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Theory for Stretchable Interconnects  
  Jizhou     Song   and     Shuodao     Wang       

    1.1  
Introduction 

 A rapidly growing range of applications demand electronic systems that cannot 
be formed in the conventional manner on semiconductor wafers. The most promi-
nent example is stretchable electronics, which has a performance equal to estab-
lished technologies that use rigid semiconductor wafers, but in formats that can 
be stretched and compressed. It enables many application possibilities such as 
fl exible displays  [1] , electronic eye camera  [2 – 4] , conformable skin sensors  [5] , 
smart surgical gloves  [6] , and structural health monitoring devices  [7] . There are 
primarily two directions to make stretchable electronics. One is to use intrinsically 
stretchable materials such as organic materials  [8 – 13] . However, the electrical per-
formance of organic semiconductor materials is relatively poor comparing with 
the well - developed, high - performance inorganic electronic materials. The other 
direction to achieve stretchable electronics is to use conventional semiconductors, 
such as silicon, and make the system stretchable. The main challenge here is to 
make silicon - based structures stretchable since the brittleness of silicon makes 
it almost impossible to be stretched. Many researches bypassed this diffi culty by 
using stretchable interconnects  [14 – 22] . 

 One of the most intuitive approaches to develop stretchable interconnects is to 
exploit out - of - plane defl ection in thin layers to accommodate strains applied in the 
plane. Figure  1.1  illustrates some examples of this concept. In the fi rst case (Figure 
 1.1 a)  [17, 24, 25]  of stretchable wavy ribbons, the initially fl at ribbons are bonded 
to a prestrained elastomeric substrate. The prestrain can be induced by mechanical 
(or thermal) stretch along the ribbon directions. Releasing the prestrain causes a 
compression in the ribbon, and this compression leads to a nonlinear buckling 
response and results in a wavy profi le. When the wavy structure is subject to 
stretches, the amplitudes and periods of the waves change to accommodate the 
deformation. In the second case (Figure  1.1 b) of popup structure  [26] , the ribbons 
can be designed to bond the prestretched elastomeric substrate only at certain 
locations. When the prestrain is released, the ribbon on the nonbonded regions 
delaminates from the substrate and forms popup profi le. Compared to Figure  1.1 a, 
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this layout has the advantage that the wavelengths can be defi ned precisely with a 
level of engineering control to have higher stretchability.   

 Combining the stretchable interconnects in Figure  1.1 a (or Figure  1.1 b) with 
rigid device islands, an interconnect - island structure  [16, 19, 20, 22]  can be 
developed to accommodate the deformations. Mechanical response to stretching 
or compression involves, primarily, deformations only in these interconnects, 
thereby avoiding unwanted strains in the regions of the active devices. Lacour 
 et al .  [16]  and Kim  et al .  [19]  developed a coplanar mesh design by using the 
wavelike interconnects, which are bonded with the substrate. Although such a 
coplanar mesh design can improve the stretchability to around 40%, the stretch-
ability is still small for certain applications. Kim  et al .  [20]  developed a nonco-
planar mesh design (Figure  1.1 c), consisting of device islands linked by popup 
interconnects for stretchable circuits, which can be stretched to rubber - like levels 
of strain (e.g., up to 100%). To further increase the stretchability, serpentine inter-
connects  [14, 15, 19 – 22]  can be used. Compared to the straight interconnects, the 
serpentine ones can accommodate larger deformation because they are much 
longer and can involve large twist to reduce the strains in the interconnects. 

     Figure 1.1     SEM images of (a) stretchable 
wavy ribbons, (b) popup structure, (c) 
noncoplanar mesh design with straight 
interconnects, and (d) noncoplanar mesh 
design with serpentine interconnects. 

 (Reprinted with permission from Ref.  [15]  
Copyright 2007 American Institute of Physics 
and Ref.  [23]  Copyright 2009 American 
Vacuum Society).   

(a) (b)

(c) (d)
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Figure  1.1 d shows a SEM image of serpentine interconnects used in the nonco-
planar mesh design. 

 For serpentine interconnects, there are no theoretical work, and many research-
ers have developed numerical models to study their deformations due to their 
complex geometries  [14, 15, 19 – 22] . The related review is not the focus of this 
chapter. Here, we will review the theoretical aspects related to the designs in 
Figure  1.1 a – c. Mechanics of stretchable wavy ribbons (Figure  1.1 a) is described 
in Section  1.2 . Analysis for small and large strains and width effect are discussed 
in this section. Section  1.3  describes the mechanics of popup structure (Figure 
 1.1 b). Section  1.4  reviewed the mechanics of interconnects in the noncoplanar 
mesh design (Figure  1.1 c). Interfacial adhesion and large deformation effect are 
also discussed in this section.  

   1.2  
Mechanics of Stretchable Wavy Ribbons 

 The fabrication of stretchable wavy ribbons is illustrated in Figure  1.2 . The fl at 
ribbon is fi rst chemically bonded to a prestrained compliant substrate. When the 
prestrain is released, the ribbon is compressed to generate the wavy layout through 
a nonlinear buckling response. These wavy layouts can accommodate external 
deformations through changes in wavelength and amplitude, which is also shown 
in Figure  1.2 .   

