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1.1
Introduction

It is generally accepted that liner analysis often gives poor performances in approx-
imating real data.Therefore, although it is easy to handle and fast to compute, and
many statistical results are available, it cannot be extensively used especially when
complex relationships are recognized in the data. In these contexts, it is common
the use of non linear analysis which can successfully be employed to reveal these
patterns.
However, parametric analysis, both linear and nonlinear, requires an “a priori”

specification of the links among the variables of interest, which is not always
possible. Therefore, even if the results have the advantage of the interpretability
(in the sense that the model parameters are often associated to quantities with a
“physical” meaning), misspecification problem can arise and can affect seriously
the results of the analysis. In this respect, nonparametric analysis seems to be a
more effective statistical tool due to its ability to model non-linear phenomena
with few (if any) “a priori” assumptions about the nature of the data generating
process.Well-studied and frequently used tools in nonparametric analysis include
nearest neighbours regression, kernel smoothers, projection pursuit, alternating
conditional expectations, average derivative estimation, and classification and
regression trees.
In this context, computational network analysis forms a field of research which

has enjoyed rapid expansion and increasing popularity in both the academic and
the research communities, providing an approach that can potentially lead to
better non-parametric estimators and providing an interesting framework for
unifying different non-parametric paradigms, such as nearest neighbours, kernel
smoothers, and projection pursuit.
Computational network tools have the advantage, with respect to other non-

parametric techniques, to be very flexible tools able to provide, under very gen-
eral conditions, an arbitrarily accurate approximation to an unknown target the
function of interest. Moreover, they are expected to perform better than other
non-parametric methods since the approximation form is not so sensitive to the
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increasing data space dimension (absence of “curse of dimensionality”), at least
within particular classes of functions.
However, a major weakness of neural modeling is the lack of established pro-

cedures for performing tests for misspecified models and tests of statistical sig-
nificance for the various parameters that have been estimated. This is a serious
disadvantage in applications where there is a strong interest for testing not only
the predictive power of a model or the sensitivity of the dependent variable to
changes in the inputs but also the statistical significance of the result at a speci-
fied level of confidence. Significant correction for multiple hypothesis testing has
been a central concern in many fields of research that deal with large sets of vari-
ables and small samples and where, as a consequence, the control of false positives
becomes an important problem.
In such context data snooping, which occurs when a given set of data is used

more than once for inference or model selection, it can be a serious problem.
When such data reuse occurs, there is always the possibility that any satisfactory
results obtainedmay simply be due to chance rather than anymerit inherent in the
model yielding the result. In other words, looking long enough and hard enough
at a given data set will often reveal one or more forecasting models that look good
but are in fact useless (see White, 2000; Romano and Wolf, 2005, inter alia).
Unfortunately, as far as we know, there are no results addressing the problem

just described in a neural network framework. The data snooping can be partic-
ularly serious when there is no theory supporting the modeling strategy as it is
usual when using computational network analysis, which is basically atheoretical.
The aim of this chapter is to develop model selection strategies useful for com-

putational network analysis based on statistical inference tools. In particular, we
propose hypothesis testing procedures both for variable selection and model ade-
quacy. The approach takes into account the problem of data snooping and uses
resampling techniques to overcome the analytical and probabilistic difficulties
related to the estimation of the sampling distribution of the test statistics involved.
The chapter is organized as follows. Section 1.2 describes the structure of the data
generating process and the neural network model considered. In Section 1.3, we
address the problem of input selection and in Section 1.4 the selection of the hid-
den layer size. In both cases, application to simulated and real data are considered.
Some remarks conclude the papers.

1.2
Feedforward Neural Network Models

Let the observed data be the realization of a sequence
{
𝐙i =

(
Yi,𝐗T

i
)T

}
of ran-

dom vectors of order (d + 1), with i ∈ ℕ and joint distribution 𝜋. Moreover, let 𝜇
be the marginal distribution of 𝐗i. The random variables Yi represent targets (in
the neural network jargon) and it is usually of interest the probabilistic relation-
ship with the variables𝐗i, described by the conditional distribution of the random
variable Yi

||𝐗i . Certain aspects of this probability law play an important role in
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interpreting what is learned by artificial neural network models. If 𝔼
(

Yi
)
<∞,

then 𝔼
(

Yi
||𝐗i

)
= g

(
𝐗i
)
and we can write

Yi = g
(
𝐗i
)
+ 𝜀i (1.1)

where 𝜀i ≡ Yi − g
(
𝐗i
)
and g ∶ ℝd → ℝ is a measurable function.

The function g embodies the systematic part of the stochastic relation between
Yi and 𝐗i. On the data-generating process, we assume also that:

1) 𝐙i are independent and identically distributed (i.i.d.) random vectors; {𝜀i} are
independent of {𝐗i}, 𝔼(𝜀i) = 0 and 𝔼(𝜀2i ) = 𝜎2

𝜀
< ∞.

2) The random vectors 𝐗i have a compact support, say 𝜒1 ∈ ℝd.

These conditions guarantee that Yi has finite variance.
The function g can be approximated by a single hidden layer feed-forward neural

network NN(d, r) defined as:

f (𝐱,𝐰) = w00 +
r∑

j=1
w0j𝜓

(
𝐱̃T𝐰1j

)
(1.2)

where 𝐰 ≡ (
w00,w01,…w0r,𝐰T

11,… ,𝐰T
1r
)T is a r(d + 2) + 1 vector of network

weights, 𝐰 ∈ 𝐖 with 𝐖 compact subset of ℝr(d+2)+1, and 𝐱̃ ≡ (
1, 𝐱T)T is the

input vector augmented by a bias component 1. The network (Eq. (1.2)) has
d input neurons, r neurons in the hidden layer and identity function for the
output layer. The (fixed) hidden unit activation function 𝜓 is chosen in such
a way that f (𝐱, ⋅) ∶ 𝐖 → 𝐑 is continuous for each x in the support of 𝜇 and
f (⋅,𝐰) ∶ ℝd → ℝ is measurable for each 𝐰 in𝐖.
On the neural network model, we assume that

1) The activation function, 𝜓(⋅), is sigmoidal.
2) The function 𝜓(⋅) has all the derivatives.

This latter assumption guarantees (Hornik, Stinchcombe, and Auer, 1994 inter
alia) that feedforward neural networks with sufficiently many hidden units and
properly adjusted parameters can approximate any function arbitrarily well.
Moreover, Barron (1993) gives convergence rates for hidden layer feedforward
networks with sigmoidal activation functions, approximating a class of functions
that satisfy certain smoothness conditions.
Given a training set of N observations, the estimation of the network weights

(learning) is obtained by solving the optimization problem

min
𝐰∈𝐖

1
N

N∑
i=1

q
(

Yi, f
(
𝐗i,𝐰

))
(1.3)

where q(⋅) is a proper chosen loss function. Under general regularity conditions
White (1989), a weight vector 𝐰̂n solving Eq. (1.3) exists and converges almost
surely to 𝐰0, which solves

min
𝐰∈𝐖∫ q

(
y, f (𝐱,𝐰)

