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Shared Wireless Sensor Networks  
as Enablers for a Context  

Management System in Smart Cities   

Wireless sensor networks (WSNs) are commonly used as a sensing infrastructure for smart city 
applications. A WSN is easy to use and can cover a wide area at low costs because of its 
wireless communication capability. The sensor nodes constituting a WSN are usually equipped 
with one or more sensor devices and can be used for different measurement purposes by 
reprogramming them. If WSNs could be shared by different smart city applications, they could 
be even more valuable enablers for smart cities. However, it is not easy to share WSNs. A 
shared WSN needs to support different kinds of measurement tasks at the same time and be 
able to accept new tasks at runtime. Even in a traditional closed WSN, its software should be 
carefully developed to satisfy certain quality requirements despite the severe resource 
constraints affecting the individual programmable sensor nodes (the sensor nodes of WSNs 
usually have quite limited resources, e.g. small batteries, low-spec CPU and narrow bandwidth). 
This issue is much harder to resolve in the case of a shared WSN. To satisfy the quality 
requirements of different applications, a WSN should be configured carefully according to 
specifications of the tasks, their quality requirements, and the environment, and should adapt its 
configuration in response to changes in the environment and the applications. A shared WSN 
should support various measurements, manage tasks at runtime and adapt to changes in the 
environment to reduce unnecessary consumption of resources. To develop such a shared 
WSN, we propose a middleware support for the network. In this chapter, we describe the 
architecture of our XAC middleware and the issues relevant to the shared WSN from the 
viewpoints of the task-description language, runtime task management and self-adaptation. 

1.1. Introduction 

In the smart cities of the future, many context-aware applications will support the 
citizen’s activities by proactively controlling the various devices used therein. 
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Context-aware applications will recognize the current context of the city they are 
monitoring and actuate devices to amend their status. A key service in smart cities 
will be context management systems, which estimate context of cities and provide it 
to applications. 

A context management system should be able to collect and update various types 
of content required by context-aware applications and should be able to be used 
easily in various environments. Here, a wireless sensor network (WSN) will be a 
key infrastructure in context management systems. A WSN is a wireless ad hoc 
network consisting of tiny computers equipped with sensors and wireless 
communication devices. It continuously records and produces data by measuring the 
environment via sensor nodes. It can produce one or more kinds of data, because its 
nodes are equipped with one or more kinds of sensors, and it can be programed to 
alter or switch tasks between the different sensor devices used for monitoring. 
Moreover, it can be easily used because it does not require any communication 
cables. Its nodes communicate with each other via wireless links and transmit the 
measured sensor data via multi-hop communications. 

These features of the WSN are quite important for context management systems 
in smart cities. First, its “easy-to-deploy” feature is suitable for the smart cities. 
Sensor nodes are usually used in outdoor spaces, but it is not easy to connect sensor 
nodes using cables because of monetary and legal constraints. Second, the 
“reprogrammable” feature is suitable because a smart city usually hosts many 
applications that require different kinds of sensor data. A context management 
system should carefully balance the demands of these applications and the resource 
consumption of the sensor nodes. This can be realized by reprogramming a WSN. 
Therefore, the WSN is a key enabler for a context management system in a smart 
city. 

A shared WSN for smart cities should: 

1) support various kinds of measurements; 

2) manage tasks at runtime;  

3) adapt to changes in the environment to reduce unnecessary resource 
consumption. 

A shared WSN is used by many context-aware applications, which require 
different kinds of sensor data and different levels of accuracy. Therefore, it should 
be able to handle various measurements to produce one or more kinds of sensor data 
required by these applications with a level of accuracy. Moreover, applications using 
a WSN appear and disappear at runtime. Therefore, the WSN should be able to add 
or remove tasks at runtime without having to stop and start. Finally, a WSN should 
be able to adapt its behavior in response to changes in the environment. A WSN has 
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severe resource limitations because each node in a WSN has CPU, memory, 
bandwidth and battery restrictions, and resources must be saved to increase the 
number of tasks that it can handle and to prolong its lifetime. Therefore, the WSN 
needs to automatically adapt to changes in the environment to reduce unnecessary 
resource consumption, that is to say without human intervention. 

