the
average queueing delay experienced by a packet at point r, denoted by q(r)
whose computation is shown here. First, for the sake of clarity, the simple
case where sensors are always active is considered, then the general case
where sensors alternate between active and sleep modes is addressed.

1.3.3.1. Computing q(r) for always active sensors

The service time defined in section 1.3.2 can be used to derive an
approximate expression for the average queueing delay experienced by a
packet at each sensor it goes through. To this end, the queue at each sensor is
modeled by using a simple M/M/1 queueing system where the arrival rate is
defined by [1.4], while the average service time is defined by [1.16]. It is
important to point out that this is an approximation of the actual behavior of
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the system since the arrival as well as the service processes of data packets at
a sensor are not exponentially distributed. The use of this simple model is
justified by its simplicity and by its accuracy, as compared to simulation
results. Moreover, it allows an easy extension to the case of finite buffer size,
considering the M/M/1/B queue model.

Exploiting well-known results from the M/M/1 queue theory, the mean
queue length experienced by a packet at point r can be computed as:

n(r) =
Λ(r)s(r)

1− Λ(r)s(r)
[1.27]

and by using Little’s law, the average queueing delay is given by:

q(r) =
n(r)

Λ(r)
=

s(r)

1− Λ(r)s(r)
[1.28]

1.3.3.2. Computing q(r) for active and sleeping sensors

Let us consider now that sensors may be either in active or in sleep state.
While being asleep, a sensor cannot generate, receive or transmit data packets
but it preserves its buffer data content. To derive an expression for the average
queueing delay experienced by a packet at point r in case of active/sleep
dynamics, the behavior of a sensor is modeled by means of a birth/death
model that suspends the arrivals as well as the services when the sensor is in
sleep mode. In terms of queuing theory, these assumptions correspond to
considering an M/M/1 queue with server vacations and interrupted arrivals (in
the following, ON and OFF are used as shorthands to indicate active and
sleep states of the server).

Figure 1.2 shows a possible evolution of the number of queued packets at
a node. Notice that, during the OFF period, the number of packets in the
queue is frozen, because both arrivals and services are suspended. This
behavior corresponds to a special case of queueing system with vacations
[DOS 86] that allows for a very simple analysis. Indeed, if the OFF periods
are removed, the same dynamics would occur as in the case in which nodes
are always active (see section 1.3.3.1). Moreover, OFF periods start at random
points in time, with no correlation with the state of the queue. As a result, at
any time the number of packets in the queue has the same distribution as the
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stationary distribution derived in the case in which nodes are always on. Note
that this property holds in general, i.e. for any distribution of the duration of
ON and OFF periods.

t

ON ONOFF OFF ON

  Number of
queued packets

Figure 1.2. Example of evolution of the number of queued packets at a

node in the case of active-sleep dynamics

Given that the aim is to derive the average time spent in the queue, the
application of Little’s law produces

q(r) =
n(r)

Λ(r) Pa
[1.29]

where n is the same as in [1.27], whereas Pa = T̄ON/(T̄ON + T̄OFF) is the
probability that a sensor is active, which depends only on the average durations
T̄ON and T̄OFF of the ON and OFF phases, respectively.

1.4. Results

This section presents a collection of results obtained exploring the
parameter space of the network scenario described in section 3.1. In
particular, in section 1.4.1 the analytical predictions derived from the fluid
model are compared with those obtained using a detailed simulator of the
sensor network in the case of homogeneous node deployment. In section
1.4.2, the model is exploited to study the behavior of large-scale sensor
networks as the active/sleep dynamics and the sensing/communication range
of the nodes vary. Furthermore, the impact of non-homogeneous node
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deployment is investigated assuming that the sensor density varies according
to a (truncated) exponential distribution as a function of the distance from the
sink.

1.4.1. Model validation

The development of an ad hoc discrete-time simulator allowed for the
validation of the analytical results. The simulator is based on the assumptions
about the system behavior specified in section 3.1. At the beginning of the
simulation, a random (connected) topology is generated using a uniform
distribution of nodes over a disk area of unit radius. Then, it is computed once
and for all the minimum-energy next hops available to each node, according
to the energy cost defined in section 3.1. The simulator implements all details
of the CSMA/CA access mechanism considered in this chapter that resembles
the operation of the IEEE 802.11 DCF. The duration of a slot is σ = 320 μs
[IEE 06], δs is equal to 50 μs and the CW is CW=16. The available channel
rate is Bw=250 kbit/s and the packet size (including the packet header) is
equal to 400 bits; L results to be 1.92 ms. Data packets are generated by
active sensors according to a Poisson process.