)
d𝜋 (𝐳) (1.4)
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provided that the integral exists and the optimization problem has a unique solu-
tion vector interior to𝐖. Observe that this is not necessarily true for neural net-
work models in the absence of appropriate restrictions since the parametrization
of the network function is not unique and certain simple symmetry operations
applied to the weight vector do not change the value of the output. For a sig-
moid activation function, 𝜓 centered around 0, these symmetry operations corre-
spond to an exchange of hidden units and multiplying all weights of connections
going into and out of a particular hidden unit by −1. The permutability of hid-
den units generally results in a non-unique 𝐰0 as there are numerous distinct
weight vectors yielding identical network outputs. In any case, this may not be a
main concern for different reasons. Firstly, several authors provide sufficient con-
ditions to ensure uniqueness of 𝐰0 in a suitable parameter space 𝐖 for specific
network configurations. Particularly, for the case of sigmoidal activation func-
tions with𝜓(−a) = −𝜓(a), it is possible to restrict attention only to weight vectors
with w01 ⩾ w02 ⩾ · · · ⩾ w0r (see Ossen and Rüugen, 1996). Secondly, the possible
presence of multiple minima has no essential effect, at least asymptotically, for
solutions to Eq. (1.4) (seeWhite, 1989).Thirdly, several global optimization strate-
gies (simulation annealing, genetic algorithms, etc.) are available to avoid being
trapped in local minima and they have been successfully employed in neural net-
work modeling. Finally, when the focus is on prediction, it can be shown that the
unidentifiability can be overcome and the problem disappears (Hwang and Ding,
1997).
Asymptotic normality of the weight vector estimator can also be established.

In particular, let l (𝐳,𝐰) ≡ q
(

y, f (𝐱,𝐰)
)
and denote by 𝛻 and 𝛻2 the gradient and

the Hessian operators, respectively. Assume that 𝐀∗ ≡ 𝔼
(
𝛻2l

(
𝐳,𝐰0

))
and 𝐁∗ ≡

𝔼
(
𝛻l

(
𝐳,𝐰0

)
𝛻l

(
𝐳,𝐰0

)T
)
are nonsingular matrices. If general regularity condi-

tions hold, then√
n
(
𝐰̂n − 𝐰0

) d
−→ N (𝟎,𝐂∗)

where 𝐂∗ = 𝐀∗−𝟏𝐁∗𝐀∗ (White, 1989, theorem 2, p. 457).
These results make it possible to test the hypotheses about the connection

strengths, which can be of great help in defining pruning strategies with a strong
inferential base. However, focusing on single weights might be misleading due
to the black-box nature of the neural network model and better model selection
strategies become necessary to select appropriate network architectures for the
problem at hand.

1.3
Model Selection

Model selection in neural network models requires selecting both an appropriate
number of the hidden units and a suitable set of explicative variables and, as a con-
sequence, the connections thereof.The “atheoretical” nature of the tool, employed
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for the lack of knowledge about the functional form of the data generating process,
and the intrinsic misspecification of the model, makes this problem a hard task.
The problem is not a novel one and a number of different and effective solutions

have been proposed.Themost popular approaches are pruning, stopped training,
and regularization. Although these techniques may lead to satisfactory results,
they focus on singleweights and this can bemisleading due to the black-box nature
of the neural networkmodel. Indeed, they do not give any information on themost
significant variables, which is useful in anymodel building strategy and,moreover,
different topologies can achieve the same approximation accuracy. Therefore, a
proper choice of the network topology cannot be just based on complexity reason
and should also take into account model plausibility. All the techniques based on
weight selection are much more on the side of computational standpoint than on
the side of a statistical perspective. Instead, it would be of some interest to look at
the choice of the network topology by including it in the classical statistical model
selection approach.
In this perspective, information criteria such as the Akaike information

criterion (AIC) and the Schwarz information Criterion (SIC) could be used.
These criteria add a complexity penalty to the usual sample log-likelihood, and
the model that optimizes this penalized log-likelihood is preferred. Generally, the
SIC, imposing a more severe penalty than the AIC, delivers the most conservative
models (i.e., least complex) and has been found to perform well in selecting
forecasting models in other contexts. Therefore, in the neural network frame-
work, SIC is usually preferred (Franses and Draisma, 1997, inter alia). However,
many statistical studies agree that these measures should be used with care in
choosing the best model in a neural network context. Indeed, Swanson and
White (1997) and Qi and Zhang (2001) show that these procedures might lead
to over-parameterized models with heavy consequence on overfitting and poor
ex-post forecast accuracy. Kuan and Liu (1995) instead propose the predictive
stochastic complexity criterion, which is based on forward validation, a better
choice for forecasting purposes.
In any case, all these model selection procedures are not entirely satisfactory.

Since model selection criteria depends on sample information, their actual val-
ues are subject to statistical variations. As a consequence, a model with higher
model selection criterion value may not outperform significantly its competitors.
Moreover, they lack a strong inferential statistical perspective and, usually, they
contain a strong judgemental component not giving explicitly any information on
the most “significant” variables.
A better model selection strategy should be faced in a statistical framework,

relating it to the classical model selection approach, emphasizing the different
role in the model of the explanatory variables and of the hidden layer neurons. In
a regression framework, input neurons are related to the explanatory variables
(useful for identification and interpretation of the model), while the hidden
layer size has no clear interpretation, and it should be considered basically as a
smoothing parameter taking into account the trade-off between estimation bias
and variability.
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However, while in principle, the hidden layer size could be chosen according
to one of the many results available in the statistical literature, ranging from the
information criteria based on the fitting, to the indexes based on prediction accu-
racy, the input selection should be addressed focusing on procedures for variable
selection in regression models.
In this perspective, themodel selection strategy discussed in the following, iden-

tifies both the input variables and the hidden layer size by using formal test proce-
dures. Particularly, the input variables are selected by using relevance measures,
while the hidden layer size is selected by looking at the predictive performance
of the neural network model. Both procedures use extensively resampling tech-
niques that are able to deliver consistent results under general assumptions, a very
important requirement in a neural network framework.

1.3.1
Feature Selection by Relevance Measures

To select a proper set of input variables, we focus on a selection rule based on rel-
evance measures (White and Racine, 2001; La Rocca and Perna, 2005a,b) follow-
ing the usual strategy generally employed when selecting a model in the classical
regression framework.
There are, of course, a lot of representative criteria that have traditionally been

used to quantify the relevance of input variables in neuralmodels.These relevance
criteria, often referred to as sensitivity measures, are traditionally obtained by the
computation of partial derivatives.
As inWhite and Racine (2001), the hypotheses that the independent variable Xj

has no effect on Y , in model (Eq. 1.1) can be formulated as:
𝜕g (𝐱)
𝜕xj

= 0,∀x. (1.5)

Of course, the function g is unknown but we equivalently investigate the
hypotheses

fj
(
𝐱;𝐰0

)
=
𝜕f

(
𝐱;𝐰0

)
𝜕xj

= 0,∀x. (1.6)

since f is known and 𝐰0 can be closely approximated.
The general form for relevance measures is,

𝜃j = 𝔼
[
h|fj(𝐱,𝐰0

]
(1.7)

where h(.) is a proper chosen function and 𝔼 [.] is the expected value w.r.t. the
probability measure of the vector of the explanatory variables.
As relevance measures, several alternative functions can be used; for example,

the average derivative (h(x) = x); the absolute average derivative (h(x) = |x|); the
square average derivative (h(x) = x2); the maximum and the minimum deriva-
tive (h(x) = max(x) and (h(x) = min(x))). Each of these measures reflects different
aspects of the model and, as a consequence, it can provide different ranks of the
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variables, according to its magnitudes. The most natural sensitive measure is, of
course, the average derivative but, because of cancellations between negative and
positive values, the absolute average derivative and the square average derivative
are the most used. In many financial applications, such as the construction of the
risk neutral portfolios of assets, and in all applicative context where the interest
is on inflection points, the maximum and the minimum derivative are also quite
common. However, themost general and natural choice in the statistical literature
is the square function leading to the following relevance measure for the d input
neurons:

𝜃j = 𝔼
[

f 2j
(
𝐱,𝐰0

)]
, j = 1, 2,… , d.

