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Keywords

Systems biology

A new field of biology that studies the functional structure and dynamics of intercellular

and intracellular networks with the help signal- and systems-oriented methods.

Synthetic biology

Studies life as networks of biological objects such as DNA proteins RNA and metabolites.

Network biology

Studies the static organization of life as networks made up of biological entities such as

DNA proteins RNA or metabolites.

System

A set of interacting parts functioning as a whole and distinguishable from its

surroundings by identifiable boundaries.

Systems theory

This denotes the cross-disciplinary investigation of the abstract organization of systems

irrespective of their substance type or spatiotemporal scale of existence. The goal is the

study of emerging properties that arise from the interconnectedness of the individual

parts making up the system.

Robustness

The robustness of biological systems denotes the maintenance of specific system

functionalities in the presence of fluctuations or change in environmental parameters.

Control

Control is defined as the response action taken by a system to counteract parameter

changes to maintain system functions at a certain predefined level.

Modularity

A design concept of complex systems to integrate simpler self-contained functional

building-blocks into the framework of one larger system.

Model

The concept of representing causal relationships from real systems in the language of

mathematics.
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Systems Biology is a new field of biology, which places the theoretical foundations
of systems analysis of living matter into the context of modern high-throughput
quantitative experimental data, mathematics, and in silico simulations. The aim is to
analyze the organization and to gain engineering-control of metabolic and genetic
pathways. The ultimate goal is to gain an ‘‘holistic’’ view of the complex workings
of life. The need for a system level understanding of biology is reviewed in this
chapter, and comments are provided on the current scientific progress in this field.
The current and future directions of experimental design strategies and theoretical
approaches are also highlighted.

1
Introduction

Systems Biology is a recently established
field in life sciences that aims at promoting
a global systems understanding of living
matter through the integration of various
scientific domains (see Refs [1–3] for
special journal sections and Refs [4–7] for
textbooks on the topic).

The considerate attention that Systems
Biology receives is due to the fact that it
currently causes a paradigmatic shift in
many areas of biological research. Modern
molecular biology has been mostly a de-
scriptive science, devoting insight to small,
isolated compartments of a system as a
whole – for example, by investigating the
influence of individual proteins within the
behavior of a whole cell. Thus, the study of
the interconnected nature of cellular pro-
cesses has long been avoided in favor of
a reductionist approach. On the one hand
this is due to the sheer amount of new
challenges that come about when tackling
complex systems, whereas on the other
hand it has been the common leitmotif in
other natural sciences, such as physics,
to shed light mostly on well-defined
and controllable systems. Those systems
are then either small and isolated, or
large and homogeneous, so that they
can be tackled by applying the laws of
statistics. Novel challenges, however, lie in

the description of dynamical, mesoscopic,
open, spatiotemporally extended, nonlin-
ear systems, operating far away from ther-
modynamic equilibrium, which are the
most important type to understand, as
these are the systems that support life.

Although reductionist approaches have
been successful in elucidating key pro-
cesses and key factors of many funda-
mentally important biological processes,
contemporary science is now realizing
the importance of wholeness by studying
problems of organization. Emergent phe-
nomena arise from the interaction of var-
ious units or modules, which are neither
resolvable nor understandable through the
study of local events or the respective
parts in isolation. Hence, traditional re-
ductionist models and methods of cell
and molecular biology are not very well
suited, and can be incomplete, misleading,
or even completely wrong.

Historically, Jan Christiaan Smuts was
among the first to formulate a theory of
the whole that was hoped to fill the gap
between science and philosophy. In his
book Holism and Evolution, which was
published in 1926 [8], Smuts argued that
Nature consisted of discrete objects, or
‘‘wholes,’’ that are not entirely resolvable
into their respective parts. The wholes
and parts mutually depend on each other
in their functionality, thus forming one
organic, unified web of relations, which
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comprises matter, life, and mind, and
which cannot be accounted for by a
reductionistic analysis. Smuts saw his idea
confirmed in evolution, regarding Holism
as the active driving force towards more
perfect wholes or species.

The theoretical foundations of systems
engineering were laid some 60 years ago,
when the concept of systems theory in
biology was proposed during the 1940s
by the biologist Ludwig von Bertalanffy
[9]. The proposal was further developed
during the 1950s by Ross Ashby [10], as a
counter-movement against reductionism
in science. In the sense of holism, von
Bertalanffy emphasized the need for a
study of the informational organization
within real, open systems. The assembly of
such inter-related elements then comprise
a unified whole, which in turn can show
new emergent properties.

In 1948, the mathematician Norbert
Wiener established the field of cybernetics
[11] as the science of communication and
control of systems in regard to their en-
vironment. Cybernetics is closely related
to systems theory, using the same con-
cepts of information, control, or feedback.
However, whereas the former focuses on
systems function for providing regular
and reproducible behavior, the latter deals
more with system structure. Even so, both
terms are often used in conjunction, for
both structure and function cannot be
understood as separate entities.

Today, biology embarks on systems
thinking in two different ways. One way
is to regard Systems Biology as a new way
toward integrating information from dif-
ferent organizational levels, starting from
DNA to proteins via signaling pathways
to functional modules, into the context
of a holistic organizational view [12]. The
primary goal of the second view on Sys-
tems Biology is to establish a conceptual

framework and working methodologies
for the augmentation of knowledge on bio-
logical phenomena by combining systems
theory and molecular biology: ‘‘Systems
Biology is not a collection of facts but a
way of thinking’’ [13]. This view has al-
ready been shared during the late 1960s
by Mesarović, who predicted that Systems
Biology would be an established field of
science as soon as ‘‘. . . biologists start
asking the right questions’’ [14]. Put dif-
ferently, biologists need not recast facts
already known from molecular biology in
a different language, but they need to
ask questions based on system-theoretic
concepts [15].

Both approaches share the extensive
need for high-quality, quantitative bio-
logical data obtained through extensive
experimental measurements, and this is
the reason why the use of systems theory
in biology has gained momentum during
recent years. New techniques can pro-
vide the necessary amount of quantitative
data for the establishment of appropriate
holistic models of cellular processes. Even-
tually, those new experimental techniques
will lay the foundation for the integration
of mathematics, engineering, physics, and
computer science into biology, to permit
an understanding of the range of complex
biological regulatory systems at multiple
hierarchical and spatiotemporal levels of
cellular organization [16].

2
What Is Systems Understanding?

The word ‘‘system’’ derives from the Greek
σνστημα, and is composed of the prefix
syn, which means ‘‘together,’’ and the root
of histanai, meaning ‘‘cause to stand.’’ A
system is defined as ‘‘. . . the assembly or
set of inter-related elements comprising
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a unified whole that is distinct from its
environment,’’ and can be hierarchically
organized and made up of other subsys-
tems or modules, which allows the con-
struction of a complex entity from simpler
units. For example, organelles such as mi-
tochondria constitute distinct subsystems
within the organization of a cell. The sub-
division of natural entities into systems is
an abstract construct. Systems per se do
not really exist in reality; rather, they are
defined as a set of elements interacting
over time and space.