To develop such a shared WSN, middleware supports are needed. This chapter 
describes an example of middleware for a shared WSN, called XAC middleware. In 
addition, we discuss the research issues related to shared WSNs and the techniques 
used in XAC middleware. 

1.2. Background 

WSN software development is not easy because it requires programmers to have 
an in-depth knowledge of various fields, such as analysis of sensor data, distributed 
programing in wireless ad hoc networks and optimization of embedded systems. 
This section presents examples of types of WSN software to identify the issues 
concerning shared WSNs. 

 

Figure 1.1. A smart environment 

Let us first define our example– a smart environment is set up in an office 
building, where context-aware applications are introduced to optimize everyday 
business tasks. Consider the environment illustrated in Figure 1.1. Sensor nodes are 
used throughout rooms, corridors and stairwells to enable monitoring and to 
establish the current context of the building. Data sensed by the nodes are 
transferred via multi-hop communication to a central server (called the base station 
from here on). 
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Table 1.1 shows four scenarios, S1, S2, S3 and S4, envisioning context-aware 
applications in this example environment. In scenario S1, an application maintains 
the temperature levels in the conference rooms according to the preferences of the 
people in the room. The application in S2 determines the occupancy of conference 
rooms on the basis of the presence of people in the room and the reservation data of 
the room. Scenario S3 involves tracking applications that continuously monitor the 
current locations of staff inside the building, whereas the application in S4 detects 
suspicious intruders. 

Scenarios Application 
name Operational tasks Environmental 

information 
Accuracy 

requirement 

S1 Temperature 
management 

Adjust room temperature 
according to preferences of 

people in the room 

Temperature in 
the room 

Within 2°C of 
actual value 

S2 
Meeting-room 
management 

Maintain occupancy of 
conference rooms based on 
their current occupancy and 

reservations 

Presence of 
people in 

conference  
rooms 

Determine 
correct room 
occupancy 
with 99% 
accuracy 

S3 
Staff-tracking 
management 

Determines the current 
locations of staffs 

Location of staff

Within 1 m 
range in a 

public space 
or room 

S4 
Intruder 
detection 

Determines suspicious 
intruders for instance by raising 
an alarm if people remain near 
an access lock for long periods 

without authenticating 

Presence and 
position of  
people in  

certain locations

Within 2 m 
range 

Table 1.1. Examples of context-aware application scenarios 

Each application requires environmental context information related to its own 
operational tasks. S1 requires temperature data, S2 requires data on the presence of 
staff in each room, S3 requires data on the location of each member of the staff and 
S4 requires the location information of people in designated areas. 

As we can see, each scenario possesses different non-functional requirements in 
terms of accuracy. Generally speaking, sensor data include a certain level of sensor 
error. A well-known way to improve accuracy is to aggregate sensor data coming 
from neighboring sensor nodes. For instance, knowing only the rough locations of 
staff (like the room in which a person is currently located) is enough for S3. In this 
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case, the low accuracy requirements can probably be satisfied with sensor data from 
just one or two nodes. On the other hand, S4 requires the specific positions of staff 
to accurately track them within 2 m. This in turn entails gathering more sensor data 
than in S3. 

Although many sensors are required from the viewpoint of accuracy, resource 
usage in a WSN should be kept as low as possible to prolong the lifetime of the 
network. Software developers should take into account the severe resource 
limitations of nodes in terms of CPU power, memory, communication bandwidth 
and so on when creating a WSN. In particular, the battery is a precious resource. For 
example, on average the battery of the commonly used Crossbow Mica2 node will 
deplete in just 7 days by reading its temperature sensor value and sending 
transmissions every second [SHN 04]. Even though the lifetimes of sensor nodes are 
gradually increasing as a result of hardware improvements, energy consumption is 
still an important issue in WSNs. Load concentrations on specific nodes will drain 
batteries quickly, which are then hard to recharge during runtime. 

As such, to extend the network lifetime, it becomes necessary to use various 
optimization methods to extend each node’s operational time, for instance, by 
aggregating sensor readings before transmitting them, by adjusting the sensing 
frequency to meet certain accuracy requirements or by duty-cycling node operation. 
To yield optimal results, these methods also need to comply with the requirements 
of multiple applications. 

