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Mechanics and Fluid 

1.1. Introduction 

The mechanics of fluids is a type of mechanics: it looks at the movement of 
matter when under the influence of forces. Matter here is in the “fluid state”.  

This chapter is approached from the perspective of the foundations of the 
mechanics of point power. It will also later define what fluid is and which of this 
matter’s main characteristics are useful to know. These characteristics shall then be 
brought to “life” in later chapters. 

1.1.1. Mechanics: what to remember 

1.1.1.1. Who is afraid of mechanics? 

For some curious reason, this branch of physics appears frightening to many 
students, a curse that thermodynamics also shares. Somewhat recoiled from, the 
mechanical engineer occupies a special place in the academic world. Some people 
even wonder whether mechanical engineers are actually physicists who have a 
strong handle on mathematics, or are in fact mathematicians lost among physicists. 
These classifications have not been made any simpler by the addition of digital 
calculations. 

It cannot be stressed enough that the appearance of mechanics gave birth to 
mathematical physics. 

By pairing movement with mathematics, the Neoplanitician, Galileo, created 
kinematics. And then, with a stroke of genius, although perhaps slightly mythically, 
Isaac Newton created dynamics by incorporating the fall of an apple and the Moon’s 
trajectory into one vision. 
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2     Fluid Mechanics 

Descartes must not be left out of this Pantheon of emerging physics, for he 
created momentum, was engaged in heated debates with Newton and Leibnitz on 
this subject as well as others, and discovered kinetic energy through “life force”. 
Leibnitz and Newton were also the precursors to the differential approach in 
mechanics.  

1.1.1.2. Principles to remember 

Like a game of chess, the starting rules of mechanics are the simplest. And, like 
a game of chess, not all paths lead to an easy victory.  

a) Remember that a position vector rr  is defined as a vector that links the 
starting point to another point in space. The coordinates of rr  are evidently the 
point’s three coordinates: 

( ),r r x y z=r r  [1.1] 

By definition, the point’s speed is the derivative of the position vector in relation 
to the time:  

d rV
dt

=
rr

 [1.2] 

which, when passing, accelerates the position vector’s second derivative:  

²
²

dV d r
dt dt

Γ = =
r rr

 [1.3] 

Remember that a vector is derived with regard to a scalar by deriving its 
components:  

( ) ( ) ( ), , ; , ,d r dx dy dzr x t y t z t
dt dt dt dt

⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

r
r  [1.4] 

b) In 1687, Isaac Newton’s Philosophiae Naturalis Principia Mathematica 
outlined three laws, which indeed can be reduced into two: 

1) The principle of inertia; 

2) Fundamental dynamics law; 

3) The principle of action and reaction. 
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Let us take these three principles further: 

Law no. 2. Let us begin with the fundamental dynamics principle, when applied 
to a constant mass (m) material point:  

The acceleration that a body undergoes in an inertial frame of reference is 
proportional to the resulting forces that it undergoes, and is inversely proportional 
to its mass. 

In modern notation (the notion of the vector was acquired in the 20th Century), 
this is written as: 

dVm F
dt

=
r

r
 [1.5] 

NOTE: Vectorial notation reminds us that a given speed contains three pieces of 
information: a direction (instantaneous movement support), a route and an hourly 
speed. A speed cannot be reduced to the datum of –1m.s . A speed vector not only 
tells me that my car is traveling at 1130 .V km hr−=  (hourly speed), but it also tells 
me that I am on a highway between Paris and Rome (direction) and that I am going 
from Paris to Rome (route). However, I would still need the position vector rr  to tell 
me where the next exit is.  

Therefore, an acceleration is also a vector, and there is no reason why it is not 
collinear to the speed. Central acceleration in a circular movement is (or should be) 
known to all secondary school students.  

Law no. 1. The principle of inertia was actually discovered by Galileo: In the 
absence of an external force, all material points continue in a uniform, straight-
lined movement. 

NOTE: This is what Captain Haddock realizes in the “Explorers on the Moon”, the 
illustrated Tintin adventure story by the famous Belgian author, Hergé. 

This principle of inertia is in fact a consequence of the fundamental dynamics 
principle. If the result of forces applied to a material point is zero, then: 

0F ≡
rr

 [1.6] 
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and:  

0dVm
dt

=
r

r
 [1.7] 

which implies: V Cte≡
rr

 [1.8] 

It means a uniform straight-lined movement.  