Systems theory denotes the transdisci-
plinary investigation of the abstract or-
ganization of phenomena, independent
of their substance, type, or spatiotempo-
ral scale of existence [17]. The goal of
systems theory is to study emerging prop-
erties arising from the interconnectedness
and complexity of relationships between
parts. Such theory argues that however
complex or diverse a system is, there are
always different types of organizational
structures present, which can be repre-
sented as a network of information flow.
Because these concepts and principles re-
main the same across different scientific
disciplines such as biology, physics, or en-
gineering, systems theory can provide a
basis for their unification. The systems
view distinguishes itself from the more
traditional analytic approach by emphasiz-
ing the concepts of system–environment
boundaries, signal input–output relation-
ships, signal and information processing,
system states, control, and hierarchies.
Albeit systems theory is valid for all sys-
tem types, it usually focuses on complex,
adaptive, self-regulating systems which are
termed ‘‘cybernetic.’’

Elegant, simple, and globally valid mod-
els are rare in biology as compared to
other fields of science. Few examples exist
where a function can be attributed to the

workings of a single small molecule or few
proteins, as in the case of hemoglobin for
the transport of gases in the bloodstream,
or bacterial chemotaxis [18].

In general, many genes and proteins
are involved in cellular responses to ex-
ternal stimuli. In general, biology follows
a reductionist approach by investigating
small, isolated parts of a cell, tissue, or or-
ganism; typically, biology tries to deduce
biological phenomena from molecular be-
havior, which often results in a simplistic
‘‘one gene for one function’’ approach.
However, since genetic analysis has shown
that the genotypes of different species are
mostly identical, it would appear that it is
the signal processing stage(s) on the way
from the genome to the phenotype – in
other words, an ever more elaborate reg-
ulation of gene expression [19] – which
carries the subtle particularities in the re-
spective genetic codes.

As a consequence, biological phenom-
ena should be explained within the
vocabulary of system theory, such as am-
plification, control, adaptation, sensitivity,
autoregulation, and error correction, tak-
ing an holistic view of the system under
consideration [20]. In short, Systems Biol-
ogy is required to uncover the laws of the
whole that cannot be inferred by delving
deeper into the details.

The systematic investigation of biolog-
ical matter comprises the understanding
and control of system structure and dy-
namics in the sense of systems theory and
cybernetics, respectively [1].

System structure denotes the identifica-
tion of the static connection topology and
regulatory relationships within the net-
work of genes, proteins, and other small
molecules that constitute the signal trans-
duction and metabolic pathways, as well
as the physical structure of organisms or
cells. Experimental techniques to elucidate
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the cells’ global system structure include
for example DNA microarrays [21], deep
sequencing [22], and protein–protein in-
teraction screens via yeast-two-hybrid [23]
or split-ubiquitin approaches [24]. System
dynamics refers to the qualitative and
quantitative evolution of the above network
over time. Dynamics include the tempo-
ral variation of molecule concentrations,
as well as the structure of the network it-
self. Examples of experimental techniques
to study cellular system dynamics in-
clude fluorescent imaging techniques to
monitor molecular dynamics and inter-
actions on the level of the individual
cell [25]. Moreover, mass spectrometry or
transcriptomics can be used to investigate
the collective behavior of the proteome or
gene expression in cells over time.

3
Why Are Biological Systems Different?

While biological systems must still be
based on the laws of physics, chemistry,
and thermodynamics [26], biology also in-
corporates the notion of organismal func-
tion. This notion represents the need for
survival and reproduction, as well as the
possibility to evolve in and adapt to chang-
ing environments, and it is this inherent
purpose that distinguishes biology signifi-
cantly from all other natural sciences [27].
Moreover, there is no distinct separation of
information storage and regulatory units.
Genes, for example, can regulate their own
expression by gene splicing [28].

Classical physics views the emergence
of every effect to be determined by a cause
residing in the past. Biological systems,
on the contrary, are teleonomic – that is,
they are oriented towards a state in the
future [17]. It was the insight of cybernetics
that purposeful activity can be described

through the use of circular mechanisms,
where the effect equals the cause. The
simplest example of a circular logic is a
feedback loop, in which the output of the
system is fed into its input again (see
Sect. 3.2).

Having these prerequisites in mind, the
concepts of systems theory and cybernet-
ics should be utilized, if there is a desire
to establish successful formal mathemati-
cal models in biology. The introduction of
circular causalities has far-reaching conse-
quences on the general design and global
properties of biological systems, such as
robustness, complexity, and control, all
of which are discussed in detail in this
chapter.

3.1
Biological Complexity

In order to comprehend the challenges
in Systems Biology, it is important first
to understand the origin of the complex-
ity encountered in Nature. For once, the
complexity within a system does not nec-
essarily come about as a consequence of
the number of its component. In physics,
the macroscopic state or the dynamics
of objects are often well described by a
few parameters or simple mathematical
equations. For example, although the tem-
perature of an object comes about due
to the thermal agitation of its individual
atoms, the average energy of the atoms
can be ascribed to a single, macroscopi-
cally measurable, quantity.

A complex system is one in which the
laws that describe its behavior are qual-
itatively different from those that govern
its units, such that new features emerge
when moving from one temporal, spatial,
or organizational scale to another. The sci-
ence of complexity is about revealing the
principles that govern the ways in which
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these new properties appear [29]. Thus, it
is rather the organization of the system
into irreducible, heterogeneous parts that
are highly structured and hierarchically or-
ganized on various spatiotemporal scales,
which makes a system become complex
or, in other words, ‘‘complicated’’ [30].

The notion of complexity is not well
defined amongst the various science disci-
plines. Information theory usually char-
acterizes complexity as the amount of
information needed to optimally predict
the behavior (or state) of the system based
on entropy measures [31]. Adami uses se-
quence complexity of biological genomes
to define the amount of information stored
about the environment [32]. Another viable
approach toward defining the complexity
of biological systems may be the identifica-
tion of the topological structure at a higher
level of large-scale organization in terms
of hierarchically organized networks [33].

Complex systems can show the emer-
gence of ordered macroscopic behavior,
termed self-organization. While biological
systems are ideal candidates to demon-
strate self-organization, the applicability of
its principles to elucidate biological phe-
nomena is, to date, rather limited. This
is due mainly to the fact that biological
systems require a re-definition of com-
plexity that is quite different from that
in physics. Biological systems are hetero-
geneous, modular, highly structured on
multiple irreducible spatiotemporal scales,
and also self-dissimilar, with each en-
tity usually having several functional and
regulatory properties. Nevertheless, the
individual components ‘‘. . . interact selec-
tively and nonlinearly to produce coherent
rather than complex behavior’’ [34].

One explanation for the emergence of
self-organization is the so-called ‘‘slaving-
principle.’’ Under certain conditions the
global, macroscopic behavior of a system

is governed by a few, slowly evolving
state variables, which ‘‘slave’’ all other
dynamics. In this way, the relevant de-
grees of freedom are largely reduced,
allowing the system to find its own struc-
ture – that is, to self-organize [35]. One use
of the slaving principle is the analytical
description of lasers, explaining the spon-
taneous, synchronous light emission by
the atoms in the lasing medium. Another
framework for the explanation of emer-
gent phenomena in multibody systems
is the notion of self-organized criticality
(SOC) [36], which was acclaimed to ex-
plain the frequent occurrence of long-tail
distributions in many natural phenomena.
SOC denotes the ability of open and dis-
sipative systems to display critical – that
is, scale-invariant – behavior even in the
absence of external pressures. However,
whilst this theory did not live up to its
promises of being universally applicable,
it is applied in earthquake, forest fire, or
avalanche models.