1.3. XAC middleware 

XAC middleware is a middleware for a shared WSN. Its main features are as 
follows: 

– WSN as a multi-modal sensor: XAC middleware uses the fact that a WSN is a 
multi-modal sensor. It hides the low-level details of the WSN from context-aware 
applications. A WSN can therefore be seen as a single sensor covering a large area 
by these applications. XAC middleware also provides a way to use the WSN for 
different measurement purposes. One or more applications can use the WSN at the 
same time. 

– Runtime management: XAC middleware allows context-aware applications to 
register or unregister their measurement tasks during runtime. 

– Self-adaptation: XAC middleware monitors changes in the WSN and adapts 
configurations in response to these to reduce unnecessary resource consumption and 
to maintain the required level of accuracy. 
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1.3.1. Architecture of XAC middleware 

XAC middleware is implemented using SunSPOT, a commercial sensor node 
provided by Oracle. A WSN application with SunSPOT consists of base-station-side 
software running on a Java VM, and sensor-side software running on a Squawk VM 
in each node. Thus, the middleware consists of base-station-side middleware and 
sensor-side middleware. 

The base-station-side middleware runs on the base station. It provides interfaces 
to context-aware applications to register or unregister their measurement tasks. In 
response to requests from the context-aware application, it either inputs software 
components relevant to a measurement task into the sensor side or removes them. 
The inputted components are used on sensor nodes designated by the deployment 
policy, and they report sensor data to base-station-side middleware. The base-
station-side middleware provides the sensor data to the context-aware applications 
or initiates events by analyzing the sensor data in accordance with the specifications 
defined by each application. It also monitors the sensors and changes the 
configuration if it decides it is necessary to do so. 

The sensor-side middleware runs on each sensor node. It manages the 
components inputted by the base-station-side middleware. A group-based approach 
is used to model a measurement task. A group consists of a master and slaves. The 
slaves are responsible for measuring designated sensor data and reporting it to the 
master. The master is responsible for aggregating the data and reporting it to the 
base station. 

Figure 1.7 shows the architecture of the XAC middleware consisting of the base-
station-side (XAC Middleware-B) and the sensor-side (XAC Middleware-S). 

XAC Middleware-B consists of three components: UserInterface, EventManager 
and GroupManager. The programmer uses the UserInterface component to register 
and delete tasks and event handlers, and to obtain the results of the task. The event 
handler is managed by the EventManager component, and the task is managed by 
the GroupManager component. The GroupManager component generates Group 
components corresponding to the task and uses and activates them on the sensor 
nodes. Each Group component iniates an event when its measurement data satisfies 
a certain condition and sends it to the EventManager component through the 
GroupManager. Then, the EventManager component calls the handler corresponding 
to the event. 
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Figure 1.2. Architecture of prototype implementation 

XAC Middleware-S consists of Group and NodeManager components. The 
Group has deployment conditions of itself and its measurement tasks. Group 
components are generated by the GroupManager component of XAC Middleware-B 
and used on nodes that satisfy its deployment conditions. The Group component 
finds and selects nodes to satisfy the deployment condition of its measurement task 
and makes measurement requests of the NodeManager components of those nodes. 
The Group component collects the measurement results from the NodeManager 
component and aggregates them. If the aggregated data satisfy the conditions, the 
Group component fires an event and sends it to the GroupManager component. 

The following sections outline the outstanding issues of shared WSN 
middleware, the existing work on resolving them and the XAC middleware solution 
from the point of view of the task-description language, runtime task management 
and self-adaptation. 

1.4. Task-description language 

Each piece of middleware has its own task-description language. A task-
description language is a domain-specific language that specifies the behavior of a 
WSN for capturing the current context of target phenomena. It provides an abstract 
view of the WSN to programmers and thus constitutes different levels of 
programmability. 
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1.4.1. Existing solutions 

According to the level of abstraction, existing task-description languages can be 
classified into data-, group- and node-level languages. 

1.4.1.1. Data-level languages 

Data-level task-description languages, such as those of TinyDB [MAD 05], 
Cougar [YAO 02], TinyLIME [CUR 05] and TeenyLIME [COS 07], allow 
programmers to describe what kind of data they require and how these data are 
supposed to be processed to produce a context. These languages each take different 
approaches to abstraction. For example, TinyDB and Cougar abstract the WSN as a 
relational database and provide SQL-like languages, whereas TinyLIME and 
TeeneyLIME abstract the WSN as a tuple space and provide tuple-query languages. 
Figure 1.2 shows a sample task description written in the language provided by 
TinyDB. The description produces the average of the temperature value measured by 
all the sensors on the fourth floor of our example environment (section 1.2). 