Law no. 3. If the first principle can be reduced to the second, the third principle 
of action and reaction is independent: Every body A exerting a force ABF

r
 on a body 

B undergoes a force BAF
r

 of equal intensity, but in the opposite direction, exerted by 
body B: 

AB BAF F= −
r r

 [1.9] 

When solving a problem, to write that every force has an equal and opposite 
reaction is to write something new with regard to the fundamental dynamics 
principle.  

These principles have been rewritten in various different forms, which lead to 
equations that are often much more directly applicable. A few of these equations are 
given in the following sections.  

1.1.2. Momentum theorem 

We can rewrite the fundamental dynamics principle by noting that mass is 
invariable: 

dV d dpm mV
dt dt dt

= =
r rr

 [1.10] 

A momentum vector has also been introduced:  

p mV=
rr  [1.11] 

And the fundamental dynamics principle is also found to be rewritten in terms of 
momentum:  

dpm F
dt

=
r r

 [1.12] 
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In the course of mechanics, it is demonstrated that this equation applies in 
material points to the center of a group’s mass, whether it is continuous or 
discontinuous and alterable or otherwise. m  is therefore replaced by the total mass 
of the system’s points and F

r
 then represents the resultant of the forces applied to 

these points. This is what constitutes the center of mass theorem. 

NOTE: It goes without saying that we do not intend to write a “digest” here on the 
course of fluid mechanics. 

It would be impossible to attempt to reproduce a complete mechanics course. 
However, we must insist upon the consequences of these principles which will be 
directly applied when establishing fluid mechanics theorems. We will build upon the 
mechanics of point power, and if the reader deems it necessary, they can refer to a 
dedicated textbook to study system mechanics, which constitutes a more complex 
domain. Furthermore, in the appendix, we can find a reminder of fluid mechanics 
equations for a continuous fluid system. This script will be used when demonstrating 
Euler’s first theorem.  

We observe that while mass becomes variable with speed, it is this expression 
that remains valid in particular mechanics. This is also the case for relativist 
dynamics. 

1.1.3. Kinetic energy theorem 

Forced movement implies work. Here we will give mechanics an energetic 
dimension. The work of a force F

r
when applied to a material point during a time dt  

provides calculated work from the force and this point’s small movement d rr : 

.dW F d r=
r r  [1.13] 

d rr  is a small vector, which indicates not only the small distance traveled, but 
also the carrying line of this movement or direction, and the movement’s route. It is 
linked to speed by:  

d r V dt=
rr  [1.14] 

Remember the dynamic relation: 

dVF m
dt

=
r

r
 [1.15] 
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The work is written as: 

.dVdW m V dt
dt

=
r

r
 [1.16] 

It can be observed that  

² . 2. .dV dV V dVV
dt dt dt

= =
r r r

r
 [1.17] 

Finally, it becomes: 

² ²
2 2
m dV dmVdW dt

dt
= =  [1.18] 

The work performed has helped to increase the quantity ²
2

mV carried by the 

material point. This is how kinetic energy appears:  

²
2C

mVE =  [1.19] 

1.1.4. Forces deriving from a potential 

In a frame of reference Oxyz , where Oz  is vertical, the force of gravity GF
r

 
applied to a mass of 1m kg= will have the following components:  

0GxF =  [1.20.a] 

0GyF =  [1.20.b] 

GzF g= −  [1.20.c] 

Furthermore, the operating gradient is defined by associating the vector grad f
r

 
with a function ( ),f x y z  by: 

( )
x

grad f
x
φ∂=

∂

r
 [1.21.a] 
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( )
y

grad f
y
φ∂=

∂

r
 [1.21.b] 

( )
z

grad f
z
φ∂=

∂

r
 [1.21.c] 

Therefore, GF
r

 can be written in the form of a gradient: 

G GF grad φ= −
rr

 [1.22] 

which, by definition, implies the following about the gradient: 

0G
GxF

x
φ∂

= − =
∂

 [1.23.a] 

0G
GyF

x
φ∂

= − =
∂

 [1.23.b] 

G
GzF g

x
φ∂

= − = −
∂

 [1.23.c] 

By identifying: 

G gz Cteφ = +  [1.24] 

Therefore, it can be said that GF
r

 is derived from the potential .Gφ  It is worth at 
least being aware of this. 

