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Introduction to Structural Dynamics 

The aim of this chapter is to convey a non-exhaustive image of all areas 
considered, from near or far, in this work. 

Section 1.1 is dedicated to the general study of structural dynamics. This study 
intends to attach the essential evaluations to the calculations of dynamic responses, 
frequencies, appropriate methods and their response functions. All of these aspects 
are consequently tackled using practical applications. 

The dynamic balance equation system of a structure can be solved by using one 
of the traditional strategies [MOH 05]. The most frequent resolution strategy in 
dynamics is modal superposition, which is suited to linear structures whose first 
methods are only the ones that are agitated. In contrast, direct resolution methods 
incorporate movement equations in order to handle nonlinear structures. These 
structures can also be applied when the frequency contents of the disturbance cover 
a large number of methods of the mechanical structure studied.  

In section 1.2, a non-exhaustive bibliographic study is put forward regarding the 
optimization of structures. The objective is to obtain suitable forms from an article 
by minimizing a given criterion. In every area of structural mechanics, knowing the 
impact of effective object design is very important in determining its resistance, 
lifetime and operation. This is one of the challenges faced by industries daily. The 
development of engineering requires considerable effort to constantly improve the 
techniques for designing structures. Optimization plays an important role in 
increasing performance and significantly reducing aerospace and motoring 
engineering equipment, while simultaneously substantially saving energy. 

The last section of this chapter is devoted to describing the different tools that 
analyze structures with uncertain parameters. The uncertainty of parameters is 
particularly dangerous in vibratory mechanics. However, consideration of this effect 
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2     Stochastic Dynamics of Structures 

has the ability to respond to different sorts of needs, among which one can identify 
two categories: analysis and design. In general, modeled objects and structures 
respond to a design brief, such as safeguarding security, reliability or comfort 
guidelines.  

When creating a deterministic design, one tends to search for the best possible 
design from among all potential solutions. This choice is based on cost as well as 
improvement in product quality. In this case, the objectives of the designer to 
produce the optimal design are hampered despite the accuracy of the mechanical 
characteristics of the materials, the geometry and the loading (effects of 
uncertainties). The resulting optimal design can thus have an unsatisfactory level of 
reliability. The process that incorporates reliability analysis with the named problem 
of optimization (Reliability based design optimization or RBDO) aims to envisage 
structures while establishing the best compromise between cost and effective 
functioning. 

1.1. Composition of problems relating to dynamic structures 

The composition of a dynamic problem of small disturbances using Ω of the 
boundary u fΓ = Γ ∪ Γ  (Figure 1.1) and in a [0, T] time interval is: 

( ) ( ) ( ), ,xDiv x t g x u x tσ ρ+ = &&  [1.1] 

( )1
2

tu uε = ∇ + ∇  [1.2] 

 

Figure 1.1. StructureΩ  
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Initial conditions: 

( ) ( )0, 0u x u x=  x∈Ω  [1.3] 

( ) ( )0,0u x u x=& &  x∈Ω  [1.4] 

Limited conditions: 

( ) ( ), ,u x t u x t=              ( ) [ ], 0,ux t T∈Γ ×  [1.5] 

( ) ( ), . ,x t n f x tσ =          ( ) [ ], 0,fx t T∈Γ ×  [1.6] 

Here, u is the displacement vector, σ and ε  are the constrained and deformation 
tensors, respectively, and ρ is the volumetric density. The vectors g, f  and u  
represent volumetric strength, exterior strength and imposed movement, 
respectively, and nr  is the normal vector at the surface. 

In terms of isotropic elasticity, the behavior law is written as follows: 

2ij kk ij ijσ λ ε δ μ ε= + , [1.7] 

where λ  and μ  are the functions of Young’s modulus and Poisson’s coefficient ν , 
respectively: 

( )( )
.