Since the simulation results are obtained for a particular instance of
sensors deployment, the correct validation methodology requires averaging
the simulation predictions over a large number of deployment realizations.
The simulation process has run 200 experiments for each set of system
parameters, and the average and the 90% confidence intervals have been
computed for each performance metric. Each simulation experiment discards
an initial transient period that we set equal to 5, 000 time slots. The length of
each run is equal to 200, 000 time slots. Furthermore, while the model allows
for the computation of the spatial distribution of performance metrics, to ease
the interpretation of results as well as the comparison against simulation
outcomes, the simulator averages the performance metrics over the space
points at the same distance from the sink. The result is given in 2D graphs of
the performance metrics as functions of the distance from the sink. In all the
plots shown in this section, confidence intervals are depicted as vertical error
bars.

The values for the system parameters are reported in the following. The
number of sensors in the network is N = 400. The communication range
is equal to the carrier sensing range for all nodes, dc = ds = d = 0.25. The



26 Analytical Modeling of Wireless Communication Systems

energy consumption parameters are set to: Cd = 0.018 mJ, E(ele) = E(proc) =
0.15 mJ, and Pi = 18 mW [MIC 04]. Let us denote by Lg the integral over the
network area of the traffic generation rates λs(r) of the sensors. To validate
the model under different system loads, two values of Lg have been set: 0.1
and 0.15. Note that the system load is considered normalized to the available
channel rate. Furthermore, with this set of parameters the system is not stable
for values of Lg greater than 0.2.

The traffic rate density, Λ(r), which accounts for both packets generated
by the node and the relay traffic, is the first metric evaluated. Figure 1.3 shows
the behavior of Λ(r) versus the node distance from the sink. Note that the
traffic rate (and, hence, power consumption) is not evenly distributed across
the network; indeed, nodes closer to the sink have to relay a larger amount of
traffic than peripheral sensors. This is related to the well-known problem of
data implosion at the sink [KUL 02] that affects multipoint-to-point
communications and results in unfairness among the network nodes. It is also
important to observe that traffic rate per sensor diminishes significantly at
distances close to multiples of the communication range d. This is due to the
routing strategy adopted, which selects the path minimizing the overall
energy cost to send a packet to the sink. Notice that, due to the choice of
values for Cd, E(ele) and E(proc), it turns out that the fixed cost required to
transmit a packet over one hop is much larger than the variable cost due to the
amplifier, even if sending at the maximum possible distance d. As a result,
routes are primarily selected on the basis of the minimum hop count. Among
all routes having the minimum number of hops, the one minimizing the
variable cost due to the amplifier is preferred. Finally, Figure 1.3 highlights
that the model is able to accurately predict the particular shape of the curves
obtained for different values of Lg.

The graphs on the left-hand side Figures 1.4 and 1.5 show the average data
delivery delay versus the source distance from the sink (i.e. the time elapsed
from the instant at which a packet is generated by a sensor to the instant at
which the packet reaches the sink), for Lg equal to 0.1 and 0.15, respectively.
The delay increases with the distance from the sink as well as with the value of
Lg, as expected. The delivery delay is very well approximated by a model that
represents the behavior of each node by a simple M/M/1 queue. The matching
is pretty good for all considered values of Lg. The graphs on the right-hand side
of Figures 1.4 and 1.5 present the power consumption per node, as a function of
the node distance from the sink, for Lg equal to 0.1 and 0.15, respectively. Note
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that, looking at the value of the various contributions to power consumption, it
turns out that the one due to overhearing dominates. This suggests that, in order
to save energy, it is of fundamental importance to build sensors that promptly
detect when data packets are not destined to themselves and disregard them.
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Figure 1.4. Analytical and simulation results for Lg = 0.1 of the

