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General Principles of the  
Wave Concept Iterative Process 

1.1. Introduction  

The iterative method, which uses a wave network, is an integrated 
method and is not based upon electric and magnetic fields, as are,  
for example, Electrical Field Integral Equation (EFIE), Magnetic  
Field Integral Equation (MFIE), or more generally the method of moments 
or a combination of both fields. These are likened to the amplitudes of 
transverse waves, both diffracting around obstacles and those in space, 
termed “free space”, owing to the presence of evanescent fields. However, 
while the method of moments appeals to so-called admittance or impedance 
operators, within the wave iterative method (Wave Concept Iterative Process 
(WCIP)), the diffraction operators are restricted, thus leading to the 
convergence of all iterative processes based upon this particular formalism 
[BAU 99]. 

It may be noted that, with the method of moments, the solution to the 
problem often entails using a restriction in the given field so as to define trial 
functions that constitute the basis for given solutions. This often leads to 
both analytical and numerical problems. In the WCIP method, field 
conditions are simply described on the basis of pixels which make up the 
entire sphere. 
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2     The Wave Concept in Electromagnetism and Circuits 

Moreover, the iterative process has a significant resemblance to that used 
within harmonic equilibrium [KER 75]. Within this latter process the 
nonlinear component behaves in a way that is described in relation to time, 
while the rest of the circuit is described within the frequency sphere. The 
operator thus functions diagonally at given frequencies. With each iteration, 
we therefore proceed with a Fourier transform (using a time−frequency 
basis) so as to approach the detailed composition of boundary conditions at 
the shutdown level. Moreover, when writing equations in terms of 
components studied over time, an inverse Fourier transform (based upon 
frequency–time) is used. 

The WCIP approach is closely related. By simply replacing time by a 
coordinate and the frequency by a “spatial frequency”, the operation reverts 
to one within the spectral sphere. Outside of the Transverse Lines  
Matrix (TLM) method, which also necessitates the wave concept [KRU 94], 
the WCIP is based upon the systematic iteration between both incident  
and reflected waves. The approach used in the paragraphs below is as 
follows: select a wave definition which is consistent with pre-existing  
cases, in particular within waveguides, and ensure that it has a fundamental 
physical significance. The iterative process will then be described in  
the context of several types of problems, in particular quasi-periodic 
structures. 

The objectives of this chapter are to first set out the WCIP, showing  
its potential for circuit modeling, antennae and quasi-optical devices  
within stratified environments [BAU 99, AZI 95, AZI 96, WAN 05,  
RAV 04, TIT 09]. There are two advantages to this method. Firstly, the 
iterative process is always convergent (excepting the frequency resonating 
from a mechanism such as that one which is also relevant to other digital 
methods). Secondly, by the description of all surfaces through the use of 
pixels, it is not necessary to use a network describing the part of the surface 
corresponding to a metallic coating (or indeed to the dielectric dual), as falls 
within the sphere of the method of moments. 

In the second part of this chapter, the WCIP is outlined. The principles of 
the WCIP are adhered to. Through the use of combined equations, one is  
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expressed in the spatial sphere and the other in the spectral sphere (also  
called the modal sphere). The solution is obtained by achieving equilibrium 
between these two spheres. The description of a given mechanism is not set 
by rectangular pixels but by cells restricted by periodic barriers, each 
containing periodic non-configured sources. The sources are described 
within the spectral sphere (defined by periodic barriers). They are called 
“auxiliary sources”, as they need to be substituted by impedances alone or 
indeed other sources or impedances, the latter being defined by each cell. 
Hence the use of the term spatial domain and the adjective quasi-periodic 
being applied to the system. This concept makes it possible to study a large 
variety of systems, in particular Substrate Integrated Circuits (SIC), which 
have been successfully developed for several years, as shown by the results 
from a number of examples. 

The last part of the chapter provides a gateway to other interesting 
applications in the field of non-homogeneous meta-materials, in the sense 
that both sources and obstacles are integrated in a unique model, thus 
avoiding the use of the approximation of equivalent environments. Up until 
now (except for using three-dimensional simulators such as EF and Finite-
Difference Time-Domain (FDTD)) homogeneous meta-materials allow us to 
establish their equivalent index. The link between a material and a given 
mechanism (for example, plate antennae) presents difficulties and cannot be 
approached from any perspective other than a comprehensive analysis. 

Finally, we provide an overview of another WCIP-based field; the study 
of quasi-periodic circuits with identified components. There are many 
applications for these types of structures, filters, amplifiers, percolation 
problems and quasi-optic planar sources. 

1.2. The iterative wave method 

The integral form of waves came to be explained during the 1990s, and 
was applied to planar circuits and to antennae [BAU 99, AZI 95,  
AZI 96, WAN 05, RAV 04, TIT 09]. The wave concept principle is as 
follows:  

– The electromagnetic issue may be expressed by the relationship 
between the two environments. The first is known as the spectral sphere or  
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the external environment. The second is a set of surfaces which are defined 
by the boundary conditions at each point (termed the spatial domain). An Ao 
source in the spatial sphere sends a wave with an Ao amplitude towards a 
vacuum of free space. This wave is partly reflected (by the reaction of the 
operator Γ) and provides a wave B. The latter is, in its turn, reflected within 
the spatial sphere (the Operator S) giving us the wave A. 

