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1.1
Introduction

The enormous list of publications on transport measurements in graphene
starts with the seminal papers by the groups from Manchester and Columbia
[1a]. Already these studies indicated a very robust transport behavior, which
is characterized by a “V”-shaped conductivity with respect to charge density n
and a minimal conductivity 𝜎min ≈ 4e2∕h at the charge neutrality point n = 0.
In the presence of a magnetic field, there are Shubnikov–de Haas oscillations
for the longitudinal conductivity 𝜎xx and quantum Hall plateaux for the Hall
conductivity 𝜎xy at a sufficiently strong magnetic field. These properties have
been confirmed subsequently by various experimental groups in more detailed
studies and measurements under various conditions and for different types
of samples. Many of those results are collected and discussed in a number of
extensive reviews [2–4].

Optical properties of graphene for light with frequency 𝜔 are (directly) related
to the optical (or AC) conductivity 𝜎AC

xx (𝜔). The imaginary part of the dielectric
constant is related to the real part of the AC conductivity and, therefore, to the
optical reflectivity and transmittance [5].

The aim of this chapter is to explain how the transport properties are related to
fundamental physical principles, and we will focus on transport in the absence of
a magnetic field. Transport in metals is based on the assumption that the charge
carriers are Fermionic quasiparticles. The quasiparticles scatter on each other and
on the impurities or defects of the underlying lattice structure. This represents
a complex dynamical system which can be treated in practice only under some
simplifying assumptions. First, we consider only independent quasiparticles of the
system and average over all possible scattering effects. For the latter, we introduce
a static distribution by assuming that the relevant scattering processes happen
only on time scales that are large in comparison with the tunneling process of the
quasiparticle in the lattice. In other words, the probability for the quasiparticle
to move from site r′ to site r during the time t is Prr′ (t) = |⟨r| exp (−iHt)|r′⟩|2,
where H is the hopping Hamiltonian. Second, if we assume that Prr′ (t) describes
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2 1 Electronic Transport and Optical Properties of Graphene

diffusion, we can obtain the mean-square displacement with respect to r′ = 0 from
the diffusion equation

⟨r2
k⟩ = ∑

r
r2

k Pr,0(t) = Dt (1.1)

Using the Green’s function Grr′ (z) = (H − z)−1
rr′ , we obtain the diffusion coefficient

at energy E as
D(E) ∼ lim

𝜖→0
𝜖2

∑
r

r2
k⟨Gr0(E + i𝜖)G0r(E − i𝜖)⟩d (1.2)

where ⟨...⟩d is the average with respect to the disorder that is causing scattering,
and E0 is the lower band edge. Then the diffusion coefficient in Equation 1.1 is
related to D = ∫ EF

E0
D(E)dE. For transport in graphene at low temperatures, we

need the diffusion coefficient only at the Fermi energy EF.
A quantum approach to transport starts from a Hamiltonian H (here for inde-

pendent electrons) and the corresponding current operator, expressed by the com-
mutator

jk = −ie[H, rk] (1.3)

where rk is a component of the position operator of the electron. The average
current induced by a weak external electric field E is obtained in terms of linear
response as Ohm’s law

⟨jk⟩ = 𝜎klEl (1.4)

with conductivity 𝜎kl. The general form of the conductivity in the Kubo formalism
can be expressed as a product of one-particle Green’s functions G(z) at different
energies z [6]. In the following, we exclude an external magnetic field. This leads to
a vanishing Hall conductivity 𝜎kl = 0 for k ≠ l. Then we can distinguish transport
in a field which is constant in time, described by the DC conductivity 𝜎DC, and
transport in an oscillating field E(t) = E0 cos𝜔t, described by the optical or AC
conductivity 𝜎AC. These two types of conductivities are discussed briefly in the
remainder of this chapter.

