1
Introduction

1.1
Dimensionality

Dimensionality is an intellectually very appealing concept and speaking of a
dimensionality other than three will surely attract some attention. Some years
ago, it was fashionable to admire physicists who apparently could “think in
four dimensions” in striking contrast to Marcuse’s “One-Dimensional Man” [1].
Physicists would then respond with the understatement: “We only think in two
dimensions, one of which is always time. The other dimension is the quantity
we are interested in, which changes with time. After all, we have to publish our
results as two-dimensional figures in journals. Why should we think of something
we cannot publish?” (Figure 1.1).

This fictitious dialog implies more than just sophisticated plays on words. If
physics is what physicists do, then in most parts of physics there is a profound
difference between the dimension of time and other dimensions, and there is also
alogical basis for this difference [3]. In general, the quantity that changes with time
and in which physicists are interested, is one property of an object. The object in
question is imbedded in space, usually in three dimensions. Objects may be very
flat, such as flounders, saucers, or oil films with length and width much greater
than their thickness. In this case, thickness can be negligible. Such objects can be
regarded as (approximately) two dimensional. But, in another example, the motion
of an object is restricted to two dimensions like that of a boat on the surface of a
sea (hopefully). According to our everyday experience, one- and two-dimensional
objects and one- and two-dimensional motions actually seem more common than
their three-dimensional counterparts, and hence low-dimensionality should not
be spectacular. Perhaps that is the reason for the introduction of noninteger (“frac-
tal”) dimensions [4]. Not much imagination is necessary to assign a dimensionality
between one and two to a network of roads and streets — more than a highway
and less than a plane. It is a well-known peculiarity that, for example, the coast-
line of Scotland has the fractal dimension of 1.33 and the stars in the universe that
of 1.23.

Solid-state physics treats solids as both objects and the space in which objects
of physics exist, for example, various silicon single crystals can be compared with
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Figure 1.1 Simultaneously with Herbert “Possibility of Synthesizing an Organic Super-
Marcuse’s book “One-Dimensional Man” conductor” [2] was published, motivating

[1], which widely influenced the youth many physicists and chemists to investigate
movement of the 1960s, Little’s article on low-dimensional solids.

each other, or they can be considered as the space in which electrons or phonons
move. On one hand, the layers of a crystal, for instance, the ab-planes of graphite,
can be regarded as two-dimensional objects with certain interactions between
them that extend into the third dimension. On the other hand, these planes are
the two-dimensional space in which electrons move rather freely. Similar consid-
erations apply to the (quasi) one-dimensional hydrocarbon chains of conducting
polymers.

1.2
Approaching One-Dimensionality from Outside and from Inside

There are two approaches to low-dimensional or quasi-low-dimensional systems
in solid-state physics: geometrical shaping as an “external” and increase of
anisotropy as an “internal” approach. These are also sometimes termed “top-
down” and “bottom-up” approaches, respectively. For the external approach, let
us take a wire and draw it until it gets sufficiently thin to be one dimensional
(Figure 1.2). How thin will it have to be for being truly one dimensional? This
depends a little on exactly what property of the object is desired to express
low-dimensional behavior. Certainly, thin compared to some microscopic
parameter associated with that property. For example, for one-dimensional
electrical transport properties, the object must have length scales such that the
mean free path of an electron or the Fermi wavelength is affected by the physical
confinement of the structure.
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Figure 1.2 An “external approach” to one-  far away from being one-dimensional. (By
dimensionality. A man tries to draw a wire lithographic processes, semiconductor struc-
until it is thin enough to be regarded as tures can be made narrow enough to exhibit
one-dimensional. Metallic wires can be made one-dimensional properties.)

