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Introduction to Inverse Methods 

1.1. Introduction 

In the field of structural calculations, the finite elements method allows 
for determining a structure’s physical response to an applied force. This 
technique not only enables us to determine the stress states on a mechanical 
structure’s interior, but also to model the complete manufacturing processes, 
for example. Nowadays, the significantly reduced calculation time allows us 
to address so-called inverse problems. By repeating the calculations by finite 
elements while modifying the material’s parameters or the structure’s 
geometry, we can identify an optimal solution for the problem in question. 
The procedure, which couples optimization and calculations by finite 
elements, is of utmost importance for the manufacturing industry, for 
example, as this virtual development reduces the time and costs involved in 
developing new products. 

For those who understand the difference, the terminology of “inverse 
problem” is used, as opposed to that of “direct problem”, to refer to solving a 
differential equation based on the known parameters in order to calculate the 
system’s response. In the instance of an inverse problem, the system’s 
response is assumed to be known. Therefore, we aim to determine the 
physical or geometrical parameters that, when used in direct problems, allow 
us to find the prescribed system’s response. Inverse problems also involve an 
objective function to be constructed according to the application, measuring 
a gap between the known response and the responses obtained from the sets 
of different parameters by solving the direct problem. Various inverse 
problems can be distinguished: for example, restoring a system to its past 
state by knowing its current state (if this system is invariable) or  
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2     Dynamics of Large Structures and Inverse Problems 

determining the system’s parameters by knowing (one part of) its evolution. 
This last problem is that of identifying parameters, which will be dealt with 
in section 1.2 (see Figure 1.2).  

 

Figure 1.1. Illustration of a direct problem and its inverse problem. For a color 
version of this figure see, www.iste.co.uk/elhami/dynamics.zip 

There are two main categories of techniques for solving an inverse 
problem:  

1) Gradient-type techniques have often been considered in applications 
for which the necessary time to assess a direct problem is significant. They 
consist of identifying the minimum of the objective function as a point 
where this function’s gradient cancels itself out. This approach does not 
guarantee that the global minimum will be identified, but it has the benefit of 
quickly converging toward a minimum. This minimum will be global if the 
initial one is close enough to the desired solution, which is quite often the 
case in engineering problems. 

2) Stochastic [BAR 01] or progressive methods have major significance 
in non-differentiable optimization and are a recourse for problems, which 
have local minima. Gradient methods are used when the function to be 
optimized is differentiable. They use the information given by the partial 
derivatives. In the instance of differentiable functions whose convexity 
cannot be guaranteed, hybrid or mixed algorithms are often used to combine 
the advantages of stochastic algorithms and gradient algorithms. The method 
chosen depends on the nature of the inverse problem (differentiable, non-
differentiable, etc.) and above all on the calculation time necessary for 
assessing the system’s response. 
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1.2. Identification methods 

In the general context of physics and particularly in solid mechanics, it is 
often necessary to assess or identify the physical quantities governing the 
system studied. In many cases, the quantities being searched for (Young’s 
modulus, coefficient damping, etc.) may not be directly measurable and one 
must use other measurable quantities (accelerations, strains, speeds, etc.) to 
obtain more information. The principle of the identification methods consists 
of establishing a mathematical relation based on physical laws, also called 
models, so that the quantities searched for (sometimes called parameters) are 
found from the measurements available. Thus, from a mathematical point of 
view, the solution to such a problem may encounter problems relating to 
solutions’ existence, unicity and continuity. Consequently, the identification 
methods can be considered to fall into the category of inverse problems 
where, unlike the solutions to direct problems, one must overcome the 
difficulty of the problem being ill-posed.  

From a mechanical point of view, the reference problem that we are 
aiming to solve consists of studying the evolution of a structure occupying a 
volume in an interval of time [ ]t 0,T∈  (see Figure 1.2).  

 

Figure 1.2. Area studied and its limits using the data available. For a color  
version of this figure see, www.iste.co.uk/elhami/dynamics.zip 

    
f∂ Ω      

0∂ Ω  
           

            

fu∂ Ω            
      u∂ Ω  

Ω  : area studied 

f∂ Ω  : boundary with 

Neumann conditions 

u∂ Ω  : boundary with 
Dirichlet conditions 

0∂ Ω  : mixed boundary

fu f u∂ Ω = ∂ Ω ∂ Ω∩  



4     Dynamics of Large Structures and Inverse Problems 

The structural behavior is given by the solution to the reference problem 
defined by: 

Find the displacement ( ) ( ) ( ) ( ),  and the stresses ,  u z t U u z t S fσ∈ ∈

[ ]t 0, ,T z∀ ∈ ∀ ∈Ω  

– Behavior equation: 