Carlson and Doyle introduced the the-
ory of highly optimized tolerance (HOT)
[37], which accounts for the intrinsic de-
sign of biological and engineered systems.
Such theory reflects the behavior of such
high-throughput, high-density systems,
which are faced with limited resources.
These systems show a high tolerance (i.e.,
robustness) against environmental param-
eter fluctuations, with the robustness be-
ing achieved at the cost of a high degree of
complexity through the addition of control
units to the system. Resource constraints
then call for an optimized trade-off be-
tween fault tolerance towards frequently
experienced perturbations and fragility to
rare, yet possible, events. Thus, there exists
a ‘‘conservation law of robustness’’ [38].

The complex design of the living cell is
often compared to the make-up of comput-
ers or today’s commercial aircraft. These



10 Systems Biology

man-made machines have a bewildering
complexity, and no man alone under-
stands all the parts and their interplay
in complete detail. Many of the strongly
interacting and irreducible complex func-
tions are there to automate, control, or
back-up operations.

These definitions elucidate the main
differences between systems describable
by SOC or HOT; the former theory relates
to scale-invariant and self-similar features,
while the latter deals with self-dissimilar
structures and sensitivities (dis-)appearing
on each scale of observation, such that the
degrees of freedom in these systems are
irreducibly many.

3.2
Global Properties of Biological Systems

Typically, systems thinking seeks univer-
sal properties for biological systems, link-
ing the emergence of complexity to general
design features. Such features can be used
as a guideline for abstract mathemati-
cal modeling by examining the principles
that are commonly shared between diverse
species. These properties, as discussed be-
low, show how biology and engineering
converge on a systems level view.

3.2.1 Robustness of Biological Systems
The fault tolerance or robustness of bio-
logical systems denotes the maintenance
of specific system functionalities, even in
the presence of fluctuations or a change
in environmental parameters [39, 40]. In
biology, this refers to the concept of home-
ostasis and the stability of developmental
control. Robustness is achieved through
the incorporation of regulatory control
loops into a system, thus shielding or
buffering the desired system functionality
from environmental influences. Robust-
ness is a relative system property: in order

to maintain a certain equilibrium, other
properties must evolve and adapt. There
is, therefore, a need to define which cellu-
lar functions change, and which resist as
a reaction towards a disturbance.

Most of the ‘‘complicatedness’’ encoun-
tered in biological systems is a direct
consequence of the implementation of
control schemes, rather than the core func-
tion itself. In particular, if robustness is
to be achieved for a wide range of distur-
bances, the control must have an equally
increasing variety, as stated in the ‘‘Law
of Requisite Variety’’ [10]. Consequently,
complexity serves simplicity in the sense
that the complicated control schemes are
hidden underneath the simple, yet reliable,
output [41].

Robustness in biological systems is usu-
ally achieved by various strategies, includ-
ing redundant or functionally overlapping
regulatory pathways [42], feedback loops
to regulate signal responses [43], or check-
points within the cell [44, 45]. All of these
control elements add to the total number
of components regulating cellular signal-
ing elements, while keeping the number
of phenotypic expression levels low [20].
Cellular checkpoints play important roles,
such as in mitosis [45, 46], in the cell cycle
[47], and during the early stages of embryo
development [48]. Bacterial chemotaxis is
an intensively studied example of a robust
behavior due to multiple feedback con-
trol [49, 50]. Examples of genetic buffering
to achieve robustness are shown by the
fact that only about 20% of genes in bud-
ding yeast are essential for viability [51].
To a certain extent, genetic buffering can
safeguard against environmental changes
or genetic defects. The simplest bacteria
(e.g., Mycoplasma pneumonia) may have
only a couple of hundred genes yet, despite
their unexpectedly complex transcriptome
organization (which includes antisense
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transcripts, alternative transcripts, and
multiple regulators per gene [52]) they
survive only within a narrow band of en-
vironmental parameters. In contrast, the
bacterium Escherichia coli possesses about
3000 genes, and is able to survive under
a variety of environmental conditions [30]
by activating additional control schemes
under environmental stress.

A further consequence of robustness is
that dynamical behavior in biological sys-
tems is coupled less to the parameters
themselves, and more to the overall sys-
tem structure. Previously, Von Dassow [53]
showed that robustness was the simplify-
ing criterion for determining the correct
topology of the segment polarity network,
producing a highly robust patterning over
a large range of parameter variation.

Robustness in complex systems comes
at the price of some fragility due to
tiny, yet rare, events. Indeed, a small re-
arrangement of some cellular signal path-
ways can often lead to a spectacular
failure – that is, impaired cell death. For
example, although cancer may be caused
through an accumulation of mutations
in the genetic code over the human life
span [54], the occurrence of cancer dur-
ing the reproductive years of a human
is rather rare. It appears that Nature
can cope well with this trade-off for the
benefit of robust and reliable ‘‘normal’’
functioning.

3.2.2 System Adaptation and Control
Adaptation is the ability of a system to
accommodate for varying external input
stimuli or disturbances in order to gain
and maintain the correct and optimized
output; this is usually achieved with the
help of feedback control. A well-studied
example of adaptation using integral feed-
back control is chemotaxis, in which bac-
teria adapt their movement not to the

absolute level of pheromones but rather
to the chemical gradient, only [18, 50, 55].
Another example is the activation of heat
shock proteins in E. coli under temperature
stress [56], which function as chaperones
for correct protein folding and the preven-
tion of unwanted protein aggregation.

Control is a recurrent design encoun-
tered in natural systems, which effec-
tively increases robustness, with the goal
of keeping certain values within prede-
fined physiological limits. It is possible
to distinguish between feed-forward and
feed-back system controls; the former is an
open-loop sequence of predefined actions
triggered by a certain stimulus, working
dependably only within strict ranges of
input stimuli, yet simple in design [57],
while the latter employs a closed-loop
design, which feeds part of the output
signal back into the system input. De-
pending on the sign of the feed-back,
positive feed-back (or autocatalysis) will
amplify the output signal, enhancing re-
liable sensitivity toward cellular decision
derived from noisy input signals [58],
whereas negative feedback usually sta-
bilizes the output around some desired
value by opposing any changes caused
by disturbances. For example, a combi-
nation of feed-back control schemes can
be used to stabilize the receptor presen-
tation of a cell to increase its sensitivity
toward a broad range of external lig-
and concentrations; this was demonstrated
in the case of erythropoietin receptor
signaling [59].

Although both types of control are
successfully employed in intracellular
signaling [60], both also bear fragilities.
Autocatalysis can lead to self-sustained,
unrestricted signal amplification, as ob-
served in uncontrolled tumor growth [61],
while ultra-stable homeostasis regulation
can cause large, possibly disturbing,
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transient signals in response to external
fluctuations [38].

Most often, biological systems use
combinations of open- and closed-loop
designs, basing their control action on
the absolute, accumulative or differential
value of the input stimulus, in this way
balancing both sensitivity and stability.