as thin as 1 pm in diameter, but this is still

But, does the wire have to be drawn so extensively to finally become a
monatomic chain? Well, the Fermi wavelength becomes relevant when discussing
the eigenstates of the electrons (we learn more about the Fermi wavelength in
Chapter 3). If electrons are confined in a box, quantum mechanics tells us that the
electrons can have only discrete values of kinetic energy. The energetic spacing
of the eigenvalues depends on the dimensions of the box, the smaller the box the
larger the spacing (Figure 1.3):

h2

—

where AE| is the spacing, L is the length of the box, m is the mass of the electrons,
and h is Planck’s constant. The Fermi level is the highest occupied state (at absolute
zero). The wavelength of the electrons at the Fermi level is called the Fermi wave-
length. If the size of the box is just the Fermi wavelength, only the first eigenstate
is occupied. If the energy difference to the next level is much larger than the ther-
mal energy (AE; > kT), then there are only completely occupied and completely
empty levels and the system is an insulator. A thin wire is a small box for electronic
motion perpendicular to the wire axis, but it is a very large box for motions along
the wire. Hence, in two dimensions (radially), it represents an insulator and in one
dimension (axially) it is a metal! This is simply because AE > kT whereas
AElengthwise <KT.

If there are only very few electrons in the box, the Fermi energy is small and
the Fermi wavelength is fairly large. For real materials, these are the electrons that

AE, = (1.1)

radially
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Figure 1.3 Electrons in small and large boxes and energy spacing of the eigenstates.

can participate in bonding—antibonding orbitals. This is the case for semiconduc-
tors at very low doping concentrations. Wires of such semiconductors are already
one dimensional if their diameter is of the order of approximately hundreds of
angstroms.

Such thin wires can be fabricated from silicon or from gallium arsenide
by lithographic techniques and effects typical for one-dimensional electronic
systems have been observed experimentally [5]. Systems with high electron
concentrations have to be considerably thinner if they are to be one dimensional.
It turns out that for a concentration of one conducting electron per atom, we
really need a monatomic chain!

Experiments on single monatomic chains are very difficult, if not impossible, to
perform. Therefore, typically, a bundle of chains rather than one individual chain is
used. An example for such a bundle is the polyacetylene fiber, consisting of some
thousands of polymer chains, closely packed with a typical interchain distance
of 3—4 A. Certainly, there will be some interaction between the chains; however,
in case of small interchain coupling, it can be assumed that just the net sum of
the individual chains determines the properties of the bundle (Figure 1.4) and the
experiment becomes one of an ensemble of one-dimensional chains.

Another method of geometrical shaping employs surfaces or interfaces
(Figure 1.5). The surface of a silicon single crystal is an excellent two-dimensional
system and there are various ways of confining charge carriers to a layer near the
surface. In fact, the physics of two-dimensional electron gases is an important part
of today’s semiconductor physics [6] and most of the two-dimensional electron

Figure 1.4 Experiments on individual chains

are difficult to perform. But bundles of chains

are quite common, for example, fibers of poly-
acetylene.

d ... Chain diameter
D ... Bundle diameter
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Figure 1.5 Crystal surface are excellent two- are not sufficient for surface science. Sur-
dimensional systems. The man above tries to face scientists cleave their samples under
improve the crystal face by mechanical pol-  ultrahigh vacuum conditions and use freshly
ishing. The qualities achieved by this method cleaved surfaces for their experiments.

systems are confinements to surfaces or interfaces. The most fashionable effect in
a two-dimensional electron gas is the quantized Hall effect or von Klitzing effect
[7]. A one-dimensional surface, that is, the edge of a crystal, is much more difficult
to prepare and hardly of any practical use. But, one can argue that exposing a
sample to a magnetic field would be an excellent example of a one-dimensional
electronic system since electrons can be forced into motion along specific paths
defined by the crystal and the field. In fact, reducing von Klitzing’s sample to
“edge channels” is one way of explaining the von Klitzing effect [8].

