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Metabolic Profiling of Plants by GC–MS
Camilla B. Hill and Ute Roessner

1.1
Introduction

For numerous organisms, complete genomes have been sequenced [1–3] and
transcriptome [4–6] and proteome studies [7–9] have been described, but only
recently have metabolome analyses using mass spectrometry (MS)-based platforms
attracted attention. Recent advances in analytical technologies have now allowed the
analysis of complex metabolic structures in an organism.
Metabolomics is currently a very powerful tool for characterizing metabolites and

metabolic pathways and aims to provide a “snapshot” of the biochemical state of a
biological sample. The number of metabolites is expected to be significantly lower
than the number of genes, proteins, or mRNAs, which reduces the complexity of the
sample. However, the total number of metabolites in the plant kingdom is estimated
to be between 100 000 and 200 000, which makes cataloging of all metabolites a
challenging task [10,11]. The metabolic composition of plants is likely to be altered
during different physiological and environmental conditions and can also reflect
different genetic backgrounds. Metabolomics aims to provide a comprehensive and
unbiased analysis of all metabolites with a low molecular weight present in a
biological sample, such as an organism, a specific tissue, or a cell, under certain
conditions [12].
Analytical strategies for plant metabolite analysis include metabolic profiling,

metabolite target analysis, and metabolic fingerprinting and are chosen according to
either the focus of the research or the research question [12–14]. Metabolite profiling
aims to detect as many metabolites as possible within a structurally related
predefined group, for example, organic acids, amino acids, and carbohydrates.
Metabolic profiling does not necessarily aim to determine absolute concentrations
of metabolites but rather their comparative levels. In contrast, the aim of targeted
metabolite analysis is to determine pool sizes (e.g., absolute concentrations) of
metabolites involved in a particular pathway by utilizing specialized extraction
protocols and adapted separation and detection methods. A third conceptual
approach in metabolome analysis is metabolic fingerprinting, which generally is
not intended to identify individual metabolites, but rather provides a fingerprint of
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all chemicals measurable for sample comparison and discrimination analysis by
nonspecific rapid analysis of crudemetabolite mixtures. Depending on the analytical
strategy, a number of different instrumental platforms with different configurations
may need to be utilized to ensure optimal data acquisition [15].
Because of the diversity of structural classes of metabolites, ranging from primary

metabolites such as carbohydrates, amino acids, and organic acids to very complex
secondary metabolites such as phenolics, alkaloids, and terpenoids, there is no
single methodology that can measure the complete metabolome in one step. It is
necessary to combine different techniques to detect all metabolites in a complex
mixture [13]. It is possible that two samples, although very different, may show the
same metabolite profile using one strategy. Therefore, only by employing a combi-
nation of different instrument platforms and techniques can the suite of differences
in the metabolite profiles be revealed.
Several extraction methods and instrument platforms have been established to

analyze highly complex mixtures, and each has to be chosen according to
particular interests. These include nuclear magnetic resonance (NMR), Fourier
transform ion cyclotron resonance mass spectrometry (FT-ICR-MS or FT-MS),
and mass spectrometry (MS) coupled with liquid chromatography (LC) [liquid
chromatography–mass spectrometry (LC–MS)] or gas chromatography (GC)
[gas chromatography–mass spectrometry (GC–MS)]. Section 1.2 focuses on the
application of GC–MS to plant metabolomics studies; the advantages and dis-
advantages of other instrument platforms for metabolomics were discussed in
Refs. [16–19].
The coupling of GC to electron impact ionization (EI) MS is possibly the oldest

hybrid technique in analytical chemistry and is considered to be one of the most
developed, robust, and highly sensitive instrument platforms for metabolite analysis
[20–22]. GC–MS offers high chromatographic separation power, robust quantifica-
tion methods, and the capability to identify metabolites with high fidelity, and is
therefore often referred to as the “gold standard” in metabolomics [23]. GC–MS-
based methodologies were among the first to be applied to metabolite profiling and
target analysis, thus offering established protocols for machine setup, data mining,
and interpretation. Compared with other instrument platforms, it offers the lowest
acquisition, operating, and maintenance expenses [24]. Furthermore, both commer-
cially and publicly available EI spectral libraries facilitate the use of GC–MS as a
metabolomics platform [25].
Historically, the first chromatographic separation techniques were developed