DC conductivity: The DC conductivity 𝜎 at temperature T ∼ 0 can be calculated
either from D via the Einstein relation as 𝜎 ∝ 𝜌(EF)D(EF) with the density of states
𝜌, or from linear response theory via the Kubo formula [3, 7]

𝜎DC = − e2

h
lim
𝜔,𝛿→0

𝜔2
∑

r
r2

k Tr2⟨Gr0

(
EF + ℏ𝜔

2
+ i𝛿

)
G0r

(
EF − ℏ𝜔

2
− i𝛿

)⟩d (1.5)

where Tr2 is the trace with respect to the Pauli matrices. The latter expression is
obviously related to the diffusion equation in Equation 1.2 by the analytic contin-
uation i𝜖 → ℏ𝜔∕2 + i𝛿. Thus the main goal for the DC transport calculation is to
evaluate the average product of the Green’s functions in Equations 1.2 and 1.5.

AC conductivity: In contrast to the DC conductivity, where the diffusion on arbi-
trarily large scales dominates the conductivity, the AC conductivity at frequency
𝜔 has the maximum length scale L𝜔 = vF∕𝜔, which is the wavelength correspond-
ing to the Fermi velocity vF. This means that all physical processes appear as if
the system were restricted to a finite length L𝜔. This fact simplifies the transport



1.2 Basic Experimental Facts 3

calculations substantially. The drawback of the finite cutoff L𝜔, however, is that we
cannot approximate the AC transport by the asymptotic behavior for large scales,
as in Equation 1.2, but we need to include the details on finite scales. Then the real
part of the optical conductivity at temperature T = 1∕kB𝛽 reads [6]

𝜎AC,μμ(𝜔) =
i
ℏ ∫

∞

−∞ ∫
∞

−∞
⟨Tr

(
j𝜇𝛿(H − E − ℏ𝜔)j𝜇𝛿(H − E)

)⟩d

1
E − E′ + ℏ𝜔 + i0+

f𝛽(E′) − f𝛽(E)
E − E′ dEdE′ (1.6)

with the Fermi–Dirac distribution f𝛽(E) = [1 + exp (𝛽(E − EF))]−1 and the cur-
rent operator j𝜇 = −ie[H, r𝜇]. Moreover, we have used the trace Tr with respect to
real space and spinor components. The Dirac delta function can be expressed by
the Green’s function as

𝛿(H − z) = −i
2π

[G(z + i𝛿) − G(z − i𝛿)]

Equations 1.5 and 1.6 are the basic formulas that will be used for the subsequent
discussion of electronic transport and optical properties in graphene.

Before we start our survey on the properties of graphene, we briefly recall what
is known about the transport properties of conventional metals. To a good approx-
imation, the DC and AC conductivities are described by the Drude formula

𝜎DC = ne2𝜏

m
, 𝜎AC(𝜔) =

𝜎DC
1 − i𝜔𝜏

(1.7)

where 𝜏 is the scattering time, m is the quasiparticle mass, and n the charge den-
sity. These parameters are given as model parameters for the specific material.
These classical approximations are not valid in the case of graphene, though, nei-
ther for monolayer graphene (MLG) nor for bilayer graphene (BLG). Hwang et al.
applied the Boltzmann approach to the effective scattering time [8]. It reproduces
the experimental results at high charge densities (far away from the Dirac node)
but also gives 𝜎min = 0, like the conventional Boltzmann approach.

There are only two parameters, besides the frequency𝜔 and the particle mass m,
namely the scattering time 𝜏 (or the related scattering rate 𝜂 = ℏ∕𝜏) and the car-
rier density n, which determine the transport properties. This is also the case for
graphene, as we will explain in the following. For this discussion, the expressions
1.2, 1.5, and 1.6 are the fundamental quantities for the subsequent discussion of
MLG and BLG. Here, it should also be mentioned that in MLG the charge density
n is proportional to E2

F, in contrast to the linear relation in conventional metals.
This is a consequence of the linear density of states.