Therefore, the hypothesis that a given set of variables has no effect on Y can be
formulated in a multiple testing framework as

Hj ∶ 𝜃j = 0 vs H′
j ∶ 𝜃j > 0, j = 1, 2,… , d. (1.8)

Each null Hj can be tested by using the statistic,

T̂n,j = n𝜃̂j =
n∑

i=1
f 2j

(
𝐗i, 𝐰̂n

)
(1.9)

where 𝜃̂j =
1
n

n∑
i=1

f 2j
(
𝐗i, 𝐰̂n

)
and the vector 𝐰̂n is a consistent estimator of the

unknown parameter vector 𝐰0. Clearly, large values of the test statistics indicate
evidence against Hj.
So, the problem here is how to decide which hypotheses to reject, accounting

for the multitude of tests. Significant correction for multiple hypothesis testing
has been a central concern in many fields of research that deal with large sets
of variables and small samples and where, as a consequence, the control of false
positives becomes an important problem.
The most relevant methods for significant adjustment are based on standard

measures like the familywise error rate (FWE), defined as the probability of finding
at least one false positive, that is, rejecting at least one of the true null hypotheses.
The FWE can be controlled by using the well-known Bonferroni method or

stepwise procedures proposed by Holm (1979) which are more powerful. Unfor-
tunately, both procedures are conservative since they do not take into account
the dependence structure of the individual p-values. A possible solution can be
obtained by using the reality check proposed byWhite (2000) which can be easily
extended to our framework.
Here, we use the StepM procedure proposed by Romano andWolf (2005), suit-

able for joint comparison of multiple misspecified models.
The step-down procedure begins by constructing a rectangular joint confidence

region (with nominal coverage probability 1 − 𝛼), which is used to test the joint
null hypothesis that all the nulls Hj, j = 1, 2,… , d are true. If all hypotheses are not
rejected, the procedure stops. Otherwise, the rejected hypotheses are removed
and a new rectangular joint confidence region with nominal level 1 − 𝛼 is con-
structed. The process is repeated until no further hypotheses are rejected.
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The procedure can be described by Algorithm 1.1.
Algorithm 1.1:Multiple testing algorithm.

1: Relabel the hypothesis from Hr1 to Hrd
in redescending order of the value

of the test statistics T̂n,j, that is T̂n,r1 ≥ T̂n,r2 ≥ … ≥ T̂n,rd
.

2: Set L = 1 and R0 = 0.
3: for j = RL−1 + 1 to d do
4: Fix cL (1 − 𝛼) such that the joint asymptotic coverage probability is 1 − 𝛼
5: if 0 ∉

[
T̂n,rj

− cL (1 − 𝛼) ,∞
)
then

6: reject Hrj

7: end if
8: end for
9: if no (further) null hypothesis are rejected then
10: Stop
11: else
12: RL = number of rejected hypothesis
13: L = L + 1
14: Go to step 3
15: end if

Of course, in order to apply the StepMprocedure, it is necessary to know the dis-
tribution of the test statistic T̂n,j. Under general conditions, (Giordano, La Rocca,
and Perna 2014) it is straightforward to show that:

T̂n,j
d
−→ ϝ (0,𝐂∗,𝐌∗) ∀j ∈ {1,… , d}

where ϝ denotes the mixture of independent 𝜒2 random variables and

𝐌∗ = 𝔼
([
▽fj(𝐗i,𝐰0)▽fj(𝐗i,𝐰0)T +▽2fj(𝐗i,𝐰0)fj(𝐗i,𝐰0)

])
.

Even if this result is relevant from a theoretical point of view, it does not allow
easy the estimation of the quantiles cL(1 − 𝛼) in StepM algorithm. Therefore, the
sampling distribution can be better approximated by some types of resampling
techniques. Here, we propose the use of subsampling. This choice can be justi-
fied by its property of being robust against misspecifications, a key property when
dealing with artificial neural network models. Moreover, the procedure delivers
consistent results under very weak assumptions.
The resampling scheme runs as follows. Fix b such that b < n and let 𝐘1,… ,𝐘S

be equal to S =
(

n
b

)
subsets of

{
𝐙1,… ,𝐙n

}
. Let T̂ s

b,j be the test statistic eval-

uated at 𝐘s, s = 1,… , S. Then, for 𝐱 ∈ ℝd, the true joint cdf of the test statistics
evaluated at 𝐱 is given by

Gn (𝐱) = Pr
{

T̂n,1 ≤ x1, T̂n,2 ≤ x2 … , T̂n,d ≤ xd

}
(1.10)
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and it can be estimated by the subsampling approximation

Ĝn (𝐱) =
(

n
b

)−1 S∑
s=1

𝕀
{

T̂ s
b,1 ≤ x1, T̂ s

b,2 ≤ x2,… , T̂ s
b,d ≤ xd

}
(1.11)

where as usual 𝕀(⋅) denotes the indicator function.
As a consequence, for D ⊂ {1,… , d}, the distribution of the maximum of the

test statistics, let’s sayHn,D (x), can be estimated by the empirical distribution func-
tion Ĥn,D (x) of the values max

{
T̂ s

b,j, j ∈ D
}
, that is

Ĥn,D (x) =
(

n
b

)−1 S∑
s=1

𝕀
{
max

{
T̂ s

b,j, j ∈ D
} ≤ x

}
(1.12)

and the quantile of order 1 − 𝛼 can be estimated as

ĉL (1 − 𝛼) = inf
{

x ∶ Ĥn,D (x) ≥ 1 − 𝛼
}
. (1.13)

The consistency of the subsampling procedure has been proved in (Giordano, La
Rocca, and Perna 2014) as a straightforward extension of a result in Romano and
Wolf (2005). In particular, under general assumptions, if b∕n → 0 when b → ∞
and n → ∞, then

𝜌
(

Ĝn,D,Gn,D

) P
−→ 0

for any metric 𝜌 metrizing weak convergence on ℝ|D| with |D| the cardinality of
D. Moreover, the subsampling critical values satisfy

ĉL(1 − 𝛼)
P
−→ cL(1 − 𝛼)

and

lim sup
n

FWE ≤ 𝛼

using Algorithm (1.1) with the subsample estimator, ĉL(1 − 𝛼).
The choice of the subsampling as resampling technique can be justified as fol-

lows. First, themethod does not require any knowledge of the specific structure of
the data and so it is robust against misspecifications, a key property when dealing
with artificial neural networkmodels.Moreover, the procedure delivers consistent
results under very weak assumptions. In our case, by assuming: (i) b → ∞ in such
a way that b

n
→ 0, as n → ∞, (ii) conditions that guarantee asymptotic normality

of 𝐰̂n are fulfilled (White, 1989), (iii) smoothness conditions on the test statis-
tics T̂n,j (White and Racine, 2001), the subsampling approximation is a consistent
estimate of the unknown (multivariate) sampling distribution of the test statistics
(Romano andWolf, 2005). Observe that, the number of subsets of length b which
can be formed out of a sample of size n grows very fast with n. Therefore, usu-
ally, justB random selected subsets are considered for computing the subsampling
approximation.
Clearly, the main issue when applying the subsampling procedure lies in choos-

ing the length of the block, a problemwhich is common to all blockwise resamplig
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techniques. Nevertheless, Politis, Romano, and Wolf (1999) proposed a num-
ber of strategies to select b and theorems that ensure that the asymptotic results
are still valid for a broad range of choices for the subsample size. More recently,
Giacomini, Politis, and White (2013) proposed an approach to reduce the com-
putational effortwhen conductingMonteCarlo experiments involving resampling
techniques. It could be used in the neural network framework tomake feasible the
block selection calibration algorithm.