between 1940 and 1950 by Martin and Synge, who won the 1952 Nobel Prize
for their invention of partition chromatography [26,27]. They further contributed
substantially to the development of GC and high-performance liquid chromatogra-
phy (HPLC). During the 1970s, the term “metabolite profiling” was coined and was
first applied in studies of steroid and steroid derivatives, amino acids, and drug
metabolites [28,29] in 1971. In the following years, metabolite research developed
toward the utilization of metabolic profiling by GC–MS as a diagnostic technique in
medicine to monitor metabolites present in urine [30]. But it was not until the 1990s
that metabolomics found its way into plant research. In the late 1990s, Oliver et al.
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were the first to introduce the terms metabolome and metabolomics [31]. About a
decade ago, one of the first approaches for high-throughput, large-scale, and
comprehensive plant metabolite analysis was conducted by Roessner et al.
[21,32,33], who analyzed more than 150 compounds simultaneously within a single
potato (Solanum tuberosum) tuber sample using GC–MS, and Fiehn et al. [20], who
analyzed 326 distinct compounds from Arabidopsis thaliana leaf extracts of four
genotypes by GC–MS, and identified �50% of these compounds. Several studies
have now implemented this approach, and it has been applied to various plant
species and tissues, including A. thaliana leaf tissue [13], phloem exudates of
buttercup squash (Cucubita maxima) [34], tomato leaves and fruit (Solanum lyco-
persicum) [35,36], and barley leaf and root tissue (Hordeum vulgare) [37]. GC–MS
applications include studies that associate certain metabolites with biotic [38] and
abiotic stress responses [39–42], definemetabolic differences of genetically modified
plants [32,33,35,43,44], or integrate genetic and metabolite data for plant functional
genomics [45–49].
GC is the preferred technique for the separation of low molecular weight

metabolites which are either volatile or can be converted into volatile and
thermally stable compounds through chemical derivatization before analysis
[15]. This includes especially primary metabolites, such as amino acids, amines,
sugars, organic acids, fatty acids, long-chain alcohols, and sterols, whereas LC–MS
analysis is favored for detecting a broader range of metabolites, including
secondary metabolites such as alkaloids, terpenes, flavonoids, glucosinolates,
and phenylpropanoids [50,51]. Derivatization is usually needed to increase
volatility and to reduce the polarity of polar hydroxyl (��OH), amine (��NH2),
carboxyl (��COOH), and thiol (��SH) groups [25]. Exceptions include plant
volatiles [52] and metabolites present in essential oils [53], which can be injected
directly into the GC column.
The greatest challenge of any metabolomics project is to make sense of the wealth

of data that has been produced during metabolite analysis. Targeted metabolite
analysis employs optimized measurements of preselected metabolites, which are
characterized by their mass spectrum and retention time/index, and allows the fast
and easy construction of the data matrix [25,54]. It is a highly quantitative method
with a very high detection rate for known metabolites, which must be available in
purified form. To quantify metabolites, either external calibration (which requires
preparation of standard solutions) or internal calibration (based on the relation
between the peak area of the compound and that of an internal standard) can be
employed [16].
In contrast, untargeted analysis distinguishes all mass peaks above a certain

threshold by their mass spectrum and retention time/index, with the majority of
them not being identified, and can be used to detect novel metabolic markers. In this
case, data mining is more complex than in targeted analysis and requires bio-
informatics and statistical tools to avoid labor-intensive and time-consuming
manual data handling.
In our laboratory, we routinely use GC–MS as a tool to investigate tolerance

mechanisms of plants, particularly cereal crops such as wheat, rice, and barley,
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under abiotic stress, including drought, cold, salinity, and nutritional deficiencies or
mineral toxicities (www.acpfg.com.au; www.metabolomics.com.au).
Plant metabolite profiling using GC–MS involves the steps depicted in Figure 1.1.
The most relevant sections of this experimental workflow are detailed in Section

1.2. The chapter then turns to the implementation of GC–MS in plant metabolo-
mics, portraying various examples of applications of this technology. The final
section reports new developments in GC–MS technology.