1.2
Basic Experimental Facts

Before we embark on the theory of transport in graphene, we briefly summarize
the experimental observations that are relevant for the subsequent theoretical
part.
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Already the first experiments on graphene by Novoselov et al. [1b] and Zhang
et al. [1c] revealed very characteristic transport properties in graphene. Graphene
as well as a stack of two graphene sheets (graphene bilayer) are semimetals
with remarkably good conducting properties [1b–9]. These materials have been
experimentally realized with external gates, which allow a continuous change of
the charge carrier density. It was found that the longitudinal conductivity changes
linearly as a function of charge density with a negative slope for holes and a posi-
tive slope for electrons, showing a characteristic “V”-shaped behavior. Moreover,
there is a minimal conductivity 𝜎min near the charge neutrality point. The latter
has attracted some attention because it is unexpected in terms of the classical
Boltzmann approach, and its value seems to be quite robust with respect to the
sample quality and temperature [9–12]. More recent experiments by the group
of E. Andrei on suspended graphene [13], however, indicated that, below T ≈ 150
K, the minimal conductivity decreases linearly with decreasing T and reaches the
extrapolated value 𝜎min ≈ 2e2∕h at T = 0. A similar result was found by Danneau
et al. [14]. This clearly indicates that the main mechanism of transport in graphene
at the nodal point is diffusion, possibly with a crossover to ballistic transport
due to a very large mean free path Ls = vF𝜏 of several hundred nanometers.
Away from the charge neutrality point, the linear behavior has not always been
observed but a crossover to a sublinear behavior for decreasing temperatures [13].

Role of disorder—Disorder plays an important role in the physics of graphene.
First of all, a two-dimensional lattice is thermodynamically unstable. It is known
that this is the origin of the strong corrugations in graphene in the form of ripples.
Another source of disorder is impurities in the substrate, which probably affect the
transport properties substantially. Recent experiments on suspended graphene
and with clean substrates have been able to eliminate this type of disorder. Exper-
imental evidence of the strong effects of disorder comes from the observation of
puddles of electrons and holes at the charge neutrality point [15]. Experiments
with hydrogenated graphene (graphane), where disorder is added by an inhomo-
geneous coverage with hydrogen atoms, lead to the formation of localized states
which causes a nonmetallic behavior characterized by a variable-range hopping
conductivity [16].

Role of electron–electron interaction—There is no clear evidence for a substan-
tial effect of electron–electron interaction on the transport properties. Coulomb
interaction renormalizes the Fermi velocity logarithmically near the Dirac point.
But this only weakly affects the transport because the Fermi velocity drops out
of the Kubo formula near the Dirac node. This is also supported by theoretical
findings, based on perturbative renormalization group calculations [17–20], that
Coulomb interaction provides only a correction of 1–2% for the optical conduc-
tivity [21]. This is in good agreement with experiments on the optical transparency
of graphene [22, 23].

Role of electron–phonon interaction–Although there is substantial electron–
phonon interaction in graphene [24–26], its effect on the transport properties
has not been investigated in detail. Some experimental findings of a gap open-
ing was associated with electron–phonon interaction [27] but in most samples



1.3 Models for Transport in Graphene 5

Table 1.1 Measured values of the scattering time 𝜏 and the Fermi energy in graphene and
related quantities.

Quantity Relation Measured values in [28] Typical values [10]

Scattering time 𝜏 — 0.36–1.08 10−14 s 10−14 –10−12 s
Scattering rate 𝜂 ℏ∕𝜏 6–18 meV 0.7–70 meV
Scattering length Ls vF𝜏 40–100 nm 10–100 nm
Diffusion coefficient D v2

F𝜏∕2 18–50 cm2/s 50–5000 cm2/s
Fermi energy EF — −200–0 meV −10–10 meV

the conductivity is explained by noninteracting particles. The optical conductiv-
ity might be affected by electron–phonon interaction of gated graphene before
interband scattering can dominate the transport (i.e., when the frequency 𝜔 is less
than EF∕ℏ) [23].

An important question is how 𝜏 depends on the Fermi energy EF. Its frequency
dependence was measured as 𝜏 = 10−14 –10−12 s [10] and was almost constant
(𝜏 ≈ 10−14 s in Ref. [28]). In Table 1.1, we have collected some measured values
of the scattering time 𝜏 and the Fermi energy EF in graphene. The corresponding
values of the scattering rate and the scattering length are calculated. The diffusion
coefficient is calculated from its weak-localization form. It should be noticed that
this is only a rough estimate for D, as we will explain in Section 1.4.

The experimentally measured DC conductivity as a function of the (electron or
hole) charge density n is well explained by the empirical formula

𝜎DC(n) = 𝜎min + e𝜇n (1.8)

where 𝜇 is the mobility, which is related to the scattering time by 𝜇 = ev2
F𝜏∕EF.