   1.2.1  
Small - Deformation Analysis 

 Several models  [28, 29]  have been developed to explain the mechanics of stretch-
able wavy ribbons under small deformations. For example, Huang  et al .  [29]  
developed an energy method to determine the buckling profi le. The thin ribbon 
is modeled as an elastic nonlinear von Karman beam since its thickness is much 
smaller compared with other characteristic lengths (e.g., wavelength). The sub-
strate is modeled as a semi - infi nite solid because its thickness ( ∼ mm) is much 
larger than that ( ∼  μ m) of fi lm. The total energy consists of the bending energy  U  b  
and membrane energy  U  m  in the thin fi lm and strain energy  U  s  in the substrate. 

 For a stiff thin fi lm (ribbon) with thickness  h  f , Young ’ s modulus  E  f  and 
Poisson ’ s ratio  v  f  on a prestrained compliant substrate with prestrain  ε  pre , Young ’ s 
modulus  E  s , and Poisson ’ s ratio  v  s , the wavy profi le forms with the out - of - plane 
displacement:

   w A kx A
x= ( ) = ⎛

⎝
⎞
⎠cos cos1

12π
λ

    (1.1)  

  when the prestrain is released. Here,  x  1  is the coordinate along the ribbon direc-
tion,  A  is the amplitude,   λ   is the wavelength, and  k     =    2  π  /  λ   is the wave number. 
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 A  and   λ   (or  k ) are to be determined by minimizing the total energy. The bending 
energy  U  b  can be obtained by

   U L
E h w

x
x

E h A
Lb

f f f fd

d
d= ⎛

⎝⎜
⎞
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=∫0

3 2

2

2

0

4 3 2

4 0
1

24 3λ
π

λ

λ

    (1.2)  

  where  L  0  and   E Ef f f= −( )1 2ν  are the length and plane - strain modulus of the thin 
fi lm, respectively. 

 The membrane strain  ε  11 , which determines the membrane energy in the 
ribbon, is related to the in - plane displacement  u  1  and out - of - plane displacement 
 w  by  ε  membrane     =    d u  1 /d x  1     +    (d w /d x  1 ) 2 /2    −     ε  pre . The membrane force  N  membrane  is given 
by   N E hmembrane f f membrane= ε . The interfacial shear is negligible  [29]  and the force 
equilibrium equation becomes d N  11 /d x  1     =    0, which gives a uniform membrane 
force and therefore a uniform membrane strain:

   ε π
λ

εmembrane pre= −
2 2

2

A
    (1.3)   

     Figure 1.2     Schematic illustration of the process for fabricating buckled, or  “ wavy, ”  single 
crystal Si ribbons on a PDMS substrate.  (Reprinted with permission from Ref.  [27]  Copyright 
2009 American Vacuum Society).   
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 The membrane energy  U  m  in the fi lm can then be obtained by

   U L N x E h
A

Lm f f pred= = −⎛
⎝⎜

⎞
⎠⎟∫0 11 11

0

2 2

2

2

0
1 1

2

1

2λ
ε π

λ
ε

λ

    (1.4)   

 The strain energy in the substrate is obtained by solving a semi - infi nite solid 
subjected to the normal displacement in Eq.  (1.1)  and vanishing shear on its 
boundary, yielding

   U E A Ls s= π
λ4

2
0     (1.5)  

  where   E Es s s= −( )1 2ν  is the plane - strain modulus of the substrate. 
 Energy minimization of the total energy with respect to the amplitude  A  and 

wavelength   λ  , that is,  ∂ ( U  m     +     U  b     +     U  S )/ ∂  A     =     ∂ ( U  m     +     U  b     +     U  S )/ ∂   λ      =    0, gives

   λ π
ε
ε0

1 3

02
3

1= ⎛
⎝⎜

⎞
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= −h
E

E
A hf

f

s
f

pre

c

,     (1.6)  

  where

   εc
s

f

= ⎛
⎝⎜

⎞
⎠⎟

1

4

3
2 3

E

E
    (1.7)  

  is the critical strain for buckling. When  ε  pre     <     ε  c , no buckling occurs, and the ribbon 
remains fl at. When  ε  pre     >     ε  c , the ribbon buckles such that the membrane strain 
remains a constant  ε  membrane     =     −  ε  c . The (maximum) bending strain is equal to the 

maximum curvature times the half thickness  h  f /2, that is,   ε π
λbending f= 2 2

2
Ah . The 

peak strain  ε  peak  in the fi lm is the summation of membrane and bending strains. 
In most cases of practical interest, the bending strain is much larger than the 
membrane strain. For example, the membrane strain is only 0.034% for the 
Si ribbon ( E  f     =    130   GPa,  v  f     =    0.27) on PDMS substrate ( E  s     =    1.8   MPa,  v  s     =    0.48). 
Therefore, the peak strain can be approximated by

   ε ε ε εpeak bending pre c≈ = 2     (1.8)   

 Because the magnitude of critical strain is very small, the magnitude of the peak 
strain  ε  peak  is much smaller than the prestrain  ε  pre . For example,  ε  peak  is only 1.8% 
for the Si/PDMS system when  ε  pre     =    23.8%. This provides an effective level of 
stretchability/compressibility of the system. 