1 1 2
E νλ
ν ν

=
+ −

 [1.8] 

( )2 1
Eμ
ν

=
+

 [1.9] 

The dynamic problem presented above in the case of elasticity can be represented 
can by the Navier equation as follows: 

( ) ( ) ( )( ) ( )2 , . , ,i
i

u x t u x t u x t
x

μ λ μ ρ∂∇ + + ∇ =
∂

&& , [1.10] 
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where 2∇  denotes the Laplacian operator: 
2 2 2

2
2 2 2

1 2 3x x x
∂ ∂ ∂∇ = + +
∂ ∂ ∂

 and ∇⋅ is the 

notation for the divergence operator: 31 2

1 2 3

uu u
u

x x x
∂∂ ∂

∇ ⋅ = + +
∂ ∂ ∂

. 

1.1.1. Finite element method 

In the case of complex geometric structures, numerical methods like the finite 
element method are used. In problems concerning elastodynamics, generally 
movements are expressed by a combination of vectors [GMÜ 97]: 

( ) ( ) ( ){ },u x t B x q t= ⎡ ⎤⎣ ⎦ , [1.11] 

where ( )B x⎡ ⎤⎣ ⎦  is the matrix form of functions and ( ){ }q t  is the vector of discrete 

real movements, whose components are discrete unknowns of approximation.  

After discretization of the problem, a second-order equation system was 
obtained: 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( )

( ){ } { } ( ){ } { }0 00 , 0

M q t C q t K q t F t

q q q q

⎧ + + =
⎪⎪
⎨
⎪ = =⎪⎩

&& &

& &

, [1.12] 

where N  is the number of degrees of freedom of the system; ( )M N N×  is the 

mass symmetrical matrix, which is defined as positive; ( )C N N×  and ( )K N N×  
are the matrices of viscous shock absorption and rigidity, which are symmetrically 
defined as being non-negative; and F represents the vector of all forces  
applied. 

Equation [1.12] represents a system of differential second-order equations that 
can be solved by either a direct incorporation method or superposition method.  
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1.1.2. Modal superposition method 

If one applies the following transformation to the system presented in equation 
[1.12]: 

{ } [ ]{ }q p= Φ , [1.13] 

where { }p  is the vector of generalized coordinates, [ ]Φ  is the modal matrix that 

verifies the attributes of orthogonality: [ ] [ ][ ]T M IΦ Φ =  and [ ] [ ][ ] 2T K w⎡ ⎤Φ Φ = ⎣ ⎦  

with 2 2 2
1 2w diag w w⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦L , where iw  is the specific vibration, equation [1.12] 

becomes: 

{ } [ ] [ ][ ]{ } { } { }2Tp C p w p P⎡ ⎤+ Φ Φ + =⎣ ⎦&& & , [1.14] 

where { } [ ] { }TP F= Φ  is the vector of modal force. 

The shock absorption matrix can be proposed as being proportional to the mass 
and stiffness matrix. This hypothesis was made by Rayleigh and is relatively 
frequently employed in structural calculations. One can write: 

[ ] [ ] [ ]C M Kα β= +  [1.15] 

[ ] [ ][ ] [ ] 2T C I wα β ⎡ ⎤Φ Φ = + ⎣ ⎦ , [1.16] 

which can be transformed into: 

{ } [ ]( ){ } { } { }2 2p I w p w p Pα β ⎡ ⎤ ⎡ ⎤+ + + =⎣ ⎦ ⎣ ⎦&& &  [1.17] 

The unpaired system becomes: 

22i i i i i i ip w p w p Pζ+ + =&& &  [1.18] 

22 , 1, 2, ,i i iw w i Nζ α β= + = LL , [1.19] 

where iζ  is the coefficient of reduced shock absorption and the values of α and β 
are initially unknown, which are calculated using iζ . 
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Figure 1.2. Graph of the shock absorption coefficient 

Figure 1.2 shows the shock absorption coefficient ζ  in graphical form. It can be 
noted that the sum of the two functions is almost a constant to the shock absorption 
on the frequency band chosen. Therefore, given the modal shock absorption (ζ) and 
a frequency interval (f1 and f2), the two equations can be simultaneously solved to 
determine α and β: 

1
14

f
f
α β π ζ
π
+ =  [1.20] 

and 

2
24

f
f
α β π ζ
π

+ =  [1.21] 

1.1.3. Direct integration 

There are many methods of integration for differential equations. The general 
process is to discretize time and formulate what is occurring at the given instance  
“t + Δt” in terms of what happens at instance “t” using Taylor developments. The 
Newmark method will be presented in this section, as well as that of Wilson  
[KLE 92, EL 13]. 
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1.1.3.1. Newmark method 