Comparing this expression with the Drude formula (Equation 1.7), we observe
that in the latter 𝜎min = 0 and the mass is replaced by m → EF∕v2

F.

1.3
Models for Transport in Graphene

In order to calculate the conductivities (1.5) and (1.6), we must specify the Hamil-
tonians for MLG and BLG, where we focus on the low-energy properties near
the nodes of neutral graphene. An important aspect is to take into account ran-
dom scattering caused by ripples and impurities. Moreover, a random gap can
appear as a result of local impurities. For instance, in the case of MLG, such local
fluctuations appear in the coverage of MLG by additional non-carbon atoms [16,
29]. In the case of BLG with a dual gate [30, 31], the random gap is caused by
the fact that the graphene sheets are not planar but create ripples [2, 32, 33].
As a result, electrons experience a randomly varying gap along each graphene
sheet.
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The two bands in MLG and the two low-energy bands in BLG represent a spinor-
1/2 wave function. This allows us to expand the corresponding Hamiltonian H =
H0 + V in terms of Pauli matrices 𝜎j as

H0 = h1𝜎1 + h2𝜎2, V =
3∑

j=0
vj𝜎j. (1.9)

Near each node, the coefficients hj in the low-energy approximation read [34]

hj = pj (MLG), h1 = p2
1 − p2

2, h2 = 2p1p2 (BLG) (1.10)

with momentum pj. This is a momentum expansion of the tight-binding Hamilto-
nians around the nodes K and K′.

For randomness, it is assumed here that scattering appears only at small
momentum such that intervalley scattering, which requires a large momentum
at least near the nodes, is not relevant and can be treated as a perturbation. Then
each valley contributes separately to the density of states and to the conductivity,
and the contributions of the two valleys add. This allows us to consider the
low-energy Hamiltonian in Eqs. (1.9) and (1.10) for each valley separately, even in
the presence of randomness. Within this approximation, the gap term v3 ≡ m is a
random variable. The following analytic calculations will be based entirely on the
Hamiltonian of Eqs. (1.9) and (1.10). In particular, the average Hamiltonian ⟨H⟩
can be diagonalized by Fourier transformation and becomes a two-dimensional
Dirac Hamiltonian for MLG

HM ≡ ⟨H⟩ = p1𝜎1 + p2𝜎2 + m𝜎3 (1.11)

with eigenvalues Ep = ±
√

m2 + p2. For BLG, the average Hamiltonian is

HB ≡ ⟨H⟩ = (p2
1 − p2

2)𝜎1 + 2p1p2𝜎2 + m𝜎3 (1.12)

with eigenvalues Ep = ±
√

m2 + p4. In order to apply the results from these calcu-
lations to the real materials, we must include a degeneracy factor γ = 4, referring
to the two valleys K and K′ and the two-fold spin degeneracy of the electrons.

For these Hamiltonians, we obtain the corresponding current matrix elements,
which we need for the evaluation of the conductivity. They are commutators with
respect to the position r and read for MLG j𝜇 = −ie[HM, r𝜇] = e𝜎𝜇 and for BLG

j1 = −ie[HB, r1] = 2e(p1𝜎1 + p2𝜎2), j2 = −ie[HB, r2] = 2e(−p2𝜎1 + p1𝜎2) (1.13)

In MLG the current is the same for all momenta, whereas it is linear in the
momenta for BLG. This indicates that the low-energy spectrum reveals a distinct
characterization with respect to the number of graphene layers.