The “internal approach” to one-dimensional solids comprises the gradual
increase of anisotropy. In crystalline solids, the electrical conductivity is usually
different in different crystallographic directions. If the anisotropy of the conduc-
tivity is increased in such a way that the conductivity becomes very large in one
direction and almost zero in the other two perpendicular directions, a nearly
one-dimensional conductor will result. Of course, there is no simple physical way
to increase the anisotropy. However, it is possible to look for sufficient anisotropy
in the existing solids that could be regarded as (quasi) one dimensional. Some
anisotropic solids are compiled in the next chapter of this textbook. How large
should the anisotropy be to meet one-dimensionality? A possible answer is:
“Large enough to lead to an open Fermi surface.”

The Fermi surface is a surface of constant energy in “reciprocal space” or
momentum space. While the Fermi surface and reciprocal space will be discussed
in detail in Chapter 3, for the discussion here it is sufficient to imagine this surface
as describing all of the electron states within the solid that are available to take
part in electrical transport. For an isotropic solid, the Fermi surface is spherical,
meaning that electrons can move in any direction of the solid equally as well.

If the electrical conductivity is large in one crystallographic direction and small
in the other two, the Fermi surface becomes disk-like. The kinetic energy of the
electrons can then be written as E = p?/2m*, resembling that of a free particle
(p = momentum, m = mass), with the exception that the mass has been replaced
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by the effective mass m". The effective mass indicates the ease with which an
electron can be moved by the electric field. If the electrons are easy to move, the
conductivity is high. Easy motion is described by a small effective mass (small
inertia) and p must also be small to keep E constant. If it is infinitely difficult to
move an electron in a specific direction, its effective mass will become infinitely
large in this direction and the Fermi surface will be infinitely far away. However,
the extension of the Fermi surface is restricted: if the Fermi surface becomes
very large in any direction it will merge with the Fermi surface generated by the
neighboring chain or plane (“next Brillouin zone,” in proper solid-state physics
terminology) assuming this hypothetical solid is made up of stacked structures
of some sort. This merging “opens” the Fermi surface, similar to a soap bubble
linking with another bubble (Figure 1.6).

Figure 1.6 Open Fermi surfaces, analogous dimensional. The solid will have no electronic
to merged soap bubbles, as a criterion states contributing to electrical conductivity
of low-dimensionality. The Fermi surface along the axial direction but will easily con-
belongs to a solid that is essentially two duct radially, normal to the axis.
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1.3
Dimensionality of Carbon Solids

Silicon is outstanding among solids [9]: it is the most perfect solid pro-
ducible — there are fewer imperfections in a silicon single crystal than there are
gas atoms in ultrahigh vacuum (per unit volume). It is the solid we know most
about, and it has largely influenced the vocabulary of solid-state physics (probably
apparent by a style analysis of this text too). Carbon is located directly above
silicon in the periodic table of the elements, and just as silicon is outstanding
among the solids, carbon is outstanding among the elements. Carbon forms the
majority of chemical compounds. Much of organic chemistry simply involves
arranging carbon atoms (with hydrogen not having any specific properties but
just fulfilling the task of saturating dangling bonds). In our context, carbon has
the remarkable property of forming three-, two-, one-, and zero-dimensional
solids. This is related to the fact that carbon has the ability to form single, double,
and triple bonds. This characteristic feature of carbon sets it aside from silicon in
another important way, that is, it leads to biology.

1.3.1
Three-Dimensional Carbon: Diamond

Beginning with an example from silicon, diamond appears as the trivial solid form
of carbon (Figure 1.7). Diamond has similar semiconducting properties to sili-
con. Both substances share the same type of crystal lattice. The lattice parameters
are different (=5.43 A in silicon and 3.56 A in diamond), and the energy gap
between valence and conduction bands is larger in diamond: 5.4 eV, compared
to 1.17 eV in silicon. Diamond is more difficult to manufacture and more diffi-
cult to purify than silicon, but it has better thermal conductivity and can be used
at high temperatures. Since the costs of raw material change the final price of
electronic equipment only slightly, some people believe in diamond as the semi-
conductor of the future. Silicon is typically used with added dopants to modify its

616 pm . . ’.!‘.' i

Figure 1.7 Diamond lattice.
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electronic behavior. Doping diamond has proven to be far more difficult however,
and must be better understood before the realization of high-quality diamond
electronics.