average delivery delay (left) and of the average power consumption

(right) as functions of the node distance from the sink

The model validation for the case sensors exhibiting active/sleep behavior
is reported in Figure 1.6. It shows the packet delivery delay (top graph) and the
power consumption per node (bottom graph) as functions of the node distance
from the sink. Both graphs present results for a scenario where sensors are
in the sleep state for 50% of the time and for Lg = 0.1. According to the
model assumptions, when a sensor enters sleep mode, its sleep time (expressed
in slots) is geometrically distributed with parameter equal to 0.01; when the
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sensor switches to the active mode, the scheduled active period (expressed in
slots) is a random variable geometrically distributed with parameter equal to
0.01.
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Figure 1.5. Analytical and simulation results for Lg = 0.15 of the

average delivery delay (left) and of the average power consumption

(right) as functions of the node distance from the sink

It is worth pointing out that, again, the data delivery delay is well
approximated by our M/M/1 model with server vacations and interrupted
arrivals, whose parameters are derived from the traffic rate and the service rate
defined in section 1.3.2. For the sake of comparison, the results for the case
where sensors are always active are reported in the two graphs of Figure 1.6.

In this manner, it is possible to appreciate the effect of the active/sleep
dynamics on the delivery delay as well as on the power consumption. Indeed,
the data delivery delay approximately doubles with respect to the case in which
nodes are always active, as predicted by [1.29], since here Pa = 0.5.

1.4.2. Model exploitation

The application of the fluid-based model allows for the study of many
issues relevant to sensor networks and the exploitation of different
architectural solutions and parameter settings. Because of the detailed
modeling approach, a large number of different system parameters can be
investigated (e.g. number of sensors, carrier sensing/communication ranges,
fraction of time in active/sleep mode). The results are obtained with a low
computational solution cost and good accuracy.
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Figure 1.6. Analytical and simulation results for the average delivery
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of the node distance from the sink, for Lg = 0.1. The results obtained

when sensors are in the sleep state for 50% of the time are compared

to the case where sensors are always active

Figure 1.7 presents some results that allow us to appreciate the effect of
different values for the common carrier sensing/communication range d (i.e.
when dc = ds = d). Sensors are assumed to be always active. The scenario
under investigation is characterized by the following parameters: Lg = 0.1,
N = 1, 000 and d = 0.15, 0.1, 0.05. The figure shows the average delivery
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delay (top graph) and power consumption (bottom graph) as functions of the
node distance from the sink: on the one hand for smaller values of d, the
number of hops from the sensors to the sink grows, thus leading to a
significant increase in the delivery delay; on the other hand, large values of d
imply that distant transmissions also allow a node detect the channel as busy,
therefore sensors often overhear other nodes’ traffic and their power
consumption increases.
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Figure 1.8. Analytical results for the scenario with Lg = 0.1,

N = 5, 000, d = 0.05, and different fractions of time in active state

(from 100 to 12.5%). Average delivery delay (top)

and average power consumption (bottom) as functions of the

node distance from the sink

Figure 1.8 shows some results that allow us to appreciate the effect of
different fractions of time spent in active mode (from 100 to 12.5%). The
scenario being investigated is characterized by the following parameters:
Lg = 0.1, N = 5, 000 and d = 0.05. The figure presents the average delivery
delay (top graph) and the average power consumption (bottom graph) as
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functions of the node distance from the sink. Observe that the node power
consumption significantly decreases as sensors spend more time in a sleep
state, however this benefit has a cost in terms of delivery delay. Thus, a clear
trade-off emerges between power consumption and the level of service that
the network can offer.

The model has been also applied to a non-homogeneous scenario where the
sensor density varies across the disk of unit radius: sensor deployment which
the local density varies as a function of the distance from the sink according to
a (truncated) exponential distribution of parameter α. In this case, by properly
normalizing the distribution so that the average number of sensors N is kept
constant, the sensor density is expressed as follows

ρ(r) =
N

2π

α2 exp(α · dist(r,Sink))
(α− 1)eα + 1

Figure 1.9 shows the sensor density for different values of the control
parameter α. When α < 0, the sensor density decreases as the distance from
the sink increases, whereas for α > 0 the sensor density increases while
moving away from the sink. Notice that α = 0 corresponds to the case of
homogeneous sensor density, i.e. ρ(r) = N/π.
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Figure 1.9. Sensor density for different values of α as a

function of the distance from the sink
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The following figures consider scenarios with N = 400, where Lg = 0.1,
d = 0.25, and N = 1, 000, where Lg = 0.1 and d = 0.15 or 0.05. Sensors are
assumed to be always active.