Data-level languages focus not on how to measure data, but on what to measure. 
Therefore, the concrete behaviors of nodes in the WSN are managed by the 
middleware and remain transparent to programmers. There are many ways to derive 
the required data processing functionality. The middleware may support a set of 
behaviors selected from a potentially adequate functionality. For example, to handle 
the task description shown in Figure 1.2, TinyDB uses a tree-based network topology 
to route the measured data (i.e. the temperature) and aggregates the data (i.e. to form 
the average) along the routing tree. However, the programmer cannot change this 
concrete routing behavior to an alternate one for the purpose of optimization. 

 

Figure 1.3. A task description in TinyDB 

1.4.1.2. Group-level languages 

Group-level task-description languages, such as those provided by EnviroTrack 
[ABD 04], Hood [WHI 04], Abstract Region [WEL 04], Generic Role Assignment 
[FRA 05] and DFuse [KUM 03], allow the programmer to describe macro-level 
behaviors for a group of nodes to achieve the desired data processing functionality 
in a WSN. These languages require a programmer to describe definitions and 
behaviors of a node group. The programmer usually defines the conditions of the 
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nodes to form a group. EnviroTrack, Hood and Abstract Region form a group 
consisting of neighboring nodes. A programmer can define which nodes constitute 
the neighboring ones by using the number of hops from the node closest to the target 
in the case of EnviroTrack or by using physical distances in the case of Hood and 
Abstract Region. On the other hand, the programmer may influence the node 
selection by using node properties such as the battery level, equipped sensor types or 
bandwidth in the case of Generic Role Assignment and DFuse. 

Moreover, the programmer can define the macro-behaviors of a group by 
assigning roles to the nodes in a group. For example, the roles used in EnviroTrack 
are classified into two types – the role called member measures data and the role 
called leader aggregates or fuses data retrieved from member nodes through a 
cluster-based network topology. The languages provided by Hood, Abstract Region, 
Generic Role Assignment and Dfuse allow the programmer to describe the network 
topology between the roles. For example, Abstract Regions allow the programmer to 
select a geographic, planar mesh or spanning tree topology (Figure 1.3). Furthermore, 
Dfuse allows the programmer to define a topology as a data flow graph. 

 
a) Geographic  b) Planar mesh   c) Spanning tree 

Figure 1.4. Topologies of an Abstract Region 

Compared with data-level languages, group-level languages provide the 
programmer with a more concrete view of the WSN. Therefore, a task written in a 
group-level language can be optimized more effectively but this in turn requires 
detailed knowledge about the node behaviors in the WSN. 

1.4.1.3. Node-level languages 

Middleware such as Squawk [SIM 05], Agilla [FOK 05], SensorWare [BOU 07] 
and ActorNet [KWO 06] provide node-level-description languages. Node-level 
languages allow a programmer to specify the behavior of a task running on a single 
node. 

Squawk provides the Java programing language to define the behavior of a node. 
Agilla, SensorWare and ActorNet provide mobile agent-based languages to describe 
a task that can migrate from one node to another. 
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Node-level languages provide a more concrete view of WSNs to the programmer 
than group-level languages do. Since, the behaviors of each node are programmed 
directly, a task written in a node-level language can be more thoroughly optimized 
than one written in a group-level language. However, the burden of the programmer 
increases at the same time. A programmer using a node-level language must have 
knowledge about distributed programming, since he/she has to implement each task 
and support, in addition to the main functionality, different aspects like routing, 
topology management and the synchronization of the nodes. 

1.4.2. XAC middleware solutions 

As indicated above, the existing task-description languages can be classified into 
data-level, group-level and node-level languages. Each class has different levels of 
abstraction. Data-level languages provide the most abstract view of a WSN, and 
node-level languages provide the most concrete view. The level of abstraction 
constitutes a tradeoff between the description cost and the room for optimization. A 
higher level of abstraction reduces the description cost, but also reduces the room for 
optimization at the same time. The adequate level of optimization also depends on 
the non-functional requirements of the tasks. 