Newmark proposed a method in which speed and movement of t + Δt are 
estimated in terms of { } { } { }, ,t tq q q&& &  and acceleration { }t tq +Δ&& . In addition, 

movement and speed are developed in a Taylor series with the help of two 
independent parameters, β and γ, together with time [KLE 92]: 

{ } { } { } 2
1 1

1
2n n n n nq q q t q q tβ β+ +

⎧ ⎫⎛ ⎞= + Δ + + + Δ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

&& &&  [1.22] 

{ } { } ( ){ }1 1n n n nq q q q tγ γ+ = + − + Δ& & && && , [1.23] 

where { } { } { }, andn n nq q q& &&  are the approximations of ( ){ }nq t , ( ){ }nq t&  and ( ){ }nq t&& , 

respectively, and 1n nt t t+ = + Δ , with Δt being time. The two independent 
parameters, β and γ, assure the accuracy and stability of the solution. When 1/ 2γ ≥ , 

( )0.5 / 4β γ≥ + . 

By transferring these equations onto the movement equation, the following 
matrix relation can be obtained: 

( )2
1 1 1 1n n n nM t C t K q C q K q Fγ β + + + ++ Δ + Δ = + −&& &  [1.24] 

with 

( )1 1n n nq q t qγ+ = + − Δ& & && et 2
1

1
2n n n nq q t q t qβ+

⎛ ⎞= + Δ + Δ −⎜ ⎟
⎝ ⎠

& &&  [1.25] 

Acceleration at the moment t = 0 is created by the balancing conditions and the 
initial conditions on { }q  and { }q& . The solution of equation [1.24] requires the 
solution of a linear system at each time interval. 

1.1.3.2. The Wilson method, θ 

The Wilson method is the one in which acceleration varies linearly in the interval 
( ), 1n t n tΔ + Δ⎡ ⎤⎣ ⎦ . Wilson supposed that this linear variation occurs in the interval 

( ), 1n t n tΔ + Δ⎡ ⎤⎣ ⎦ . The value of θ  recommended by Wilson is 1.4. 
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If τ denotes time in interval [ ]0, ,tθ Δ  then acceleration in the interval 

[ ],t t tθ+ Δ  is written in [KLE 92] as: 

( )t t t t tq q q q
tτ θ
τ
θ+ + Δ= + −
Δ

&& && && && . [1.26] 

Speed and movement are obtained through successive integrations as follows: 

( )
2

2t t t t t t
tq q q q q

tτ θτ
θ+ + Δ= + + −
Δ

& & && && &&  [1.27] 

3
21

2 6t t t t t tq q q u q q
tτ θ

ττ τ
θ+ + Δ= + + −
Δ

& && && &&  [1.28] 

These base equations have been generalized by Hughes. They are given for time 
t=θΔt and with the notation ( ) nq n t qΔ = : 

n n n nM q C q K q Fθ θ θ θ+ + + ++ + =&& &  [1.29] 

( ) 11n n nq q qθ θ θ+ += − +&& && &&  [1.30] 

( )1 2n n n nq q t q qθ θθ γ β+ += + Δ − +⎡ ⎤⎣ ⎦& & && &&  [1.31] 

( ) ( )
2

1 2 2
2n n n n n

t
q q t q q qθ θ

θ
θ β β+ +

Δ
⎡ ⎤= + Δ + − +⎣ ⎦& && &&  [1.32] 

( ) 11n n nF F Fθ θ θ+ += − +  [1.33] 

These equations are equal to the ones proceeding for the values β = 1/6 and  
γ  = 1/2. 

1.2. Structural optimization 

Structural optimization is not a new concept. By searching the archives, one can 
find a calculation made by Galileo which expresses the law of density of a free 
cantilever beam by applying a constant distribution of pressure [TRO 87]. It should 
be noted that the result of this calculation is approved by modern theories. Since 
Galileo’s time, there have been thousands of publications; by not limiting oneself to 
the modern era of optimization, one can see that since, Schmit introduced the idea of 
coupling structural analysis by finite elements with nonlinear mathematical 
programming in order to find different optimal automated designs in the 1960s. 
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Effectively, he proved that structural design could be formulated using a 
mathematical programming problem [SCH 01].  