In general terms, it is said that a force F
r

is derived from a potential ( ), ,x y zφ  
when  

F grad φ= −
rr

 [1.25] 

This property is not universal: in particular, friction forces or electromagnetic 
forces are not derived from a potential.  
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1.1.5. Conserving the energy of a material point 

The work performed by a force derived from a potential during a time period of 
d t  is written as: 

. .dW F d r grad d rφ= = −
rr r r  [1.26] 

By developing the scalar product, this can be rewritten in the Cartesian form: 

.dW grad d r dx dy dz
x y z
φ φ φφ ∂ ∂ ∂= − = + +

∂ ∂ ∂

r r  [1.27] 

The exact total differential is seen to appear φ  on the time dt , meaning the 
variation dφ  between the starting point at t  and the arrival point at t dt+ : 

dW dφ= −  [1.28] 

By coupling the equations together, we obtain: 

CdW dE dφ= = −  [1.29] 

which can be rewritten as: 

0CdE dφ+ =  [1.30] 

Thus, the total energy appears: 

T CE E φ= +  [1.31] 

Sum of the kinetic energy and the potential energy, which is conserved when the 
material point is moving.  

NOTE: Remember that when part or all of the forces is or are not derived from a 
potential, the mechanical energy of the material point is not conserved. The 
mechanical work of the forces which is not derived from a potential is generally 
transformed into another form of energy. Thus, friction transforms mechanical 
energy into thermal energy. This enters into the domain of thermodynamics. The 
mechanical energy (work) is no longer conserved, but the first principle applies to 
the two forms of energy: work and heat. 
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These relations for the material point recalled here have been extended into finite 
volumes of matter. Curious readers may refer to more elaborate mechanical courses. 
The aim of this chapter lies in the need for the readers to place themselves within the 
framework of a basic general culture of mechanics. 

All of the notions that have been recalled here will be useful when we begin 
interpreting Bernoulli’s theorem. 

1.2. The “fluid state” 

The term “fluid state” refers here to the way in which all of the states of matter 
used to be understood: solid, liquid, gas and plasma, a classification that has been 
recognized more recently.  

In this group, fluid mechanics applies to the last three of these “states”. 

Solid mechanics deals with alterable and unalterable elastic solids with a blurred 
boundary and a few creep or pasty rheology problems.  

NOTE: It is important not to confuse this expression, which can be traced back to the 
oldest “fluid state”, with the notion of “state in thermodynamics”, which relates to a 
set of thermodynamic variables which we will discuss later.  

When approached from the mechanics perspective, this “fluid state” prompts us 
to:  

a) define this state in terms of its nature, its physical qualities and its movements; 

b) describe the forces that can be applied to a fluid: what are they and how are 
they written? 

1.2.1. Fluid properties 

1.2.1.1. The first property of fluid is its continuity  

Physically, continuity signifies that fluid density, regardless of how small it may 
be, contains matter. This allows a density to be defined, like the ratio of a small fluid 
density dm  to the small volume dω  that it occupies: 

dm
d

ρ
ω

=  [1.32] 
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For those who like mathematics, we observe that physical continuity connects a 
notion of continuity for the mass occupying a given volume. This mass ( )dm d ω  
also has a derivative called density. In mathematical terms, the expression is: 

0
: lim

d Vol

dmexists such that
d

ρ ρ
ω→

=  [1.33] 

NOTE: Herein lies a paradox. The mechanical engineer attributes this continuity 
property to fluid. We know that at the smallest scale of physics, matter is not 
continuous. Moreover, if there was no fluid discontinuity at the molecular level, we 
would not be able to determine its essential properties: possible compressibility, 
existence of pressure and temperature, thermal conduction and matter diffusivity 
when mixed.  

A paradox is merely a poorly asked question. There are at least six or seven 
orders of magnitude (powers of 10) between the molecular phenomena and the 
mechanics of a fluids physicist. Admittedly, continuity is just a modeling tool, but it 
is robust. At the pipeline level, everything happens “as if” the fluid was continuous.  

1.2.1.2. Compressibility 

Density has been defined as a local property. There are many cases where  
this value of ρ  is constant in all fluids. Therefore, it can be said that fluid is 
incompressible. This will be our definition of incompressibility here. Incompressible 
is synonymous with .Cteρ =   

There are other cases where the density varies from one fluid point to another. 
Therefore, it can be said that fluid is compressible. This situation is mainly 
concerned with gas. But the compressibility of liquids may cause certain problems: 
there is writing on static fluids at the deepest pits of the Pacific Ocean and there are 
acoustics in liquids (without fluid compressibility, there is no possibility of sound 
being disseminated). 