Figure 1.1 Workflow showing the general strategy and experimental steps of a GC–MS
experiment.
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1.2
Methods and Protocols

1.2.1
Sample Preparation

Sample preparation can be an important source of variations [24], and sampling
and extraction methods vary according to the type of biological sample and the
targeted class(es) of metabolites. This has to be considered for subsequent data
analysis and interpretation of the experiment, since such biases may have an impact
on the accuracy and precision of the information gained from the experiment. In
particular, when studying plant samples, the influences of environmental factors
such as harvesting time (day/night, season), light conditions, temperature, develop-
mental stage of the plant or plant cells, the type of harvested tissue/plant organs, and
genetic factors have to be considered [55].

1.2.1.1 Sampling
The first step in sample preparation for plant metabolite analysis is harvesting of
plant tissue by rapid freezing in liquid nitrogen (�196 �C) and storing at �80 �C, or
freeze-drying for longer storage until used. This will stop all enzymatic processes
and avoid degradation and modification of metabolites in the sample. More
uncommon ways to quench the metabolism involve the use of cold methanol,
perchloric acid, or nitric acid [56]. Harvesting should be performed at the same time
of day for all samples to minimize biological variations due to diurnal changes of
metabolism. The number of replicates is dependent on the experimental sources of
variation, but since the biological variation generally exceeds the analytical variation,
a minimum of three to six biological replicates per line is recommended [57,58].
Technical replicates ensure that the effect of instrument variations during the
analytical run are minimized.

1.2.1.2 Homogenization and Extraction
Before extraction of metabolites, the plant tissue has to be homogenized to a fine
powder to allow the solvent to penetrate the tissue to extract metabolites effectively.
This is typically done using one of the following methods: grinding with a mortar
and pestle using liquid nitrogen [44,59], milling in a ball-mill with precooled holders
[20], or using ULTRA-TURRAX tissue homogenizers [21,35,60].
The next step in sample preparation is the extraction of plant metabolites, which

has to be optimized to ensure minimal losses of metabolites due to enzymatic
conversion or chemical degradation. Blank samples containing only extraction
solution and no metabolite extract should be derivatized along with other samples
and analyzed in each analytical run to identify contaminants, which are then
excluded from further analysis. Additionally, pooled samples are prepared by a
combination of aliquots from each biological sample as suggested by Sangster et al.
[61]. These are used to produce a set of replicates, which are analyzed together with
the real samples at the beginning, at the end, and randomly throughout the
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analytical run. Therefore, all metabolites of the real samples are present in the
(pooled) reference samples, which can be used to normalize the metabolite levels in
the real samples. Furthermore, using principal component analysis (PCA), the
quality of the data set can be inferred from the clustering of the pooled quality
control samples (see Section 1.2.4). Since the quality control samples are replicates
of the same sample, they should have very similar values for their principal
components, which ensure that instrument sensitivity and chromatography during
the analytical run are not changed significantly.
Internal standards are compounds that are not present in the biological sample

(e.g., stable isotope-labeled compounds) and are included before or during metabo-
lite extraction. In the case of targeted analysis, stable isotope-labeled internal
standards that have chemical properties identical with those of the target metabolites
are often used.

1.2.1.3 Procedure for Polar Extraction of Metabolites
The procedure is outlined in Figure 1.2. Weigh 30� 3mg (the amount depends on
the origin of the sample and needs to be confirmed for each tissue type) of frozen
sample plant tissue into a 2ml soft tissue homogenizing tube with 1.4mm ceramic
beads (Bertin Technologies) (1), and add 0.5ml of 100% methanol extraction
solution to the plant sample (2). Record exact sample weights. Perform homogeni-
zation for 1� 30 s at 6000 rpm using a high-throughput tissue homogenizer
(Precellys 24, Bertin Technologies). Following incubation for 15min at 70 �C in a
thermomixer at 850 rpm (3), centrifuge the sample for 10min at 14 000 rpm at room
temperature (RT) (4). Transfer the supernatant into a new 1.5ml reaction tube (5a)
and add 0.5ml of 50% aqueous methanol solution containing internal standards