3.2.3 Modules and Protocols
Modules are subsystems characterized as
mostly self-contained entities with fixed
interfaces for external communication.
They are evolutionarily detached, possess-
ing their own identity, and have many
internal – but only few external – links for
information and matter exchange [27].

Modularity seems to be an important
concept in biology, probably stemming
from the evolutionary pressure for optimal
flexibility and the low chance of damage
spread. Spatially distinct entities, such as
organelles in the cell or metabolic units,
appear to be a recurrent scheme found
throughout various organisms. The gene
regulatory network in cells seems to be
organized in modules [62]. Interestingly,
modular design is a commonly found prin-
ciple in modern engineering, as it enables
the independent development and testing
of units before their integration into a com-
mon system. The benefits comprise sav-
ings in developmental and maintenance
costs, as well as the prospect of graceful
degradation rather than catastrophic fail-
ure, as errors are usually restricted to a
single module.

If the modular design of biological sys-
tems is a governing principle, this opens
up new possibilities for the simplification
of in vivo and in silico experiments. Mod-
ules would provide fixed levels of detail
and size, which are easily abstracted once
their functions are known. Moreover, with
the help of these core modules it would

be possible to build ever-more complex
models, without the need for segmenta-
tion of every level of detail [62].

Modules communicate by using proto-
cols; these are fixed, commonly agreed-on
rules that standardize communication
with their respective surroundings. In ad-
dition, protocols ensure error correction,
cellular coordination, and also evolvabil-
ity through the possibility of adding new
functions to a particular module. Protocols
have been shown to be an efficient means
for ensuring the hierarchical organization
of complex systems through their integra-
tion of different layers, thus reducing the
costs of information transmission [63]. For
example, negative feed-back is a powerful
module for the establishment of home-
ostasis. Similarly, gene regulation, mem-
brane potentials, or signal transduction
pathways can all be regarded as protocols
which are utilized by different biological
modules, such as the DNA, ion channels
or kinases, and phosphatases [38]. Elabo-
rate feed-back control protocols have been
robustly established for the spatiotempo-
ral development of various species [60,
64]. An extensive genome-wide analysis of
prokaryotic cell-cycle progression has re-
vealed a hierarchical control structure with
three to four master regulatory proteins
acting in a coordinated fashion [65].

Interestingly, the use of protocols on a
cellular level has striking similarities with
the way that modern computers communi-
cate via the internet. The internet employs
many protocols for persistent communi-
cation that can be ordered into a general
hierarchy, starting from the data link via
the network and transport to the appli-
cation layer. Popular examples of each
hierarchy are the reverse address resolu-
tion protocol (RARP) for the IP (internet
protocol) look-up and search of the com-
munication partner, the IP for the routing
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for the appropriate subnet of the data,
the TCP (transmission control protocol)
for the secure, error-free data exchange
and, finally, the application layer such as
the HTTP (hypertext transfer protocol) or
FTP (file transfer protocol) for retrieving
a web page or downloading files. The fact
that these protocols have been used for
decades, irrespective of the rapid and on-
going evolution of computer hardware and
software, highlights their importance.

4
Systems Biology Modeling

The word ‘‘model’’ derives from the Latin
modus – that is, ‘‘manner’’ or ‘‘measure,’’
and refers to the concept of represent-
ing causal relationships from real systems
in the language of mathematics. This
mapping often involves simplifications of
the original systems, with the hope of
gaining predictive power on experimental
results and explaining functional design
principles. Life is an emergent property

stemming from the interaction among
molecules, and cannot be reduced to the
individual properties of the molecules.
Modeling tries to infer and predict the
relations between molecules in terms of
causation – that is, it tries to establish
explanatory relationships of the spatiotem-
poral changes of matter [66].

Modeling and simulation have become
indispensable tools for gaining insights
into natural systems. In biology, they help
to bridge the gap between theory and
experiment. Often, biologists are faced
with the dilemma that experiments do
not provide sufficient data for theoretical
interpretation, while at the same time,
clues for new experiments are missing as
a consequence of lacking hypotheses [67].

Experimental results require correct
mathematical interpretation, and model
hypotheses require experimental proofs
[68]. The process of knowledge generation
is iterative in nature, and consists of two
feedback loops (see Fig. 1). Here, the ex-
perimental part employs high-throughput
techniques to obtain quantitative data

Model

Methods Observations

Knowledge
Generation

Hypothesis

Experimental
Design

Predictions

Match ?

No

Yes

Fig. 1 Schematic to the experiment–modeling loop for
knowledge generation in Systems Biology.
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relating to the system dynamics; the
data acquired are then compared with
predictions obtained from the mathemati-
cal model. In the case of failure – that is, in
the case of diverging results from model
and experiment – this process must be re-
peated by adjusting the old hypothesis and
thus reconciling the model with the new
results from the experiment.

As an example of this cycle of model
building, experiment, and model refine-
ment, Ideker et al. [69] have recently devel-
oped an integrated approach to construct,
test, confirm and refine the simulation
of the yeast galactose utilization network,
through the combined numerical simula-
tion and analysis of networks with system-
atic experimental perturbation and global
measurements.

The major guideline for optimal mod-
eling should be the concept of Occam’s
razor, which states that models should be
void of any redundant information. Yet to-
day, this paradigm needs also to be viewed
from the opposite aspect – models must
not be oversimplified, so as to miss the
essential clues of functionality of real life
systems. In particular, it is important to
note that modeling in biology must es-
tablish different concepts from those in
physics. The paradigm of nonlinear sci-
ence is that even simple systems can lead
to a dynamically rich behavior. Despite the
beauty of the simplicity of this idea, how-
ever, it must be realized that living systems
regulate their dynamics differently – that
is, through a complex make-up of intercon-
nected regulatory functions, a fact which
is often neglected or ignored [70]. Mod-
els in biology are usually heuristic; they
arise embedded in the process of biolog-
ical experiments, and are coupled tightly
to them. Information is, for example, de-
duced from a perturbation analysis of the
experimental system, and thus contains

assumptions regarding the causality and
the passage of time [70].

In general, experimental data must
be comprehensive with respect to four
aspects [57]:

• Factor: the need to capture the behavior
of all important target factors, such as
genes and proteins that play decisive
roles in the experimental system under
consideration.

• Item: this refers to the simultaneous
measurement of the necessary sets of
variables that are required for reliable
hypothesis building, such as transcrip-
tion level, molecule concentration, or
spatial location.

• Time and space: this refers to the need
for a sufficiently high sampling rate of
the experimental data to obtain a reason-
able resolution of the spatio-temporal
dynamics.

• Repetition: experiments need to be
repeated to obtain a statistically reliable
estimate for the biological variability and
other sources of error induced by the
experimental set-up.

The construction of a valid working
model of a biological system from experi-
mental data can be approached from two
directions:

• Bottom-up modeling: This is based on
the integration of established biologi-
cal knowledge on the dynamics of the
relevant biological components of the
system or regulatory network under
consideration. This attempt is useful
when most of the reaction partners are
known and their interaction dynamics
are understood. The research goal is
the establishment of an accurate com-
puter simulation that allows for: (1)
the analysis of the system dynamics;
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(2) the scan of parameter ranges that are
unattainable in experiments; and (3) the
prediction of unknown functionality or
interactions [57]. Attempts at bottom-up
modeling include the λ-phage decision
circuit [71] or the data-driven simulation
of a cancer cell [72].