Optimization plays a major role in increasing performance and reducing the mass 
of aerospace and automobile machines, saving a substantial amount of energy. 
Constant development of design techniques with the help of a computer and 
optimization strategies can be found here. In order to illustrate the evolution of 
structural optimization techniques, one can arbitrarily classify structural optimization 
into three large families: design optimization, shape optimization and topological 
optimization [EL 13, DUY 96]. 

1.2.1. Design optimization 

This allows for the improvement of a structural model by using available resources 
(called constraints or limitations). Automatic sizing of structures is the particular case 
which allows us to modify the right section or the horizontal density of the 
components of a structure whose shape and topology are fixed [AZI 02, ALL 01].  

1.2.2. Shape optimization 

Shape optimization allows changes of process consistent with a previously fixed 
topology. Traditional process optimization modifies parametric representation of 
area boundaries [ZHA 92, AFO 02]. By the moving boundaries, one can expect a 
better solution from among the structures obtained by homeomorphic transformation 
of the original structure.  

 

Figure 1.3. Shape optimization: the initial model (left) and  
the solution to the problem after 5 versions (right) [ZHA 92] 
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1.2.3. Topological optimization 

Topological optimization allows one to modify the nature of the structure more 
completely. Here, the geometry of the object is explored without any preconception 
about the connectivity of the areas or the structural components present in the 
solution. Optimizing topology naturally leads the shape or the optimal horizontal 
dimensions of the structure to be determined, such that it is called generalized shape 
optimization [ROZ 93]. The final structure must satisfy the constraints defined 
previously by the user (which are generally linked to the restriction of the von Mises 
maximum distortion) [EL 13]. 

 

Figure 1.4. Definition of the Michel trellis problem [REY 99] 

 

Figure 1.5. Topological optimization solution  
applied to the Michell trellis problem [REY 99] 
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A conventional reference regarding topological optimization, the Michell trellis 
problem (the rectangular area is changed in its inferior right section while all those 
on the left-hand side are fixed), is described in Figure 1.4. Reynold [REY 99] solved 
the problem by using an adaptive change technique, which is described as follows: 
once the problematic initial finite element is established, the method starts with 
meshing refinement by subdividing elements of certain areas where the (von Mises) 
pressure is minimal. The subdivided elements with minimal pressure will be 
eliminated, and the process continues until merging. The solution for the structures 
obtained after 6, 42, 75 and 120 respective repetitions of this process are shown in 
Figure 1.4. On the 120th repetition, only 8.8% of the entire (initial) section remains.  

Topological optimization can also be carried out for trellis. For example, Deb 
and Gulati [DEB 99] developed a method to discover sections and the optimal 
topology of a 2D and 3D trellis by using a genetic algorithm. The objective was to 
reduce the mass to a minimum, under pressure and movement with a predefined 
value. Figure 1.6 illustrates an example of a 3D trellis in which the genetic algorithm 
merges with a trellis composed of nine elements (from a configuration of  
39 elements). 

 

Figure 1.6. Example of topological optimization [DEB 99] 
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Figure 1.7 shows an example of a function to a variable with local minima and 
global minimum. From among the local minima, the one with the smallest value of f 
is the global minimum. 

A multimodal function presents several (local) minima, whereas a unimodal 
function has only one minimum, that is, the global minimum. Figure 1.8 shows a 
multimodal function with two variables. 

`  

Figure 1.8. A multimodal function with two variables. For a color  
version of the figure, see www.iste.co.uk/elhami/stochasticdynamics.zip 

The local method is the one that considers a local minimum. The research 
considers a local minimum that usually departs from an initial point 0x  with the 
initial pace 0Δ . Numerous local methods exist. The oldest and most widely used 
methods are the ones whose direction of descent is inferred from the derivatives of 
the function (method with the greatest gradient, Newton’s method, conjugate 
gradient method, and near-Newtonian method [EL 13]).  

Global methods aim to reach one or several global optima. Typically, the 
running cost of optimization is conditioned by the number of estimations of the 
objective function. For example, if one wants to optimize a mechanical system 
modeled using finite elements, the calculation time will primarily be the amount of 
time spent using simulations to optimize it.  