“Semiconductors” will often be mentioned in this textbook although the title
promises metals to be the main subject. The reason stems from the fact that a
doped semiconductor can be regarded as a metal with low electron concentration.
Here, “metal” is essentially used as a synonym for “electrically conductive, solid-
state system.”

1.3.2
Two-Dimensional Carbon: Graphite

In diamond, the carbon atoms are tetravalent, that is, each atom is bound to
four neighboring atoms by covalent single bonds. Another well-known, nat-
urally occurring carbon modification is graphite (Figure 1.8). Here, all atoms
are trivalent, which means that in a hypothetical first step, only three valence
electrons participate in bond formation, and the fourth valence electron is left
over. The trivalent atoms form the planar honeycomb lattice and the residual
electrons are shared by all atoms in the plane similarly to the sharing of the
conduction electrons by all atoms of a simple metal (e.g., sodium or potassium).
The various graphite layers only interact by weak van der Waals forces. In a first
approximation, graphite is an ensemble of nearly independent metallic sheets.
In pure graphite, they are about 3.35A apart, but can be separated further
by intercalating various molecules. Charge transfer between the intercalated
molecules and the graphitic layers is also possible. Graphite with intercalated
SbF; shows an anisotropy of about 10° in electrical conductivity, conducting a
million times better within a layer than between layers.

670 pm . ) !

Figure 1.8 Graphite lattice.
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Diamond is a semiconductor and graphite is a metal. In diamond, there are very
few mobile electrons — in an undoped perfect diamond single crystal at absolute
zero, there are exactly zero mobile electrons — and in graphite, there are many,
one electron per carbon atom. This difference is not due to dimensionality (three
in diamond and two in graphite) but to single and double bonds. Several attempts
have been made to build three-dimensional graphite [10]. Theoretically, it seems
possible [11], but practically it has not yet been achieved.

Of course, since the layers of graphite are very weakly bound together, it is
rather easy to separate them mechanically to form graphene — a single sheet of the
honeycomb lattice. This lattice is truly two dimensional, since there is nowhere
else for the electrons to go except upon the sheet that essentially defines their
“world” for them. Notice though that this two-dimensional sheet “samples” the
three-dimensional world in which it lives. If one takes the sheet and bends it in
the third dimension while applying a field across it, one can induce phase accumu-
lation in the wavefunction — a Berry’s phase, which comes from the geometrical
intersection of the two- and three-dimensional worlds. Graphene has been stud-
ied extensively over the last few years and transport in graphene led to the 2010
Nobel Prize in physics [12]. By numbers: Density of graphene is 0.77 mg/m?, its
breaking strength is 42 N/m, electrical conductivity is 0.96 x 10° Q~! cm™?, and
thermal conductivity is 10 times greater than copper. We will return to graphene
in later chapters.

133
One-Dimensional Carbon: Cumulene, Polycarbyne, Polyene

As we have already pointed out, carbon has this amazing ability to bond to
itself in many ways. Using double bonds, one can easily construct — at least on
paper — one-dimensional carbon: Figure 1.9 shows a monatomic carbon chain.
This substance is called cumulene, the name referring to cumulated double bonds.
From organic chemistry, it is well known that double bonds can be “isolated”
(separated by many single bonds), “conjugated” (in strict alternation with single
bonds), or “cumulated” (adjacent). Cumulene has not been synthesized, but
using the principles of quantum chemistry it can be predicted whether cumu-
lene would be stable or would rather transform into polycarbyne, an isomeric
structure in which triple bonds alternate with single bonds. Polycarbyne is shown
in Figure 1.10. The odds are for polycarbyne being the more stable molecule.
Polycarbyne occurs in interstellar dust and in trace amounts within natural
graphite but is not yet available for performing experiments [13].