• Top-down modeling: This approach
attempts to apply statistical analyses
to data from high-throughput experi-
ments derived, for example, from DNA
microarrays. Data mining techniques
search for clusters of coexpressed genes
as a consequence of cell state or an exter-
nal perturbation, such as the knockout
or overexpression of certain genes.

The working assumption for these meth-
ods is that coexpressed genes also share
common relationships with respect to
other biological processes. For example,
Müller et al. [73] showed, from clustering
analysis, how pluripotent stem cells are
under tight control by specific molecular
networks across species.

The result of a cluster analysis is the
construction of an interaction network of
genes or proteins, the topology of which
can hint at biological reasonable orga-
nization principles [33, 74, 75]. While
top-down modeling is well in line with
the need for holistic approaches, it has
been criticized for violating individual-
ity and locality in the cell. Although
cellular stimulus–response patterns are
highly coordinated, these patterns emerge
from individual protein–protein interac-
tions, which cannot be deduced from the
high-throughput data. Hence, the ques-
tion of gaining new biological knowledge
on individual genes or proteins from this
approach often remains open.

Although knowledge-based bottom-up
approaches of modeling possess a
certain appeal to biologists, successful

modeling needs to overcome the gaps
in understanding. Most protein–protein
interactions remain unknown, and the un-
derlying physics of interacting molecules
require better attention. Until now, the
influence of high molecule concentrations
in the subcompartments of a cell environ-
ment on reaction rates is largely unknown,
but the spatial distribution of reactants
and their molecular crowding may well
affect the reactions and their rates [76,
77]; an example of this is when explaining
the symmetry breaking process of mitosis
[78]. One particular challenge arises when
trying to identify the relevant components,
as this is very difficult due to the vast num-
ber of combinations of active molecules.
Hence, it remains unclear as to how
this approach can be scaled up to large
networks on the cellular or even tissue
level. Indeed, this situation presently
poses major difficulties for detailed
mathematical modeling in biology.

Regardless of the approach taken, there
is a need to define the level of model ab-
straction, complexity, and spatiotemporal
scale of the system under investigation.
Cellular processes have characteristic time
scales that range from milliseconds for
individual protein–protein interactions to
minutes for phosphorylation events, up to
hours, days, and years for changes in gene
transcription, cell growth, and gene mu-
tations, respectively. This has important
consequences for the appropriate choice
of model detail level. Processes that oc-
cur much faster than the time scale of
observation can be assumed to be in-
stantaneous, while slow processes can be
assumed to be quasi-static. As a conse-
quence, the level of abstraction leads to
certain dynamics being modeled and sim-
ulated in detail, whereas for other parts
the details can be neglected – for example,
due to low sensitivity towards specific
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parameter values. Recently, Busch et al.
[79] have used time-scale separation be-
tween fast protein signaling and slow
transcription dynamics to infer a dynamic
decision network for hepatocyte growth
factor-induced migration of keratinocytes.
On the time-scale of observation, all pro-
tein concentrations were assumed to be in
quasi-equilibrium, such that it sufficed to
focus on the change in gene regulation as
the decisive element of regulation.

The major goal of theory and model
simulations is the reverse engineering of
biological systems, which is ‘‘. . . the pro-
cess of analyzing a system to identify its
components and their interrelationships
and create representations of the system in
another form or at a higher level of abstrac-
tion’’ [80]. Despite major efforts in this
field [81], biological systems still pose a ma-
jor challenge towards reverse engineering,
due to the hidden complexities, inherent
robustness, and possibly suboptimal de-
sign of functional units. Circular causality
makes it difficult to distinguish between
cause and effect from biological data, and
all of this imposes ambiguities when at-
tempting to deduce the correct biological
‘‘wiring diagram’’ from the experimental
data. It is hoped that systems thinking in
biology, with its concepts of robustness, hi-
erarchy and modularity, in addition to the
necessary protocols, will provide detailed
bottom-up models with testable hypothe-
ses for model discrimination [39].

4.1
Network Biology

Network biology is the study of the
static organization of life as networks of
biological entities such as DNA, proteins,
RNA, and metabolites [33, 82].

The relationship between these entities
is depicted graphically, the result being a

set of nodes connected by edges. Usually,
the nodes represent the state variables of
the system (such as the molecule con-
centrations), while the connections define
the interaction between the nodes. The
networks are characterized by their con-
nectivity, path length, and clustering distri-
butions. Connectivity indicates how many
neighbors each node has on average, while
the path length denotes the average sep-
aration between arbitrarily chosen nodes,
and the clustering coefficient is a measure
of the grouping tendency of the nodes.

Network biology attempts to discover
universal design and organization princi-
ples, which govern the functioning and
evolution of intercellular and intracel-
lular networks [83, 84]. Biological net-
works appear to share certain topologies
that are best described as scale-free net-
works; these possess few highly connected
nodes, termed hubs, while many nodes
share only a few connections. Hence,
the connectivity distribution follows a
power-law: P(k) ∝ kn, where k and P(k)
denote the connectivity and distribution,
respectively, and n is the connectivity ex-
ponent. These networks appear if the new
nodes have a preferential attachment to
already highly connected hubs [85, 86], al-
though, interestingly, this type of complex
network also emerges in other aspects of
life and society, such as the worldwide web
and social interaction webs [87].

Network architecture and task are closely
linked. By comparing the topology of the
regulatory network in E. coli with the call
graph of the kernel of the Linux com-
puter operating system, Yan et al. showed
that both networks show a hierarchical
layout, despite having fundamentally dif-
ferent design principles [88]. The E. coli
network is optimized toward robustness,
with few global regulators at the top and
many downstream targets, whereas the
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Linux kernel is designed for code efficiency
and the re-use of software modules at the
cost of robustness, and has many regu-
lators controlling a small set of highly
connected generic functions. By using
high-throughput methods, it is possible to
draw ever more-detailed interaction webs
of protein–protein, metabolite, and gene
transcription networks. Experimental re-
sults obtained with yeast [89] and E. coli
[90] seem to support the view that both
metabolic and genomic regulatory net-
works show a hierarchical organization
with few recurrent subnetworks, termed
motifs, which hint at the existence of el-
ementary regulatory units [5, 74]. While
modules are discrete functional units that
are semi-detached from the whole sys-
tem, motifs comprise a set of genes or
metabolites that form recurring, signif-
icant patterns of interconnections, that
are inseparable from the remainder of
the system [87]. Subsequently, Ravasz
et al. showed the metabolic networks of
43 distinct organisms to have a modular
organization that was interconnected in a
hierarchical manner – a system-level cel-
lular organization that might be generic in
nature [91].

The need to investigate the intercon-
nections of genes–proteins and proteins–
proteins stems from the fact that the
genome of various species is quite sim-
ilar, despite it having been argued that the
evolution of ever more-complex species
is correlated with an increased functional
connectivity between a constant number
of genes. Motifs might provide a means to
increase the interconnectivity of existing
proteins, in this way creating new func-
tionalities. As noted by Ravasz et al:

‘‘This is likely one of several rea-
sons that the apparent complex-
ity of organisms can increase so
markedly without a corresponding

increase in gene number. An
attribute of proteins encoded by
the human genome is that they
have a richer assembly of domains
than do their counterparts in in-
vertebrates or yeast, and indeed
the assortment of domains into
novel combinations is likely an
important aspect of genome diver-
gence’’ [92].