 For the buckled system subjected to the applied strain  ε  applied , the above results 
can be obtained by simply replacing the prestrain  ε  pre  by  ε  pre     −     ε  applied . The wave-
length and amplitude become

   λ π
ε ε

ε
= ⎛

⎝⎜
⎞
⎠⎟

=
−

−2
3

1
1 3

h
E

E
A hf

f

s
f

pre applied

c

,     (1.9)  
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  and the peak strain in the ribbon is

   ε ε ε εpeak pre applied c≈ −( )2     (1.10)    

   1.2.2  
Finite - Deformation Analysis 

 The wavelengths in Eqs.  (1.6)  and  (1.9)  are constant and strain - independent, and 
have been widely used in high precision micro and nano - metrology methods  [30, 
31] . However, when the prestrain is large, the experiments  [32 – 34]  showed that 
the wavelength decreases with increasing prestrain. Figure  1.3  clearly shows this 
dependence for the Si/PDMS system. Jiang  et al .  [34]  and Song  et al .  [35]  pointed 
out that the strain - dependent wavelength is due to the fi nite deformation (i.e., large 
strain) in the compliant substrate and established a buckling theory that accounts 
for fi nite geometry change (i.e., different strain - free or stress - free states for the 
ribbon and substrate) as shown in Figure  1.4 , nonlinear strain - displacement rela-
tion and nonlinear constitutive model for the substrate to explain this fi nite defor-
mation effect.   

     Figure 1.3     Stacked plane - view AFM images of buckled Si ribbons (100   nm thick) on PDMS 
for different levels of prestrain.  (Reprinted with permission from Ref.  [35]  Copyright 2008 
Elsevier Ltd).   
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 The out - of - plane displacement of the buckled thin ribbon can be represented by

   w A
x

A
x= ⎛

⎝
⎞
⎠ = ′

+( )
⎡

⎣
⎢

⎤

⎦
⎥cos cos

2 2

1
1 1π

λ
π
ε λpre

    (1.11)  

  in the strain - free confi guration (middle fi gure, Figure  1.4 ) as well as in the relaxed 
confi guration (bottom fi gure, Figure  1.4 ). The coordinate   ′x1 in the middle fi gure 
is related to  x  1  in the bottom fi gure by   ′ = +( )x x1 11 εpre . 

 The thin ribbon is still modeled as a von Karman beam. Using similar approach 
in Section  1.2.1 , the bending energy and membrane energy in the fi lm can be 
obtained as

     Figure 1.4     Three sequential confi gurations 
for the thin fi lm/substrate buckling process. 
The top fi gure shows the undeformed 
substrate with the original length  L  0 , which 
represents the zero strain energy state. The 
middle fi gure shows the substrate deformed 

by the prestrain and the integrated fi lm, 
which represents zero strain energy state for 
the thin fi lm. The bottom fi gure shows the 
deformed (buckled) confi guration.  (Reprinted 
with permission from Ref.  [35]  Copyright 
2008 Elsevier Ltd).   
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   U
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+( )π
ε λ

ε
4 3 2

4 0
3 1

1     (1.12)  

  and
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  respectively, where (1    +     ε  pre ) L  0  is the initial length of strain - free Si thin ribbon 
(middle fi gure, Figure  1.4 ). 

 The geometric and material nonlinearity are considered in the modeling of 
substrate. All the governing equations are in terms of the coordinates for the 
strain - free confi guration of PDMS substrate (i.e.,  x  1  and  x  3  in Figure  1.4 ). The 
Green strains  E IJ   in the substrate are related to the displacements  u  1 ( x  1,  x  3 ) and 
 u  3 ( x  1,  x  3 ) by

   E
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x
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    (1.14)  

  where the subscripts  I  and  J  are 1 or 3. To account for the material nonlinearity, 
the Neo – Hookean constitutive law is used to represent the substrate

   T
W

E
IJ

IJ

= ∂
∂

s
    (1.15)  

  where  T IJ   is the second Piola – Kirchhoff stress, and the strain energy density  W  s  

takes the form   W
E

J
E

Is
s

s

s

s

=
−( )

−( ) +
+( )

−( )
6 1 2

1
4 1

32
1ν ν

. Here  J  is the volume 

change at a point and is the determinant of deformation gradient  F iJ  ,   I1 is the trace 
of the left Cauchy – Green strain tensor  B IJ      =     F Ik F Jk   times  J   − 2/3 . The force equilib-
rium equation for fi nite deformation is

   F TiK JK J( ) =
,

0     (1.16)   

 The perturbation method is used to fi nd the solutions for the substrate, and the 
strain energy is obtained by Song  et al .  [35]  as

   U
E A A

Ls
s= +⎛

⎝⎜
⎞
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π
λ

π
λ3

1
5

32

2 2 2
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  where  L  0  is the original length of the substrate. 
 Minimization of the total energy gives the wavelength and amplitude

   λ
λ

ε ξ ε ξ
=

+( ) +( )
≈

+ +( )
0

1 3
0

1 31 1 1 1pre pre

, A
A

    (1.18)  

  where   λ   0  and  A  0  are, respectively, the wavelength and amplitude in Eq.  (1.6)  
from small - deformation analysis, and   ξ      =    5 ε  pre (1    +     ε  pre )/32. Contrary to the small -
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 deformation theory, the wavelength decreases with  ε  pre , but the amplitude increases 
with  ε  pre . Both wavelength and amplitude agree well with experimental data and 
fi nite element simulations without any parameter fi tting as shown in Figure  1.5 a.   