Figure 1.2 Experimental procedure for homogenization and polar extraction of plant metabolites
for GC–MS profiling.
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(20 ml per sample from a stock solution containing 0.2mg/ml [13C]sorbitol and
1mg/ml [13C]valine in 100% methanol) to the pellet (5b). After a second homoge-
nization (6) and centrifugation step (7), pool the supernatants and transfer 50ml
aliquots (again, the amount needs to be confirmed for each tissue type for optimal
analysis) into glass vial inserts suitable for GC–MS analysis (8). Dry all resulting
aliquots in vacuo using a vacuum concentrator (9). For a subsequent GC–MS analysis,
derivatize the sample immediately before analysis (see Section 1.2.3).Note: Prepare a
sufficient amount of backup samples. Store the dried sample aliquots in plastic bags
filled with silica gel beads at RT. For long-term storage, sample aliquots should be kept
under argon to avoid oxidation and degradation of metabolites.

1.2.2
Chemical Derivatization: Methoxymation and Silylation

A variety of derivatizing agents with different properties have been developed,
including alkylation, silylation, esterification, and acylation reagents [17,62]. Trime-
thylsilylation is a commonly used method to derivatize a broad range of metabolites,
including sugars, sugar alcohols, amines, amino acids, and organic acids, in order
for them to become volatile and thermally stable [21]. A two-step derivatization
method involving oximation followed by silylation is commonly applied for GC–MS
metabolite analysis: First, carbonyl groups are converted into the corresponding
oximes using hydroxylamine or alkylhydroxylamine reagents (such as O-methyl-
hydroxylamine hydrochloride, MeOx) to stabilize sugars in the open-ring conforma-
tion [16,17] (Figure 1.3 a). Oximes exist as two (syn and anti) stereoisomers, and
therefore are oftenpresent as twopeaksper compound in the chromatograms (denoted
Mx1 andMx2). This is followed by trimethylsilylation using silylating reagents such as
N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) þ 1% trimethylchlorosilane
(TMCS, a catalyst of the reaction), or alternatively N,O-bis(trimethylsilyl)trifluoroa-
cetamide (BSTFA) þ 1% TMCS, which replace active hydrogen in polar functional
groups such as ��OH, ��COOH, ��NH, and ��SH with a TMS [��Si(CH3)3] group
(Figure 1.3b). TMS derivatives are sensitive to moisture, which may cleave TMS
derivatives. In contrast, tri-tert-butyldimethylsilyl (TBDMS) derivatives, which use
N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) as a derivatization
reagent, aremoremoisture resistant [63], but show a significant increase inmolecular
weight, which may lead to only partial derivatization due to steric hindrance [25].
Note: To ensure optimal sample stability, derivatization should be performed immedi-
ately before sample injection.

1.2.2.1 Procedure for the Chemical Derivatization of Plant Extracts
In our laboratory, a Gerstel MPS2XL GC–MS autosampler performs the derivatiza-
tion procedure immediately before injection. Add the samples and the derivatization
reagents (MeOx and BSTFA) to a glass vial and then place them in the autosampler
tray. The autosampler mixes the sample with derivatization reagents automatically
using the following program for derivatization using TMS. Plant extracts were
derivatized for 120min at 37 �C using 20ml of MeOx solution (30mg/ml MeOx
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dissolved in pyridine) per sample. This was followed by trimethylsilylation with
40 ml of BSTFAþ 1% TMCS per sample for 30min at 37 �C. Finally, 2 ml of
retention time standard mixture [0.029% v/v n-dodecane, n-pentadecane, n-
nonadecane, n-docosane, n-octacosane, n-dotriacontane, and n-hexatriacontane
dissolved in pyridine; Sigma) per sample was added before injection into the GC
column. Note: To prepare the MeOx solution, weigh 30mg of MeOx in a reaction
tube and after addition of 1ml of pyridine heat the mixture for 5min at 50 �C to
dissolve the MeOx. Store the solution at RT for up to 1 month and avoid moisture.
Caution: the derivatization reagents are extremely toxic and should be handled
under a fume hood while wearing gloves.