– The Γ operator is diagonal within the spectral sphere. It represents the 
homogeneous environment and its interaction with electromagnetic waves 
[BAU 99]. The operator S describes the boundary conditions of the interface. 
It is expressed within the spatial sphere. The Fourier transform and its 
converse, the inverse Fourier transform, ensure the passage between both 
spheres. The relationships between incident and reflective waves are written 
as shown in [1.1] and [1.2].  

B = ΓA [1.1] 

A = SB+A0 [1.2] 

With the first iteration, the spatial sphere equation should be expressed 
simply as Ao (B = 0). B now appears with the operator Γ (B = ΓA). The 
equation [1.2] is applied so as to obtain the new value of A placed within 
[1.1], resulting in the new B value. This iterative process consists in 
successively applying equations [1.1] and [1.2], until convergence occurs 
(Figure 1.1). 

 

Figure 1.1. Iterative wave diagram 
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For a planar circuit within a rectangular housing, the operator Γ is 
diagonal across modes TE and TM, as are both the rapid transformation in 
methods Fast mode transform (FMT) and the opposing linking equations 
[1.1] and [1.2], this occurs because the operator S is diagonal in the spatial 
domain. 

1.3. General definition of waves 

The general definition of waves must meet certain conditions:  

The existence of a division of the overall sphere into two sub-spheres: the 
internal sphere or the spatial sphere (these are flat interfaces or localized 
elements, indeed centers of boundary conditions within integrated methods). 
The second sphere is the external sphere (or spectral sphere). This sphere is 
most often described on the basis of the unique functions of the Helmholtz 
operator, which stems from Maxwell's equations. To develop this method, 
we need to define two dual variables such as Current–Voltage, Electric 
field–Magnetic field, Current density (density or surface)–Electric field, and 
Voltage–Load density or Voltage–Load. All of the possibilities are shown in 
Table 1.1. E and J may be taken as two dual variables. J is not necessarily a 
current-related density, but encompasses all magnitudes which are defined in 
Table 1.1. J may also be related to current volume density. One would thus 
write it as Jv to avoid confusion with the magnetic field rotated by 90°(H^n). 
Wave amplitudes A and B are thus defined (it may be observed that A and B 
may be scalars or vectors): 

( )0
0

1
2

A E Z J
Z

= +
  

 [1.3] 

( )0
0

1
2

B E Z J
Z

= −
  

 [1.4] 

1.4. Application to planar circuits 

The first and most frequent wave representation is where dual variables 
are tangential components of fields on a surface S (Figure 1.2) adjusted to 
account for the magnetic field by H^n (the vector product is chosen rather 
than the magnetic field, simply for reasons of homogeneity). This 
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representation is highly useful when dealing with circuits and planar 
antennae, frequency-selective surfaces, diffraction issues and systems 
involving cylindrical or spherical coordinates. 

 

Figure 1.2. Features of half-spaces 

1.5. Applications to quasi-periodic structures 

Other types of new applications have been introduced as so-called “quasi-
periodic structures”. These use other wave definitions (see Table 1.1) which 
have applications in planar reflectors, SICs, meta-materials and photonic 
jets. 

Dual variables Definition domain The product of dual variables 

General case 

 ;  *E J H n=
   

 
TM0 mode: plane xOy ( )* *

.  E J E H n= ∧
    

 

2 1 ;  T TsE J H H= −
   

 
Surface with surface current 

sJ


 
*. sE J


 Surface power density 

; IV  Lumped element circuits or 
TEM mode 

*V I×  Complete power 

;   V ρ  Volume with load ρ  Vρ  Electro-static energy 

Table 1.1. Possible different dual variables 
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1.6. Circuits with localized components 

The traditional iterative wave method involves breaking down an 
electromagnetic problem into two parts [BOZ 09] as follows. The 
propagation equation aspect within a vacuum is dealt with in its entirety, and 
therefore translates as a relationship with the boundaries across sphere D, 
then with the boundary conditions running across sphere D. It is then 
necessary to have dual magnitudes linked together in a vacuum and at the 
boundaries, by linear operators, through a proportionality relationship 
(which is internal to D) and an integral relationship (which is external to D). 

Figure 1.3 shows the unidimensional structure which is made up of 
several cells, each enclosed by periodic walls. This structure is periodic, 
except at source level.  

 

 

Figure 1.3. Quasi-periodic univariate structure 

1.7. General principles of quasi-periodic circuits 

Within a periodic cell-based structure, each cell is assumed to have a 
source. Any default at the cell level may be represented by replacing the 
source of the latter by impedances [WAH 92]. The structure then becomes 
quasi-periodic. This approach is well adapted to the iterative wave method, 
which acts as a balance between spectral (exterior) and spatial (internal or 
source) sphere, since it describes periodic geometry (external) with small 
spatial irregularities (the so-called sphere of sources). 

2 1 3 2 4 3 5 4;  ;  ;  j j j jE E e E E e E E e E E eα α α α= = = =
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One example which is often studied relates to Substrate Integrated 
Circuits (SICs) within an elementary cell made up of a metal or dielectric 
rod, which is plated by periodic walls (Figure 1.4) [BAU 09]. 

 

Figure 1.4. The elementary cell 

1.8. The significance of using auxiliary sources 

Consider an electromagnetic environment (Figure 1.5) comprised of one 
(or several) components whose behavior is described in the system V-I, E-J 
or even E-Js. 