 The membrane and bending strain can be obtained as

   ε

ξ

ξ
ε ε ξ ε

ε
ε

ξ

membrane c bending c
pre

pre

= −
+

+( )
= +( )

+
−

+1
3

1
2 1

1

1
1 3

1 3

, 33
1

1 3

+( )ξ
εc

    (1.19)   

 For large prestrain, the peak strain, which is summation of  ε  membrane  and  ε  bending , is 
given by

   ε ε ε ξ
εpeak pre c

pre

≈ +( )
+

2
1

1

1 3

    (1.20)   

 Figure  1.5 b shows  ε  peak  and  ε  membrane  as a function of  ε  pre . Both the membrane 
and peak strains agree well with fi nite element analysis. Compared to the peak 
strain, the membrane strain is much smaller and negligible. Compared to the 
prestrain, the peak strain is much smaller, and therefore the system can provide 
an effective level of stretchability/compressibility. For example, for  ε  fracture     =    1.8%, 
the maximum allowable prestrain is obtained as  ∼  29% by  ε  peak     =     ε  fracture , which is 
almost 20 times larger than  ε  fracture . 

 For the buckled system subjected to the applied strain  ε  applied , Song  et al .  [35]  
obtained the total energy of the system using the perturbation method and gave 
the wavelength and amplitude

   ′′ =
+( )

+( ) + +( )
′′ ≈

−
λ

λ ε
ε ε ζ

ε ε0
1 3

1

1 1
applied

pre applied

f
pre app, A h llied

pre applied

( ) −
+ + +( )

ε
ε ε ζ

c 1

1 1
1 3     (1.21)  

     Figure 1.5     (a) Wavelength and amplitude (b) membrane and peak strains of buckled Si 
ribbons (100   nm thick) on PDMS as functions of the prestrain.  (Reprinted with permission 
from Ref.  [35]  Copyright 2008 Elsevier Ltd).   
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  where   ξ      =    5( ε  pre     −     ε  applied )(1    +     ε  pre )/32. Figure  1.6   a shows the wavelength and ampli-
tude as a function of applied strain for a buckled Si/PDMS system formed at 
the prestrain 16.2%. Both amplitude and wavelength agree well with experimental 
data and fi nite element simulations. As the tensile strain increases, the wavelength 
increases, but the amplitude decreases. Once the tensile strain reaches the pre-
strain plus the critical strain, the amplitude becomes zero and further stretch of 
 ε  fracture  will fracture the fi lm. Therefore, the stretchability is given by  ε  pre     +     ε  fracture     +     ε  c . 
The membrane and peak strains in the ribbon are obtained as

   ε ζ
ζ

ε ε ε ε ε
ε

membrane c peak pre applied c
appl= − +( )

+( )
≈ −( ) +1 3

1
2

1
1 3 , iied

pre

+( )
+

ζ
ε

1 3

1
    (1.22)   

 Figure  1.6 b shows  ε  peak  and  ε  membrane  as functions of  ε  applied  under the prestrain 
16.2%. The analytical solutions agree well with fi nite element simulations. 

 The compressibility is the maximum applied compressive strain when the peak 

Si strain reaches  ε  fracture , and it is well approximated by   
ε

ε
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ε
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c
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c
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4
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43

48 4
+⎛

⎝⎜
⎞
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− . 

Figure  1.7  shows the stretchability and compressibility versus the prestrain. The 
stretchability increases with increasing the prestrain, while the compressibility 
decreases. When the prestrain is 13.4%, the stetchability and compressibility is 
equal.    

   1.2.3  
Ribbon Width Effect 

 The analyses in the above sections assumed that the thin ribbon width is much 
larger than the wavelength such that the deformation is plane strain. However, 
this assumption may not hold for small - width ribbons. Figure  1.8  shows the 

     Figure 1.6     (a) Wavelength and amplitude (b) membrane and peak strains of buckled Si 
ribbons (100   nm thick) on PDMS formed with a prestrain of 16.2% as a function of the 
applied strain.  (Reprinted with permission from Ref.  [35]  Copyright 2008 Elsevier Ltd).   
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     Figure 1.7     Strechability and compressibility of buckled Si ribbons (100   nm thickness) on 
PDMS.  (Reprinted with permission from Ref.  [35]  Copyright 2008 Elsevier Ltd).   
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     Figure 1.8     (a) Stacked plane - view AFM 
images of buckled Si ribbons for different 
widths of 2, 5, 20, 50, and 100    μ m (from top 
to bottom). (b) AFM line - cut profi les along 

the buckled wavy Si ribbons for 2 and 20    μ m 
wide ribbons.  (Reprinted with permission 
from Ref.  [17]  Copyright 2008 Elsevier Ltd).   
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strong effect of ribbon width effect for the Si/PDMS system. Figure  1.8 a shows 
the plane - view (from top to bottom) AFM images of Si ribbons for different widths 
2, 5, 20, 50, and 100    μ m. It clearly shows that the wavelength increases with the 
increase of the ribbon width and approaches to a constant at a fi nite value. The 
linecut profi les from AFM measurements in Figure  1.8 b for the 2 and 20    μ m wide 
ribbons also shows this strong ribbon width effect   