( ) ( )( ), div , 0u z t z tρ σ− + =��  [1.1] 

– Behavioral laws: 

( ) ( )( )( ), , ,z t C u z tσ ε θ=  [1.2] 

where ε  is the strain tensor and θ  represents a given set of model 
parameters defining structural parameters (material, geometry, etc.). 
Moreover, the space of admissible displacements ( )U u  and admissible 

stresses ( )S f is defined by: 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

0 0,  s.r. ,   for each  and ,0 , ,0

,  s.r. ,   for z

u

f

U u u z t u z t u z u z u u z u

S f z t z t n fσ σ

⎧ = = ∈ ∂ Ω = =⎪
⎨

= ⋅ = ∈ ∂ Ω⎪
⎩

� �
 [1.3] 

where “s.r.” designates functions that are sufficiently regular, defined on the 
confined stress and the kinetic energy for ( )u z,  t  and integrable squared 
for ( ) z,  t ,σ  and n  is the normal vector on the surface f .∂  

The problem is said to be well-posed in the sense of Hadamard [BUI 93] 
if, and only if, the three following conditions are verified:  

1) a solution ( )u z, t  exists [ ]z ,  t 0,T∀ ∈Ω ∀ ∈  for u  and f given;  

2) the solution ( )u z, t  is unique;  

3) the solution permanently depends on u  and .f   

In particular, this posture requires u f  ∂Ω = ∂Ω ∪ ∂ Ω  and 

u f  ∂ Ω ∩ ∂ Ω = ∅  (see Figure 1.2). In this description, the direct problem will 
generally be ill-posed for at least two reasons:  
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– the presence of overdetermined data u  and f  in fu∂ Ω  generally leads 
to the inexistence of the solution, with the exception of the instance where u  
and f are compatible with  the constitutive relation [1.2]; 

– the lack of data in a certain area of the boundary 0∂ Ω  can lead to non-
unicity. This is particularly the case when fu .∂ Ω = ∅  In this instance, 
prescribing boundary data on force or displacement on 0∂ Ω  makes the 
problem well-posed.  

In our case, we are aiming to find the set of model parameters θ  and the 
solution field u  satisfying the equations of a model [1.1] and [1.2] above, 
which better represent the available data. Because the available data u  and 
f  can be noisy and overdetermined, just as the equations of the inexact 

model in comparison to the real physics (discretization of the area, material, 
etc.), the solution of this inverse problem could often be ill-posed in 
Hadamard’s sense as it cannot comply with one or many of the conditions 
listed above.  

In the field of solid mechanics, various authors have studied the 
identification of the model’s properties based on observed data. To give an 
example, it has been shown in [BON 05] that, in the elastic example, the 
problem of finding a field of properties distributed ( )E z  in the entire space
Ω  is an ill-posed problem in Hadamard’s sense and it becomes necessary to 
introduce a priori knowledge, which draws near the solution. 

There are various methods that exist for solving problems related to 
identifying a model’s properties, depending on the nature of the problem 
(static, dynamic, available data, etc.). The identification problem generally 
ends up being formulated as an optimization problem, namely researching 
the minimum of a cost function that quantifies the difference between a 
model forecast and the available data to some extent.  

Among the different approaches that exist for building a suitable cost, the 
following families can be distinguished:  

– the least squares approach [TAR 82] where the difference between the 
data and the solution of the direct model projected on the observation space 
is measured with an L2 regulation;  
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– an approach based on auxiliary fields. In linear mechanics, the 
Maxwell–Betti reciprocity theorem and the cost functions are generally 
constructed on the overdetermined data on the boundary area. An interesting 
example of using this approach can be found in [AND 97] for detecting 
fissures on the inside of an elastic body;  

– an approach consisting of these functional functions with an energy 
base, and in particular those based on the error in the constitutive relation  
for which a detailed description is given further on.  

On the other hand, if the identification problem is ill posed, it will 
generally lead to the solution becoming sensitive or unstable against the 
noisy data. In order to overcome this problem, we will distinguish two 
classical approaches:  

– Tikhonov’s regularization techniques [TIK 77], which are largely used 
and where an additional term is introduced into the aforesaid cost functions. 
This term represents an a priori knowledge of the solution being searched 
for and the property of stabilizing the results with regard to the noise in the 
data;  

– the probabilistic approaches [TAR 05, ARN 07] where the uncertainties 
of the data and the model are quantified with the help of a stochastic 
framework, and a probability density function for the unknown parameters is 
generally searched for. 