1.3. Structures with uncertain parameters 

On consideration of uncertainties when studying a structure, it is essential to take 
into account the two sources of uncertainty: those concerning agitation and those 
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concerning structure. Dessombz [DES 00] classified the uncertainties into four large 
categories: random parameters:  

– Random parameters. Examples include the dimensions of an object whose 
limits are known or even Young’s model or the volumetric mass of a material. 

– Unknown parameters. The case of conditions with limits is a typical problem. 
Embedding signifies a great rigidity, but only a certain type of magnitude is known. 
Similarly, the different types of assembly, such as welding and gluing, are difficult 
to model, and it seems that the deterministic values used to represent these methods 
are largely insufficient.  

– Variable parameters. Here, one may distinguish the parameters that could vary 
with time, are uncontrollable or can be more or less controlled (typically, if 
materials are damaged or worn). In addition, the parameter whose value is known at 
any given moment can also be distinguished. In this case, one can put it down to an 
agitation force (a train passing over a bridge), the quantity of fuel in a tank or even 
special adjustments.  

– Uncertainties of the model. These include the chosen laws of behavior which 
do not represent, or only partially represent, physical phenomena, errors due to 
choices regarding interconnecting finite elements, fine details and chosen elements. 
These uncertainties are generally difficult to evaluate. 

In order to display parametric uncertainty, diverse approaches, probabilistic 
theory [SAR 04], unclear systems [TIS 15] and convex models [BEN 90] have been 
illustrated in the literature. 

1.3.1. Monte Carlo simulation 

When approaching problems of uncertainty, whether they are experimental or 
numerical, the approach naturally used in the first place is based on sampling 
hypotheses. The Monte Carlo simulation, known and used intensively in several 
scientific domains, was introduced into structural mechanics by Schinozuka in 1972. 
The method is kept as a reference, and is simultaneously the simplest and the most 
expensive.  

The method consists of three stages. The first stage is the most important, aiming 
to generate a great number of systems associated with the stochastic parameters of 
the physical problem using numerical simulation. The following stage is to solve the 
deterministic problem for each of the elements of the group, with the aim of 
obtaining a group that corresponds with the random quantities of response of the  
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system studied. In the last stage, a great number of output processes are obtained, 
from which one can calculate the different static values of the response variables.  

The computing power needed to carry out all of these simulations severely limits 
the applications of this method; this is why we use approximation techniques.  

1.3.2. Analytic method 

The different methods used to analyze problems of uncertainty are principally 
the disturbance method and the Neumann decomposition in series method. The 
principle of these methods is recalled in [BEN 08]. The use of Neumann series is 
based on research on the opposite of the operator of the problem, breaking it down 
into a Neumann series. This limits its application to certain types of differential 
equations, while the disturbance method does not have this limitation, since it uses 
decomposition of the output field (in the same way as Taylor). These methods are 
generally simple to put into practice, but they only provide satisfactory results if the 
disturbances remain small and if the problems are linear.  

1.3.3. Stochastic finite element method 

A large proportion of the current research deals with the problem of structures 
with uncertain parameters through stochastic finite element methods. These combine 
two techniques, namely “traditional” analysis using finite elements and statistical 
analysis. In general we try to determine the stochastic characteristics of random 
responses, with the help of knowledge related to hazards including structural 
parameters, geometrics, limiting conditions and the loads of a system.  

Schuëller [SCH 01] exposed different developments in this domain and proposed 
several references for each aspect of the problem. The explanation of the principle of 
stochastic finite elements given by Ghanem et al. [GHA 96] consists of using 
decomposition in a series of stochastic processes, shortened in a certain way 
according to desired accuracy. There are two levels that can be used to describe the 
stochastic aspect of the problem. The first consists of considering structural 
characteristics such as known stochastic fields. In this case, one generally uses 
Karhunen–Loeve decomposition, which is similar to modal superposition used for 
structural computing, since this decomposition exhibits remarkable properties in 
terms of orthogonality and merging. The second concerns the stochastic field formed 
by the solution for structural bonds. In this case, decomposition named polynomial 
chaos is used [GUE 16]. In this way, stochastic solutions are launched based on 
orthogonal polynomials, whose variables are Gaussian orthonormals. The properties 
of this polynomial basis can be used to find, either analytically or using a numerical 
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average, the standard deviation or distribution of the random solution. The main 
problem with this method relies in the choice of resolution algorithms for the storage 
of values. Furthermore, the possibility of implementing parallelism based on the 
characteristics of the resulting matrices, probably the most important aspect to 
consider in the development of this method as it offers results of quality 
immediately, requires substantial computing time. 