This element may be replaced by a source, the shutdown for which is 
formed by the electromagnetic environment. 

The closed matrix may be established across two given sources; E0 being 
the device power source and EA being the auxiliary source. 

As Figure 1.5 shows, this component may be replaced with a source 
(stage 1), the shutdown for which may be constituted by this component 
(stage 2).  

The calculation produces impedance (and the potential source) in view of 
this source, from the electromagnetic environment. This will operate within 
the spectral domain. 

Stage (2) involves stating that the source of stage (1) (the arbitrary 
source) is shutdown on the impedance of the output circuit. 
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Figure 1.5. Use of an auxiliary source 

1.8.1. Description of the environment 

This consists of a system Q, both fed by a source S0 and closed by an 
impedance Z. In general Q constitutes the center of the electromagnetic field 
E.M. To examine this system, we can break it down into two parts, each 
separate and distinct from the other and fed by a source known as the 
auxiliary source. System (I) describes the behavior of the impedance Z. 
System (II) describes the main source within its environment; E.M.Z can 
generally be defined at any point, and forms the spatial sphere. On the other 
hand, Q is often described within the environment E.M. Q is defined by its 
impedance or diffraction matrix. It is necessary to resort to the spectral 
sphere. Using this method, the calculation of impedance from the angle of S0 
is not achieved directly but it is first necessary to calculate a quadrupole with 
the help of an auxiliary source. This will subsequently be replaced by the 
localized impedance within the actual issue (allowing for its potential 
source). This latter operation is known as an operation in the spectral 
domain.  

1.9. Unidimensional circuits 

The configuration in Figure 1.6 shows the unidimensional structure, 
which is made up of several cells. 
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Figure 1.6. Quasi-periodic unidimensional circuits in the state αp 

The term unidimensional circuits refers to the balanced elementary cell 
(Figure 1.7) plated with periodic walls. 

 

Figure 1.7. The elementary cell 

It is first necessary to calculate the self-inductance values and the 
capacity for a 3 Ghz frequency. For a cell with a length δl, the capacity is 
2δC and the self-inductance is 2δL, hence by unit of length the formulae: 

10 * 3 13

7 * 3 10

0.67.10 1.25.10 0.84.10
1.67.10 1.25.10 2.09.10

δC F
δL H

− − −

− − −

= =
= =

 

represents inductance by unit of  length
represents capacity by unit of  l

δ
e

L 
δC ngth

 [1.5] 

pj
iEeα

iE 2 pj
iEe α

Periodic walls 
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The study of the structure of an artificial line made up of 100 cells at a 
frequency F will be completed for a given cell length / 40 2.5l mmδ λ= = . 
Upon isolation of the elementary cell within the unidimensional structure 
(Figure 1.7), all of the work which will be completed upon this cell then 
takes account of the periodicity walls surrounding it. This amounts to a 
saving both in terms of the time taken to complete the calculation, and also 
precision. Within the state α we must calculate Zα and three relationships 
thus arise: by taking the elementary cell in (Figure 1.7), Kirchoff’s mesh and 
junction rules (respectively relating to voltage and current) allow us to 
express the following formulae: 

1 1 1 2eV jl I E jl I Vω ω+ + + =  [1.6] 

 [1.7] 

1 1 1 0j jI e I j cV eα αω+ + =  [1.8] 

The transition from one cell to another takes place through a phase 
difference α, each cell being limited by periodic walls, with periodic 
conditions implying a phase difference between [1.1] and [1.2]. We thus get 
the formula: 

 [1.9] 

Thus, 1 1 1 1
j

eV jl I E jl I V e αω ω+ + + =  [1.10] 

The junction rule provides us with the equation: 

1 2 2I j cV Iω− = −  [1.11] 

Two of the last equations [1.7] and [1.8] of this sequence give us:  

1 1 1 1( ) 0j jj cV I e I j cV eα αω ω− + + =  [1.12] 

Hence: 

1 1
1

2

j

j

eV I
j ce

α

αω
−=  [1.13] 

2 1
jI I e α= −

2 1
jV V e α=
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By substituting the second equation for the first, we arrive at:  

1 1
( 1)2
2

j

j

eE jl I I
j ce

α

αω
ω

−= − +  [1.14] 

From this impedance, we deduce the result Гα and substitute α (a phase 
difference between one cell and another) by its value 2 /p Nα π= . 

Hence, the value known as spectral Г: 

 [1.15] 

For the spatial sphere, we make the structure anti-symmetric (Figure 1.8). 
D is now equal to double the length of the line. To achieve a line of three 
cells requires an inductance 2δL and a capacitance of 2δC, each having a 
dimension dl according to the wavelength λ commensurate with given 
requirements. 

 

Figure 1.8. Dividing up the cell configuration  
(three cells including periodic walls) 

In order to calculate S within the spatial sphere, we have to return to the 
initial diagram to calculate the parameters of the matrix S at source level. 
The transmission line acknowledges as the entry impedance Z0 and a single  
 

0

0

Z Z
Z Z

α

α

−Γ =
+
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source in terms of the first cell Ek1. For the remainder of the cells, the 
sources are short-circuited. 

This structure allows us to express the formula:  

 [1.16] 

E represents the electric field. 