Determining density, according to its parameters, relates to thermodynamics. All 
of a fluid state’s thermodynamic variables are linked in its equation of state. 
Subsequently, for a gas, we will need this equation of state. As the equation for so-
called perfect gases is the one that is commonly used, we will use it too. 
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This equation links the three thermodynamic variables: pressure p, molar volume 
molM  or density p, absolute temperature T, expressed in Kelvin. 

This is most often written for a mole (remember that the mole is defined by the 
number of molecules it contains, namely the Avogadro number 236,022.10N = ):  

molpV RT=  [1.34] 

Here R  is the universal constant of perfect gases, the value of which is 
1 18,3144621 . .R J mol K− −= . In light of the level of precision of the models, for the 

examples used in this book, we will choose 1 18,31 . .R J mol K− −= . (Some authors 

use 1 18,315 . .R J mol K− −= .) 

In mechanics, where the approach is more based on mass, an alternative 
expression is preferred, which directly uses density as a thermodynamic variable. 
Therefore, the fluid’s molar mass M  needs to be brought in.  

Noting that 

mol

M
V

ρ =  [1.35] 

We obtain the following state equation: 

mol
pMpV RT
ρ

= =  [1.36] 

molpV rT=  [1.37] 

with Rr
M

=  [1.38] 

NOTE: When the ideal-gas law i is written under this form, r  is no longer a 
universal constant. It depends on the nature of the fluid. 
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NOTE: They are called perfect gases because the equation is simple. No gas is 
intrinsically perfect. This equation is verified by all low-pressure gases. This relation 
was brought about by the works of Boyle, Mariotte and Charles in earlier times.  

“Low-pressure” is a relative expression which may be translated as “any pressure 
lower than 100 bars in a generous approximation, or 10 bars if one prefers to be 
pedantic”. When looking at compressible fluid problems, we will see that this is a 
highly acceptable hypothesis.  

No fluid is intrinsically incompressible. Contrastingly, a gas can be attributed 
with an incompressibility property. Incompressible is a synonym of Cteρ = , as  
is written above. If a flow’s conditions are such that ρ  varies very little, then 

Cteρ =  is physically pertinent. Furthermore, we will also see the evolution of 
pressure strongly coupled with speed. For flows with a relatively weak speed, the 
pressures vary relatively little and density can easily be deemed a constant. This 
considerably simplifies the analysis process.  

NOTE: For a gas in which the speed scale that establishes a barrier between 
“incompressible” flows and a “strongly coupled compressible” flow is defined based 
on the speed of sound in the fluid. Once again, it is in fact the flow that is either 
“incompressible” or “compressible”.  

1.2.2. Forces applied to a fluid 

This section will respond to various questions: how do forces applied to a finite 
volume of fluid occur? What are these forces and how are they written?  

1.2.2.1. Surface forces, volume forces 

Let us begin with a fluid domain D contained within a closed surface .S   

The “exterior” of this domain D will apply two types of forces: 

Remote forces which in principle have an application point at all points in the 
domain D . These are volume forces. As a general rule, they are written per mass 
unit, VF

r
.  

There are contact forces between the external fluid of D  and the internal fluid of 
.D  These forces are localized all over the surface .S  These are surface forces. 
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Figure 1.1. Surface forces, volume forces 

1.2.2.2. Volume force scripts 

a) As a general rule, volume forces are written per mass unit, VF
r

.  

These forces are expressed per volume unit as ,VFρ
r

 and the forces applied to a 
small basic volume dω  are written as: 

VdF F dρ ω=
r r

 [1.39] 

b) These volume forces may be “remote” forces, which results in a force field. 
There are different origins at play here: forces of gravity, which are the most 
frequent, electrostatic forces and electromagnetic forces. Another type of force will 
occur when the reference frame, where the problem’s equations are written, is no 
longer inertial (or Galilean). 

It is now known that inertia forces appear.  

NOTE: Remember that in Newtonian mechanics, an inertial or Galilean frame (they 
will be used as synonyms here) is a reference frame in a uniform straight-lined 
movement (meaning in inertial movement, in the sense of Newton’s first law) with 
respect to an absolute frame. In an inertial frame, Newton’s second law, along with 
the absolute frame, applies.  

c) The same as for some inertia forces; some remote forces can be derived from a 
potential.  

In this case, a function Vφ  will be defined as: 

V VF grad φ= −
rr

 [1.40] 
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In general, a potential is defined by force nature. If all volume forces are derived 
from a potential, then the resulting volume forces will also be derived from a 
potential. This potential function will be the sum at each point in the potential’s 
space of each force. Warning: if just one of the volume forces is not derived from a 
potential, then the result will not derive from a potential. 