1.2.3
GC–MS Analysis

Components are separated on the basis of differential partitioning between amobile
gas phase (typically helium) and a solid stationary phase (typically based on silicone
polymers), which is bound to the inner surface of a fused-silica tube [18,64]. In the
ion source, analytes are ionized by EI, creating distinct fragmentation patterns for
each component. GC–MS traces of plant metabolites are commonly acquired using
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Figure 1.3 Chemical derivatization reactions commonly used for GC–MS-based plant metabolite
analysis. (a) Methoxyamination of a carbonyl group. (b) Trimethylsilylation of a hydroxyl group
and an amino group and tri-tert-butyldimethylsilylation of a carboxyl group.
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a gas chromatograph coupled with either a single-quadrupole (QUAD), time-of-
flight (TOF), or ion-trap (TRAP) mass analyzer, which separates the fragment ions
according to theirm/z values [20,21,50]. QUADs are comparably simple but versatile
mass analyzers that consist of a set of four parallel metal rods that create an
oscillating electric field when radiofrequency (RF) and DCvoltages are applied to the
rods [65]. Ions are separated depending on the stability of their trajectories through
the electric field between the four rods. GC–QUAD-MS provides a large dynamic
mass range of 2–4000Da/e, but with a mass resolution around 1 : 1500 nominal
mass accuracy and slow scan speeds compared with GC–TOF-MS [64,66]. Only
recently have rapid-scanning QUADs been introduced, offering scan speeds of
10 000 amu/s [67].
In GC–TOF-MS instruments, bundles of ions are accelerated to high kinetic

energy by an electric field and are separated along a flight tube as a result of their
different velocities, depending on their m/z ratio [50,68]. GC–TOF-MS offers a
higherm/z accuracy than conventional GC– QUAD-MS, which is important for the
identification of unknowns [17]. Furthermore, GC–TOF-MS gives data acquisition
rates with narrow high-resolution chromatographic peak widths (0.5–1 s), and
therefore allows a higher sample throughput with shorter analysis times compared
with QUAD- and TRAP-MS [50,66]. This is combined with a nominal mass
resolution similar to that of a QUAD-MS [17].
TRAP instruments work by trapping and sequentially ejecting ions of successive

masses [50]. Both QUAD and TRAP instruments are limited by low resolution;
however, TRAPs are capable of reactionmonitoring, which scansmasses slowly over
a predefined mass range to perform a second fragmentation step. This can facilitate
compound identification and increases the mass resolution [50,65].

1.2.3.1 Procedure to Acquire GC–MS Data
In our laboratory, GC–MS traces are typically acquired using an Agilent 5975C gas
chromatograph coupled with an Agilent Triple-Axis QUAD detector, operated by
Chemstation software (Agilent). Samples are placed in random order on the sample
tray and are analyzed along with several blank and pooled reference samples (see
Section 1.2.1.2). Inject 1 ml of derivatized sample into the GC column using a hot
needle technique with a 10 ml Hamilton syringe. Operate the injector in the splitless
mode isothermally at 230 �C. Use helium as the carrier gas with a flow rate of 1ml/
min. Perform chromatographic separation on a 30m VF-5MS column [with a 10m
Integra guard column of 0.25mm i.d., 0.25 nm film thickness (Varian)]. Fix the MS
transfer line to the quadrupole at 280 �C, the EI ion source at 250 �C, and the MS
QUAD at 100 �C. Tune the mass spectrometer according to the manufacturer’s
protocols using tris(perfluorobutyl)amine (CF43).
Perform GC–MS analysis of plant tissue extracts using the following oven

temperature program: set the injection temperature at 70 �C, followed by a 7 �C/
min oven temperature gradient to a final 325 �C, and then hold for 3.6min at 325 �C.
The GC–MS system is then temperature equilibrated for 1min at 70 �C before
injecting the next sample. Ions are generated by a 70 eV electron beam at an
ionization current of 2.0mA and spectra are recorded at 2.91 scans per second with
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an m/z scanning range of 50–550 amu. Retention time locking (RTL) of the
chromatographic peak of mannitol before the sample run ensures repeatable
retention times across the systems regardless of operator, detector type, and column
maintenance. Note: For optimal sample analysis, GC–MS settings, including the
injection temperature and the oven temperature gradient, have to be optimized and
tailored for each type of plant sample and type of targeted metabolite class(es).