This occurs by using both equations governing the iterative method and 
by substituting E in these equations below: 

 [1.17] 

In terms of waves, we thus get:  

 [1.18] 

This formula represents waves within the spatial domain. By doing so, 
we thus acknowledge equation [1.2] of the iterative method, B = SA+ B0, as 
well as equation [1.15], allowing the determination of impedance within the 
spectral domain. Having calculated S and Γ, the current density I placed 
upon each cell may be determined. 

1 0 /2

0 0
0 0
0 0
0 0
0 0

k NE Z I

E

−   
   
   
   

= +   
   
   
      
   

0
0

0
0

1 ( J)                                
2
1B ( )                                   

2

A E Z
Z

E Z J
Z

 = +


 = −


/21 0

/2 1

0 0 0 0 0 0/2
.0 1 0 0 0 00
.0 0 1 0 0 00
.0 0 0 1 0 00
.0 0 0 0 1 00

0 0 0 0 0 10

Nk

N

AE Z

B

A

−

−

    
    −    
    −

= +    −    
    −
        −   
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1.10. Application: transmission line  

Knowing the spectral Г and the spatial S with the main sources E1 the 
iterative process may be initiated and the values of I on each of the actual 
cells instead of auxiliary sources may be determined. 

Convergence is reached after 2,800 iterations. This makes it possible to 
calculate the current density passing through each cell, that is to say a cell 
length of δl = λ/10. 

By inserting the electric wall at the point of the 50th cell, the structure 
was split into two and the current density at its maximum, which allowed us 
to find the wavelength for 100 cells. Figure 1.10 shows current distribution 
for another cell length of the order of δl = λ/50. 

 

Figure 1.9. Current according to cell number for a length λ/50 

1.11. Comparison of current density for different cell lengths 

Let us now take, by way of length, the artificial line Lg = 30 cm. A 
simulation of this structure was completed. This thus allowed us to see the 
current behavior on each cell, for different cell lengths. A superimposition of 
three curves for current density (Figure 1.10) has been shown to see what 
length is most appropriate for this function. 

So as to permanently fix concepts upon the choice of cell length, another 
length of the artificial line of the order of 15 cm was selected. This trial 
allows us to note that the length at which current density is stable is  
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δl = λ/40. The curve below (Figure 1.11) shows the theoretical current 
density component. Since it is a short circuit line, there are no losses, giving 
us theoretical pure impedance. 

 

Figure 1.10. Comparison of current density for different cell  
lengths for a length of 30 cm. For a color version of  
this figure, see www.iste.co.uk/baudrand/waves.zip 

 

Figure 1.11. Comparison of current density for different cell  
lengths measured according to wavelength λ, For a color version  

of this figure, see www.iste.co.uk/baudrand/waves.zip 

In the work which follows the cell length will be δl = λ/40, because 
current stability upon a cell is guaranteed for this length. 
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1.12. Bi-dimensional circuits  

The periodic bi-dimensional structure which is made up of the cells (on 
the basis of N*M) will be studied. Owing to its periodicity, the elementary 
cell is isolated and the entire study is made up of the latter. The cell is plated 
by periodic walls. The transition between one cell and another takes place 
through two clearly established bi-directional phase differences. 

1.13. Two-source bi-dimensional circuits 

Figure 1.12 shows an elementary cell for detailed study. 

 

Figure 1.12. Elementary cell 

Periodic conditions imply a phase difference between [1.1] and [1.2] and 
also between [1.3] and [1.4]. 

 [1.19] 

2 1

2 1

4 3

4 3

  

j

j

j

j

V V e
I I e
V V e
I I e

α

α

β

β

 =


= −


=
 = −



General Principles of the Wave Concept Iterative Process     17 

α and β are arbitrary. They occur because of the form, within a housing  
with the dimensions D*D, appreciating that the cell is of a dimension of 
d′*d: 

 and  [1.20] 

Moreover: 

1 1 1

2 11 12 2

3 21 22 3 3

4 4

0

0

V I E
V Z Z I
V Z Z I E
V I

= −  [1.21] 

There are eight equations with eight unknowns: 

1 1
1 1

2 2

1 1
 ; j j

V I
V I

V Ie eα α= =
−

 [1.22] 

3 3
3 3

4 4

1 1
 ; j j

V I
V I

V Ie eβ β= =
−

 [1.23] 

By using the formula:  

1
1 11 1 12 3

3
3 21 1 22 3

1 1 1
0

and
1 1 1

0

j j j

j j j

E
V Z I Z I

e e e

E
V Z I Z I

e e e

α α β

β α β

= + −
− −

= + −
− −

 [1.24] 

By multiplying [1.22] by , 1je α −  we arrive at: 

11 1 12 3 1

1 1
0  , 1 , 1j j j

j je Z I e Z I E e
e e

α α α
α β= − + − −

− −
 [1.25] 

( ) 2 dm m
D

α π= ( ) 2 dn n
D

β π=
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By multiplying [1.23] by , 1je β −  we arrive at: 

21 1 22 3 3

1 1
0  , 1 , 1j j j

j je Z I e Z I E e
e e

β α β
α β= − + − −

− −
 [1.26] 

This brings us back to writing: 

{
{

(1,1) (1,3)
1 1 3

(3,1) (3,3)
3 1 3

( ) ( ) ( )

( ) ( ) ( )

E Z I Z I

E Z I Z I

αβ αβ

αβ αβ

αβ αβ αβ

αβ αβ αβ

= +

= +
 [1.27] 

These relationships are described in the spectral domain, which is 
characterized by α and β. 