The existing solutions each provide only one language with a fixed level of 
abstraction. For example, TinyDB only supports spanning-tree network topologies 
and does not allow a programmer to use other network topologies such as planar 
mesh topologies or cluster topologies. From the viewpoint of resource consumption, 
the selection of an adequate topology depends on the characteristics of the task to be 
implemented, such as the geographical space to be covered, the type of data to  
be measured and so on. Therefore, the programmer has to carefully choose an 
adequate network topology to optimize resource consumption. Group-level or data-
level languages allow for this, but data-level languages hide the network topology 
from the programmer. 

XAC middleware provides languages with multiple levels of abstraction. It 
provides data-level, group-level and node-level languages so that the programmer 
can choose an adequate level of abstraction. Here, an adequate level of abstraction 
may depend on the knowledge of the programmer and on the non-functional 
requirements of his tasks, such as resource consumption, response time or accuracy 
of the results. Moreover, we are trying to find a proper model transformation for task 
development (Figure 1.4). A task described at an abstract level should be 
transformable into a concrete one. A task at the data level may be transformed into a 
corresponding task at the group level that achieves the data processing functionality 
described in the data level task with the basic protocols necessary for group 
management; and a task at the group level may be transformed into a corresponding 
one at the node level that achieves the macro-behaviors described at the group level. 
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Figure 1.5. Model-driven development for task descriptions 

A transformed model should have enough information to be executed in the 
WSN. If needed, the programmer should be able to optimize behaviors at arbitrary 
levels to fulfill non-functional requirements. We should be able to make suitable 
optimizations for data processing at the data level, as well as make optimizations of 
the topology, routing and in-network aggregation in a group at the group level and 
optimizations of duty-cycling or network device management at the node-level, to 
achieve the desired accuracy levels, and to decrease resource consumption. For 
example, consider scenarios S2 and S4 in Table 1.1. Both S2 and S4 require the 
locations of people near the target location, but S4 requires a higher accuracy than 
S2. From the viewpoint of data processing, simple localization in which sensors 
detect a radio signal from beacons that people carry would be enough for S2, but a 
more sophisticated localization, such as one based on RSSI (radio signal strength 
indication) that sensors measure, would be required for S4. If such an RSSI-based 
method is applied at the data processing level, accuracy and resource consumption 
depend on group-level behaviors such as the number of nodes that measure the 
RSSI, the routing topology in a group and the in-network aggregation techniques. 

The approach presented here is to apply model-driven development to tasks in 
the WSN. Here, we analyzed the descriptive capabilities of existing languages and 
constructed a reference model for each level of abstraction. Moreover, we made a 
catalog of optimization patterns at each level, and one of the transformation patterns 
from abstract levels to more concrete levels, to support optimization and manual 
model transformation [TEI 07]. We also constructed transformation rules and 
development processes according to model transformation and optimization patterns 
and devised verification methods to ensure consistency between models at each 
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level to guarantee that the behaviors written in higher-level descriptions would still 
to be valid after subsequent optimizations at lower levels [TEI 14].  

1.5. Runtime task management 

Sensing tasks have to be assigned to specific nodes for execution, and such 
resource allocations have to be managed. A rather general approach taken in the 
early days of wireless sensor networks was to assign tasks to certain nodes by 
physically connecting each node to a base station and using specific tasks thereby 
setting up code modules on the nodes. This made changing tasks or assigning new 
tasks after using the sensor nodes a tedious exercise requiring physical retrieval of 
the nodes in question. Nowadays, nodes are reprogrammed by assigning tasks 
dynamically over a wireless communication channel. 

1.5.1. Existing solutions 

Reprogramming techniques can be divided into two distinct approaches: 

1) Those managed by the base station: the base station centrally manages tasks 
and assigns them to the nodes. 

2) Those managed by the tasks: the tasks themselves decide which node they use 
to and move between nodes autonomously1. 

1.5.1.1. Task deployment management by the base station 

When the base station is used to manage task deployment, it becomes necessary 
to decide whether tasks should be disseminated throughout the whole network or 
only sent to specific nodes. For instance, in scenario S1 of Table 1.1, the tasks need 
only be assigned to nodes inside rooms that need their temperature managed, 
whereas in S3, the sensing tasks must be used across all the sensor nodes throughout 
the building. Assuming that changes in, for instance, the sensing conditions and task 
settings make updating of the tasks of S1 and S3 necessary, we need to consider the 
range of the affected nodes, namely only for specific nodes as in the case of S1 or in 
all nodes as in S3. 