Today, network analysis has opened
up new avenues in the global analysis of
diseases, and their mutual connections.
Such analysis allows for the identification
of the genetic basis of disease [93], and
can also reveal novel gene association
overlapping across common human
disorders, which in turn helps to unravel
the general patterns of human diseases
that are not clear from studies of the
individual conditions [94].

4.2
Dynamic Network Models

Despite the intuitive appeal of network bi-
ology for the structure identification of
biological systems, it is limited in the
sense that it does not include the tem-
poral dynamics of the system. Life is an
emergent property of the interaction of
cellular proteins. Hence, the dynamic in-
terplay occurring via chemical reactions
and changing cellular protein numbers is
essential to the cell function, and con-
stitutes the essence of many modeling
approaches in Systems Biology. Boolean
networks are an abstract, yet relevant, ap-
proach towards the inclusion of a temporal
evolution of large-scale networks, as they
offer a qualitative modeling approaches
to build and analyze simplified, but still
rigorous, dynamical models. Boolean net-
works are used for the elucidation of
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large-scale dynamic protein signaling net-
works, where it is assumed that the de-
tailed inclusion of, perhaps, concentration
gradients or the stochastic effects of pro-
tein concentrations, can be neglected in
favor of including a large number of play-
ers [95]. Each node of a Boolean network
can assume an ON/OFF value. Then, the
state of each node at the next time step
(t + 1) is deduced deterministically from
a logical Boolean function (i.e., AND, OR,
NAND . . . ), based on its current state and
external input [96]. Boolean networks have
been used successfully for the analysis
of protein and gene regulatory networks
[97], for the modeling of the epidermal
growth factor receptor (EGFR)/ErbB sig-
naling pathways [98], and apoptosis [99].

4.3
Reaction–Diffusion Models

Biochemical reactions can be considered
as the most fundamental processes in
cells, wherein the concentrations of the re-
acting species change subject to the other
molecule species involved within the re-
spective reactions. Ordinary differential
equations/partial differential equations
(ODEs/PDEs) are a natural choice for the
mathematical description of system dy-
namics with continuous system states in
time and space, respectively [6, 100]. They
are, therefore, ideally suited to describe
changes in concentrations in biochemi-
cal reactions, being the most widespread
formalism to model systems throughout
the various scientific domains. In biol-
ogy, they are widely used to describe
the time and space course of molecular
concentrations. In this case, differential
equations relate the rate of change of
a variable (protein substrate) to the cur-
rent state of other variables (reactant),
wherein the interaction between the

various reactants is modeled through
functional and differential relations. There
is a vast literature available on modeling
biochemical reactions based on differen-
tial equations, especially in the context
of metabolic processes (cf. Ref. [100] and
references therein).

In general, it is possible to distinguish
between purely time-dependent ODEs,
and more general PDEs, which addition-
ally include spatial dimensions. A PDE
describing the spatiotemporal evolution of
a system has the general form:

∂ψi(r, t)

∂t
= f

[
ψi(r, t)

]
︸ ︷︷ ︸

temporal evolution

+∇Di(r, t)∇ψi(r, t),︸ ︷︷ ︸
spatial Diffusion

(1)

where ψi(r, t) denotes the respective
system state variables of the various
molecules labeled by the subscript i. The
above equation reduces to an ODE in
the absence of spatial diffusion, that is,
Di(r, t) = 0. The term f [ψ i(r, t)] denotes
the respective synthesis rates, depending
on the various concentrations of ψ i(r, t)
and possibly external signals. It is often
comprised of the various, mostly non-
linear, interaction functions between the
system reactants based on the ‘‘law of
mass action,’’ which leads to, for example,
Michaelis–Menten-like enzymatic degra-
dation or the Hill-type cooperative activa-
tion [6, 100]. The organization of inter-
acting molecules within a cell implies the
concept of pathways, in which informa-
tion processing in the cell is organized. In
terms of mathematics, such a biochemical
network is then represented as a system of
coupled differential equations, as shown
above. It is those nonlinear interactions
that are essential for biological systems
to show nontrivial behavior such as mul-
tistability, hysteresis, or oscillations [43].
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A stability analysis of the system of coupled
equations is usually carried out to unravel
the qualitative behavior of steady-state so-
lutions and their stability, as well as the
occurrence of periodic solutions in space
and time [101]. As a matter of fact, the dy-
namic behavior of ODE systems depends
heavily on the reaction parameters of the
underlying chemical reactions. Therefore,
the estimation and identification of param-
eters from experimental data [102, 103],
as well as the optimal experiment design
to yield a maximal amount of new bi-
ological knowledge [104, 105], is a field
of active research in Systems Biology.
Due to the nonlinear interaction terms
f [ψ i(r, t)], an analytical solution of the dif-
ferential equations is usually impossible,
and solutions must be found via numerical
integration. A variety of numerical integra-
tion algorithms for ODEs and PDEs can be
found in the literature [106]. In addition,
various computer software packages have
been developed specifically for the simula-
tion and bifurcation analysis of nonlinear
systems, such as GEPASI [107], DBSolve
[108], Cell Designer [109], or a Matlab ex-
tension such as SB toolbox [110] or Potters
wheel [111].

The great success of modeling is its pre-
dictive power. From model simulations, it
is possible to obtain a better insight into
the regulatory logic, and it is also possible
to perform experiments in the computer
that otherwise were impossible. A good
example of this is the mitogen-activated
protein cascade model, as originally pro-
posed by Huang and Ferrell [112]. Here,
the pathway is highly conserved and im-
plicated in various biological processes,
conducting signals from the membrane to
the nucleus. It is composed of three ki-
nases that sequentially phosphorylate and
activate each other. By converting and sim-
ulating the rate equations into a system of

coupled ODEs, Huang and Ferrell showed
that this particular pathway architecture
could be used to convert a graded re-
sponse into a switch-like robust output,
appropriate for mediating processes such
as mitogenesis or cell fate induction.

The spatial aspect of the equation enters
the description due to the inclusion of a
diffusion term, where the diffusion term
Di(r, t) depends on space and time in
general. Alan Turing was the first to point
out such reaction–diffusion systems as a
possible explanation for morphogenesis
in natural systems, when he showed –
theoretically – that a system of reacting
and diffusing chemicals can evolve sponta-
neously to a spatially heterogeneous state
as a response to an infinitesimal small
forcing [113]. These pioneering studies
led to a new branch of research, and
many so-called ‘‘Turing systems’’ have
been proposed (though not finally proven)
to account for pattern formation in
developmental biology. Examples include
an explanation of the pattern formation
on snail houses [114], the modeling of
Drosophila embryogenesis [115], or the
coating patterns of animals [100]. The
importance of spatiotemporal inhomo-
geneities in molecular concentrations
and molecular crowding in signal trans-
duction pathways has also recently been
acknowledged [77, 116]. As a consequence,
cellular functions may also employ active
transport mechanisms to sustain reliable
cellular processes [117, 118].