1.3.2
Some Numerical Examples

To illustrate the performance of the proposed input selection procedure, we use
simulated data sets generated by models with known structure. The aim is to
evaluate the ability of the test procedure to select a proper set of explanatory
variables for the given data generating process. For the experimental setup, we
assume n = 300, b = 100, r = 2, B = 1000, 𝛼 = 0.05. The hidden layer size of the
neural networks has been determined by using the cross-validation (CV) and all
the neural network models have been estimated by using a square loss function in
Eq. (1.3), repeating the estimation process with different randomly chosen start-
ing points to avoid being trapped in local minima. The software procedures have
been implemented in R.
The simulated data sets have been generated by the following models.
The first model (Model M1) is the same model used in Tibshirani (1996). We

assume that Y depends on 10 esplicative variables
{

X1,X2,… ,X10
}
but just vari-

ables
{

X3,X4,X5,X6
}
are relevant to the model, that is,

Y = 3𝜓
(
2X3 + 4X4 + 3X5 + 3X6

)
+ 3𝜓

(
2X3 + 4X4 − 3X5 − 3X6

)
+ 𝜀

where𝜓 is the logistic activation function,𝐗 = (X3,X4,X5,X6)T is a vector ofmul-
tivariate Gaussian random variables with zero mean, unit variance and pair-wise
correlation equal to 0.5 and 𝜀 Gaussian with zero mean and variance equal to 0.7.
This gave a signal-to-noise ratio roughly equal to 1.2. Clearly, a neural network
with logistic activation function, four input neurons, and two hidden neurons is a
correctly specified model and no misspecification is present.
The results of the multiple-testing procedure for variable selection are reported

in Figure 1.1. After the first step, the procedure rejects the hypothesis that variable
4 is not relevant and accepts all others hypotheses. At the second step, variables 5,
3, and 6 are recognized as relevant, as well. At the third step, the remaining vari-
ables are recognized as not relevant and the procedure stops.The procedure gives
results that are consistent with the data-generating process and the plot reported
in Figure 1.1.
The secondmodel (ModelM2) is the samemodel used in DeVeaux et al. (1998).

Again, we assume that Y depends on 10 esplicative variables
{

X1,X2,… ,X10
}
but



1.3 Model Selection 11

Explanatory variables

S
ta

ti
s
ti
c
s

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

j

4.1649 4 2.8040 − −
1.0315 5 −0.3295 0.5303 −
1.0105 3 −0.3505 0.5092 −
0.9680 6 −0.3930 0.4667 −
0.0142 8 −1.3468 −0.4871 −0.1836

0.0038 7 −1.3571 −0.4975 −0.1940

0.0025 9 −1.3585 −0.4988 −0.1952

0.0019 10 −1.3590 −0.4993 −0.1958

0.0016 2 −1.3594 −0.4997 −0.1962

1

2

3

4

5

6

7

8

9

10 0.0010 1 −1.3599 −0.5002 −0.1967

rnTn, rj Tn, rj − c1 Tn, rj − c2 Tn, rj − c3

Figure 1.1 Model M1. Results of the multiple testing procedure (n = 300, b = 100,
r = 2, B = 1000, 𝛼 = 0.05). Figures in bold refer to the rejection of the corresponding
hypotheses Hrj

.

just variables
{

X4,X5,X6
}
are relevant to the model, that is,

Y = 1.5 cos

(
2𝜋√
3

√(
X4 − 0.5

)2 + (
X5 − 0.5

)2 + (
X6 − 0.5

)2) + 𝜀

where𝐗 = (X4,X5,X6)T is drawn randomly from the unit hypercube.The function
is radially symmetric in these three variables. Clearly, the number of the neurons
in the hidden layer is unknown and themodel we try to identify is, by construction,
misspecified. In this latter case, the procedure is able to select the correct set of
relevant variables in two steps, as clearly shown in Figure 1.2.
For the third model (Model M3) introduced by Friedman (1991), again, we

assume that Y depends on 10 esplicative variables
{

X1,X2,… ,X10
}

but just
variables

{
X3,X4,X5,X6,X7

}
are relevant, that is

Y =
(
10 sin

(
𝜋X3X4

)
+ 20

(
X5 − 0.5

)2 + 10X6 + 5X7 + 𝜀
)
∕25

where 𝐗 = (X3,X4,X5,X6,X7)T is drawn randomly from the unit hypercube.
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1 10.0015 6 8.2969 −
2 9.0820 5 7.3773 −
3 8.2477 4 6.5431 −
4 0.0020 2 −1.7027 −0.0159

5 0.0010 1 −1.7037 −0.0170

6 0.0007 7 −1.7040 −0.0173

7 0.0006 8 −1.7041 −0.0173

8 0.0003 3 −1.7043 −0.0176

9 0.0003 9 −1.7044 −0.0176

10 0.0002 10 −1.7045 −0.0177

j rjTn, rj Tn, rj − c1 Tn, rj − c2

Figure 1.2 Model M2. Results of the multiple-testing procedure (n = 300, b = 100,
r = 2, B = 1000, 𝛼 = 0.05). Figures in bold refer to the rejection of the corresponding
hypotheses Hrj

.
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Explanatory variables
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1 2 3 4 5 6 7 8 9 10

0.00
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0.10

0.15

0.20

0.25

1 0.2422 3 0.1951 – –

2 0.2019 4 0.1548 – –

3 0.1750 5 0.1280 – –

4 0.1591 6 0.1120 – –

5 0.0400 7 −0.0070 0.0354 –

6 0.0002 1 −0.0470 −0.0045 −0.0020

7 0.0001 2 −0.0470 −0.0045 −0.0020

8 0.0001 8 −0.0470 −0.0045 −0.0020

9 0.00009 10 −0.0470 −0.0045 −0.0020

10 0.00006 9 −0.0470 −0.0045 −0.0020

j rjTn, rj Tn, rj − c1 Tn, rj − c2 Tn, rj − c3

Figure 1.3 Model M3. Results of the multiple-testing procedure (n = 300, b = 100,
r = 2, B = 1000, 𝛼 = 0.05). Figures in bold refer to the rejection of the corresponding
hypotheses Hrj

.