 Jiang  et al .  [27]  studied the ribbon width effect on the buckling profi le. The 
ribbon width is denoted by  W  as shown in Figure  1.9   a. Similar to Section  1.2.1 , 
the total energy of the system consists of membrane and bending energy in the 
fi lm and strain energy in the substrate. The membrane energy and bending energy 
in Eqs.  (1.2)  and  (1.4)  still hold except that they need to be multiplied by the ribbon 
width  W . The substrate is modeled as a three - dimensional, semi - infi nite solid 
with traction - free surface except for the portion underneath the ribbon. The strain 
energy in the substrate can be obtained analytically as

   U
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E kh A k h A k Wks
s

f f f pre= + −⎛
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( )1 1
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2 2 2 2

2
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ε ρ     (1.23)  

     Figure 1.9     (a) Schematic illustration of the 
geometry and coordinate system for a 
buckled single thin fi lm on PDMS substrate. 
 W  is the width of the thin fi lm. (b) Wave-
length and (c) amplitude of the buckling 
profi le as functions of the width of silicon 

thin fi lms. The theoretical analysis is shown 
in solid line, and the experimental data is 
shown in fi lled circles.  (Reprinted with 
permission from Ref.  [17]  Copyright 2008 
Elsevier Ltd).   
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  where

   ρ π
x xY x x Y x x H x Y x H x Y x( ) = − + ( ) + ( ) + ( ) ( ) + ( ) ( )[ ]1

2
1

2
0

2
1 0 0 1     (1.24)  

  is a nondimensional function,  Y n   ( n    =     0,1,2,    . . . ) is the Bessel function of the 
second kind, and  H n   ( n    =     0,1,2,    . . . ) denotes the Struve function. 

 The energy minimization gives the following governing equation for the wave 
number  k :
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 From Eq.  (1.25) , we have
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  where  f  is a nondimensional function be determined numerically by Eq.  (1.25) , 

which can be well approximated by the simple relation   f x x( ) ≈ ⎛
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Therefore, the wavelength   λ     =     2  π  / k  is given by
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 The energy minimization gives the amplitude as
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  where   F
WE

hE Wk
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ρ
s

f
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4

1

12
2 2. Figure  1.9 b and  c  shows the buckling wavelength 

and amplitude versus the ribbon width for 100   nm thick Si ribbon under the pre-
strain 1.3%, respectively. The solid lines are the analytical solutions from Eqs. 
 (1.27)  and  (1.28) , and the experimental results are plotted by fi lled circles. Both 
wavelength and amplitude agree well with experiments. The width effect is negli-
gible for wide ribbons (i.e.,  > 50    μ m). However, when the ribbon is narrow, the 
width effect is strong and cannot be ignored. For example, for 2    μ m - wide ribbon, 
the buckling wavelength is 12.5    μ m, and it will increase by 25% to 15.5    μ m for 
100    μ m - wide ribbon.   

   1.3  
Mechanics of Popup Structure 

 Figure  1.10  schematically illustrates the fabrication of popup structure on compli-
ant substrates  [23, 26] , which combines lithographically patterned surface bonding 
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     Figure 1.10     Processing steps for precisely 
controlled thin fi lm buckling on elastomeric 
substrate. (a) Prestrained PDMS with 
periodic activated and inactivated patterns. 
 L  is the original length of PDMS, and  Δ  L  is 
the extension. The widths of activated and 
inactivated sites are denoted as  W  act  and  W  in , 
respectively. (b) A thin fi lm parallel to the 
prestrain direction is attached to the 

prestrained and patterned PDMS substrate. 
(c) The relaxation of the prestrain  ε  pre  in 
PDMS leads to buckles of thin fi lm. The 
wavelength of the buckled fi lm is 2 L  1 , and the 
amplitude is  A . 2 L  2  is the sum of activated 
and inactivated regions after relaxation. 
 (Reprinted with permission from Ref.  [15]  
Copyright 2007 American Institute of 
Physics).   
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chemistry and a buckling process. The ribbon is bonded to the prestrained sub-
strate only at certain locations. Let  W  act  denote the width of activated regions, where 
chemical bonding occurs between the ribbon and the substrate, and  W  in  denote 
the width of inactivated regions, where only weak van der Waals interactions occur 
at the interface as shown in Figure  1.10 a. Thin ribbons are then attached to the 
prestrained and patterned PDMS substrate (Figure  1.10 b) with the ribbon direc-
tion parallel to the prestreched direction. Releasing the prestrain leads to compres-
sion, which causes the ribbon on the inactivated regions to buckle and form the 
popup structure as shown in Figure  1.10 c.   

 Jiang  et al .  [23]  developed an analytical model to study the buckling behavior of 
such systems and to predict the maximum strain in the ribbons as a function of 
interfacial pattern. The buckling profi le of the ribbon can be expressed as

   w
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  where  A  is the buckling amplitude to be determined,   2
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1L
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after relaxation (Figure  1.10 c). The bending and membrane energy in the thin fi lm 
can be obtained as
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  and

   U E h
A

L L
Lmembrane f f pre= −⎛

⎝⎜
⎞
⎠⎟

π ε
2 2

1 2

2

2
16

    (1.31)  

  respectively. It should be noticed that the substrate energy

   Usubstrate = 0     (1.32)  

  because the substrate has zero displacement at the interface where it remains 
intact and vanishing stress traction at the long and buckled portion. 