1.2.4
Data Preprocessing and Export

After the acquisition of mass spectra, the data sets have to be preprocessed, which
includes the reduction of background noise, adjusting for baseline shifts and
machine drift, peak alignment, peak detection, and mass spectral deconvolution,
before they are subjected to searching against compound databases [69]. Software
packages for effective in silico data preprocessing include the commercial software
packages AnalyzerPro (SpectralWorks), Masshunter (Agilent), Xcalibur (Thermo-
Fisher Scientific), and the freely available AMDIS (National Institute of Standards
and Technology, Gaithersburg, MD, USA) (NIST) software (Table 1.1). The software
detects component peaks in the chromatograms and calculates the relative amount
by integration of the peak area below the peak, usually relative to the unique m/z of
internal standards (standardization) [70]. To make the data suitable for statistical
analysis (see Section 1.2.4.3), normalization has to adjust the data for experimental
errors during sample preparation and changes in instrument sensitivity during the
analytical run. Furthermore, retention time index (RI) systems based on either
alkanes [71] or fatty acid methyl esters [72] are used for correct peak assignment,
which depends on the relative elution of a compound between two RI standards.
Compounds are identified by matching the RI and mass spectra of each compound,
to minimize false peak assignment due to retention time shifts during the analytical
run [73]. Automated calculation of the RI for all compounds and automated mass
spectral deconvolution are implemented in most current software packages.

1.2.4.1 Procedure for Postacquisition Data Preprocessing
In this section, the data processing procedure using the commercially available
AnalyzerPro software package (SpectralWorks, current version: 2.5.1.7) with the
fully integrated NIST05 mass spectral search program (NIST) is described.

1) Import all data files into the AnalyzerPro (�.swx) format.
2) Create a manual RI ladder by creating a �.csv file with alkane specifications

(name/RI/RT).
3) Set up qualitative data processing of all data files of the pooled reference samples

using a number of parameters in the “Processing Method” of AnalyzerPro. For
targeted analysis, the use of the default settings is recommended: minimum
masses¼ 4; area threshold¼ 500; height threshold¼ 1%; signal-to-noise ratio
¼ 3; width threshold¼ 0.01min; resolution¼ very low; scan windows¼ 3;
smoothing¼ 3. The masses of m/z 73 (TMS), 147 (TMS-O-DMS), and 207
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(column bleed) appear in nearly every plant chromatogram after derivatization
with MTSFA and therefore have to be excluded from further analysis. Leave the
box for target component searching unchecked, and specify a library and the
confidence threshold for targeted analysis. Note: It is important to adjust peak
picking parameters according to the quality of the chromatogram (e.g., peak
width, signal-to-noise ratio, and resolution) to be able to pick as many compo-
nents as possible that are present in the biological sample; furthermore,
deconvolution and peak picking parameters have to be optimized to avoid false
positives (for a review on the quality of peak picking using different software
programs, see [79]).

4) Generate a target component library (TCL) of the pooled reference sample file
with the most deconvoluted components. The TCL contains a list of (identified)
components of this representative chromatogram and has to be additionally
specified by the target ion and ion ratios of the second and third most abundant
ions (fill inmanually). Additionally, perform background subtraction by choosing
a blank sample data file to remove contaminants and components not present in
the biological sample.

5) Enable and configure the Matrix Analyzer plug-in. Enable the box for target
component searching. Match all components found in the other chromatograms
against the TCL using the same initial parameter settings.

6) After processing of all data files, the Matrix Analyzer plug-in report can be
accessed via the “reports” tab. Save the data matrix in one of the specified formats
(�.csv or �.xls) for further data mining (see Section 1.2.4.2).

7) Control the quality of the raw data. Ensure that peaks are accurately identified
and peak areas are correctly integrated.

8) Normalize the data by dividing the integrated peak areas of all detected metabo-
lites by the peak area of the internal standard and by the sample weight (in
grams).