The above ODE formalism fails in the
case of low molecule concentrations [119],
as the discrete and random nature of the
individual, elementary reactions between
molecules then becomes non-negligible,
showing an impact on a macroscopic scale
as fluctuations in the molecule concentra-
tion over time [120]. This chemical noise
becomes most significant in the regulation
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of gene expression, which is usually
accompanied with low copy numbers of
mRNA transcripts and the genes them-
selves [121]. Stochastic effects in cellular
pathways have been attributed to cause
phenotypic diversity in isogenetic popula-
tions of cells [122], or to play a major role
in the lysis-lysogeny decision circle of the
λ-phage [123].

4.4
Holism versus Reductionism: The Global
Dynamics of Networks

Currently, most Systems Biology ap-
proaches follow either a top-down or a
bottom-up approach. However, while both
have their unique motivation, they each
also hold certain criticisms. Typically, a
top-down approach allows for the holistic,
unbiased view of cellular events, albeit at
the expense of limiting detail level, thus
violating the individuality and locality that
are important in the understanding of cel-
lular processes. The bottom-up approach
aims at a detailed mechanistic and causal
understanding of biochemical networks,
but it is not yet been determined how
such studies of ‘‘isolate’’ signaling path-
ways can be scaled up to the cellular or
even tissue and whole organism levels. As
an interim solution, Huang and Ingber
[20, 124] have proposed the study of cellu-
lar behavior on the level of global network
dynamics to reveal any higher-order, col-
lective behavior of the interacting genes
and proteins. These authors have de-
scribed global network organization in
terms of a state space, spanned by the
expression levels of the whole genome, as
well as attractors providing a mathemati-
cal and molecular basis for an epigenetic
landscape. Genome-wide expression levels
cannot take up arbitrary values; instead,
they are tightly coupled to respective cell

states – that is, to the various cell types and
distinct, stable phenotypic states in a mul-
ticellular organism. Such stable network
configurations are referred to as attractor
states. Huang and Ingber have argued that
the attractors naturally capture the essen-
tial properties of cell behavior, such as the
mutual exclusivity of cell fates, robustness,
and all-or-none transitions in response to
a large variety of signals. As a proof of
principle, it was shown that HL60 cells
are capable of following different routes
into the same differentiated state. Sub-
sequently, upon the application of two
different stimuli, separate transcriptome
response transients were created which,
nevertheless, settled onto the same gene
expression pattern after several days [125].

This formal framework on the orches-
trated role of cellular gene network dy-
namics could serve as a potential expla-
nation for stem cell differentiation and
the reprogramming of differentiated back
into pluripotent stem cells [126], or even
cancer progression. The accumulation of
genetic mutations over time would distort
the attractor landscape such that it would
eventually lead to an altered cellular re-
sponse within the same cellular context
[124]. While the above suggestions are in-
tuitive and appealing, their value must still
be proven with respect to knowledge gain
on the level of individual genes and pro-
teins as potential targets for cell control
and intervention.

4.5
Modeling Resources and Standards

The development of a standardized com-
puter infrastructure is of utmost impor-
tance to manage the increasing amount of
knowledge relating to biological systems.
This supports the effective utilization of
resources and the exchange of models,



Systems Biology 21

ideas, and data. An integrative software
tool for Systems Biology should comprise
the following features for proper systems
understanding [67]. From a mathematical
point of view, these tools need to sup-
port different simulation algorithms, such
as deterministic and stochastic ODE and
PDE solvers, and should include analysis
algorithms for parameter estimation and
model discrimination.

From an experimental point of view,
a package should support a standardized
modeling language, while in terms of
software the simulation package should
run independently from the computer
platform, preferably on a computer grid
or cluster environment.

A number of simulation packages are
currently under active development, most
of them freely available. As a consequence
of the complexity encountered in bio-
logical systems, there is no integrative
software package presently capable of han-
dling all phenomena in signal transduc-
tion, metabolic pathways, or spatiotem-
poral simulations. Some of the currently
most versatile packages among many are
ECell [127], Virtual Cell [128], Cellware
[129], Cell Designer [109], or Smart Cell as
simulation packages for spatiotemporal
simulation [130].

Model building is a complex enterprise,
and is usually accomplished in collabora-
tion with scientists from different research
institutions. Serving the need for seamless
information exchange of computer-based
models, progress has been made to define
standardized biological ‘‘wiring diagrams’’
[131] together with a common description
language, SBGM [132]. Moreover, com-
mon standard mark-up languages based
on the XML format help in the unique def-
inition of biological entities, pathways, and
events for the rapid exchange of models be-
tween experimentalists and theoreticians.

The most common of these are CellML
[133], BioPAX [134], and the Systems Bi-
ology Markup Language, SBML [135]. The
Systems Biology workbench extends the
above approach by providing a standard-
ized application interface for researchers
to exchange not only model data and
results, but also the simulation tools them-
selves [136]. Another challenge lies in the
inherent modeling of the stochasticity of
inner cell processes.

The SSA (stochastic simulation algo-
rithm) from Gillespie is computationally
infeasible with an increasing number of
molecules, and the computational power
for exact stochastic simulations will be
immense. Consequently, different algo-
rithms have been developed, such as to
reduce the number of random variables
for simulation [137] or to allow larger time
steps to be taken as a justifiable error in the
respective reaction probabilities [138]. Sev-
eral program packages for the simulation
of stochastic molecular dynamics exist, in-
cluding StochSim [139] or Stocks [140].

Regardless of the modeling approach of
biological systems employed, there is al-
ways a need for parameter estimates of at
least a few constituents of the model. Be-
cause of the sheer amount of parameters
required for successful modeling, and the
huge number of experiments already per-
formed, the need to organize experimental
data has brought about several publicly
available databases of molecular proper-
ties, interactions, and pathways [141–143].
These provide an invaluable infrastructure
for future modeling efforts, enabling the
modeler to begin simulations from a cer-
tain degree of abstraction [144].

Spatiotemporal modeling will addition-
ally require information concerning the
physical structure of its model con-
stituents, as obtained using microscopy.
For these needs, the development of an
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Open Microscope Environment, which is
currently being built as a joint effort
among various research institutions, will
provide a unified data format and database
environment for consistently annotating,
storing, and retrieving five-dimensional
microscope images (four dimensions in
space and time, with additional color in-
formation) and exchanging them between
research institutions [145, 146].

5
Future Prospects of Systems Biology

The systematic generation and analysis of
quantitative experimental data slowly, but
definitely, is turning biology into branch
of science that is close to engineering.
Once the ‘‘language of the genes’’ – that
is, their syntax and their semantics – is
decoded [147], then theoretical knowledge
and experimental expertise will suffice to
draft and create synthetic model cells or
even organisms from scratch, on which
new drugs and cures can be tested in silico
before their possible assembly in vivo [148].