Figure 1.9 One-dimensional carbon: cumulene.

—C=C—C=C—C=C——
Figure 1.10 One-dimensional carbon: polycarbyne.

9



10

1 Introduction

If we accept the simplification that in carbon compounds, hydrogen atoms just
have the purpose of saturating dangling bonds (making them nonactive) and that
otherwise they do not contribute to the physical properties of the material, cumu-
lene and polycarbyne are not the only one-dimensional carbon solids. From this
point of view, all polymers based on chain-like molecules are one dimensional.

As a brief note on naming conventions: in organic chemistry, the ending “-yne,”
as in polycarbyne, is used to indicate triple bonds. The ending “-ene” stands for
double bonds and “-ane” for single bonds. A polyane is shown in Figure 1.11. (To
add a little confusion to the subject, this substance is typically called polyethylene,
ending with “-ene” instead of “-ane”! The reason is simply that the names of poly-
mers are often derived from the monomeric starting material, which in this case is
ethylene, H,C=CH,. Here the monomer contains a double bond, but during poly-
merization the double bond breaks to link the neighboring molecules.) Polyanes
are insulators and of little interest in the context of this textbook. (Insulators are
large band-gap semiconductors. Because of the large band gap, it is difficult to lift
electrons into the conduction band and therefore the number of mobile electrons
is negligible.)

Figure 1.12 shows polyacetylene, the prototype polyene, the simplest polymer
with conjugated double bonds. The structure shown in Figure 1.12 is often sim-
plified to the one in Figure 1.13, since by convention carbon atoms do not have to
be drawn explicitly at the ends of the bonds and protons are neglected. Chapter 5
is concerned with conducting polymers, and will discuss polyacetylene in greater
detail.

H, H, H, Figure 1.11 Polyethylene, shown at the top
/C\ /C\ /C\ / as we might imagine the polymerization' of
C C C ethylene, shown at the bottom as we might
Ho Hp Hp imagine the arrangement of bonding.
H H H H
I I I I
C C C C
INTZ 1IN N
H H H H

Figure 1.12 Polyacetylene, the prototype

H H H
/Cx /Cx /Cx / polyene, the simplest polymer with conju-
C C
H H

gated double bonds.

SNV N

Figure 1.13 Polyacetylene using a simplified notation.
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134
Zero-Dimensional Carbon: Fullerene

If we work our way down in dimensionality from body-diamond to plane-graphite
and graphene to lines-polymers, we will finally end up at the point as a zero-
dimensional object. Do zero-dimensional solids exist outside of the obvious
(the atom)? In semiconductor physics, the “quantum dot” is well known [14].
Historically, this is a small disc cut out of a two-dimensional electron gas. It is
small compared to the Fermi wavelength, so that the electrons are restricted in
all three dimensions of space (the one-dimensional analog to a quantum dot is
often called “quantum wire”). Following the discussion in Section 1.2, a quantum
dot is a zero-dimensional object. The present state of the art is to fabricate
quantum dots containing more than one but less than ten electrons. Because
of the low electron concentration in semiconductors, such quantum dots can
exhibit quite large diameters, up to several hundred angstroms. More recently,
quantum dots have been fabricated as chemically assembled nanoparticles,
wherein the structure defines the confinement. Metal nanoparticles of Au, Ag,
Cu, and so on, have been created using a variety of chemical synthesis routes
and confinement of the electrons occurs at particle diameters of only a few
nanometers. Similarly, quantum dots made from semiconductor materials, such
as Si, Ge, and compounds such as CdS, CdSe, PdS, and so on, have been created.
Following the rules we have already discussed, these nanoparticles can be many
nanometers in diameter and still exhibit confinement because there are fewer
electrons in the “box.” The AE between these electron states can be quite large
leading to some fascinating optical properties that are quite different from their
bulk counterparts.