The condensed form is written as:  

,  

The equation [1.28] is thus written as: 

 [1.28] 

Hence, it is possible to work out Гαβ. 

The spatial domain corresponds to internal relationships with each 
source. For this, the transition by Fast Fourier transform analysis to the 
spectral domain is necessary. 

That is to say: 

2 2 with (m)= ,  and N=mn mn mn
m n DI Y E

N N d
π πα β= =   [1.29] 

The cells will be numbered by the integers k,l. The source phase in  
k = l = 0. The phase difference of the source k,l will be:  

 according to x
  according to y

k
l
α
β





 

( )
( )

1

3

I
I

Iαβ

αβ
αβ

= ( )
( )

1

3

E
E

Eαβ

αβ
αβ

=

I Y Eαβ αβ αβ= 
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As there is an α, β phase difference during the transition from one cell to 
another, we may therefore write: 

 
2 2

,             y
      

mk nlj j
N N

kl mn
m n phase difference with a displacement of x phase difference with a displacement of

I I e e
π π

= ×   [1.30] 

In these conditions,  no longer represents the intensity of sources, but 
this intensity multiplied by N. 

 [1.31] 

The inverse formula for [1.31] is written as: 

 [1.32] 

The relationship in the spatial domain thus becomes: 

( )
 

   

' 0

potential source  

  E  I
resistance at source level internal imp

kl kl kl kl

edance

I Y= +  [1.33] 

The spatial relationship 

 [1.34] 

Hence, the formula in waves being: 


0   (Spatial)

A=            (Spectral)

B SA B

B

= +

Γ
 

The iterative process breaks down the problem into two parts, one in the 
spatial domain and the other in the spectral sphere.  

 

mnI

( )
2 2

,

1  
mk nlj j

N N
kl mn

m n
I NI e e

N

π π

=  

2 2

,

1  
mk nlj j

N N
mn kl

k l
NI I e e

N

π π− −

= 

mn mn mnI Y E= 
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Returning to the elementary cell (Figure 1.13) surrounded by periodic 
walls, there are four elementary cell equations which arise: 

 [1.35] 

In a given case, if the Z diagonal = r, we find a conventional circuit:  

 

By transposing [1.1] and [1.2] within [1.3] and [1.4] into the relationship 
given at [1.35] we arrive at: 

 [1.3′] 

 [1.4′] 

Transposing [1.3′] into [1.4′] gives us: 

( )
1 1 3 1

1 1( )
1 1

j j
j

j j
e eE rI e E I
e e

β α
α β

α β
− − −− = +

− −
 [1.36] 

or 

 [1.37] 

that is to say: 

 [1.38] 

with: I1 = −bI3 

3 1

1 3 1 3

1 1 1 1

3 3 3 3

j j

j j

j
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The previous relationship is written as: 

   
 [1.39] 

Hence, the admittance matrix: 

 [1.40] 

Although it is surprising, the matrix is non-reciprocal. It would be 
sufficient to change the origin of the I3 phases. To achieve this: 

In setting out '
3 3I aI= , the relationship between current density and the 

magnetic field, this formula becomes: 

 [1.41] 

represents the admittance matrix Yαβ [1.42] 
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1.14. Three-source bi-dimensional circuits 

These are as per the following description of the elementary cell with a 
transmission line (Figure 1.14) having the length δl, which is made up of 
three auxiliary sources E1, E3 and E5 following the three respective directions 
X, Y and Z and the resistance R. The source is fed into point Z and polarized 
at point Y. 

 

Figure 1.13. Elementary cell with three sources E1, E3 and E5 

Sources E1, E3 and E5 rely upon electric walls so as to have an alternative 
current. If they rely upon magnetic and periodic walls the current will have a 
zero value. 
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We have eight equations and eight unknowns: 

 [1.43] 

 [1.44] 

 [1.45] 

 [1.46] 

With the four equations for periodicity: 
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 [1.50] 

Upon rewriting these equations by eliminating 2 2 4 4, , ,V I V I : 
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 [1.52] 

these two equations are written as: 

 [1.53] 

That is to say: 

 

2 4 5V V E= =

1 2 3 4 5 0I I I I I+ + + + =

1 1 1 5 0V E rI E+ − − =

3 3 3 5 0V E rI E+ − − =

2 1
jV V e α=

2 1
jI I e α= −

4 3
jV V e β=

4 2
jI I e β= −

1 3 5

1 3 5

(1 ) (1 ) 0j j

j j

I e I e I
V e V e E

α β

α β

− + − + =

= =

1 1 1

3 3 3

(1 ) 0
(1 ) 0

j

j

V e E rI
V e E rI

α

α

− + − =

− + − =

5 1 1

5 3 3

1 3 5

(1 )
(1 )

(1 ) (1 )

j j

j j

j j

E e e E rI
E e e E rI

rI e rI e rI

α α

β β

α β

−

−

− + =

− + =

− − − − =

(1 )
(1 )

j j

j j

a e e
b e e

α α

β β

−

−

= −
= −



24     The Wave Concept in Electromagnetism and Circuits 

These equations then become:  

 [1.54] 

It is now necessary to move on to the calculation of actual values so as to 
determine the reflection coefficient. 

Hence: 
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 [1.55] 

When r tends towards 0: 

 [1.56] 

For the matrix S:  
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Once the Γ and S parameters have been determined, the iterative process 
may be applied with the aid of these equations.  