1.4
DC Conductivity

Transport in graphene, like in other materials, is based on the diffusion of quasi-
particles. However, the situation in graphene is more subtle than in conventional
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metals. First of all, graphene is a two-dimensional structure, where the scaling
theory of Anderson localization for conventional metals predicts the localization
of quantum states for any amount of disorder [35]. Surprisingly, this has not been
confirmed by experiments. Despite the remarkable disorder effects from the sub-
strate and from ripples in the graphene sheet, the metallic behavior is always dom-
inant. Doping of graphene with hydrogen is one of the few exceptions, in which
the material becomes nonmetallic. However, this is not due to Anderson localiza-
tion but is caused by sublattice symmetry-breaking, which generates a small gap
of a few meV up to 1 eV [36–38]. The reason for the absence of Anderson localiza-
tion is that graphene, in contrast to a conventional metal, has two complementary
bands which are connected by a particle-hole symmetry. This allows for Klein
tunneling, an effect that suppresses potential scattering substantially. The particle-
hole symmetry implies a chiral symmetry for the two-particle Green’s function.
This can be spontaneously broken by random scattering, which is indicated by a
nonzero scattering rate 𝜂. Therefore, we can distinguish three different regimes:
a ballistic regime with no scattering except for the sample boundaries; a diffusive
regime for weak scattering; and Anderson localization for very strong scattering.
Moreover, a random gap can be opened. This leads to an insulating regime for
weak scattering and a metallic regime for stronger scattering and, eventually, to
Anderson localization for very strong scattering.

Ballistic regime at the Dirac node: Equation 1.2 defines the diffusion coefficient
in our two-band system. In the case without disorder, the correlation of Green’s
functions gives for the Hamiltonian in Equation 1.11

D = lim
𝜖→0

1
4π

(
1 +

1 + ζ2

ζ
arctan ζ

)
(ζ = E∕𝜀) (1.14)

This result is surprising in that it indicates diffusion at the Dirac node E = 0 with
the diffusion coefficient D = 1∕2π even without random scattering. Away from the
Dirac node (E ≠ 0), however, D diverges, reflecting that there is no diffusion but
ballistic propagation. This is accidental not only for the case for MLG, since we
also get a finite D at the nodes for the BLG. This behavior reveals a characteristic
transport feature at the nodes of a two-band system, which is caused by quantum
fluctuations. In other words, quantum fluctuations play an important role in 2D
transport at the points of band degeneracy.

Diffusive regime with weak disorder scattering: Typical disorder is due to a ran-
domly fluctuating gap. The result of a weak scattering expansion for the correlation
function in Equation 1.5 is the scaling relation [39, 40]∑

r
r2

k Tr2⟨Gr0(EF + i𝛿)G0r(EF − i𝛿)⟩d =
𝜂2

𝛿2

∑
r

r2
k Tr2

[
G0,r(EF + i𝜂)G0,−r(EF − i𝜂)

]
.

(1.15)

This relation is very important for the evaluation of the diffusion coefficient in
Equation 1.2 and the DC conductivity in Equation 1.5, since it enables us to
perform the averaging over disorder. The latter results in the substitution of 𝛿 by
the scattering rate 𝜂 and the prefactor 𝛿−2. The scattering rate is obtained from
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disorder distribution and can either be calculated in the self-consistent Born
approximation [39–41] or measured in an experiment. Then the right-hand side
of the relation can be evaluated in Fourier representation and gives

− 1
2π𝛿2

(
1 +

1 + ζ2

ζ
arctan ζ

)
(ζ = EF∕𝜂) (1.16)

After inserting this expression in Equation 1.5, we obtain for the DC conductivity
of MLG the simple expression

𝜎DC = 2e2

πh

(
1 +

1 + ζ2

ζ
arctan ζ

)
(1.17)

where the fourfold spin and valley degeneracy has been implemented. This result
is remarkable because it is in good agreement with experimental observation of a
“V”-shaped conductivity. If we compare it with the empirical formula in Equation
1.8, we can identify the minimal conductivity 𝜎min = 4e2∕πh at the Dirac node and
the monotonically increasing behavior

∼
σ = 2e2

πh

(
−1 +

1 + ζ2

ζ
arctanζ

)
∼ 2 e2

πh

{
ζ2 for ζ ∼ 0
πζ∕2 for ζ ∼ ∞

(1.18)

away from the Dirac node. The minimal conductivity is independent of the scat-
tering rate, which reflects the fact that quantum fluctuations are dominant. The
behavior for small ζ can be expressed by the scattering time and leads to the
expression

∼
σ ∼ 2 e2

πh
E

2
F𝜏

2

ℏ2 (1.19)

On the other hand, the linear behavior of
∼
σ far away from the Dirac node agrees

with the classical Boltzmann calculation. This is indicative of the fact that the scat-
tering to the second band is irrelevant in this regime.