Carbon can form quantum dots in a number of ways: nanodiamonds,
nanoplatelets of graphene, and others; as would be expected from carbon’s ability
to bond in different ways. However, the most famous of these quantum dots of
carbon in solid-state physics are the fullerenes [15]. The 1996 Nobel Prize in
chemistry was given to R. F. Curl, H. J. Kroto, and R. E. Smalley for their role
in the discovery of this class of molecules. Under certain conditions, carbon
forms regular, cage-like clusters of 60, 70, 84, and so on, atoms. A Cg, cluster
is composed of 20 hexagons and 12 pentagons and resembles a soccer ball
(Figure 1.14) all bonded together as in graphene. The diameter of a Cg, ball is

Figure 1.14 A fullerene molecule. This is an example of
a C4, but much larger cages can be made.
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about 10 A, thus is considerably smaller than that of a semiconductor quantum
dot. However, in these carbon compounds, the electron concentration is higher
than in inorganic semiconductors: in a system of conjugated double bonds, there
is one m-electron per carbon atom! (For more details on n-electrons, see Chapter
5.) In other words, there are 60n-electrons in a fullerene ball of 10 A diameter,
compared to some five electrons on a 100 A GaAs quantum dot. In quantum
chemistry and solid-state physics, 60 is already a quite large number (we are
used to counting: “one—two—many”). In fact, a 60-particle system is already
a mini-solid, and a fullerene ball plays a dual role in solid-state physics: it is a
mini-solid and it can also be a constituent of a macro-solid — fullerite.

We can study electronic excitations in the mini-solid and their mobility and
interaction with lattice vibrations. At the same time, it is possible to examine unex-
pected transport properties of the macro-solid, such as superconductivity [16],
photoconductivity, and electroluminescence [17]. Figure 1.14 shows the graphic
representation of a fullerene mini-solid, and Figure 1.15 schematically indicates
the fullerene macro-solid.

135
What about Something in between?

Conceptually, we might conceive of a solid that is a combination of dimensions.
Imagine, for instance, a single graphene sheet described in the section on graphite.
Roll this conductive sheet into a seamless tube in which each atom is threefold
coordinated as in the sheet. When the diameter of such a tube is between 14
and 200 A, we refer to the object as a “carbon nanotube.” For such an object, the
electron wavefunction is confined to box-like states around the circumference.
Along the axis of the tube, the electrons move in essentially a one-dimensional
system. Normally, this would appear to be similar to the semiconductor wires
mentioned earlier. However, this circumference (or rolled up) dimension allows
for a set of spiral-like classical trajectories of the electron as it moves down the
tube. In this way, if a three dimensional field (like a magnetic field) should pene-
trate the tube, the phase of the electronic wavefunction would be altered resulting
in Aharonov—Bohm effects. Thus, while the tube certainly has the character of
a one-dimensional system, it also has a “little more.” It is clearly not quite two

Figure 1.15 The fullerene crystal lattice: “fullerite.” These
compounds have a rich chemistry. They can be doped by
placing atoms between the balls, inside the balls, and so

on.
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dimensional, however. For such systems, the “topology” of the dimension must be
considered. We learn more about carbon nanotubes in the following chapters.

1.4
Peculiarities of One-Dimensional Systems

Theory predicts that strictly one-dimensional systems will behave very unusually,
so in this context the word “pathological” is often used. Real systems appear
less pathological than predicted because they are only quasi and not strictly
one-dimensional. Real systems differ from ideal systems by having chains of finite
rather than infinite length. In addition, the chains show imperfections such as
kinks, bends, twists, or impurities. They are contained in an environment other
than perfect vacuum, with neighboring chains at a finite distance and thus a
nonzero interaction between them.

If you have ever followed a slow truck on a narrow mountain road, you have
painfully experienced a very important aspect of one-dimensionality: obstacles
cannot be circumvented! (Figure 1.16). A rather famous demonstration of one-
dimensional conduction studied by solid-state physicists is that of the monatomic
metal wire. If one takes a very large number of gold atoms and places them very
close to each other so as to form a wire, then the transmission of an electron down
this wire is rather easily calculated. Now, we offer a very subtle change to this wire
and replace in its center one gold atom for one silver atom and recalculate the
transmission probability of the electron traveling its length. What is found is that
even for very small variations in the periodic atomic potential, reflections of the
electron wave on the wire become large [18].