 [1.57] 

Upon achieving convergence, the field Ez may be determined across the 
entire structure. 

To display the couplings between the cells, the transition from 
configuration to an activated line with a five-cell configuration, which is 
activated in Z (see Figure 1.14), is essential: 
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1.15. Validation examples 

The structure below (Figure 1.14), is made up of 30*30 cells with a 
supply from the central cell (15:15) in Y. 

 

Figure 1.14. Current density for the central cell activated in Y 

In Figure 1.15, the curve represents an emergence of the current from the 
central cell. The current density is of the order of 10-3 A/m². Across the rest of 
the cells the current is not, in fact, zero, but rather of the order of 10-5 A/m². 

 

Figure 1.15. Current density for a structure made up of  
20 *20 cells with a central cell activated in Y 



26     The Wave Concept in Electromagnetism and Circuits 

This example in (Figure 1.15) demonstrates polarization in Y, with a 
source supplied in Y and short-circuited in X. The structure is 20*20 cells. 
The supply source is centered within a (10, 10) configuration with a current 
of the order of 6.65 × 10-5 A/m². A current emerges in X and Y (in Figure 
1.16), since there is a coupling between X and Y. 

To visualize couplings between cells, we transition from a single 
activated line circuit to a five-cell configuration, which is activated in Z 
(Figure 1.17). 

In this configuration, for a given column of cells, these various cells are 
independent (in the Y direction), the equation being: 

 

with Zl = jlw. 

 

Figure 1.16. Five-cell configuration with a source activated in Z 

 

 

0

0

l
L

l

Z ZZ
Z Z

−=
+



General Principles of the Wave Concept Iterative Process     27 

The results are shown in (Figures 1.17 and 1.18). The field Ez is 
propagated according to the direction of polarization (Y) for each cell source 
which is fed in Z. 

 

Figure 1.17. Five-cell configuration with a source  
activated in Z, shown in two-dimensions 

In view of the presence of a resistance behind the auxiliary sources, the 
curve represents the decrease both in the magnitude of the field Ez  
(Figure 1.18) and the propagation following the Y direction.  

 

Figure 1.18. Five-cell configuration with an activated  
source in Z shown in three-dimensions. For a color version of  

this figure, see www.iste.co.uk/baudrand/waves.zip 
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That is to say, this is a bi-dimensional structure made up of 30 *30 cells, 
and the sources in Z on the first line are all activated. On the same line, the 
phase difference from one cell to another (depending upon the X direction) is 
of the order of 2πm/N, with N being the number of cells on each line. 

 

Figure 1.19. Diagrammatic representation of the structure being studied. The source 
cells in red (lower line) are active and those in blue (above) are impediment cells.  

For a color version of this figure, see www.iste.co.uk/baudrand/waves.zip 

In this structure “impediment cells” will be inserted. These are cells 
covered with metal, at the 15th line, as shown in Figure 1.19. To simulate an 
“impediment cell”, E1 and E3 are each replaced by an inductance and E5 is 
replaced by a capacitance.  

 

Figure 1.20. Diagrammatic representation of the studied structure. The  
active source cells are in red (lower line) and the impediment cells are in blue 

(above). For a color version of this figure, see www.iste.co.uk/baudrand/waves.zip 
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That is to say, this provides a configuration made up of 64*32 cells, each 
cell being of the size dl = λ/20. Our entire study revolves around a single 
elementary cell. The first-line sources of this structure are fed in Z. In X and 
Y, the sources are replaced by inductances known as L.  

The impediment cells within the structure are on the 15th line. A slit was 
created on this line to examine the behavior of the Ez field  
(Figure 1.20).  

 

Figure 1.21. Ez as a function of the number of cells in  
X and Y directions for a structure made up of 64x32 cells 

The curve shows the behavior of the density in the field Ez upon each 
cell, at the level of the impediments on line 15. The Ez fields are reduced 
while at the level of the slit, the field is propagated and this shows stationary 
waves. 

Within the following curve (Figure 1.22), the behavior of the Ez field at 
the level of the 15th line is shown: being metal from 0 to 5, followed by an 
opening from 5 to 15, and then metal from 15 to 32. 

Let us now take the same configuration previously studied and invert  
the cells, by replacing the cells at the slit by impediment cells (Figure 1.23). 
The propagation of the Ez field is shown in Figures 1.24 and 1.25. 
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Figure 1.22. Behavior of the Ez field on the 15th line 

 

Figure 1.23. Diagrammatic representation of the structure studied. The active  
source cells are shown in red (lower line) and the impediment cells are shown in blue 

(above). For a color version of this figure, see www.iste.co.uk/baudrand/waves.zip 

 

Figure 1.24. Ez as a function of the cells number in X and Y directions  
for structure made up of 64 x 32 cells and shown in Figure 23. For a  
color version of this figure, see www.iste.co.uk/baudrand/waves.zip 
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The behavior of the field Ez differs from that found within the IRIS 
structure; at the level of impediments on line 15 the field Ez backscatters 
towards the first line, but at the level of the slit for the stationary waves all 
along the remainder of the structure. The behavior of the Ez fields at the 
level of the 15th line is as follows: a gap from 0 to 5, then metal from 5 to 
15, and then a gap from 15 to 32. This is shown on Figure 1.25.  