The calculation for the DC conductivity of MLG is also applicable to BLG. The
main difference is that the minimal conductivity appears with an additional factor
2 [39, 40], which is a consequence of the parabolic spectrum near the node. We
will see later that this factor 2 is also crucial for the AC conductivity. Like in the
case of minimal conductivity, it is not due to independent currents through the
two layers but due to the spectral curvature near the nodes.

Anderson localization: Is it realistic to see Anderson localization, that is, the
absence of diffusion, in graphene? In a one-band system, it is always present in
two-dimensional systems, according to the scaling theory [35]. In a two-band sys-
tem, this is less clear. For weak scattering, we have seen that diffusion prevails
because of spontaneous breaking of chiral symmetry. For very strong scattering,
when the scattering rate 𝜂 exceeds the band width, we have found a transition to
Anderson localization [42]. However, such strong scattering rates are rather unre-
alistic in graphene unless disorder is created intentionally (e.g., removing carbon
atoms by bombardment with ions). The measured scattering rates are at least two
orders smaller than this value (cf. Table 1.1). The schematic phase diagram for
graphene is depicted in Figure 1.1.
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g

m0

Insulator I Insulator II

Metallic phase

Figure 1.1 Schematic phase diagram for graphene with a random gap with average m and
variance g = ⟨m2⟩ − ⟨m⟩2.

1.5
AC Conductivity for Very Weak Scattering and Thermal Fluctuations

The Kubo formula (1.6) is now employed to calculate the AC (or optical) conduc-
tivity in MLG and BLG. We assume here that ℏ𝜔 ≫ 𝜂, so that the relevant length
scale is the effective wavelength vF∕𝜔 rather than the scattering length vF𝜏 . This
implies that disorder scattering is not important and can be neglected. Then we
can treat the current matrix elements of Equation 1.13 in Fourier representation
with respect to energy eigenstates | ± E⟩. Of particular interest is the matrix ele-
ment that describes interband scattering, for which we obtain, after the integration
over the circular Fermi surface with E2

F ≥ m2,

∫
2π

0
|⟨E|𝜎1| − E⟩|2dφ = π

(
1 + m2

E2

)
(1.20)

in the case of MLG and

∫
2π

0
|⟨E|kx𝜎1 + ky𝜎2| − E⟩|2dφ = π

√
E2 − m2

(
1 + m2

E2

)
(1.21)

in the case of the BLG. The integrated current matrix elements behave quite dif-
ferently for MLG and BLG. In particular, without gap (i.e., m = 0) the expression
is either constant (MLG) or increases linearly with energy (BLG).

Using the Kubo formula (1.6) and the expressions of the angular integrated cur-
rent matrix elements in Equations 1.20 and 1.21, the integration over E gives for
𝜔2 ≥ Δ2, where Δ = 2m is the gap, the expression

𝜎′(𝜔) = γπe2

8h

[
1 + Δ2

𝜔2

] [
f𝛽
(
−ℏ𝜔

2

)
− f𝛽

(
ℏ𝜔

2

)]
(1.22)
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for the real part of the AC conductivity. γ is the degeneracy, with γ = 4 for MLG
and γ = 8 for BLG. Thus the conductivities of MLG and BLG agree up to a factor
2. The additive correction due to the gap parameter Δ2 decays like 𝜔−2, which
resembles the intraband scattering of the Drude behavior in Equation 1.7.

In the special gapless case, m = 0 and T ∼ 0, and we get for the AC conductivity
𝜎AC = 𝜎′ + i𝜎′′ the real part

𝜎′(𝜔) = γπe2

8h
Θ(ℏ𝜔 − 2EF ) (1.23)

and the imaginary part

𝜎′′(𝜔) = γ e2

16h

[
4

EF
ℏ𝜔

− log
(||||2EF + ℏ𝜔

2EF − ℏ𝜔

||||
)]

(1.24)

The first term resembles the Drude result in Equation 1.7, because this is a con-
tribution from intraband scattering [43]. It should be noticed that 𝜎′′(𝜔) van-
ishes for 𝜔 ≫ EF. If we take the full band structure of the honeycomb lattice into
account, the AC conductivity deviates from the low-energy result of Equation
1.22. This is shown in Figure 1.2, where 𝜎′(𝜔) versus the frequency is plotted.
In particular, there is a characteristic conductivity maximum at the van Hove
singularity, where the Fermi surfaces of the two nodes merge. The Fermi energy
EF ≠ 0 creates a step at ℏ𝜔 = 2EF because excitations without momentum trans-
fer are possible only from the Fermi sea to unoccupied states in the upper band
(cf. Figure 1.3).