 Energy minimization of the total energy gives the amplitude as

   A L L= −( )4
1 2π

ε εpre c     (1.33)  

  where   ε πc f= ( )h L2 2
1
212  is the critical strain for buckling, which is identical to the 

Euler buckling strain for a doubly clamped beam with length 2 L  1 . The critical 
strain  ε  c  is usually a small number in most practical applications. For example,  ε  c  
is on the order of 10  − 6  for a typical wavelength 2 L  1   ∼  200    μ m and ribbon thickness 
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 h  f   ∼  0.1    μ m. Therefore, the buckling amplitude  A  in Eq.  (1.33)  can be approxi-
mately by

   A L L
W W W

≈ =
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+
4 2

1
1 2π
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π

ε
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in in act pre

pre

    (1.34)  

  which is completely determined by the interfacial patterns ( W  in  and  W  act ) and the 
prestrain. The comparison of buckled profi les from analytical prediction (dot lines) 
and experiments is shown in Figure  1.11  for the case of  W  act     =    10    μ m and  W  in     =    
190    μ m. Both wavelength and amplitude agree well with experiments.   

 The maximum strain in the ribbon can be approximately by the bending strain 
since the membrane strain is negligible ( ∼ 10  − 6 ). The bending strain is equal to the 
maximum curvature times the half thickness and therefore, we have
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 The maximum strain is much smaller than the prestrain. For example, for 
 h  f     =    0.3    μ m,  W  act     =    10    μ m,  W  in     =    400    μ m, and  ε  pre     =    60%,  ε  peak  is only 0.6%, which 
is two orders of magnitude smaller than the 60% prestrain. For much smaller 
active region (i.e.,  W  act    <<  W  in ), the maximum strain in Eq.  (1.35)  can be approxi-
mated by   ε π εpeak f pre≈ h L1.  

     Figure 1.11     Buckled GaAs thin fi lms on 
patterned PDMS substrate with  W  in     =    10    μ m 
and  W  in     =    190    μ m for different prestrain 
levels, 11.3%, 25.5%, 33.7%, and 56.0% 
(from top to bottom). The bold lines are the 

profi les of the buckled GaAs thin fi lm 
predicted by the analytical solution. 
 (Reprinted with permission from Ref.  [15]  
Copyright 2007 American Institute of 
Physics).   
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   1.4  
Mechanics of Interconnects in the Noncoplanar Mesh Design 

 Figure  1.12  schematically illustrates the fabrication of a noncoplanar mesh design 
consisting of stretchable interconnects and device islands  [20] . The device islands 
are chemically bonded to a prestrained substrate, while the interconnects are 
loosely bonded. When the prestrain in the substrate is released, the interconnects 
buckle out of the surface and form arc - shaped structures. Due to the low adhesion, 
narrow geometries, and low stiffness of interconnects, the deformation localizes 
only to the interconnects and therefore the device islands experience small strains. 
Figure  1.13  shows the initial, strain - free confi guration  X  of the interconnects and 
the buckled confi guration  x , respectively. The initial distance between the ends of 
interconnect is  L  0 , and changes to  L     =     L  0 /(1    +     ε  pre ) after the prestrain is released.   

   1.4.1  
Global Buckling of Interconnects 

 Song  et al .  [36]  established a mechanics model to understand the buckling behavior 
of the interconnects. Compared with the model in Section  1.3 , the geometry 

     Figure 1.12     A schematic illustration of the process for fabricating noncoplanar mesh designs 
on a complaint substrate.  (Reprinted with permission from Ref.  [23]  Copyright 2009 American 
Institute of Physics).   
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change is accounted here. The out - of - plane displacement,  w , of the interconnect 
takes the form

   w
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  which satisfi es vanishing displacement and slope at the two ends  X     =     ±  L  0 /2, and 
the amplitude  A  is to be determined by energy minimization. The bending energy 
and membrane energy can be obtained as
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  and
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  where  ε     =    ( L  0     −     L )/ L  0  is the compressive strain,  E  and  h  are the Young ’ s modulus 
and thickness of the interconnects, respectively. Minimization of total energy 
 U  global     =     U  membrane     +     U  bending  in the interconnect gives the amplitude

   A
L= −2 0

π
ε εc     (1.39)  

  where   ε πc = h L2
0
23  is the critical buckling strain for Euler buckling of a doubly 

clamped beam. The maximum (compressive) strain in the interconnect is the sum 
of bending (curvature  *   h /2) and membrane strains ( −  ε  c ). Because the membrane 
strain is very small compared to the bending strain, the peak strain in the intercon-
nects is given by

   ε
π εpeak ≈ 2

0

h

L
    (1.40)   

 In experiments, the initial interconnect length is  L  0     =    20    μ m and after relaxation, 
the length becomes  L     =    17.5    μ m, which corresponds to a compressive strain 
 ε     =    12.5%. The thickness of interconnects is  h     =    50   nm. The critical buckling 
strain is  ε  c     =    0.0021%. The predicted amplitude by Eq.  (1.39)  is 4.50    μ m, which 

     Figure 1.13     Schematic diagram of mechanics model for the interconnect region of a 
noncoplanar mesh structure.  (Reprinted with permission from Ref.  [23]  Copyright 2009 
American Institute of Physics).   
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agrees well with the experimental value 4.76    μ m. Equation  (1.40)  shows that thin 
and long interconnects give small maximum strain because it is proportional to 
the ratio of the interconnect thickness to the length,  h / L  0 , which provides a design 
rule for the buckled interconnects.  