Another, more sophisticated, conceptualization of this fact can be made in terms
of percolation. Percolation means macroscopic paths from one side of the sample
to the other and the threshold for bond percolation in one dimension is 100%! Such

Figure 1.16 A very important aspect of one-dimensionality is that obstacles cannot be
circumvented.
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macroscopic paths are necessary, for example, for electrical conduction. The con-
cept of bond percolation is quite different in two dimensions as demonstrated by
a grid (Figure 1.17) [19], where bonds are cut at random. In this two-dimensional
square-lattice, a few cuts yield little change in sample’s conduction properties.
In particular, the conductivity drops only slightly due to appearing holes. When
50% of the bonds are cut randomly, no path is left which connects one side of the
sample to the other and the conductivity must be zero. The percentage of intact
bonds necessary to establish macroscopic paths is the “percolation threshold.” The
higher the dimensionality of the sample, the lower the percolation threshold. For
a one-dimensional system, the threshold — quite simply — is 100%: if we cut one
bond, the sample consists of two disconnected pieces.

Another — trivial — aspect of one-dimensional systems is the low connectivity.
Each atom is connected to two other atoms only: one to the left-hand side and
one to the right-hand side. In three-dimensional solids, there are connections to
neighbors in the back and front as well as to neighbors above and below. Connec-
tivity is a topological concept. Chemists usually speak of the coordination number,
the number of nearest neighbors. In a one-dimensional chain, the coordination
number is two.

A consequence of the low connectivity of one-dimensional systems is the strong
“electron—lattice coupling.” If bonds are completely broken, a one-dimensional
system separates into two pieces. Complete breaking of bonds does not happen,
however. Often bonds are only partially cleaved; for example, only one component
of the double bond in the system, as in Figure 1.9 or 1.13, is broken. In chemical
terms, this means that a bonding state is excited to form an antibonding state. In
semiconductor physics, it would be described as an electron being lifted from the
valence band into the conduction band. Such manipulation of valence electrons
is quite common in semiconductors and it is the first step for photoconductivity
and photoluminescence. In a three-dimensional semiconductor, such as silicon,
the transfer of an electron from the valence to the conduction band creates mobile
charge carriers (the electron in the conduction band and the “hole” left behind in
the valence band), but it does not change the arrangement of the atoms in the
crystal. This is due to the high connectivity of the silicon lattice, where breaking
or weakening one bond has not much effect. In low-connectivity one-dimensional
systems, where each atom is held in place by two neighbors only, each change in

Figure 1.17 Bond percolation demonstration on a two-dimensional grid, where bonds are
successively cut in a random way. (After Zallen [19].)
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bond strength leads to a large distortion of the lattice. In conjugated polymers, the
lattice distortion shows in a change in bond length when a double bond is partially
broken to yield a single bond.

With strong electron—lattice coupling, the electrons moving in the solid cre-
ate a large distortion that polarizes the lattice. If the effect is distinct enough, the
electrons receive a new name: “polarons” — that is the charge plus the distortion.
Depending on the strength of the coupling and the symmetry of the lattice, there
is a variety of quasi-particles resulting from electron—lattice coupling, the most
famous of which (and very typical for one-dimensional systems) is the “soliton”
[20]. We have a closer look at solitons and polarons in Chapter 5.