There is indeed the prospect that Sys-
tems Biology will change medical practice
by allowing the prediction of new com-
binatorial and/or personalized drugs for
diseases that currently are regarded as
severe, including Alzheimer’s, diabetes,
human immune deficiency virus (HIV),
or cancer [149]. Indeed, Systems Biology is
set to change today’s medicine from being
responsive to being predictive, preventive,
personalized, and participatory; this situa-
tion is often referred to as ‘‘P4 medicine’’
[150]. For example, viewing cancer from
a systemic level as a robust system might
provide physicians with a framework for
future anticancer strategies [61]. As a con-
sequence, anticancer therapies might be
developed from mathematical modeling to

first identify the peculiarities of an hetero-
geneous tumor cell population, and then
try to predict and control cell activity by de-
tecting and using specific fragile points for
each tumor cell type [151]. As a first suc-
cess in this line, novel, computationally
predicted anticancer drugs targeting the
ErbB family of receptor tyrosine kinases
have been developed from in silico models
of signaling pathways, and are currently
undergoing clinical trials [152, 153].

5.1
Synthetic Biology

The aim of Synthetic Biology is to
(re-)design new or already existing biolog-
ical parts, devices, and systems with the
help of mathematical modeling and engi-
neering approaches; in other words, Syn-
thetic Biology is the technological counter-
part of Systems Biology. Yet, progress in
Synthetic Biology goes hand in hand with
current progress in cellular and molecular
biology, as well as genetics and associated
fields of engineering and computer sci-
ences. It is hoped that the combination
of this knowledge will enable the creation
of essentially artificial systems, by employ-
ing biological design principles with new
combinations of building modules from
existing (sub)cellular systems [154, 155].
In fact, the first steps in the creation of
artificial genomes and their implantation
into host organisms has already achieved
a degree of success [156].

Synthetic Biology departs from a
component-based approach by viewing a
living system as a programmable entity
that is composed of interacting modules,
each having particular functions and
which exchange their information via
protocols. The results of current research
have suggested that these modules are
(possibly) limited in number, albeit their
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specific tasks are diverse. Synthetic Biol-
ogy implies a scientific agenda on a higher
level of abstraction towards identifying
and categorizing the various module types
within the cell and across organisms,
and investigating their interactions on
the basis of the modular rather than the
molecular interaction. From an engineer-
ing point of view, this means that modules
can be taken out of their current evolu-
tionary context and assembled differently,
in the sense of versatile building blocks.

Ideally, Synthetic Biology starts with
mathematically inspired designs, such as
a system of coupled differential equations
with desired dynamic properties, which
are then translated into the biological and
chemical realities as promoters, enzymes,
or metabolites within a cell. Along this
line of thought, the workings of switches
and bistable systems of stabilizing control
loops have been systematically recast in
terms of chemical reaction schemes [148,
157]. Different authors have described
the fundamental principles of building
logic circuits into the language of gene
regulatory networks. For example, Tyson
et al. presented a systematic overview
of designs for biological control systems
such as switches, sniffers or buzzers, and
combined their mathematical description
with experimental findings [43]. Likewise,
Hasty et al. have reviewed the possibilities
of constructing gene circuits which serve
various functions such as autoregulation,
repression, or logical gates [157]. In a first
de novo design study of a gene regulatory
network, Guet et al. systematically ana-
lyzed the phenotypic behavior of different
parameter and topology combinations in a
genetic regulatory network [158]. These au-
thors constructed various logic gates, such
as NAND, NOR, and NOT IF, through the
combination of three nodes together with
five promoters. As an important result,

it was found that not only the parameter
values but also the network topology was
important in order to determine unam-
biguously the computational function of
the systems.

Recently, efforts have been undertaken
to establish a Biological Information
System (BIS) which extends genomic
databases with quantitative mechanistic
knowledge [70]. The BioBricks foundation
(http://bbf.openwetware.org/), founded
by engineers and scientists from the
Massachusetts Institute of Technology
(MIT), Harvard and the University of
California, San Francisco (UCSF), have
set up a free, publicly available repository
of standardized biological parts for the
common re-use and combination to de-
sign de novo functions in living organisms.
Bio-Bricks constitute promoters, proteins,
RNA-coding sequences, or transcriptional
terminators; physically, they are DNA
sequences stored on a circular plasmid dis-
tributed by the Registry of Biological Parts
(http://www.partsregistry.org). By using
such data in an integrated form, it will
become possible to build refined synthetic
systems by checking on key molecules and
replacing complex pathways with effective
reaction parameters, thus defining biolog-
ically meaningful reaction subsets from
the large amount of possible reactions.

5.2
Conclusions: Where Are We?

Although, today, Systems Biology is still
at the start of a new branch of science,
the road ahead is clearly marked and
commonly agreed on by many people. Yet,
the problems associated with all of the
processes lie in the details.

To date, most experimental biosciences
are method-driven, and pay much
attention to detail and the production,
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in extreme cases, of large amounts of
data which are out of context. Theoret-
ical sciences, on the other hand, are
principle-driven; they neglect important
details and thus come up with theorems
and models that are ‘‘out of this world.’’
As a consequence, research groups
must learn to focus on the important
areas of their respective systems under
investigation, while also determining
which part to measure in detail and which
part to neglect:

• Biologists need to adopt abstract think-
ing, and to trust in the language of
mathematics and necessary simplifica-
tion.

• Physicists must learn to abolish over-
simplified thinking [159] and become
used to the analysis of strongly inter-
acting systems with many degrees of
freedom.

• Engineers must gain a deeper un-
derstanding of their systems under
investigation beyond numerical solu-
tions, for example, in terms of process
optimization.

The necessary unification of these vari-
ous branches of science will, for the sake
of the advancement of Systems Biology,
make communication skills among scien-
tists ever more important. Previous years
of ‘‘isolated’’ research have diversified the
scientific vocabulary and methods, making
it sometimes very difficult to mediate and
discuss interdisciplinary goals and meth-
ods. Moreover, all scientists must learn
to place their own research into a much
wider frame of interdisciplinary research
and research teams.

Despite this increased complexity of
the systems under study, one of the
greatest challenges in Systems Biology
is to bridge the gap between detailed

kinetic protein signaling models (of
up to 100 different molecules) and
large-scale -omics approaches, thereby
providing – simultaneously – data on
thousands of genes or proteins. At
present, the means by which the detailed
models can be scaled up to include more
variables and to bridge several time scales
(from minutes to hours or even days)
is largely unknown. In contrast, it is
very difficult to move from the statistical
analysis of -omics data to the prediction
of individual protein interactions. Yet,
taken together, despite not being able
to bridge this modeling gap, there is a
clear need for an intuitive understanding
of the relevant elements of the system
under study. Vilar et al. [160] have argued,
using the example of the lac operon,
that ‘‘. . . even in the ‘postgenomic
era,’ (modeling) will still rely more on
good intuition and skills of quantitative
biologists than on the sheer power of
computers.’’

Today, it is strongly believed that Sys-
tems Biology will promote a unification
of the sciences, especially if the scientific
community continues to work ‘‘holisti-
cally’’ in a joint effort of biology, math-
ematics, physics, and engineering. Only
then might a new generation of scientists
with an interdisciplinary training emerge,
whose everyday business will comprise not
only working in the laboratory but also
performing data analysis and model sim-
ulations, in addition to exchanging their
data and results freely through publicly
available databases. With the establish-
ment of new experimental techniques and
mathematical tools, and asking the right
questions, it is clear that the systems ap-
proach to biology will become a major
success. Indeed, it will change not only
modern life sciences, but also views on life
itself.
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14 Mesarović, M.D. (1968) System Theory
and Biology – View of a Theoretician, in:
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