1.3. Identification of the strain hardening law 

Some authors [GAV 96, MAH 97, GHO 98, YOS 98, YOS 03, DIO 03] 
have instigated a new approach within the context of identifying plastic 
behavior. In one research paper, the authors proposed to extend the sphere of 
classical testing analysis by carrying out a shift of measured response and a 
response simulated by finite elements. This method enables one to take some 
of the material or structure’s effects into consideration. 

In [SCH 92], Schnur and Zabaras were among the first to have attempted 
to overcome the homogeneity hypothesis by coupling a calculation code by 
finite elements with an optimization method in order to identify a material’s 
behavior. This inverse method, which consists of using an iterative process 
to minimize the gap between the simulation and the experience, has not 
stopped being developed over the last few years. 
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In [GAV 96], Gavrus et al. applied an inverse method to identify the 
rheological behavior of a thermoviscoplastic material subjected to a tensile 
and torsional stress in severe strain conditions, close to those attained for 
industrial applications. These authors developed an algorithm that couples 
the finite elements method, by simulating the test, with an optimization 
module. The objective function, which is formulated in the sense of least 
squares and shows the difference between the simulated and experimental 
measurements, is minimized by using the Gauss–Newton procedure. 

In [MAH 96], Mahnken and Stein factored in local displacement 
measurements into the cost function to be minimized. They carried out a 
traction test on a flat steel test tube notched into its place. The image 
correlation method was then used to measure the displacement fields next to 
the notch. The strain hardening parameters and the elastic limit of the two 
elastic-plastic behavioral laws proposed were identified by minimizing the 
gap between the measurements and the simulation. To solve the 
minimization problem, the analytically calculated gradient method was used.  

In [MEU 98], Meuwissen et al. identified plasticity models by using 
heterogeneous flat tests. The cost function to be minimized was the quadratic 
gap concerning the applied force and the displacement field, in the areas 
where the gradients were significant, experimentally simulated and 
measured. The authors used weighting coefficients in the cost function in 
order to take the measurement errors and the parameter dispersion into 
account. To minimize the cost function, a Gauss–Newton type method of the 
first order was then used. The gradient was calculated using finite 
differences. 

In [KAJ 04], Kajberga et al. performed tensile tests on notched flat test 
tubes. To facilitate localizing the plasticity, they carried out their tests until 
the test tubes fractured. The speckle interferometry method was used to 
measure the displacement fields. The cost function was chosen as the 
difference between the values issued from the simulation and the 
experimental tests. Finally, the optimization problem was solved using a 
simplex method.  

The general idea of these inverse methods, which combine simulation 
results and experimental measurements, remains the same for all the above 
authors. The difference is shown in the choice of optimization methods. One 
mainly finds the largest slope method, the conjugated gradient method, the 
quasi-Newton method, the Gauss–Newton method and the Levenberg–



8     Dynamics of Large Structures and Inverse Problems 

Marquart method. For these methods, it is necessary to calculate the gradient 
of the objective function against the parameters to be identified. Usually, the 
finite differences, semianalytic or analytic derivation techniques are used. 
For zero-order optimization methods, like the simplex method and genetic 
algorithms, one does not have to calculate the gradient, as successive 
assessments of the objective function suffice. 

1.3.1. Example of an application 

In this section, we are focusing on the hydroforming of sheet metal. We 
will start with the tensile test and finish with the hydroformed part [RAD 
16]. 

Assuming that the hardening on the sheet metal is purely isotropic, a 
single scalar parameter is necessary for describing the evolution of the 
surface run-off. This is the equivalent plastic strain that we calculated as 

being the integral time of the equivalent plastic strain rate: 
0

T
dtε ε= ∫ � . 

The evolution of the couple’s surface level ( , )p
yσ ε  is considered by 

means of the Swift hardening law: 

0( )p n
y kσ ε ε= +  [1.4] 

where k  is the hardening coefficient, 0ε  is the reference plastic strain and n  
is the strain hardening coefficient. 

These three parameters are the material’s characteristics. Three other 
parameters are not represented by the strain hardening model, but they affect 
the strain characteristics. They are the material’s anisotropic parameters, the 
friction coefficient between the tools and the sheet metal and the thickness e
of the sheet metal. 

The parameters 0( , , )k nε  are calculated so that the constitutive equations, 
which are associated with the plastifying surface, reproduce the material’s 
formatting characteristics at best. The problem that remains to be solved 
consists of finding the best combination of parameter damage that reduces 
the difference between the digital forecasts and the experimental results to a 
minimum. 
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This minimization is related to the differences between the experimental 
measurements of the stresses and their digital forecasts carried out on the 
tensile test tubes. Due to the complexity of the formulas used, a digital 
minimization strategy has been developed based on Nelder–Mead’s simplex 
method [FLE 87]. 