   1.4.2  
Adhesion Effect on Buckling of Interconnects 

 It should be noticed that other buckling modes may occur if the prestrain is small. 
Figure  1.14  shows the top and cross - sectional views of a linear array of intercon-
nected silicon islands on a PDMS substrate subjected to low, medium, and high 
levels of compressive strains. When the compressive strain is small, the intercon-
nect remains fl at, and there is no buckling. With the increase of the compressive 
strain, local buckling (i.e., small multiple waves) may occur. Further increasing 
the compressive strain up to 8.5%, local buckling transforms to global buckling 
as the small multiple waves merge together.   

 Ko  et al .  [37]  and Wang  et al .  [38]  developed a mechanics model to explain the 
occurrence of different buckling modes by accounting for the adhesion between 
the interconnect and substrate. Prior to buckling, the interconnect remains fl at 
and the total energy is

   U EhL Lflat = −1

2
0

2
0ε γ     (1.41)  

  where   γ    is the work of adhesion between the interconnect and substrate, the fi rst 
term is the membrane energy  U  membrane     =     EhL  0  ε  2 /2 and the second is the adhesion 

     Figure 1.14     Cross - sectional and top views of a linear array of interconnected silicon islands 
on a PDMS substrate subjected to low, medium, and high levels of compressive strains. 
 (Reprinted with permission from Ref.  [22]  Copyright 2009 John Wiley and Sons).   
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energy. For global buckling, the summation of Eqs.  (1.37)  and  (1.38)  gives the total 
energy as

   U EhLglobal c
c= −⎛

⎝
⎞
⎠ε ε ε

2
    (1.42)  

  where   ε πc = h L2
0
23 . The critical strain for the transition from fl at to global buckling 

can be obtained by  U  fl at     =     U  global  as
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 For local buckling, the interconnect buckles to form small multiple waves with 
amplitude  a  and wavelength  l  to be determined. The membrane energy is obtained 
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adhesion energy  U  adhesion     =     −   γ   ( L  0     −     l ). Energy minimization gives the amplitude 
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, where  g  is a nondimensional function to be 

determined numerically by Eq.  (1.44) . The total energy for local buckling is then 
obtained as
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 The critical strain for the transition from fl at to local buckling can be obtained by 
 U  fl at     =     U  local  as
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 Equations  (1.43)  and  (1.46)  give a simple criterion to predict buckling patterns. 
When the critical strain in Eq.  (1.46)  is larger than that in Eq.  (1.43) , that is, 

  
γ

ε8
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≤ , global buckling occurs, and there is no local buckling. When the 

critical strain in Eq.  (1.46)  is smaller than that in Eq.  (1.43) , that is,   
γ

ε8
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2Eh c

> , 

local buckling occurs fi rst and as the compressive strain increases; global buckling 
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occurs when  U  local     =     U  global , which gives the critical strain for transition from local 
to global buckling as

   
ε
ε
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    (1.47)   

 Figure  1.15  shows the normalized total energy for no buckling, local buckling, 
and global buckling versus the normalized compressive strain  ε  /  ε  c . For the 
polyimide interconnect with  E    =     2.5   GPa,  h    =     1.4    μ m,  L    =     150    μ m, and the work 

adhesion   γ      =    0.16J   m  − 2 ,   
γ

ε8
70

2Eh c

= , which predicts local buckling fi rst and then 

global buckling as the compressive strain increases. For the strain smaller than 
0.78% (Eq.  (1.46) ), the total energy for no buckling is the lowest. Local buckling 
prevails until the compressive strain reaches 8.0% from Eq.  (1.47) , at which global 
buckling has the lowest energy. The two strains 0.78% and 8.0% are consistent 
with the ranges of strains for no, local, and global buckling modes observed in 
Figure  1.14 .    

     Figure 1.15     Comparison of the energy curves for the global, local, and no buckling modes. 
 (Reprinted with permission from Ref.  [39]  Copyright 2010 The Royal Society of Chemistry).   
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   1.4.3  
Large Deformation Effect on Buckling of Interconnects 

 In Sections  1.4.1  and  1.4.2 , the buckling profi le of the ribbon is assumed to be a 
sinusoidal form, which satisfying vanishing displacement and slope at the two 
ends. Those results are referred as small deformation model. However, when the 
compressive strain is large, the buckling profi le will deviate from sinusoidal form, 
and the ends may rotate since the substrate is very compliant. Chen  et al .  [40]  
developed a mechanics model to describe the deformation of the buckled thin fi lm 
by discarding the assumptions of sinusoidal form for the buckling profi le and zero 
rotation at the two ends. The nonvanishing rotation at the ends is accounted by a 
rotational spring with a spring constant  k . 