0

1

2

0 1

C
on

du
ct

iv
ity

f

1/3 2/32EF

3/2

1/2

Figure 1.2 Real part of the AC conductiv-
ity at T = 0 in units of πe2∕h as a function
of the rescaled frequency f = ℏ𝜔∕t for the
honeycomb lattice, where t = 2.8 eV is the
bandwidth. There is a characteristic peak due

to a van Hove singularity. The Fermi energy
is at the charge neutrality point EF = 0 (full
curve) and above the charge neutrality point
at EF = 0.04t (dotted curve).
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k1

E

hω

Figure 1.3 Schematic picture of the creation of an electron–hole pair in gapped MLG or
BLG by the absorption of a photon with energy ℏ𝜔. For this process, the photon energy
must be larger than the bandgap Δ = 2m.

The AC conductivity provides the dielectric coefficient 𝜖(𝜔) via the relation [5]

𝜖(𝜔) = 1 + 4πi
𝜔

𝜎(𝜔) (1.25)

so that the complex dielectric coefficient reads 𝜖 = 𝜖′ + i𝜖′′ with

𝜖′ = 1 − 4π
𝜔
𝜎′′, 𝜖′′ = 4π

𝜔
𝜎′ (1.26)

This is the dielectric function for the wave vector q = 0: 𝜖(𝜔) = 𝜖(q = 0, 𝜔). We
need the dielectric function later for the description of plasmons in Section 1.6.

According to the Fresnel equations for thin layers [22, 44], the optical transmit-
tance T is directly linked to the AC conductivity through the relation

T ≈ 1
(1 + 2π𝜎′(𝜔)∕c)2 (1.27)

Using the result in Eq. 1.23, the transmittance becomes

T ≈ 1 − πα (MLG), T ≈ 1 − 2πα (BLG) (1.28)

where α = e2∕ℏc ≈ 1∕137 is the fine-structure constant. This behavior was also
observed in several experiments over a wide range of frequencies [22, 23, 44].

1.6
Plasmons

Now we consider the electron gas in graphene which is subject to an external
potential Vi(q,𝜔). The response of the electron gas to Vi(q,𝜔) is a screening poten-
tial Vs(q,𝜔) which is created by the rearrangement of the electrons due to the
external potential. Therefore, the total potential acting on the electrons is given
by

V (q,𝜔) = Vi(q,𝜔) + Vs(q,𝜔) (1.29)
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Vs can be evaluated self-consistently [45] and is expressed via the dielectric func-
tion 𝜖(q,𝜔). Then the total potential reads [46]

V (q,𝜔) = 1
𝜖(q,𝜔)

Vi(q,𝜔) (1.30)

The dielectric function can be calculated from the Lindhard formula. Assuming
that the wavelength of the electromagnetic wave is much larger than the lattice
spacing, the longitudinal component reads [45]

𝜖(q,𝜔) = 1 − 2πe2

q
χ(q,𝜔) (1.31)

where

χ(q,r,𝜔) = lim
𝛿→0∫k

∑
l,l′=1,2

f𝛽(Ek,l) − f𝛽(Ek+q,l′ )
Ek,l − Ek+q,l′ + ℏ𝜔 + iℏ𝛿

|⟨k + q,l′|eiq⋅r|k,l⟩|2 (1.32)

Poles in 𝜔 of the inverse longitudinal dielectric function 1∕𝜖(q,𝜔) for a given wave
vector q correspond to the collective excitations of electrons which are called plas-
mons. These poles are located either on the real axis or in the complex plane away
from the real axis. The latter can be considered as damped plasmons, which are
generated by scattering with individual electrons. An imaginary term can appear
in the integral χ(q,𝜔) of Equation 1.32 if the denominator Ek − sEk+q + 𝜔, s = ±1
vanishes inside the Brillouin zone. In other words, if (q,𝜔) is inside the band that
is produced by the spectrum of the electrons, that is, where an electronic wave
vector k exists that satisfies

Ek+q − sEk = 𝜔 (1.33)

then scattering between plasmons and electrons is possible and will lead to the
damping of plasmons. On the other hand, outside the spectrum of electrons (i.e.,
when there is no electron wave vector k which solves Equation 1.32), we obtain
undamped plasmons.