Again, the procedure is able to correctly identify the set of relevant variables in
three steps, as clearly shown in Figure 1.3.
The results of a more detailed simulation experiment are reported in Giordano,

La Rocca, and Perna (2014) in which we analyse the sensitivity of the CV proce-
dure to omitted or redundant variables and the sensitivity of the StepM testing
scheme to hidden layer size error identification. The results show that redundant
variables do not appear to be harmful in selecting the hidden layer size; in almost
all cases, the true hidden layer size is correctly identified. On the contrary,
omitting relevant variables might have negative effects on the hidden layer
size. However, this appears to be connected to the number and type of omitted
variables. In any case, increasing the sample size may improve the performance.
Moreover, the experimental results also suggest the possibility to use the block
length as a calibration tool to bring the empirical FWE closer to the nominal
FWE. This calibration technique could even be effective if the hidden layer size
is not correctly identified but it has been fixed in a neighbourhood of the true
value. When the hidden layer size is correctly identified, the procedure correctly
identifies the true relevant variables in all cases, for all sample sizes. When the
hidden layer size is incorrectly identified (under/over estimation), the results
depend on the sample size and on the subsample size. For the case of n = 400 and
n = 600, the proportion is very close to 1.There are some identification problems
for the case n = 200 for some variables. However, again, the block length of the
subsampling can be used to mitigate the problem and to increase the proportion
of true relevant variables correctly identified.

1.3.3
Application to Real Data

As an application to real data, we considered a very popular data set, often used
to check the performance of non-parametric regression techniques with respect
to variable selection. The data are daily measurement of ozone concentration
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(maximum one hour average) and eight meteorological quantities for 330 obser-
vations starting from the beginning of 1976. The data were used by Breiman and
Friedman (1985) when introducing the ACE algorithm. The variables considered
are: Ozone (Upland ozone concentration, ppm), Temp (Sandburg Air Force Base
temperature, ∘F), Ibh (inversion base height, feet), Dpg (Dagget pressure gradient,
mmHg), Vis (visibility, in miles), Vh (Vandenburg 500 millibar height, m), Hum
(humidity, percent), Wind (wind speed, mph), Ibt (Inversion base temperature,
degrees F), and Day (day of year).
The hidden layer size has been selected by CV, while the input relevant variables

have been selected by using the proposed procedure. The StepM procedure has
been calibrated with the subsampling, where the subsample size has been fixed by
using the minimum volatility method (Politis, Romano, and Wolf , 1999).
The procedure clearly selects the variables Day, Ibt, Vh, Dpg, Hum, and Temp

as relevant, while the variables Vis, Wind, and Ibh are classified as not relevant.
Note that the variables are selected in six steps (just the variables Day and Ibt are
selected in the first step) and so, a multistep procedure appears to be necessary to
avoid masking effects (Figure 1.4).
For the sake of comparison with other neural network variable selection

schemes, we considered the Bayesian approach proposed in Lee (2004), where
it is also reported a comparison with other non-parametric variable selection
techniques: The stepwise ACE, the stepwise GAM, adaptive regression splines
(TURBO), and adaptive backfitting (BRUTO). All the results are summarized in
Table 1.1. The proposed procedure largely agrees with the best network selected
by using the Bayesian approach proposed by Lee. Interestingly enough, however,
the variable Temp is considered relevant by the multiple testing scheme, while
it is never selected by the Bayesian approach when applied to neural networks.
Note that this variable is always selected by the other non-parametric techniques,
suggesting that the multiple testing scheme is able to uncover possibly masked
relationships. Even if the alternative methods disagree about which variable
subset is optimal, it does seem clear that some variable selection procedure is
necessary.
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Hum
Temp

Vis WindIbh
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1 Day 27.9 12.6 15.3 1

2 Ibt 17.0 12.6 4.4 1

3 Vh 12.2 10.1 2.1 2

4 Dpg 9.4 7.0 2.4 3

5 Hum 5.1 4.2 0.9 4

6 Temp 4.0 3.9 0.1 5

7 Vis 0.7 2.1 −1.4 6

8 Wind 0.5 2.1 −1.6 6

9 Ibh 0.2 2.1 −1.9 6

Figure 1.4 IVS for Ozone data via neural networks. The relevance measure is the statistic
T̂n,j . The hidden layer size has been selected by k-fold CV (r = 3). Subsample size selected by
using minimum volatility method. The nominal size is 𝛼 = 0.05.
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Table 1.1 Comparison of variable selection procedures on the Ozone data.

Method Vh Wind Hum Temp Ibh Dpg Ibt Vis Day

Multiple test (NN(3)) × × × × × ×
(Ranks) (3) (5) (6) (4) (2) (1)

Lee’s Bayes (Best NN(3)) × × × × ×
Lee’s Bayes (Second best NN(6)) × × × × ×
Lee’s Bayes (Third best NN(3)) × × ×

ACE (Stepwise) × × × ×
GAM (Stepwise) × × × × × × × ×
TURBO × × × × × ×
BRUTO × × × × ×

1.4
The Selection of the Hidden Layer Size

The hidden layer size should be selected by looking at the predictive performance
of the neural network model, as in the case of CV. However, in recent years, there
is a growing literature addressing the problem of comparing different models and
theories via use of predictive performance and predictive accuracy test (Corradi
and Swanson, 2006, and references therein). In this Literature, it is quite common
to comparemultiplemodels, which are possiblymisspecified (they are all approxi-
mations of some unknown true model), in terms of their out-of-sample predictive
ability for a specified loss function.
Let

(
Y𝜏 ,𝐗𝜏

)
denote a future observation that satisfies

Y𝜏 = g
(
𝐗𝜏

)
+ 𝜀𝜏 (1.14)

Assume then that k + 1 alternative forecasting neural network models are avail-
able, namely f

(
𝐱j,𝐰j), j = 0, 1,… , k. The models can differ in hidden layer size

and/or in number and type of explanatory variables.Model f
(
𝐱0,𝐰0) is the bench-

mark model. In our framework, a sensible choice is the linear model, that is a
neural network with skip layer and r = 0 neurons in the hidden layer.
Let the generic forecast error be uj,𝜏 = Y𝜏 − f

(
𝐗j
𝜏 ,𝐰

j
0

)
, j = 0, 1,… , k where𝐰0

is defined as in Section 1.2. Let h be a proper chosen loss function (Elliot and
Timmermann, 2004) and define

𝜃j = 𝔼
(

h
(

u0,𝜏
)
− h

(
uj,𝜏

))
, j = 1, 2,… , k. (1.15)

Clearly, if model j beats the benchmark (i.e., shows better expected predictive per-
formances) we have 𝜃j > 0, otherwise 𝜃j ⩽ 0 and our goal is to identify as many
models for which 𝜃j > 0. In other words, for a given model j, consider

Hj ∶ 𝜃j ⩽ 0 vs H′
j ∶ 𝜃j > 0 (1.16)
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and, in a multiple testing framework, make a decision concerning each individual
testing problem by either rejecting Hj or not. Also in this case, the data snooping
problem can arise and the FWE should be taken under control. In this framework,
possible alternative solutions can be obtained by using the reality check and by
using test of superior predictive ability, which can be easily extended to our neural
network framework.