1.2.4.2 Data Analysis and Statistics
Following data preprocessing and normalization, the data are typically logarithm
transformed to minimize possible effects of outliers [80,19]. Subsequently, effective
statistical discriminant analysis is applied to the data set to extract biologically
relevant information. This aims to find patterns or relationships within the data to
extract the information needed to generate scientific hypotheses, which have to be
further tested using Student’s t-test and analysis of variance (ANOVA). Metabolite
data can be mined using different pattern recognition methods to separate the data
into classes, either knowing that classes exist, using supervised learning algorithms,
or in the absence of any advanced knowledge, using unsupervised learning
algorithms [81].
Univariate analysis is the simplest statistical method and is carried out with only

one variable at a time. Basic univariate statistical measures are mean, variance,
standard deviation, covariance, and correlation [82]. Multivariate statistics deal with
the analysis of multiple variables simultaneously, and include unsupervised classi-
fication methods such as PCA, hierarchical cluster analysis (HCA), and self-
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organization mapping (SOM) and supervised approaches such as partial least
squares (PLS) to classify metabolites [15]. HCA and PCA are most widely used
for comparison and visualization of similarities and differences between data sets.
Additionally, tools displaying data sets on metabolic pathway maps are often used
to visualize metabolic profiles, and can also be combined with gene expression
profiles [83].

1.2.4.3 Procedure for Postacquisition Data Analysis
There is a huge amount of different commercially and freely available software
packages to explore data sets statistically. Many statistical tests and classification
methods, including PCA, PLS, and HCA, can be performed using The Unscrambler
statistical software (CAMO) or using scripts integrated in the R software environ-
ment (www.r-project.org). Furthermore, normalization using internal standards and
sample weight, log transformation, and statistical analyses can be performed using
designed R scripts and Excel macros that are well documented and freely available
at Metabolomics Australia (http://code.google.com/p/ma-bioinformatics/). Only
recently have web-based metabolomic data tools such as MetaboAnalyst been
made available; this combines several complex data analysis techniques including
data processing, normalization, statistics, and pathwaymapping and is freely available
on a web server (www.metaboanalyst.ca; [84]). Further information is available in
separate chapters on data analysis and multivariate statistics (Sun and Weckwerth,
Chapter 16) and metabolite clustering and visualization (Kaever et al., Chapter 14).

1.3
Applications of the Technology

Numerous applications have been reported in which GC–MS-based metabolomics
has been used to investigate metabolites and pathways that are differentially
regulated due to genetic or environmental perturbations. There have been extensive
reports and reviews describing how GC–MS-based metabolite profiling has been
employed to study plant metabolism in great detail [19,50,85]. Here, wemention just
a few examples of research areas where metabolomics has already made a
contribution.
Metabolite profiles generated by GC–MS can be used as biochemical readouts to

classify organisms according to genetic and environmental stimuli and to identify
the differences and similarities between the different conditions. As described in
this chapter, GC–MS can generate hundreds of data points and, regardless of
whether those data points can be referred to a knownmetabolite or not, the presence
and relative abundance of those data points can be related to genetic background and
environmental conditions similarly to a signature. DNA sequences are still the
standard used for the identification of genetically different individuals. However, it
is known that the biochemical readout of individuals even with similar genomes will
be different with environmental changes. Therefore, metabolomics has already been
successfully applied to classify genetically similar individuals grown at different
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locations (provenance) or under different conditions. An example where metab-
olomics has been used to determine the geographical origin of samples was
presented by Choi et al. [86], who used 1H NMR-based metabolite profiling in
combination with multivariate analysis to classify 12 Cannabis sativa cultivars based
on the region they were grown (see also Chapter 3 by Choi et al.). Extensive studies
on comparisons of metabolite profiles of plants grown in different conditions have
been carried out. For example, the metabolomes of plants grown in unfavorable
conditions such as abiotic and biotic stresses can increase our understanding of how
plants respond and adapt to harsh environments. Researchers aim to understand
how plants have evolved mechanisms to deal with stress and especially how some
plants perform better than others. Abiotic stresses including cold, frost, heat,
drought, and salinity cause massive losses in crop yields every year. An under-
standing of stress tolerance mechanisms and the transfer of those mechanisms to
commercial crop varieties will reduce agricultural losses. Contributions made by
metabolomics approaches to learning about the physiology and biochemistry of
plants in different stress conditions have been reported, for example, for cold and
heat stress inArabidopsis [87], salinity in rice [88], Lotus japonicus [89], and barley [90],
and water deficiency in Arabidopsis [91].
Metabolomics as a tool to characterize a plant chemically is becoming increasingly