One existing solution for managing tasks at the base station by specifying a 
certain range of nodes for updates is Deluge [HUI 04]. Deluge allows the user to 
optionally define specific node IDs to limit the dissemination of tasks throughout the 

                                 
1 Tasks can be deployed from the base station instead of moving from one node to another, 
but they make the deployment decisions on their own in either case. 
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network. To cope with the energy and communication restraints of wireless sensor 
nodes, Deluge works to improve efficiency as follows: 

– congestion in areas of high node density is avoided by adjusting transmission 
intervals dynamically; 

– asymmetric links are handled by selectively using stable nodes; 

– broadcast storms between nodes are avoided by introducing the concept of 
communication rounds. 

Deluge sends the complete code necessary for executing a task from the base 
station to the nodes. This method is inefficient in so far as it induces high transfer 
costs that drain the node batteries. To address this issue, other solutions make 
preliminary deployment of code bases that are shared among different tasks, so that 
only task-specific updates need to be transferred in case a change becomes 
necessary. A representative example of this approach is Mate [LEV 02]. Mate 
provides a virtual machine (VM) on each node that can execute a task-specific 
lightweight code. Its VM is based on a byte code interpreter that uses 1 byte per byte 
code. As such, a script consisting of 100 lines amounts only to 100 bytes to be 
transferred. Mate does not allow the user to specify certain deployment ranges, but 
the recent revision of Trickle [LEV 04] provides this functionality. 

1.5.1.2. Self-adaptive task deployment management 

In the case that tasks manage themselves autonomously but are used from the 
base station, the base station is always responsible for distributing tasks to the nodes. 
In this approach, if it is impossible to preliminarily deploy all tasks to all nodes, 
changes in the locations in which to execute certain tasks make it necessary to reuse 
the tasks from the base station. For example, in the previously described scenario S4 
in Table 1.1, if the goods to be monitored are moved, the tasks have to be reused to 
the nodes in the vicinity of the goods’ new location every time. This results in a 
heavy traffic load, especially on nodes around the base station. If the tasks can 
manage and also reuse themselves by moving autonomously, that burden can be 
alleviated2. 

To address this problem, the research community has come up with a number of 
solutions. Representative examples are Agilla [FOK 05], ActorNet [KWO 06] and 
SensorWare [BOU 03]. Agilla extends Mate’s VM and gives tasks the ability  
to move throughout the network. Tasks in Agilla are based on a 1–2 byte ISA 

                                 
2 If the distance between base station and the node where a task is supposed to be redeployed 
is longer than the distance between the current deployment node and the new deployment 
location, the cost of moving a task from the current node to the new node is less on average 
than redeploying the task from the base station. 
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(instruction set architecture) and thus provide lightweight task codes similar to Mate. 
Agilla can also conduct intra-task communication based on a distributed tuple space 
[GEL 85]. 

ActorNet introduces the actor model to wireless sensor networks and executes 
each actor on its scheme interpreter. It also provides a virtual memory space, 
scheduling of I/O to the scheme interpreter and garbage collection functionality. 

SensorWare is similar to Agilla and ActorNet in terms of making tasks manage 
and move themselves. However, it assumes that the deployment platform is an iPAQ 
and requires about 1 MB of storage and about 128 KB of memory for execution. 
Thus, its platform specs (several hundred MHz of CPU power and 1 MB of storage) 
are not in line with those of typical resource-constrained nodes of a wireless sensor 
networks. 

1.5.2. XAC middleware solutions 

We assume that the wireless sensor network is a shared infrastructure that can be 
used by any users. Such a network is unlike the traditional ones when it comes to 
adding, changing and deleting tasks3. 

Furthermore, as described in scenario S4 of Table 1.1, tasks may change their 
execution location. Consequently, we use task-based autonomous deployment 
management as discussed in the previous section. The existing solutions allow tasks 
to be comprised of multiple components running on different nodes. For instance, in 
the case of scenario S1 of Table 1.1 (temperature management), the task of 
measuring temperature can be assigned to a certain number of components running 
on specific nodes inside a room. However, the existing solutions do not provide the 
relocation of dynamic reconstruction for multiple components. We hence had to 
come up with our own solutions to provide these functionalities. 