1.4.1
A Reality Check Approach

To avoid data snooping problems, it is possible to use the reality check as in
White (2000) and the modification for nested models as proposed in Clark and
McCracken (2012a,b).
For a given loss function, the reality check tests the null hypothesis that a bench-

mark model (i.e., model 0) performs equal or better than all competitor models
(i.e., models 1,… , k). The alternative is that at least one competitor performs bet-
ter than the benchmark. Formally, we have

H0 ∶ max
j=1,…,k

𝜃j ⩽ 0 vs H1 ∶ max
j=1,…,k

𝜃j > 0. (1.17)

Following a common practice often used to select the best predictive model, the
sample of size N is split into N = R + P observations where R observations are
used for estimation and P observations are used for predictive evaluation. Let ûi =
Yi − f

(
𝐗j

i, 𝐰̂
j
R

)
, i = R + 1,… ,N , where f

(
𝐗j

i, 𝐰̂
j
R

)
is the model estimated on the

data set
{(

Yi,𝐗
j
i

)
, i = 1,… ,R

}
. Following White (2000) define the statistic

SP = max
j=1,…,k

SP
(
0, j

)
(1.18)

where

SP
(
0, j

)
= 1√

P

N∑
i=R+1

{
h
(

û0,i
)
− h

(
ûj,i

)}
, j = 1,… , k.

It can be shown that, if general regularity conditions hold, under H0, as
P,R → ∞,

max
j=1,…,k

{
SP

(
0, j

)
−
√

P𝜃j

} d
−→ max

j=1,…,k
S
(
0, j

)
. (1.19)

The k × 1 vector S = (S (0, 1) , S (0, 2) ,… , S (0, k)) has Gaussian distribution with
zero mean and covariance matrix defined as

V = lim
N→∞

var

(
1√
P

N∑
i=R+1

𝐯i

)

where the generic element of vector 𝐯i is defined as vi,j = h
(

u0,i
)
− h

(
uj,i

)
. The

matrix V is supposed to be positive semi-definite.
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Since it is well known that the maximum of a Gaussian process is not Gaussian
in general, standard critical values cannot be used to conduct inference on SP.
Alternatively, resampling techniques such as the subsampling or the bootstrap can
be used.
The bootstrap analogue of the statistic SP can be computed as

S∗
P = max

j=1,…,k
S∗

P
(
0, j

)
(1.20)

where

S∗
P
(
0, j

)
= 1√

P

N∑
i=R+1

{(
h
(

û∗
0,i

)
− h

(
û0,i

))
−
(

h
(

û∗
j,i

)
− h

(
ûj,i

))}
(1.21)

with û∗
j,i = Y ∗

i − f
(
𝐗∗j

i , 𝐰̂
j
R

)
and

(
Y ∗

i ,𝐗
∗j
i

)
denote the resampled data. Note that

the bootstrap statistics contain only estimators based on the original sample and
this is particularly convenient when dealing with neural network models. If an
estimation is needed for each bootstrap sample, the procedure will soon become
not feasible in our framework.
The bootstrap procedure is consistent in the neural network framework. Under

general regularity conditions, it can be shown that, if q = h, for P,R → ∞

Pr
(
sup
v∈ℝ

|||Pr∗ (S∗
P ⩽ v

)
− Pr

(
S𝜅P ⩽ v

)||| > 𝜀
)

→ 0 (1.22)

where Pr∗ denotes probability induced by the bootstrap resampling scheme and

S𝜅P = max
j=1,…,k

{
SP

(
0, j

)
−
√

P𝜃j

}
As usual, the bootstrap procedure can be implemented byMonte Carlo. For any

bootstrap replication, compute the bootstrap statistics, S∗
P . Perform B bootstrap

replications (B large) and compute the quantiles of the empirical distribution of
the B bootstrap statistics. Reject the null hypothesis H0 if SP is greater than the
(1 − 𝛼)th-percentile. Otherwise, do not reject.
The bootstrap procedure can be implemented as described in Algorithm 1.2.
Note that, to estimate a percentile, B should be quite large (usually B > 1000)

and the indexes are generated just once at the beginning of the procedure. More-
over, we assume that h = q.

1.4.2
Numerical Examples by Using the Reality Check

In order to evaluate the ability of the procedure to select a propermodel for a given
data generating process, we use simulated data sets with known structure.
The first is a linear model (M1) with two regressors defined as:

Y = 𝐗𝟏 + 𝜀

where 𝐗 = (X1,X2)T are drawn from the uniform distribution, 𝜀 is a standard
Gaussian and 𝟏 denotes a column vector of the ones of appropriate length. This



1.4 The Selection of the Hidden Layer Size 17

Algorithm 1.2: Bootstrap resampling algorithm.
1: Fix P,R such that P + R = N .
2: Fix B, the number of bootstrap replicates.
3: Generate B sets of random observation indexes of length P, namely{

𝜃b(i), i = R + 1,… ,N ; b = 1,… ,B
}
.

4: M0 ← −Δ, with Δ finite big constant.
5: M(b)

0 ← −Δ, with Δ finite big constant, b = 1,… ,B.

6: 𝐰̂0
R ← argmin

𝐰∈𝐖
1
R

R∑
i=1

q
(

Yi, f
(
𝐗0

i ,𝐰
))
.

7: û0,i ← Yi − f
(
𝐗0

i , 𝐰̂
0
R
)
, i = R + 1,… ,N .

8: ĥ0,i ← h
(

û0,i
)
, i = R + 1,… ,N .

9: for j = 1 to k do

10: 𝐰̂j
R ← argmin

𝐰∈𝐖
1
R

R∑
i=1

q
(

Yi, f
(
𝐗j

i,𝐰
))

.

11: ûj,i ← Yi − f
(
𝐗j

i, 𝐰̂
j
R

)
, i = R + 1,… ,N .

12: ĥj,i ← h
(

ûj,i
)
, i = R + 1,… ,N

13: SP
(
0, j

)
← 1√

P

N∑
i=R+1

{
ĥ0,i − ĥj,i

}
.

14: Mj ← max
{

Sp
(
0, j

)
,Mj−1

}
.

15: for b = 1 to B do
16: û(b)

0,i = Y𝜃(b) − f
(
𝐗0
𝜃(b), 𝐰̂

0
R

)
17: û(b)

i,j = Y𝜃(b) − f
(
𝐗j
𝜃(b), 𝐰̂

j
R

)
.

18: S(b)
P

(
0, j

)
← 1√

P

N∑
i=R+1

{(
h
(

û(b)
0,i

)
− ĥ0,i

)
−
(

h
(

û(b)
j,i

)
− ĥj,i

)}
19: M(b)

j ← max
{

S(b)
P

(
0, j

)
,M(b)

j−1

}
.

20: end for
21: end for

22: return p-value← 1
B

B∑
b=1

𝕀
(

M(b)
k > Mk

)
.

model can be correctly modeled by using a network, with skip layer, two input
units, and zero hidden units.
Model M2 is the same model used in Tibshirani (1996) and Model M3 is the

same model used in De Veaux et al. (1998). Both models have already been used
in previous sections.
We have considered N = 600, R = 400, P = 200 and B = 4999.
In Table 1.2, we consider values of the test statistics for different input neurons,

from X1 to X6, and different hidden layer size, from 1 to 6. It is clear that for model
M1 andM2, the proposed procedure is able to identify the correct data-generating
process. In the first case, the p-values of the tests are all >0.50, and so the bench-
mark (i.e., the linear model) shows better expected predictive performance with
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Table 1.2 Values of the test statistics for different input neuron sets and different hidden
layer size.