Using the Dirac Hamiltonian from Equation 1.11 as a low-energy approximation
enables us to calculate the poles of the inverse dielectric function directly [47, 48].
In this case, the plasmon dispersion follows a square-root behavior

𝜔P ∼ cq1∕2 (1.34)

where the prefactor c is proportional to
√

EF. The plasmon dispersion, on the other
hand, depends on the spectral properties of the electrons. Therefore, deviations
from Dirac cones may affect them. This can lead to a stronger damping of the
electrons, since electronic excitations require lower energies on the honeycomb
lattice in comparison with the linearized (Dirac) spectrum [49]. For this purpose,
we plot the loss function [50]

Im
(

1
𝜖(q,𝜔)

)
= −𝜖′′

𝜖′2 + 𝜖′′2
(1.35)

in Figure 1.4. The peak strength varies with the momentum. In particular, if the
pole is away from the real axis, it becomes a Lorentzian of width 𝜖′′. Thus, 𝜖′′
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Figure 1.4 Plasmon dispersion E = ℏ𝜔∕3t
as a function of k = qx d at the Fermi
energy EF = 0.25t on the honeycomb lat-
tice (Adapted and reproduced from [49] with
permission from EPL) . d = 1.42 Å is the lat-
tice constant of graphene. To demonstrate

the anisotropy, two different directions of
the q vector with qy = 0 (a) and qy = qx (b)
have been plotted. The isotropic square-root
behavior of the Dirac case is also shown as a
dashed curve.

is a measure of the damping by electron scattering. Plasmons on a honeycomb
lattice with an additional next-nearest neighbor hopping have also been studied
[51]. Although the additional hopping breaks the particle-hole symmetry of the
two-band system, there is no drastic effect on the plasmon dispersion.

The two panels of Figure 1.4 demonstrate the anisotropy of the plasmon disper-
sion for electrons on the honeycomb lattice. There is a substantial deviation from
the isotropic plasmon dispersion of the Dirac Hamiltonian.

The square-root behavior of the plasmon dispersion, on the other hand, is quite
general for a two-dimensional electron gas. For a conventional 2D electron gas
with parabolic electron dispersion with effective electron mass m, the plasmon
dispersion reads [52]

𝜔p(q) =

√(
4a + v2

F q
)

q
(
q4v4

F + 4q3v2
F a + 16k2

F a2
) (

v2
F q + 2a

)
4
(
4a + v2

F q
)

akF
(1.36)

with a = 2ne2∕m and the Fermi velocity vF. Expansion for small q then gives

𝜔2
p ≈ aq + 3

4
v2

F q2 (1.37)

Thus, plasmons in graphene have similar properties as those in a conventional 2D
electron gas.

1.7
Discussion

Transport in graphene is remarkably different from that in conventional metals.
The main reason is the scattering between the valence and the conduction band,
which leads to Klein tunneling. This has several consequences for the elec-
tronic and optical properties in MLG and BLG. First of all, it creates a minimal
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conductivity for the neutral system (EF = 0), which can be explained by quantum
fluctuations of the system without electric charges. The other distinctive feature
is the constant AC conductivity over a wide range of frequencies. This was also
observed in a number of experiments for frequencies ranging from infrared to
visible light [22, 23]. Another characteristic feature is that the AC conductivity of
BLG is twice as large as that of MLG. This was also observed experimentally with
high accuracy [22]. A third important aspect is that graphene defies Anderson
localization, which is possible only for very strong scattering. Therefore, diffusion
is the main transport mechanism in graphene. We can conclude that the DC
transport behavior of graphene becomes more conventional and Drude-like as
we go deeper in the valence band (for holes) or in the conduction band (for
electrons) because interband scattering becomes less important. On the other
hand, exactly at the nodes of the bands the transport behavior is quite special,
because the Fermi surface shrinks to a point.
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