 

Figure 1.25. Behavior of the Ez field on the 15th line 

The case of the central cell, the source being fed in Z  

This sub-heading refers to the case of a central cell fed by a source in Z 
(Figure 1.26). Here, the sources within X and Y are replaced by inductances. 
We see the behavior of field Ez across a structure of 64 *64 cells with a cell 
length of the order of λ/20. 

When the source in Z of the center cell is activated, the field Ez is 
propagated in the two directions X and Y by creating both circular and 
stationary waves around this same cell (Figure 1.27). The distance between 
each wave is of the order of 20 cells which makes it possible to find the start 
wavelength λ, since dl = λ/20. 

Once the central cell source in Z has been activated, a symmetrical line 
around the propagation of Ez appears (Figure 1.28) following the x direction 
(the curve in red, boxes) and another symmetrical line around the 
propagation of Ez following y (the curve in blue, crosses) will be shown. 
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.  

Figure 1.26. Description of the configuration 64 *64 cells 

 

Figure 1.27. Field Ez as a function of the cells number in X and Y directions  
for a structure made up of 64*64 cells and shown in Figure 1.26 with dl= λ/20 
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Figure 1.28. Behavior of field Ez at the level of the central source in  
X (red boxes) and in Y (blue crosses). For a color version  

of this figure, see www.iste.co.uk/baudrand/waves.zip 

For a length dl = λ/100; this is the source that is fed in Z – the central 
cell. The curve shows the appearance of the field Ez (see Figure 1.29) which 
is propagated from the central source across the entire structure of 64 *64 
cells, with a cell length of the order of λ/100. 

 

Figure 1.29. Field Ez as a function of the number of cells in X and Y directions  
for a structure made up of 64*64 cells and shown in Figure 1.26 with dl= λ/100 
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The validation of the study of this type of bi-dimensional configuration 
must undergo a comparison with studies previously completed, such as the 
Hankel function (Figure 1.30). This is used in applications for 
electromagnetic cylindrical guides, for example, within a given diffraction 
problem, by a cylinder which is both infinite in length and illuminated by a 
plane wave. The Hankel function tends towards 0 by moving away from the 
center. 

 

Figure 1.30. Comparison of the Ez field’s behavior for a central  
source which is active in Z, and the Hankel function 

The Ez field is at its maximum at the level of the central source, and 
decreases by being propagated along the structure in both directions X and Y. 
It is superimposed with the Hankel function for a cell length of the order of 
λ/100. This both verifies and validates the theoretical approach adopted for 
the study of quasi-periodic bi-dimensional structures [AZI 13]. 

1.16. Lenses and meta-materials 

Isolating the elementary cell of the bi-dimensional structure (Figure 1.31) 
is necessary to calculate the values of permittivity and the corresponding 
permeability. The entire study of the structure takes place across  
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the elementary cell, viewing the periodicity of the walls surrounding the 
latter. 

 

Figure 1.31. Elementary cell 

The values of L and C determine the values of μ and ε, that is to say δl 
the length of the elementary cell, the capacity per unit of length is equal to: 

Cc = C/δl [1.58a] 

LL = L/δl [1.58b] 

and: ඥܮ௅ܥ஼ = ඥߤ଴ߝ଴ߝ௥ [1.58c] 

Assuming μ=μ0  the refraction index is given: 

݊ = ௥ߝ√ = ට௅ಽ஼಴ఓబఌబ = ଵఋ௟ ට ௅஼ఓబఌబ = ௖ఋ௟  [1.59a] ܥܮ√

Where c = 3.108 m/s is the speed of light. 

C0 and L0 are taken to be the values which lead to the formula n=1 

ට௅బ஼బ = ටఓబఌబ  [1.59b] 
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With ඥܮ଴ܥ଴ = ඥߤ଴ߝ଴݈ߜ [1.59c] 

Equation [1.59c] is extracted from the formula in [1.58c] 

Multiplying [1.59b] by [1.59c] results in obtaining L0 as: ܮ଴ = ටఓబఌబ ඥߤ଴ߝ଴݈ߜ =  [1.60a] ݈ߜ଴ߤ

Likewise, dividing [1.59c] by [1.59b] results in obtaining C0 as: ܥ଴ =  [1.60b] ݈ߜ଴ߝ

On the other hand, C will evolve. With n as an index C becomes  

2
0C = C n  [1.61] 

Conventional electrodynamics impose a resolution limit when 
conventional imaging uses lenses. This fundamental limit, called the 
“diffraction limit”, in its ultimate form, is attributed to the wavelength of 
electromagnetic waves. The loss of resolution, which is a valid hypothesis, 
even if the diameter of the lens proves to be infinite, constitutes the source of 
the diffraction limit in its ultimate form. In the case of projecting an image 
from a punctual source, the diffraction limit appears as an unclear image  
upon a surface area of approximately a wavelength of the diameter of the 
lens: 

02 / kρ π λΔ =  [1.62] 

In 2000, John Pendry elaborated a new analysis of Veselago’s lens 
(Figure 1.32) by introducing evanescent waves and observed that these 
lenses might indeed overcome the diffraction limit [PEN 99]. 
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Figure 1.32. Meta-material lens 

Pendry suggested that Veselago’s lens makes it possible to have a perfect 
image, if it is entirely without any loss and its refractive index is exactly 
equal to −1 in relation to the surrounding environment. The left hand lens 
realizes a super-resolution image by placing the emphasis upon waves, 
which are propagated in the way that using a conventional lens would allow. 
However, it furthermore takes the amplification and restoration of 
evanescent waves which are splitting up and coming from the source. This 
restoration of evanescent waves, within the image plane extends to the 
numbers of maximal accessible waves, making it possible to create a very-
high resolution image. The physical mechanism behind the growth of 
evanescent waves is somewhat interesting. Within Negative Refractive  
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Index (NRI) – (left-handed) materials and multiple reflections lead both to 
the increase and decrease of evanescent waves. Nevertheless, the index of  
n = −1 corresponds to a resonance phenomenon in which the reduction 
solution is canceled out, thus simply leaving the current growth of these 
waves. 