Forces of gravity and electrostatic forces are derived from a potential. 
Electromagnetic forces are not derived from a potential (they are derived from a 
“vector potential”). Inertia forces, which result from an accelerated translation or a 
uniform rotation, may be derived from a potential. Examples of this will be given in 
Chapter 2. 

d) Note on calculating inertia forces: Generally, when it comes to a frame with a 

translation given by a vector ( )OO' t
→

 and a rotation defined by the rotation vector 

Ω
r

, the inertia force scripts take a complex form. Although we will not be using this 
expression in all of its complexity here, we will remind the reader of it anyhow.  

For a material point of mass m , the inertia force will be:  

inert relF m= − Γ
r r

 [1.41] 

relΓ
r

 is calculated based on the different relative movements of the point and the 
frames. 

By appointing ,O' x' y' z' , which is the non-inertial frame where we will solve 
the problem, where ,O x y z  is the Galilean frame against which the frame 

,O' x' y' z'  moves and r'r  is the position vector of our material point written in the 

frame ,O' x' y' z' , we express relΓ
r

: 

( )² 2 '
²rel

d OO' d r' dr r'
dt dt dt

ΩΓ = + Ω ∧ + Ω ∧ Ω ∧ + ∧
rrr r rr r r  [1.42] 

1.2.2.3. Surface force scripts 

We will discuss two approaches here:  

a basic approach, which is sufficient for grasping various problems, and with 
which all readers of this book should be immediately familiar;  

a more complete approach, which we will particularly need for the chapter 
dedicated to boundary layers, where more complex formulation is required. 
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dFn = p dS

dF  =  dS

dS

dF

n  

Figure 1.2. Surface forces: normal forces, tangential forces 

a) Simplified approach  

Remember that surface forces are applied from the exterior to the fluid contained 
within the field, by the fluid immediately in contact with the “internal” fluid at the  
“S level”.  

That being so, dS  is an elementary surface of this surface S  and nr  the unitary 
normal vector to dS . 

NOTE: Remember that this unitary vector is carried by the normal force to dS  and 
has a norm equal to 1. Conventionally, this unitary vector is always directed toward 
the exterior of D , whose purpose is to satisfy the integral vectorial relations.  

Two components can generally be distinguished in the surface force dF
r

 applied 
to a surface :dS  

a normal component carried by nr  and directed toward the interior, ndF
r

; 

a tangential component dFτ

r
, which is perpendicular to nr , and a tangent to .dS  

These two components have an intensity which is proportional to .dS  Thus, two 
finite parameters are defined, the pressure p  and the tangential stress τ  such as: 

ndF p dS=  [1.43.a] 

dF dSτ τ=  [1.43.b] 
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NOTE: The definition of the given pressure must be carefully accepted. In certain 
instances, the normal component of the volume forces contains terms resulting from 
the viscosity that is, in principle, reserved for the tangential forces in the previous 
script. Nevertheless, this will be a pertinent vision for the majority of the 
applications expanded upon in this book.  

b) These forces are a result of the molecular nature of fluid matter  

The pressure forces, which are normal to S, result from an exchange of 
momentum, due to the collision of molecules from the internal and external fluids. 
This collision is localized to the previously defined S  interface. Should a gas 
interact with a solid wall, such as in a piston for example, which will be familiar to 
the thermodynamicist, the molecule shocks determine the pressure. Boltzmann 
modeled this type of mechanics and, in so doing, was able to theoretically establish 
the law of perfect gases.  

It can be demonstrated that the pressure in a fluid point is isotropic. It does not 
depend on the orientation of the surface dS  given by nr . 

 

Figure 1.3. On the interface between the two fluids, the pressure is continuous 

It also demonstrates that the pressure is continuous on the interface between the 
two fluids 1 and 2. That is, 12p  is the pressure applied by fluid 1 onto fluid 2, at the 
level of an elementary surface ,dS  and 21p  the pressure applied by fluid 2 onto 
fluid 1. At the level of ,dS  the law of action and reaction implies that the action of 1 
on 2 is equal and opposite to the action of 2 on 1, in terms of intensity: 

12 21 12 21;p dS p dS p p= =  [1.44] 
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Therefore, the pressure is continuous throughout the boundary between fluid 1 
and fluid 2.  