A different approach in stochastic formulation using the finite element method 
can be carried out by modifying the existing elements to allow the inclusion of 
defects, as Combescure [COM 01] presents an axisymmetric element based on a 
shell element. This approach allows one to analyze structures that possess non-
axisymmetric defaults, such as the radius of a cylinder or cone, or a variable density 
over circumference. 

1.3.4. Fluid logic method 

Fluid logic was discovered by Zadeh [ZAD 65a, ZAD 65b]. Since its creation, it 
has constantly been the subject of several research projects. Fluid logic is the theory 
of uncertain systems. Fuzzy set theory or FST, is an extension of the theory of 
systems. The affiliation function of a traditional system A is defined as: 

( )
1 if

0 if
A

x A
x

x A
μ

∈⎧
⎪= ⎨
⎪ ∉⎩

 [1.35] 

This indicates that an element x is either in A ( )( )1A xμ = or not ( )( )0A xμ = . 

This definition allows one to make a link with traditional probabilistic analysis, 
whose definition is close enough, except that A is a point in R in this case and not an 
interval of R. This difference, which is not very easy to interpret from a practical 
point of view, carries one that demonstrates the limits of probabilistic analysis: if an 
event A has a probability of ( )p A , then the probability of an event occurring that 

goes against event A is known and is worth ( ) ( )1p A p A= − .  

This is not true for the theory of possibilities: if ( )P A  denotes the possibility of 
an event A, the relationship that links this possibility to the possibility of another 
event A  could be written as ( ) ( ) 1,P A P A+ ≥  because the relationship 

( ) ( ){ }max , 1P A P A =  is always verified. This translates the fact that if one 
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considers two opposite events, one of the two is always completely possible, and if 
an event is considered possible, its limit can also be if one notes the mathematical 
bases of the theory, as well as numerous computing elements allowing for an initial 
application of uncertain arithmetic.  

1.3.5. Reliability method 

Most of the approaches studied with respect to structural reliability can be 
classified into two categories: simulation techniques and analytic methods. These 
techniques help the research engineer to consider all the possible uncertainties 
during the design and construction phase in order to calculate the index of reliability 
or the probability of breakdown in accordance with one or several circumstances of 
failure [EL 13]. 

1.3.5.1. Simulation technique 

Simulation techniques enable a precise evaluation of the probability of failure. 
These techniques, also named the Monte Carlo method, encompass various simulation 
methods, such as direct Monte Carlo method, the important drawings method [ENE 
93], conditional simulations, directional simulations, adaptive drawings and the Pavé 
method. The Monte Carlo simulation technique was proposed in the early 1940s to test 
technological systems by using a cheap simulation technique.  

In Monte Carlo simulation, the probability of failure is given by: 

f
f

NP
N
= , [1.36] 

where fN  is the number of failures and N  is the total number of events simulated. 
The statistical accuracy of the probability of failure is measured by the covariance 
coefficient: 

( )
( )1

cov

f f

f
f

P P
NP P

−

= . [1.37] 

Equation [1.37] shows that a small probability of failure implies a large number 
of simulation cycles to maintain an acceptable level of accuracy. Consequently, this 
causes a rise in operating cost. For a complex problem with several random 
variables, the Monte Carlo simulation becomes impractical. In order to overcome 
this difficulty, several more effective alternative methods, such as the important 
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FORM is usually accurate for linear limit state functions and not for highly 
nonlinear limit states. In order to solve this problem of nonlinearity of limit states, 
SORM was proposed to improve reliability evaluation by using a quadratic 
estimation of the state surface limit. In [EL 13], one can see an asymptomatic 
process to predict probabilities of failure for β  by applying the quadratic estimation 
to MPFP. Probability of failure can be expressed as: 
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where ik  are the principal curves of failure passing through MPFP.  