important for risk assessments of genetic modifications. Genetic alterations can
have an impact not only on the visible phenotype but also on the biochemical
composition of the cells, potentially leading to effects that are unexpected on the
basis of current genetic or biochemical knowledge [92,93]. There have been a
number of reports where the introduction or deletion of a gene has altered
metabolism and therefore metabolite concentrations compared with wild-type
controls [32,33,43]. It has also been demonstrated that the introduction of the
same gene into different species could result in differential changes of the
metabolomes [43]. A substantial equivalence concept is a framework for safety
evaluations where existing crops and foods are taken as the baseline considered as
being safe, and the properties of any new foods and crops are compared with the
baseline. Therefore, it is important to monitor the metabolomes (and all other cell
products) of genetically engineered plants and compare them with the natural
variation of metabolomes of their wild-type counterparts [93,94].
The last example mentioned here is the application of metabolomics in breeding

and quantitative trait loci (QTLs) analysis, which is recognized to have enormous
potential. Often agronomic traits are controlled by many genes or QTLs potentially
residing on different chromosomes but their expression works together as a network
determining that particular phenotype or trait. Especially if the trait of interest is
based on a metabolite of interest (e.g., vitamins or essential amino acids), the
utilization of metabolomics as a strategy to link phenotypes with QTLs has already
been demonstrated in a number of different species [46,47,95]. Now that metab-
olomics technologies have become faster and cheaper, it is possible to analyze huge
numbers of compounds simultaneously in a large genetic mapping population. This
new approach of combining conventional genetic methods such as QTL mapping
with omics technologies such as transcriptomics, proteomics, and metabolomics,

16j 1 Metabolic Profiling of Plants by GC–MS



also called genetic genomics, will allow the assessment of a large number of traits
simultaneously and ultimately the identification of the function of underlying gene
networks [58].

1.4
Perspectives

GC–MS-based metabolomics is still considered the workhorse for metabolite
profiling of plants upon changing conditions, with numerous advantages over
other analytical platforms such as robustness and high separation power and
reproducibility. However, we need to be open to new and emerging developments
utilizing GC–MS technology that will improve the current capabilities of GC–MS
plant metabolomics. These improvements can be manifold, for example, increasing
the number of compounds detectable as well as identifiable or increasing the speed
of analysis for a higher throughput. Multidimensional or GC�GC–MS has already
been successfully introduced to and applied in a number of metabolomics appli-
cations. The technology is well established for the analysis of volatiles in, for
instance, wine [96], oil components of different origin [97,98], and fragrances
[99]. So far, the analysis of semivolatiles or nonvolatiles in plant extracts using
two-dimensional GC–MS has not been explored. However, first successes have been
reported in the medical field [100].
To increase the speed of GC–MS analyses without reducing the separation

power or deconvolution efficiency, fast-scanning mass spectrometers have been
introduced in combination with fast heating and cooling GC ovens. Before
utilizing fast GC or MS technology for any plant metabolomics applications, a
careful investigation of the balance between the time of analysis and the number
of sufficiently separated compounds needs to be carried out. Plant-derived extracts
are extremely complex and also contain a huge numbers of sugars, including
mono-, di-, and trisaccharides, which often produce the same or very similar mass
spectra. This means that these compounds can only be separated chromato-
graphically in order to identify and quantify them with confidence. However,
increasing the rate of temperature change may reduce the separation power and
therefore increase the coelution of compounds with similar mass spectra, so
the trade-off between speed and number of detectable compounds needs to be
established.
Additionally, to improve the GC–MS technology for better derived data, GC–MS

only allows the detection of a few hundred metabolites and therefore limits the
picture to be drawn in a biological and biochemical context. To increase our
understanding of the biological system in question, as many metabolites as possible
need to be analyzed. Therefore, GC–MS technology is a complementary analytical
platform to others such as LC–MS, capillary electrophoresis (CE)–MS, and NMR
spectroscopy [19]. Finally, to understand the system in question from a holistic
viewpoint, it is important to interrogate metabolomics data with any other measur-
able traits such as genome sequence, transcript and protein expression, metabolic
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fluxes, anatomic and physiological parameters, and also growth and performance
upon any genetic or environmental stimuli.
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