The tangential forces result from the so-called viscosity phenomenon. This 
phenomenon was brought to light by the Couette flow experience in its most basic 
form. This experience, which we will not describe here, allows us to demonstrate 
that for a flow that is parallel to a flat solid plate, where the speed ( )u y  varies in a 
linear way with the distance y  to the wall, the tangential stress τ  applied by this 
wall onto the fluid is “most frequently” given by: 

( )du y
dy

τ μ=  [1.45] 

( )du y
dy

is very often appointed by the “speed gradient”, which is a misnomer. 

The correct term is shearing. 

NOTE: “Speed gradient” is a misnomer because ( )u y  is a vector component. We 
will see that the speed can be derived from a potential, but only when there is zero 
viscosity! In kinematics, an operator .V grad V

rv v
 will appear, which is only a means 

of facilitating the script. 

y

w =  dV/dy

dF = w dS dS
 

Figure 1.4. Shearing and stress: Newton’s law 

Rheology is the name given to the study of the relationship between stress and 
shearing. 
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The linear relationship between stress and shearing [1.45] is fulfilled by the 
majority of fluid currents, gases or liquids (water, oils, etc.). Therefore, it can be said 
that fluids fulfill Newton’s law or that the fluid is “Newtonian”. 

μ is therefore defined as dynamic viscosity. It is important to retain this adjective 
as kinematic viscosity is also defined as the ratio of dynamic viscosity to density. 
The range of this definition will be discussed further on:  

μν
ρ

=  [1.46] 

“Pure” fluids are generally Newtonian. Once the fluid is “charged”, meaning 
when it becomes a solid particle carrier, the rheological behavior becomes more 
complex and the linear relationship between stress and shearing becomes invalid.  

Different models have led to expressions of these elements, some of which are 
more complex and some less complex (some have been found to be comprised of 
three lines of equations). 

In this instance, we will use a form proposed by Oswald-De Waele: 

( ) n
du y

k
dy

τ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [1.47] 

where k  is a viscosity coefficient.  

Examples include non-Newtonian fluids, both of this type and others. 

Some fluids are “memorized”, such as the so-called Bingham fluids, which can 
be modeled by:  

( )
0

du y
k

dy
τ τ= +  [1.48] 

where 0τ  is a residual stress. 

Some fluids have a rheology that varies in time: these are called thixotropic 
fluids.  
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NOTE: In practice, the most common non-Newtonian fluids are blood (which 
contains approximately 45% of solid extract), gels and products (purées, soups) 
made in the agri-foodstuffs industry. A fluid’s memory can also be experienced 
when we turn a spoon around in a good traditional soup.  

c) Scripts developed from tangential stresses. Stresses tensor 

This is indeed an oversimplified description. Writing the script correctly requires 
the stresses tensor ijσ  to be defined. 

NOTE: The ijσ  are actually components of SdF
r

 that relate to the three privileged 
directions, written as i . This indicates that the tension on any surface can be 
expressed according to the known tensions for the three privileged surfaces dS. 

Therefore, the force SdF
r

 will be written based on a tension τr  such as 

SdF dSτ=
r r . 

The ith component of ,τr  iτ  will be written as:  

i ij jnτ σ=  [1.49] 

ijσ  depends on the fluid’s rheology. For a Newtonian fluid, the linearity 
between stresses and shearing leads to the expression:  

ji
ij

j i

uu
µ divV

x x
σ η

⎛ ⎞∂∂
= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

r
  [1.50] 

where µ  is the dynamic viscosity that we have already seen, which is an essential 
parameter, and η  is the so-called “volume” viscosity, which may be linked to µ . 

1.2.2.4. Surface forces and usual units 

It is recommended that all digital applications are performed in the MKS (meter, 
kilogram, second) system or the SI system. When using any formula, the parameters 
must be expressed in SI. We will follow this rule for all of the examples dealt with 
in this work.  

The major parameters in fluid mechanics are always pressure and viscosity. For 
this reason, beyond legal units, alternative forms have been used to indicate these  
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parameters. We should know all of the different expressions of these parameters in 
different technical fields.  

a) Pressure units. 

A pressure is the ratio of a force on a surface. In Newtonian terms, it can be 
expressed as a meter squared, written as 2.N m− . A specific unit, the Pascal, has 
been defined and written as Pa . 

The pascal represents a very weak pressure. Expressed in water height (see 
Chapter 2), it is of a 1 0,1Pa mmCE≈  nature. Here, CE  signifies a water column. 
Other units have been defined for the technical dialogue. By using a barometer, we 
can give a pressure value in liquid “height”.  