This is achieved because when n = −1, the second NRI/PRI interface 
(Positive Refractive Index (PRI)) within Figure 1.1 corresponds to an infinite 
reflectance, while the first PRI/NRI interface is adjusted. In one sense, one 
may assimilate Veselago's lens as an inverse system which precisely restores 
wave propagation within free space. 

An image of the plane version of Veselago’s lens which was built at the 
University of Toronto is shown in Figure 1.33 [IYE 02]. The NRI lens is a 
grill structure made up of 5 × 19 cells of printed micro-strip bands, operated 
with series C0 capacitors and short-circuited with an L0 inductance. This NRI 
structure is sandwiched between two printed discharged grids which act as a 
homogeneous environment having a positive refraction index. The first non-
charged network is excited using a monopole (a punctual source) which is 
fixed to the left-hand grid. This is reproduced by the NRI lens on the second 
grid. The vertical electric field across the entire structure is measured with 
the aid of a detection probe. 

 

Figure 1.33. Structure of the Veselago lens 

Meta-material cells are made up of capacitances and of self-induction 
coils, as shown in Figure 1.34.  
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Figure 1.34. Transmission line elementary cells 

To simulate the configuration (Figure 1.35), a source cell will be placed 
level with the third line at a distance from the primary interface of the meta-
materials of the order d1 = 2*d (that is to say corresponding with two lines 
of cells). The second interface [PEN 00] is placed at a distance of 2*d from 
the first interface. The source image should be focused on a distance of 2*d 
behind the second interface to validate this study [IYE 03]. 

 

Figure 1.35. Configuration of the lens 

Figure 1.36 shows the behavior of evanescent waves which increase 
within the lens. The dashed lines indicate the location of the NRI region and 
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the solid lines indicate the location of the source (on the top) and the external 
image is also given (see the view on the bottom). 

 
 

 

Figure 1.36. Behavior of the field |Ez|. For a color version  
of this figure, see www.iste.co.uk/baudrand/waves.zip 

This thus represents an optical system which is likely to achieve a perfect 
image [IYE 03]  of an unlimited object caused by diffraction. Negative 
refraction ends up forming perfect images, provided that the period of the 
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material is sufficiently weak when compared to wavelength. Figure 1.36 
shows the principle of the super lens [GRB 04]. 

The elimination of the limit due to diffraction results from the 
amplification of evanescent waves. This amplification, which is caused by 
the inversion of the wave vector, makes it possible for the evanescent wave 
to be transmitted to the image without any reduction. To obtain this result, it 
is necessary for the transmission to take place without any reflection 
occurring upon the interfaces with the external conventional environment. If 
the latter consists of either air or a vacuum, with the formula εr = µr = 1, it is 
therefore necessary that the left-hand material has the formula εr = −1 and  
µr = −1. 

1.17. Conclusion 

We have, throughout this work, been able to trace the development of 
design codes and appropriate methods to deal entirely with different types of 
quasi-periodic structures. At the start, our objective was to both improve and 
broaden the scope of the WCIP iterative method within both the one-
dimensional and bi-dimensional sphere. The developments introduced in the 
iterative method made it possible to attribute to it some qualities which are 
necessary to resolve propagation issues within any environment (whether 
homogeneous or inhomogeneous), as well as within quasi-periodic complex 
structures.  

A study of quasi-periodic structures was made by determining the 
behavior of current density across each cell. In this section, we have limited 
the discussion to one-dimensional quasi-periodic structures. Examination of 
the general application of the concept of the formalism of quasi-periodic 
structures and the study of bi-dimensional structures was completed. When 
dealing with magnetic field behavior, a validation was carried out of a  
bi-dimensional design made up of an artificial line fitted with sources which 
were activated upon each cell of the structure. The last section was devoted 
to the study of the applications of bi-dimensional quasi-periodic 
configurations. Indeed, the use of the iterative method, with its novel 
approach with hexapole structures, has allowed us to study the so-called 
IRIS system as a primary application. Owing to the analogy with photonic  
 
 



42     The Wave Concept in Electromagnetism and Circuits 

systems with infinite cylinders, a comparison with Hankel’s function has 
made it possible to validate all of our work. One final application which 
advances the provision of the iterative method is that of the meta-material 
flat lens. 

This work opens up a multitude of pathways. For example, the study of 
quasi-periodic structures based upon new materials, such as graphene, by 
using the WCIP method in this field appears somewhat interesting. Indeed, 
owing both to the exceptional properties that these materials offer and to the 
WCIP method, we will now be able to study the behavior of some complex 
structures, such as meta-surface structures, inhomogeneous structures and 
meta-material structures. 