1.5.2.1. Relocation of multiple components 

Our relocation mechanism, called generative dynamic deployment (GDD) of 
multiple components [SUE 09], provides its functionality through middleware. GDD 
consists of an architecture to relocate multiple components and a novel relocation 
method. Past solutions did not offer any architecture for usable components, and 
thus, the reliability of the relocation process itself was not addressed. Generally 
speaking, though, if components are to relocate, they need to communicate among 
each other to coordinate that task, and as a result, the reliability of the relocation task 
                                 
3 Wireless sensor networks are not capable of preliminary deployment of all tasks for users 
who suffer from packet loss [SUE 09]. 
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declines with the number of communications. To address this problem, the 
architecture of GDD comprises three component types (Master, Slave-S and Slave-
M), and the Master components delete the Slave-S and Slave-M components only 
before they relocate. Once they have completed their relocation, they reconstruct the 
other components on demand. 

Figure 1.6 shows an example scenario of relocation based on GDD. The Master, 
Slave-S and Slave-M components have already been used (1) (not shown) and are 
about to relocate. The procedure is as follows: (2) the Master component deletes 
Slave-S and Slave-M components, if relocation becomes necessary; (3) the Master 
component moves to the new target location; (4) the Master component, upon 
relocating, reconstructs Slave-S and Slave-M components and uses them on nearby 
nodes. 

 

Figure 1.6. Example scenario based on GDD 

By repeating this process, task execution can be continued at arbitrary locations 
inside the network. By using GDD, the applicability of tasks comprised of multiple 
components is increased. 

1.5.2.2. Dynamic components reconstruction 

Dynamic component reconstruction as proposed by Platon et al. [PLA 08] also 
uses tasks as multiple components and adapts the redeployment to the state of the 
nodes through its Ragilla middleware. In the other existing solutions, the depletion 
of node batteries or malfunctions of nodes causes tasks comprised of components 
running on such nodes to fail at fulfilling their requirements. Ragilla, on the other 
hand, allows the user to define relocation conditions for components (in terms of the 
number of components, geographical areas, battery level) that control the relocation 
and reconstruction process in a way that maintains the operational conditions 
required by each component. 
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Figure 1.7. Example scenario based on Ragilla 

For instance, if a hardware failure occurs as illustrated in Figure 1.6, the 
following steps make it possible to reconstruct the component dynamically at a node 
within a specified geographical range and continue its sensing task: 

1) Because of a hardware failure, a leader component ceases operation. 

2) The middleware detects the hardware failure and selects the next leader out of 
a number of candidate nodes. 

3) The middleware also maintains a copy of the leader component and uses it to 
the selected new node. 

By using this method, it becomes possible to improve task execution by 
reconstructing tasks while maintaining the user’s requirements. 

Current efforts are not limited to GDD and Ragilla, but they all aim to provide a 
relocation functionality that adapts dynamically to network conditions, for instance 
by modeling the role distribution of tasks comprised of multiple components in more 
detail and making proper deployment decisions based on such component roles. 

1.6. Self-adaptation 

The situation inside a WSN node, such as the available calculation resource and 
the battery level, changes over time. Moreover, the situation outside a node, such as 
the position and velocity of the target and the communication environment, may 
change as well. In response to these situational changes, the programmer can issue 
instructions to optimize the behavior of a task. However, if the programmer has to 
give instructions every time the situation changes, his or her workload would grow 
too large. To avoid this problem, the middleware should be able to adapt itself to 
such changes. 
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1.6.1. Existing solutions 

1.6.1.1. Self-adaptability to change inside the node 

Because the processing resource of the node is scarce, it is rather easy for too 
many tasks to be executed at the same time on the same node. If individual tasks use 
the nodes of their choice, they would compete for the resources on the nodes and 
there would come a point when the tasks could not be executed. As described in the 
section on runtime task management, one task may have to use numerous nodes to, 
say, improve the quality of an observation. In particular, this means that tasks 
executed on shared WSNs would frequently compete for the limited resources of the 
nodes. 

There is a certain amount of research dealing with resource competition [HEI 04, 
DUN 06]. In order to avoid resource competition, each task should make a decision 
on which nodes to use, and the scheduling of the sensors devoted to the various tasks 
has to be properly managed. 