Thus, a standardized atmosphere corresponds to a “mercury” pressure of 
76h cm= . Knowing that the mercury density is 313600 .kg mρ −= , the pressure in 

Pascal units will be: 

51 13600*9,81*0,76 1,013.10atm gh Paρ= = =  [1.51] 

The atmosphere emerges at practically 100 000 Pa . In industrial practice, 1.3%  
seems to be unchanged, and in this way, the bar is defined by: 

51 10bar Pa=  [1.52] 

We can incidentally find some old units that are not commonly used nowadays. 
The reader may find it useful to remind themselves of these by way of reading an 
older publication.  

The CGS (centimeter, gram, second) system has defined some other units. The 
force unit is the dyne, 51 10dyne N−= . The result is a pressure unit, the dyne per 
centimeter squared or barye:  

5

4

101 0,1
10

Nbarye Pa
−

−= =  [1.53] 

We can also cite another old unit, the pièze ( pz ), which is inherited from the 

MTS (meter, ton, second) system: 31 10pz Pa= . We will also notice the hectopièze, 
which was the pressure unit still used by furnace manufacturers in the middle of the 
20th Century. 1 1hpz bar= . 
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Lastly, it should be noted that the millibar appeared in certain domestic 
barometers.  

NOTE: We note that on a good quality barometer, the mercury centimeter scale must 
lag behind the millibar scale. 

b) Viscosity units 

There is more than just historical interest in having a knowledge of viscosity 
units in MKSA (SI) and CGS systems, considering that we can still come across 
data (particularly in handbooks) that stems from this system. Furthermore, when a 
viscosity is given, it is rarely indicated whether the viscosity is dynamic or 
kinematic. Nothing more than the unit is given.  

Dynamic viscosity has the following dimension: 1 1ML T− − . 

Kinematic viscosity has the following dimension: 1²L T − . 

Historically, the names were given in the CGS system.  

The dynamic viscosity unit is the Poise: 1 11 1 . .poise kg cm s− −= k . 

The kinematic viscosity unit is stokes: 2 11 1 .stk cm s−= . 

The names in MKSA (SI) system were derived from the CGS system. 

The dynamic viscosity unit is the Poiseuille: 1 11 1 . .Pl kg m s− −= . 

The kinematic viscosity unit is myriastokes: 2 11 1 .myriastokes m s−= . 

In principle, myriastokes should appear in an official document. Therefore, it is 
necessary to know it. Although it is not always known, “Myria” is the significant 
prefix 410 . The myriastokes is not very commonly used, as 1².m s−

 tends to be the 
preferred usage. 

It is important to know the following conversion: 

1 10 ; 1 10poiseuille poises Pl ps= =  

There is a very important sub-multiple of the poise, that is, the centipoise.  

In fact, it is 31 10cps Pl−= , which is the order of magnitude of water viscosity.  
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1.2.2.5. Perfect fluids. Real fluids 

Studying the aforementioned surface forces at this stage allows us to establish a 
deep insight into fluid dynamics. 

In the simplified presentation, we will break down the normal and tangential 
components.  

There are then three types of situations involved: 
In fluid statics, there are no tangential components on the surface forces. Only 

pressure forces occur.  

In fluid dynamics, we find two different cases: 

1) The tangential components either do not exist or are negligible. In this 
instance, they would be perfect fluid dynamics.  

2) The tangential components need to be taken into account. In this instance, 
they must be real fluid dynamics.  

Just as accounting for the fluid’s compressibility depends on the problem in 
question, there is no intrinsically perfect or real fluid. We have seen that viscosity 
forces are linked to the speed “gradients”. If these “gradients” are weak, then so are 
the viscosity forces. Nevertheless, perfect fluid is associated with the notion of zero 
viscosity, even though they are never intrinsically associated!  

NOTE: It is not the fluid that is perfect, but the problem. The term “perfection” is just 
the expression of the physicist’s satisfaction with such a simplified problem. 

1.3. How to broach a question in fluid mechanics 

1.3.1. The different approaches of fluid mechanics 

Three approaches may be considered for a fluid mechanics problem:  

1) The “table corner” solution, which is the most basic and the fastest, not 
necessarily the least formative for the budding or not-quite-so budding physicist.  

2) The complete equation, the simplification of these equations depending on the 
proposed problem and the analytical approach. This approach will be adopted when 
dealing with problems further on.  