Figure 1.10 reports the comparison of the average traffic rate per sensor for
different values of the control parameter α in the case in which N = 400 (the
case of N = 1, 000 leads to similar results). Note that, for negative values
of α, the values of Λ(r) are smaller than in the homogeneous case (α = 0),
since the amount of traffic that has to be relayed over multiple hops (such
as that produced by far away sensors) decreases. Moreover, for negative α
the distribution of Λ(r) is more even, leading to an improved fairness among
sensors. The opposite is true for α > 0.
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Figure 1.10. Average traffic rate per sensor, Λ, in the case

of N = 400 and different values of α

Figure 1.11 shows the average delivery delay D(r) for N = 400 (top) and
N = 1, 000 (bottom). For N = 400, negative values of α result into a larger
delivery delay with respect to the case of homogeneous density. In particular,
when α = −1.5 the delay is significantly higher than the one obtained for
the other considered values of α. This can be explained by the fact that, for
negative α, even if the traffic load per sensor is lower (see Figure 1.10), the
total number of sensors within the carrier sensing/communication range of the
sink is much larger, resulting in an increased channel contention around the
sink. In particular, for α = −1.5, the wireless channel turns out to be very
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congested near the sink (i.e. the local load approaches the maximum channel
capacity) and queueing delays become very large.
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Figure 1.11. Average delivery delay for N = 400 (top plot) and for

N = 1, 000 (bottom plot) as functions of the node distance from

the sink and for different values of α

At the other extreme, α = 1.5 results in smaller delivery delays for sensors
close to the sink, because in this case the channel contention around the sink
is very low. However, the average delay of sensors far from the sink become
slightly higher with respect to the case of homogeneous density; again, this is
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due to the large sensor density and, thus, to the increased channel contention
in the regions close to the network border.

A similar behavior is observed in the case of N = 1, 000 and d = 0.15, as
shown in Figure 1.11 (bottom). However, if we reduce the carrier
sensing/communication range in this scenario to as small as d = 0.05, we
observe a quite different behavior. When d = 0.05, a short distance is covered
by each transmission, hence several hops are needed to far away sensors to
deliver their traffic to the sink. As a result, delivery delays are small close to
the sink, but get larger and larger while moving toward the network border
(almost linearly as the distance from the sink increases), due to the increasing
number of hops required to reach the sink. In this scenario, with α = −1.5
the channel spatial reuse is large enough such that the channel contention
around a node is always very low, and no congestion arises around the sink.
Therefore, delivery delays are smaller than in the case of homogeneous
density. For α = 1.5, instead, few sensors are located around the sink and all
of them are heavily used as relays by further away nodes, thus nodes
experience a higher delivery delay than for α = 0.

1.4.3. Model solution complexity and accuracy

The solution algorithm discretizes the disk of unit radius using Np points,
thus obtaining a radial discretization step equal to 1√

Np
. The computational

cost of the model solution is very limited and does not depend on the number
of sensors. The control processing unit (CPU) time required to solve the model
and obtain the results presented in section 1.4.1 is only a few seconds using
Np = 2, 500, while the simulation experiments took much longer to complete.
The simulation time increases more than linearly with the number of sensors,
thus allowing to simulate at most a few hundreds of sensors.

Furthermore, increasing the number of discretization points results in a
slightly increased accuracy of the model predictions at the cost of an
increased CPU time required for the model solution. Figure 1.12 displays the
model predictions for the average traffic rate per sensor under the same
scenario as in the left plot in Figure 1.3, for Np = 400, 1600, 2500, 10000. It
can be observed that both Np = 2, 500 and Np = 10, 000 yield very accurate
results, although the model solution time is significantly larger in the latter
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case (tens of seconds). Therefore, Np = 2, 500 turns out to be a reasonable
trade-off between efficiency and accuracy of the discretization algorithm.
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