 Figure  1.16   a shows the initial, strain - free confi guration of the interconnect with 
a length  L  0 . The distance between two ends becomes  L  after buckling, and Figure 
 1.16 b shows the deformed confi guration and forces acting on the interconnect. 
The bending moment  M  0  at the ends is related to the rotation   θ   0  by  M  0     =    k  θ   0 . The 
doubly clamped and simply supported boundary corresponds to the two limit cases 
 k     →      ∞   and  k     →    0, respectively. The intrinsic coordinate ( s ,  θ  ) as shown in Figure 

     Figure 1.16     Schematic diagram of mechanics model for the thin fi lm with torsional springs at 
the two ends.  (Reprinted with permission from Ref.  [3]  Copyright 2011 The Chinese Society of 
Theoretical and Applied Mechanics).   
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 1.16 b is used to describe the deformation of the interconnects. Here  s  is the arc 
length from the left end to a point on the deformed shape and   θ   is the slope angle 
at that point. The coordinate ( x ,  y ) is related to ( s ,  θ  ) by d x /d s     =    cos     θ   and d y /d s    
 =    sin     θ  . The equilibrium equation of the beam is then given by

   EI
s

k Py
d

d

θ θ= −0     (1.48)  

  where   EI Eh= 3 12 is bending rigidity, and  P  is the compressive load at the ends. 
The boundary conditions are
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 Equations  (1.1)  and  (1.2)  can be written in nondimensional form as
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  where   x x L= 0,   y y L= 0,   s s L= 0,   k kL EI= 0 ,   P PL EI= 0
2  and   u u L= 0. 

 Equations  (1.50)  and  (1.51)  give

   d

d

θ θ
s

PC P= ± −4 4
2

2 2sin     (1.52)  

  where  C  satisfi es
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 The plus and minus sign distinguish between buckling to the top and to the 
bottom. Here, the minus sign is considered. Equation  (1.52)  then becomes
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  where sin(  θ  /2)    =     C  sin     φ  . Integrating Eq.  (1.54)  from the end   s = =( )0 1,ϕ ϕ  of the 
beam to the midlength   s = =( )0 0,ϕ  gives
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  where   φ   1  satisfi es

   sin sinθ ϕ0 12( ) = C     (1.56)   

 Equations  (1.53) ,  (1.55) , and  (1.56)  give the solutions of  C ,   P , and   φ   1  for any given 
  θ   0 . The shortening   u  (i.e., compressive strain  ε ) and maximum defl ection   ymax of 
the beam are then obtained as
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  and

   y
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P
max cos= −( )2

1 1ϕ     (1.58)   

 Figure  1.17  shows normalized midspan defl ection   ymax versus the compressive 
strain  ε  with different normalized torsional spring constant   k . The dotted line is 
from the previous small deformation model in Section  1.4.1  and the solid lines 
from Eqs.  (1.57)  and  (1.58) . The fi nite element results are also given for compari-
son. The current results (solid line) agree well with fi nite element simulations, 
while previous small deformation model overestimates the defl ection as the com-
pressive strain increases. It should be noted that   ymax is almost same for doubly 
clamped (  k = 1000) and simply supported ends (  k = 0), while   ymax becomes slightly 
larger for midvalue   k . For example,   ymax for   k = 40 is 3% larger than that for   k = 0  
at  ε     =    50%.     

     Figure 1.17     The normalized midspan defl ection   ymax versus the compressive strain  ε  with 
different normalized torsional spring constant   k .  (Reprinted with permission from Ref.  [3]  
Copyright 2011 The Chinese Society of Theoretical and Applied Mechanics).   
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   1.5  
Concluding Remarks 

 We have reviewed the mechanics of the stretchable wavy ribbon, popup structure, 
and interconnects in the noncoplanar mesh design. Both the buckling geometry 
(wavelength and amplitude) and the maximum strains are obtained analytically. 
The solutions agree well with the experiments and fi nite element simulations and 
clearly show how wavy profi le reduces the strain to achieve large stretchability.

   Stretchable wavy ribbons :      In this case, the ribbon is chemically bonded to 
the substrate and no delamination occurs. Both small - deformation and fi nite -
 deformation analysis are performed for this system. The fi nite - deformation 
model predicts a strain - dependent wavelength, while the small - deformation 
one gives a strain - independent wavelength. The fi nite width effects have been 
studied analytically. The experimental and analytical results show that both the 
buckling amplitude and wavelength increase with the fi lm width.  

  Popup structure :      In this case, the ribbon is only bonded to the substrate at certain 
locations. When the prestrain is released, the portion of the ribbon without 
bonding to the substrate delaminates from the substrate and forms the popup 
structure. The wavelength and amplitude only depend on the geometry and 
can be precisely controlled to lower the maximum strain to have larger 
stretchability.  

  Interconnects in the noncoplanar mesh designs :      In this case, the popup intercon-
nects, which is loosely bonded to the substrate, are used to link the device 
islands, which are chemically bonded to the substrate. The adhesion between 
the interconnects and substrate is accounted to explain different buckling pat-
terns. The large deformation effect on the buckling of the interconnects is also 
considered.     
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