Another peculiarity of one-dimensional systems is band-edge singularities in
the electronic density of states. We learn more about electrons in a solid in Chapter
3, but here we note already that in a solid, electrons cannot have any energy (as
they could have in vacuum). There are allowed regions (“bands”) separated by for-
bidden gaps and this is determined by the long-range ordering within the system.
The density of states within a band, that is, the number of states per energy inter-
val is not constant. The form of the density of states function also depends on the
crystal structure. Near the band edge, it reflects the dimensionality of the system.
This is indicated in Figure 1.18: in three dimensions, the density of state function
N(E) is parabolic; in two dimensions, it is step-like; and in one dimension, there
is a square root singularity to infinity! In real systems, N(E) never reaches infin-
ity, of course, but at least there is a very high density of states. If the Fermi level
is within such a region, high-temperature superconductivity is favored (cf. A15
superconductors, Section 2.1).

One-dimensionality also differs from the other dimensionalities in random walk
problems. In a high dimension, it is very unlikely that the random walker will
return to the place he started from, whereas in one dimension this happens quite
often. Whether or not the random walker comes back to the point of departure
is important for discussing the recombination of photogenerated charge carriers
and thus for the time constants of transient photoconductivity and of lumines-
cence. Luminescent devices might turn out to be the most important practical
applications of one-dimensional metals!

NE) 4 Figure 1.18 Density of state function at the band

edge in three-, two-, and one-dimensional electronic
1D
3D

systems. Note the singularity which occurs in the
one-dimensional case.

2D
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One-dimensional solids are particularly interesting in the context of funda-
mental studies on phase transitions. In fact, much of the motivation in this field
arises from the hope of finding the key to high-temperature superconductivity.
There is the famous theorem of Landau that phase transitions are impossible
in one-dimensional systems [21]: long-range order is unstable with respect to
the creation of domain walls, because the entropy term in the free enthalpy will
always overcompensate the energy needed to form new walls. But whereas phase
transitions are impossible, one-dimensional systems might be “close” to a phase
transition even at fairly high temperatures. Fluctuations might “anticipate” the
phase transition and have already prompted speculation toward some techno-
logically useful properties such as, for instance, low-resistance charge transport.
Perhaps we could allow for “just a little bit” of three-dimensionality and thus
obtain a high-temperature superconductor? Organic superconductors are known,
but they are closer to two-dimensionality than to one-dimensionality. Their super-
conducting transition temperatures reach 12 or 13K (for fullerene, even up to
33 K), still far below the recently discovered inorganic oxide superconductors with
transition temperatures of 100 K and above [22]. Chapter 7 is devoted to organic
superconductors.

In Chapter 4, we discuss the Peierls transition. This is a transition from a metal at
high temperatures to a semiconductor or insulator at low temperatures. It is driven
by the strong electron—phonon coupling in one-dimensional systems and related
to the formation of conjugated double bonds in conducting polymers, in this case
referring to the strict alternation of double and single bonds with different bond
lengths rather than equidistant “one and a half bonds.” The charge density waves
(Chapter 8) can be regarded as an “incomplete” or itinerant Peierls transition.

Before discussing these phenomena, we focus on the concepts of solid-state
physics in greater detail (Chapter 3), after enjoying a “sight-seeing trip” to some
of the most attractive one-dimensional substances in Chapter 2.

Chapter 9 will give an introduction to the field of molecular electronics, which
in many aspects is linked to low-dimensional solids. At first glance, it might be
proposed to use the polymer chains of a one-dimensional metal as ideal molecular
wires. This is not very realistic. However, the strong electron—phonon coupling in
one-dimensional systems (and, in particular, in organic systems) will lead to a bet-
ter localization of excitations and thus might be applied to denser packing of infor-
mation (i.e., to smaller devices and to higher integration). Nanoscale-molecular
electronic devices certainly are applications of the “distant future.” But there are
also near future and even present-day applications of one-dimensional solid-state
systems. A survey of this, Chapters 10 and 11, concludes this textbook. To com-
plete this introductory chapter, we reprint in Figure 1.19 a “haiku,” which was
used during the closing ceremony of the International Conference on Science and
Technology of Synthetic Metals in Kyoto [23].

Synthetic metals  Figure 1.19 Haiku from the ICSM '86 closing ceremony session in
Tec ne 1d Kyoto [23].
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