The technique for identifying the material’s parameters is based on the 
coupling between Nelder–Mead’s simplex method (Matlab© code) and the 
digital simulation according the finite elements method via Abaqus/Explicit© 
of the hydroforming [RAD 11]. To obtain information on the Abaqus/ 
Explicit© the output file, one uses the advanced Python code (see Figure 
1.3). 

 

Figure 1.3. Identification process 

1.3.2. Validation test 
A finite element analysis has been carried out in three dimensions using 

the Abaqus/Explicit© finite elements code to study the hydroforming process 
[RAD 16]. One starts with the tensile test. Some rectangular samples in 
stainless steel have been manufactured with the following geometric 
characteristics (Figure 1.4): thickness 1.0e =  mm, width l  12.52=  mm 
and initial length  100L =  mm. 
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All the digital simulations were carried out under controlled displacement 
conditions with the constant speed  0.1v =  mm/s. The foreseen forces with 
respect to the displacements in comparison with the experimental results 
according to the three orientations studied are shown in Figure 1.4. With the 
small ductility (step 1), the maximum stress is around 360  MPa and reaches 
25 % of the plastic strain. The final fracture is obtained for 45 % of the 
plastic strain. With the moderate ductility (step 3), the maximum stress is 
around 394  MPa and reaches 37.2 % of the plastic strain, the final fracture 
is obtained for 53 % of the plastic strain. 

The best values of the material’s parameters have been summarized in 
Table 1.1 with the help of the optimization procedure. At the heart of these 
coefficients, the response (stress vs. plastic strain) presents a nonlinear 
isotropic hardening with a maximum stress reached for plastic strains and the 
final fracture is obtained for 22 % of the plastic strain. The plastic strain of 
the optimal case is shown in Figure 1.4. 

Step Critical plastic strain (%) k  [MPa] 0ε  n  

1  25.8  381.3  0.0100  0.2400  

2  29.8  395.5  0.0120  0.2415  

3  37.2  415.2  0.0150  0.2450  

Optimal 36.8  416.1  0.0198  0.2498  

Table 1.1. Properties of the material used 

 

Figure 1.4. Force/elongation for different optimization steps and plastic strain map. 
For a color version of this figure see, www.iste.co.uk/elhami/dynamics.zip 
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1.3.3. Hydroforming a welded tube 

In this instance, the strain with the geometric singularities found in the 
welded tube is assumed to be transversally orthotropic, while its behavior is 
represented by the Swift model. A microscope is used to observe the 
transversal section of the wall to construct a geometric profile of the notch 
produced by the welded joint [AYA 11]. 

By considering the hypotheses related to an isotropic thin hull ( 1)R =  
with a uniform thickness, the established relations [RAD 16] allow the first 
experimental hardening model to be constructed using the internal/radial 
displacement pressure measurements. This is then proposed as an initial 
solution to solve the inverse problem of the necessary hardening law that 
minimizes the following objective function: 

2

exp num

1 exp

1 p i im

F i
ip

F F
m F

ξ
=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  [1.5] 

where exp
iF  is the experimental value of the thrust force corresponding to its  

ist depth of nano-indentation iH ,  num
iF  is the corresponding simulated thrust 

force and pm  is the total number of experimental points. 

Different run-off stress evolutions of isotropic hardening (initial, 
intermediate and optimal) are proposed in order to estimate the best strain 
behavior with the geometric singularities found in hydroforming the tube. 

Figures 1.5 and 1.6 represent the effective stress according to the plastic 
strain and the displacement/radial associated pressure for these three cases. 
As we can see, there is a strong correlation between the optimal hardening 
evolution and the experimental results. Table 1.2 summarizes the parameters 
of these models. 

The anisotropy factor R is only determined for the evolution of the 
optimal hardening. The digital iterations have been performed on the 
hydroforming of the tube on the thickness’s non-uniformity and the results 
obtained are shown in Figure 1.7. If R  corresponds to the value of 0.976 , 
one notices a strong improvement in the quality of the predicted results.  
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Model 0ε  k  (MPa) n  

Initial 0.025  1124.6  0.2941  

Intermediate 0.055  692.30  0.2101  

Optimal 0.080  742.50  0.2359  

Table 1.2. Swift parameters of the different hardening evolutions 

 

Figure 1.5. Stress–strain evolution for the different hardening laws. For a color 
version of this figure see, www.iste.co.uk/elhami/dynamics.zip 

 

Figure 1.6. Internal pressure according to the radial displacement. For a color 
version of this figure see, www.iste.co.uk/elhami/dynamics.zip 
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Figure 1.7. Radial displacement for different  
values of the anisotropy coefficient R. For a color version  

of this figure see, www.iste.co.uk/elhami/dynamics.zip 
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