The exact probability of failure for a second-order estimation at MPFP [EL 13] is 
as follows: 
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1.3.6. Reliability optimization 

Frangopol [FRA 85] proposed a sensitive analytical technique which was 
previously applied to design optimization, in which weight was taken as an objective 
function while target reliability index was taken as a constraint. He developed a 
vectorial optimization approach for structural design problems demanding multiple 
limit states and considered simultaneously. He also suggested a vectorial 
optimization strategy based on reliability in three stages in the solution to the 
problem of optimization.  

Yang and Nikolaidis [YAN 91] established an optimization system reliable for 
the wing of an airplane subjected to certain loads. FORM was used to predict the 
reliability index of diverse components, while Ditlevsen adopted a technique to 
obtain the reliability index of the system. The problem to solve combines two sub-
optimization problems with two optimization levels, in which weight was taken as 
an objective function and the reliability index as a constraint for structures made up 
of mixed materials.  

Enevoldsen and Sorensen [ENE 93] suggested four different processes for 
solving the problem of reliability optimization of systems in series and parallel. The 
first two approaches are based on analyzing sensitivity and the last one is based on 
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sequential methods. Several aspects linked to reliable optimization in structural 
engineering have been discussed. Several reliable optimization problems have been 
formulated: the FORM method has been used to evaluate the reliability level of the 
system and a two-level strategy has been put forward to solve the problem of 
reliable optimization. The choice of first-order optimization algorithms as well as 
analyses of sensibility increases the efficiency of the resolution of the optimization 
problem based on reliability. They also pursued their work by examining several 
practical outcomes of reliable optimization comprising the use of finite element 
analysis. They also concluded their findings by describing a strategy to correct and 
improve the model while evaluating the optimal result.  

Royset and Der Kiureghian [ROY 01] offered a decoupling approach through 
which the optimization problem can be reformulated as a deterministic and semi-
infinite problem (characterized by a finite number of design variables and an infinite 
number of constraints). This approach was then applied to the reliable optimization 
of structural systems in series with two optimizing compositions. In the first 
composition, the cost is minimized beneath the reliability and mechanical 
constraints, while in the other reliability is taken as an objective junction under a 
mechanical constraint. The advantage of this approach is its flexibility and the fact 
that any algorithm optimization and any reliability method can be independently 
adopted for the optimization solution based on reliability, since the optimization and 
reliability calculations are totally decoupled.  

The analytical techniques, primarily FORM/SORM, are always a good choice 
for evaluating reliability within the problem concerning reliable optimization when 
the analytical model of the limit state function or the equivalent estimation is 
available. A one-level optimization strategy proposed by [MOH 05] based on 
FORM and using optimal criteria was used to solve the two compositions of the 
problem of reliable optimization. The first problem involves minimizing cost under 
reliability obligations. The second problem optimizes reliability under cost 
constraints. The algorithm of the approach has been displayed through three 
examples, and the results of optimization have been compared to those obtained 
using other available methods in publications in terms of cost and stability. The 
inconvenience of this algorithm is that it is limited to a single limit state, and so it 
cannot be applied to reliable optimization problems.  

An effective method was proposed by Kharmanda [KHA 04, KHA 08] through 
merging the two spaces: physical and normal. This approach is called the hybrid 
method, as it integrates the two problems into a single one, which is solved 
simultaneously in spaces with deterministic and random variables. The reliability 
issue is combined with the optimization problem in order to reach a single objective 
function and, in this way, reduce the global computing cost. This last method was 
studied in detail throughout this thesis, and in order to create methods adapted to the 
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problem of dynamics. We have proposed a method to detect crucial areas in terms of 
resonance frequencies as well as a new method entitled improved hybrid, which 
allows us to improve the results of the traditional hybrid method [MOH 05].  

1.4. Conclusion 

In this chapter, we introduced the issue of structural dynamics while considering 
their uncertainties.  

In section 1.1 the different analytical methods for structural dynamics were 
explored. In section 1.2 the notion of uncertainty was examined, presenting different 
methods for stochastic finite elements before analyzing reliability and reliable 
optimization. 

 



 