1.6.1.2. Self-adaptability to change outside the node 

The task should select the nodes on which it is to run according to the situation. 
In a pervasive environment, the surroundings of those nodes, such as the presence 
and number of nearby nodes and the communication links between them, would 
change dynamically. Moreover, the nodes’ surroundings could be affected by other 
objects. To ensure that the quality level demanded by the task can be met, it 
becomes necessary to adapt the algorithm and the parameters used by the task in 
response to the changing situation. 

Existing research responds to a changing situation by adjusting the parameters of 
the communication algorithm [SOH 00, YE 02, SHN 04]. For instance, when a node 
cannot communicate with another node on the routing tree, these methods 
restructure the tree so that it can communicate with another node. 

1.6.2. XAC middleware solutions 

1.6.2.1. Self-adaptive task management 

In the shared WSN, one or more measurement tasks can be used and performed 
simultaneously, and these tasks can have different accuracy requirements and 
different priorities. For instance, S2 in Table 1.1 should be used in all rooms, 
whereas S1 and S3 should only be used in rooms with people in them. The task 
deployment management should satisfy these requirements as much as possible and 
sometimes should decide to migrate tasks with lower priorities to other nodes to 
obey resource constraints. The appropriateness of deployment depends on the 
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current status of the network and/or the current status of the phenomena to be 
measured. 

We devised a self-adaptive algorithm to select the nodes on which to use 
components for measurements [NAK 08]. The algorithm selects the minimum 
number of nodes that can satisfy the accuracy requirements of the task, in 
accordance with the location of the target to be measured and the locations of the 
sensor nodes. We also devised a self-adaptive algorithm to manage the components 
in a node [ISH 06, BOU 11]. The component management algorithm evaluates the 
utility and constraints of the used components and changes the optimal deployment. 
We formalized this deployment as an integer linear programing problem and used 
simulated annealing to find semi-optimal deployment within a realistic amount of 
time. 

1.6.2.2. Self-adaptive communication management 

We also devised a communication algorithm that changes in response to the 
environment. When the environment around the node changes depending on factors 
like the movement of the object, the reliability of communication can be improved 
by selecting the appropriate algorithm for the environment. For instance, in the task 
of reporting the present positions of employees, reports are sent from nodes in the 
various rooms they normally work in. However, the reports are sent frequently from 
the same node when employees gather for a meeting in one room. When the report 
frequency fluctuates, the middleware can switch the network protocol, such as the 
routing or MAC protocol, to a more suitable one to reduce communication costs. 

Moreover, we developed a self-adaptive algorithm to tune the parameters of the 
communication algorithm. Communication traffic can be reduced by aggregating 
data in the group when a result is sent back from the node group. This has prompted 
research on selecting appropriate nodes and methods of aggregating data. Thanks to 
this research, we can efficiently perform data aggregation and communication when 
the routing algorithm changes. 

When the environment around the node changes, these can be changed to more 
appropriate ones for the circumstances, and the quality of the task can be improved. 

1.7. Discussion 

XAC middleware is useful in three ways to a context management system in a 
smart city. First, the multi-level task-description language allows users to specify its 
measurement task without having to know the low level details of a WSN. The users  
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of the context management system are usually interested in sensor data obtainable 
from the network but may not be experts on wireless ad hoc networks. Therefore, 
we think that our language is suitable for these users. Second, the runtime task 
management enables ones to add or remove measurements task at runtime. In a 
smart city, applications will be added or removed at runtime; therefore, the context 
management system should change their measurement tasks in response to these 
changes. Finally, the self-adaptation feature reduces unnecessary consumption of 
resources without the need for human intervention. This feature will prolong the 
network lifetime and reduce the cost of managing WSNs. 

1.8. Conclusion 

We described XAC middleware that enables programmers to use a WSN as a 
smart multi-modal sensor, as part of a context management system for smart cities. 
It provides different kinds of sensor data to different smart city applications at the 
same time. A middleware approach is effective at reducing costs associated with 
developing measurement tasks for a WSN. In this chapter, we overviewed the 
research issues related to a middleware for a shared WSN, from the viewpoint of 
task-description language, runtime task management and self-adaptation. We believe 
that the shared WSN will be a key enabler for smart cities. 
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