Model Inputs/size 1 2 3 4 5 6

M1 1 −0.116 −0.116 −0.116 −0.116 −0.116 −0.116
2 −0.290 −0.290 −0.290 −0.290 −0.290 −0.290
3 −0.721 −0.721 −0.721 −0.721 −0.721 −0.721
4 −0.986 −0.986 −0.986 −0.986 −0.986 −0.986
5 −0.844 −0.844 −0.844 -0.844 −0.844 −0.844
6 −0.873 −0.873 −0.873 −0.873 −0.873 −0.873

M2 1 −0.477 −0.477 −0.477 −0.477 −0.477 −0.477
2 4.541 4.541 4.541 4.541 4.541 4.541
3 2.603 5.741 5.741 5.741 5.741 5.741
4 3.060 12.122 12.122 12.122 12.122 12.122
5 3.058 12.121 12.121 12.121 12.121 12.121
6 3.060 11.921 11.921 11.921 11.921 11.921

M3 1 0.748 2.159 2.159 2.159 2.159 2.159
2 0.752 2.143 4.857 4.857 4.857 4.857
3 0.807 2.722 5.391 7.215 7.222 7.249
4 0.824 2.737 5.402 7.226 7.232 7.246
5 0.886 2.811 5.531 7.264 7.269 7.277
6 0.816 2.826 5.520 7.262 7.267 7.295

The benchmark model is a neural network with skip layer and zero hidden neurons. Values in
italics correspond to p-values >0.50. Values in bold correspond to p-values <0.005.

respect to neural networks of all orders and sizes. In the case of model M2, the
values of the test statistics do not change significantly starting from a neural net-
work model with 4 inputs and 2 hidden layer neurons. In the case of model M3,
clearly test statistics stabilize starting from a model with 3 inputs (as expected)
and 4 hidden layer neurons. The small increases in some test statistics possibly
are not significant.
In order to get a deeper insight, in Figures 1.5–1.7, we report the prediction

performancewith respect to the benchmarkmodel of neural networkmodels with
increasing hidden layer size.The segments refer to bootstrap confidence intervals
for the parameters max

j=1,…,r
𝜃j with hidden layer size r = 1,… , 6 and confidence level

equal to 0.95. Each panel refers to different choice of the input variables. Again,
for modelsM1 andM2, the proposed procedure is able to identify the correct data
generating process, while for model M3, the identified model is a neural network
with 3 input variables and hidden layer size equal to 4. Moreover, an aspect which
arises from all the figures is that the predictive performance is improved when
relevant variables are included into the model while it remains unchanged when
adding irrelevant ones.
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Figure 1.5 Model M1. Bootstrap confidence intervals for the maximum expected predictive
performance of the neural networks with respect to the benchmark.

1.4.3
Testing Superior Predictive Ability for Neural Network Modeling

Testing the superior predictive ability approach can be easily extended to our
neural network framework (La Rocca and Perna, 2014). Let  =

{(
Yi,𝐗i

)
, i ∈ S

}
and  =

{(
Yi,𝐗i

)
, i ∈ P

}
denote, respectively, the estimation data set and the

test data set, where  is the complement set of  with respect to , with || =
N − ||. Let the estimated forecast error be ûj,𝜏 = Y𝜏 − fj

(
𝐗𝜏 , 𝐰̂

)
, j = 0, 1,… , k

and let MPEj =
∑
𝜏∈P h

(
ûj,𝜏

)
, where P is the cardinality of the set  .

The test procedure can be based on the F-type statistic defined as

Fpj = P
MPE0 −MPEj

MPEj
, j = 1, 2,… , k. (1.23)

It has a clear interpretation: large values of Fpj indicate evidence against the null
Hj.
The procedure for testing the system of hypotheses (Eq. 1.16) keeping under

control the family wise error rate, runs as follows. Relabel the hypothesis from
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Figure 1.6 Model M2. Bootstrap confidence intervals for the maximum expected predictive
performance of the neural networks with respect to the benchmark.

Hr1 to Hrk
in redescending order with respect to the value of the test statistics

Fpj, that is Fpr1 ≥ Fpr2 ≥ … ≥ Fprk
.The procedure focuses on testing the joint null

hypothesis that all hypotheses Hj are true, that is no competing model is able to
beat the benchmarkmodel.This hypothesis is rejected if Fpr1 is large, otherwise all
hypotheses are accepted. In other words, the procedure constructs a rectangular
joint confidence region for the vector

(
Fpr1 ,… , Fprk

)T
, with nominal joint cover-

age probability 1 − 𝛼.The confidence region is of the form
[
Fpr1 − c1−𝛼,∞

)
× · · · ×[

Fprk
− c1−𝛼,∞

)
where the common value c1−𝛼 is chosen to ensure the proper

joint (asymptotic) coverage probability. If a particular individual confidence inter-
val

[
Fprj

− c1−𝛼,∞
)
does not contain zero, the corresponding null hypothesis Hrj

is rejected.
So, the testing procedure will select a set of models which delivers the greatest

predictive ability when compared to the benchmark model. All these models are
somewhat equivalent and, for a parsimony principle, the one with the smallest
hidden layer size should be selected. If all the nulls are not rejected in the first step,



1.4 The Selection of the Hidden Layer Size 21

1 2 3 4 5 6

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Inputs={1}

1 2 3 4 5 6

Inputs={1,2}

1 2 3 4 5 6

Inputs={1,2,3}

1 2 3 4 5 6

Inputs={1,2,3,4}

1 2 3 4 5 6

Size

Inputs={1,2,3,4,5}

1 2 3 4 5 6

Size

Inputs={1,2,3,4,5,6}

Figure 1.7 Model M3. Bootstrap confidence intervals for the maximum expected predictive
performance of the neural networks with respect to the benchmark.

there is no neural network model, which is able to outperform the linear model
(assumed as a benchmark) in terms of predictive ability. Again, the quantile of
order c1−𝛼 can be estimated by using resampling techniques.
The pseudo-code for the complete testing procedure is described in

Algorithm 1.3.

1.4.4
Some Numerical Results Using Test of Superior Predictive Ability

To illustrate the performance of the proposed model selection procedure, we use
simulated data sets generated bymodelswith known structure.The simulated data
sets were generated by using different models, often employed in the neural net-
work literature as data-generating processes.
Again, to generate sintetic data sets, we have used the same models used in De

Veaux et al. (1998), Friedman (1991), and Tibshirani (1996). We also added as an
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Algorithm 1.3: Testing algorithm for superior predictive ability.
1: Relabel the hypothesis from Hr1 to Hrk

in redescending order of the
value of the test statistics Fpj, that is Fpr1 ≥ Fpr2 ≥ · · · ≥ Fprk

.
2: Generate B bootstrap replicates 𝐙∗

N ,1,𝐙
∗
N ,2,… ,𝐙∗

N ,B as iid samples from 𝐙N
3: From each bootstrap data matrix 𝐙∗

N ,b with b = 1, 2,… ,B compute the
bootstrap counterparts of the individual test statistics F∗pj,b, j = 1, 2,… , k.