3) The digital approach. This will not be exempt from a prior simplification of 
the equations in question, whether the calculation means are technically limited or 
the modeling is vital, as in the case of turbulence. 
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1.3.2. Strategies for arriving at a reasoned solution 

1.3.2.1. The project of this book : give methods 

This book is first and foremost addressed to students, readers who wish to learn, 
and as such are subject to assessment. We would like to dissuade this type of reader 
from approaching this work as they would a recipe book. 

The examples to be dealt with herein are formalized and complete, in keeping 
with the “academic” spirit. In principle, they have a solution and all of the elements 
(data, tables) are provided to avoid wasting time on external research.  

NOTE: This method could be criticized within the framework of a certain pedagogy, 
but research efficiency with regard to time management is also a relevant strategy.  

This publication is also aimed at professionals called upon to resolve concrete 
problems in a professional space, which the student is also destined to do.  

In real life, problems may be incomplete or poorly asked. There is often much 
data that remains to be found.  

The following lines attempt to provide an analysis grid that will help readers 
tackle any problem. Having no intention to revolutionize pedagogical concepts, the 
methodology presented here results from common sense. It is also implicit to any 
exceptionally gifted student, to whom there is no need to explain this.  

Quite the contrary, once this methodology has been integrated, it will become 
unconscious and will instead constitute a simple task of reasoning for the young (or 
not quite so young) fluid mechanical engineer.  

1.3.2.2. What to do when faced with a problem 

Before doing anything else, know the physical situation. This reflective activity 
can be aligned with the plan of this publication.  

Then, identify the principles to be written and the laws of the course that are 
applicable to this situation, including the declensions. This step will enable us to 
avoid multiple scripts of the same physics law, as well as scripts of inadequate laws.  

Recognizing the physical situation is generally a simple operation resulting from 
common sense.  
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NOTE: For those using this book, the division of this work by chapter has already 
been anticipated. Therefore, Any practitioner faced with a problem will be able to 
refer to a chapter in the following book that is best able to help them.  

a) you are faced with an immobile fluid: you are dealing with fluid statics 
(Chapter 2). 

b) You are given Eulerian characteristics of a flow and you need to find this 
flow’s structure: You are dealing with fluid kinematics (Chapter 3). 

c) The fluid flows. 

Is the fluid compressible or incompressible: is it a gas or a liquid? Which types 
of pressure are at play? What are the speeds at play in the flow? If it is compressible, 
then we must continue with the procedure. Otherwise, we can go directly to the 
chapter dedicated to compressible flows.  

Is it perfect, is it real: what can we say about its viscosity? What do we know 
about the flow? 

If there is zero viscosity and there are no notable speed “gradients”, then we have 
access to the simple solution for perfect fluids dynamics (Chapter 4). 

Or, we could be dealing with a pipeline, or something closer to a significant wall. 
In this instance, we are in the field of real fluids. 

So then, what is our objective? To calculate the loss of energy in a pipeline: 
using well-delineated methods to calculate charge losses will suffice (Chapter 5). 
Or, is the problem more complex than this? In this case, we need to take a closer 
look at the flow’s structure and understand all types of boundary layers (external, 
internal and jets). 

Perhaps a global approach regarding a system’s thrusts (Euler’s theorem 
application) will suffice. In such a case, a chapter dedicated to thrust and propulsion 
will help us.  

Beyond that, in each type of situation, we examine the data we have about the 
problem and before doing anything else, we ask ourselves what we are looking for. 

With regard to writing equations, there is one absolute rule which must always 
reign: all scripts relate to a principle. We must remain conscious of what we are 
writing.  

The numerous examples that are processed in the following chapters are aimed at 
helping the reader.  
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1.4. Conclusion 

This introductory chapter has put fluid mechanics back into the general 
framework of the initial concepts for all kinds of mechanics. 

Matter continuously requires a particular approach that led us to specifically 
formulate the forces applied to matter in this state.  

We also wanted to give the reader a larger strategical framework to solve 
problems, whether they occur in an academic realm or in a more open industrial 
realm.  

We must now return to how these principles are implemented. To do this, in the 
following chapters, we will need to divide problems according to the analytical 
framework detailed above. The chapters are divided into the logical segments 
imposed by this reflection: fluid statics, fluid kinematics, perfect fluid dynamics, 
real fluid dynamics, broached from various angles; the technical approach to charge 
loss, the global approach to thrusting, a more analytical approach to flows at 
borders. After this, we will be able to concentrate on the specifics of compressible 
flows and then use a digital approach to broach the complexity of flows. 



 