4: Let be the set of indexes of models with better predictive performance
5: For b = 1, 2,… ,B compute 𝜃b,∗

N = max1≤s≤k

(
Fp∗

rs ,b
− Fprs

)
6: Compute ĉ1−𝛼 as the 1 − 𝛼 quantile of the bootstrap values 𝜃b,∗

N ,
b = 1, 2,… ,B

7: for s = 1 to k do
8: if 0 ∉

[
Fprs

− ĉ1−𝛼,∞
)
then

9: reject Hrs
and include s in

10: end if
11: end for
12: Deliver the set (if it is an empty set, no neural network model is able to

beat the benchmark model)

additional model the one used by Turlach (2004) and defined as

Y =
(

X1 − 0.5
)2 + X2 + X3 + X4 + X5 + 𝜀

where 𝐗 = (X1,X2,X3,X4,X5)T is a vector of multivariate uniform random vari-
ables and 𝜀 is Gaussian with zero mean and variance equal to 0.05. The model,
as in Friedmans’s case, includes both linear and nonlinear relationships and it is
known to be problematic for other variable selection schemes.
For the numerical examples, we have considered a quadratic loss function h and

N = 600, P = 180, B = 1000 and k = 8. All neural network models have been esti-
mated by using non linear least squares, including a weight decay in the objective
function to control overfitting. Moreover, to avoid to be trapped in local min-
ima, the estimation procedure has been initialized 25 times with random starting
values, keeping the estimated network with the lowest residual sum of squares.
The results of the testing procedure for typical realizations are reported in

Figure 1.8. In the Tibshirani model case, the hidden layer size is known and equal
to 2. The procedure correctly identifies the hidden layer size and indicates that
it is not possible to improve accuracy by increasing the hidden layer size. All
models with r ranging from 2 to 8 are basically equivalent with respect to the
predictive accuracy. Similar remarks apply also to all other models. Note that
for the DeVeaux and the Friedman data, simply considering the statistical index
would indicate r = 8 as the best choice, but this does not give any significant
improvement with respect to r = 4.
A moderate Monte Carlo experiment has also been performed considering the

same data-generating processes as before. We have considered 240 Monte Carlo
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Figure 1.8 Joint confidence regions with nominal coverage probability 1 − 𝛼 = 0.95.

runs with three different sample sizes N = 300, 400, 600 using the last 30% obser-
vations for prediction. The results are reported in Figure 1.9. In the Tibshirani
case, the hidden layer size (which is known and equal to 2) the proportion of cor-
rect identification is very high for all the sample sizes, reaching 100% for N = 600.
For the other data sets, the simulations confirm the results shownby the numerical
examples and highlight the steep improvement as the sample size increases.

1.4.5
An Application to Real Data

To validate the performance of the proposed procedure, two applications to real
data are discussed in La Rocca and Perna (2014).
As a first example, we use the Prostate Cancer data set which comes from a study

by Stamey et al. (1989). The dependent variable is the level of prostate-specific
antigen which depends on 8 clinical measures in men who were about to receive
prostatectomy. The data set has 97 observations and it is split in two subsets: 67
observations have been used for the modeling step, while 30 observations have
been used for the validation step. By using a linear model and a best subset vari-
able selection rule, just two explanatory variables (out of eight) are identified as
relevant: lweight (log prostate weight) and lcavol (log cancer volume). For the sake
of comparison, as identification tools for the number of hidden neurons, we also
use the k-fold CV selection rule and the Bayesian information criterion, proved
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Figure 1.9 Proportion of hidden layer size identification by using the testing procedure for
superior predictive ability. (See inset for color representation of this figure.)

to be consistent (almost surely) in the case of multi-layer perceptrons with one
hidden layer in White (1990).
Clearly, the BIC identifies a linear model, which is equivalent to a neural

network with skip layer and zero hidden neurons, for all the weight decay values
considered (Figure 1.10a,b). The latter result is confirmed by looking at the CV
and our test of superior predictive ability (Figure 1.11a). To validate these results,

−4.0
0.04

0.08

0.12

0.16

0.02

0.03

0.04

0.05

0.06

C
V

0 2 4 6 8

Size

(a) (b)

0 2 4 6 8

Size

−3.5

−3.0

−2.5

−4.00

−3.75

−3.50

B
IC

k 5 10Decay 0 5e−06 5e−05 5e−04

P
a
rk

in
s
o
n

P
ro

s
ta

te

P
a
rk

in
s
o
n

P
ro

s
ta

te

Figure 1.10 Bayesian information criterion values for different hidden layer sizes and dif-
ferent weight decay values (a). k-fold CV values for k = 5 and k = 10 using a weight decay
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Absolute prediction error distributions computed on the test set for linear models and neu-
ral networks with hidden layer size ranging from 1 to 8 (b).

a linear model and neural networks with hidden neurons ranging from 1 to 8
have been estimated and used to predict the observations in the validation set.
The distributions of the absolute prediction errors are reported in Figure 1.11b.
The plot shows that the neural networks considered are not able to provide better
predictions with respect to the linear model (as predicted by the CV, the BIC and
the novel test). These results are confirmed by a formal statistical comparison
between the two distributions made by using the Brunner Munzel test and the
Wilcoxon rank sum test which give p-values equal to 0.497 and 0.495, respectively.
The second data set is composed of a range of biomedical voice measurements

from 42 people with early-stage Parkinson’s disease recruited to a 6-month trial of
a telemonitoring device for remote symptom progression monitoring (for details
see Tsanas et al. (2010)).The data set has been downloaded from theUCIMachine
Learning Repository and consists of 5875 observations on age, gender, and on
16 biomedical voice measures. The statistical model is used to predict the total
UPDRS score. For computational reasons, just the subset of the first 887 obser-
vations (corresponding to the first five patients) has been considered. Again, the
data set is split into two subsets: 731 observations (the first four individuals) have
been used for the modeling step, while 156 observations (corresponding to the
fifth patient) are used for validation purposes. In this case, the CVmodel selection
rule identifies a neural network model with four hidden neurons, while the BIC
identifies a neural network with two neurons. However, the proposed test shows
that there is no superior predictive ability of neural network models with respect
to linear models (Figure 1.11a). This is confirmed by the distribution of the abso-
lute predictive errors reported in Figure 1.11b: the linear model and the neural
networks with two or four neurons in the hidden layer perform similarly.This lat-
ter result is also supported by the BrunnerMunzel test and theWilcoxon rank sum
test whose p values are equal to 0.219 and 0.218, respectively. Clearly, neural net-
works with two or four hidden neurons and 17 explanatory variables appear to be
heavily overparametrized, since they have 39 or 77 parameters, respectively.These
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networks show no clear advantages in terms of predictive ability with respect to
the linear model.

1.5
Concluding Remarks

In this chapter, a novel model selection procedure in neural network modeling
has been presented and discussed. The basic idea of the proposed approach is
that input neurons and hidden neurons play a different role in neural network
modeling so that they should be selected by using different criteria. Specifically,
the proposed approach identifies the number and the type of input variables by
using a formal statistical test focusing the problem on a procedure for variable
selection in regressionmodels.On the contrary, the number of the hiddenneurons
is considered smoothing parameter and it is selected by looking at the predictive
performance of the network model.
The proposed strategy addresses the problem of data snooping, which arises

when a data set is used more than once for inference and model selection. More-
over, to overcome the analytical and probabilistic difficulties related to the estima-
tion of the sampling distribution of the test statistics involved, the approach uses
extensively resampling techniques.
The proposed test procedures have been tested on simulated and real data sets,

which confirm their ability to detect correctly the set of input variables and to dis-
criminate among alternativemodels. Clearly, joint usage of neural networkmodels
and resampling techniques are usually quite demanding from a computational
point of view. In any case, it is worthwhile to underline that they are suitable to be
implemented on parallel and cluster computers almost without any modification
of the computing algorithms.
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