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1
Newtonian Celestial Mechanics

1.1
Prolegomena – Classical Mechanics in a Nutshell

1.1.1
Kepler’s Laws

By trying numerous fits on a large volume of data collected earlier by Tycho Brahe
and his assistants, Kepler realized in early 1605 that the orbit of Mars is not at all
a circle, as he had expected, but an ellipse with the Sun occupying one of its foci.
This accomplishment of “Kepler the astronomer” was an affliction to “Kepler the
theologist”, as it jeopardized his cherished theory of “celestial polyhedra” inscribed
and circumscribed by spherical orbs, a theory according to which the planets were
supposed to describe circles. For theological reasons, Kepler never relinquished the
polyhedral-spherist cosmogony. Years later, he re-worked that model in an attempt
to reconcile it with elliptic trajectories.

Although the emergence of ellipses challenged Kepler’s belief in the impecca-
ble harmony of the celestial spheres, he put the scientific truth first, and included
the new result in his book Astronomia Nova. Begun shortly after 1600, the trea-
tise saw press only in 1609 because of four-year-long legal disputes over the use
of the late Tycho Brahe’s observations, the property of Tycho’s heirs. The most cit-
ed paragraphs of that comprehensive treatise are Kepler’s first and second laws of
planetary movement. In the modern formulation, the laws read:

� The planets move in ellipses with the Sun at one focus.
� A vector directed from the Sun to a planet sweeps out equal areas in equal times.

These celebrated conjectures should not overshadow another revolutionary state-
ment pioneered in Astronomia Nova – the hypothesis that the Sun is not stationary
in space but describes a trajectory across the stars. Pioneering this idea, Kepler-as-
tronomer again came into a conflict with Kepler-theologian. The heliocentric views
of Kepler rested on a religious basis. Kepler was convinced that the universe was
an image of God, with the Sun corresponding to the Father, the “stellar sphere” to
the Son, and the enclosed space to the Holy Spirit. Kepler’s hypothesis that the Sun
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2 1 Newtonian Celestial Mechanics

could travel relative to the stars indicates how his scientific insight was overpower-
ing his theological constructions.
Another famous book by Kepler, Harmonices Mundi, saw the light a decade later,
in 1619. In the final volume of that treatise, Kepler publicized his finding that the
ratio of the cubed semi-major axis to the squared orbital period is the same for all
planets. In modern terms, the third law of Kepler is usually formulated as:

� The cube of a planet’s semi-major axis is proportional to the square of its orbital
period: a3 � T 2.

This way, for a planet with period T1 and semi-major axis a1, and a planet with
period T2 and semi-major axis a2, the following relation takes place: (a1/a2)3 D
(T1/T2)2.

1.1.2
Fundamental Laws of Motion – from Descartes, Newton, and Leibniz to Poincaré and
Einstein

The next milestone contribution to the science of mechanics was offered a quarter-
century later by René Descartes.

Basing his reasoning on the scholastic argument that nothing moves by virtue
of its own nature towards its opposite or towards its own destruction, Descartes
(1644) in his Principles of Philosophy came up with three laws of bodily motion. The
first of those stated “that each thing, as far as is in its power, always remains in the
same state; and that consequently, when it is once moved, it always continues to
move.” The second law held that “all movement is, of itself, along straight lines.”
The third law was an attempt to describe colliding bodies and to introduce a con-
serving quantity.

The first two laws of Descartes, together, constitute what is currently termed the
law of inertia or the first law of Newton. Indeed, the wording of the law of inertia,
suggested by Newton (1687) in his Principia was an exact equivalent to the first and
second laws by Descartes.

First Law: Every body persists in its state of being at rest or of moving uniformly straight
forward, except insofar as it is compelled to change its state by force impressed.

There are two parts to this statement – one which predicts the behavior of stationary
objects and the other which predicts the behavior of moving objects. Mathematical
formulation of the first law of Newton demands introduction of new concepts, the
absolute time t and the absolute space endowed with a special class of coordinates,
x D (x i ) D (x1, x2, x3), introduced in space – the so-called, inertial reference
frames. Motion of the body in space is described by vector function x (t). The first
law of Newton simply states that velocity of the body v D dx/d t is nil or remains
constant in the inertial reference frame if the body is not subject to the action of a
net force. In both cases, acceleration, a D dv/d t, of a freely moving or static body
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1.1 Prolegomena – Classical Mechanics in a Nutshell 3

vanishes in the inertial frame,

a D 0 . (1.1)

Equation 1.1 makes it evident that there is a multitude of the inertial frames mov-
ing with respect to each other with constant velocities.

This law of inertia, however, marked the point beyond which Newton’s thought
sharply diverged from Descartes’ heritage. In formulating the rules of dynamics,
Newton succeeded where Descartes had failed. The third law of Descartes, while
marking one of the first attempts to locate an invariant or unchanging feature of
bodily interactions, was just short of what is now called the momentum conserva-
tion. Newton, on his part, proposed two other laws, the law of impulse and the law
of reciprocal actions, which must be put together in order to ensure the conserva-
tion of body’s momentum

p D mv , (1.2)

where m is mass of the body, and v is its velocity. The law of impulse and the law of
reciprocal actions are known as the second and third laws of Newton respectively.
They are formulated as follows.

Second Law: The time rate of change of body’s linear momentum p is equal to the net
force F exerted on the body,

d p
d t

D F . (1.3)

The second law is valid in any frame of reference that is written in an invariant
form that is valid in arbitrary frames of reference both inertial and noninertial.
Therefore, the force F splits algebraically in two parts – the force of inertia, F in,
and the external force, F . Therefore,

F D F C F in . (1.4)

The force of inertia F in exists only in noninertial (accelerated and/or rotating)
frames and has a pure kinematic origin, while the external force F describes re-
al physical interaction between the body under consideration with other bodies.
The external force F determines the dynamical part of the body’s motion that is
not related to the choice of the reference frame. If mass of the body is conserved,
dm/d t D 0, the second law of Newton can be written in a more familiar form,

ma D F , (1.5)

which establishes a more simplistic relationship than that (1.3) between the accel-
eration of the body, its constant mass, and the force applied.

By setting F D 0 in Newton’s law of impulse (1.5) written for a body of a constant
mass, one would arrive to the conclusion, a D 0, and would get an impression that
the law of inertia (1.1) is a special case of the law of impulse: a vanishing net force
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4 1 Newtonian Celestial Mechanics

yields a zero acceleration. It looks like the law of inertia is redundant, and can
be derived instead of being postulated. Newton surely observed the possibility of
such a conclusion, but nevertheless chose to add the law of inertia as a separate
statement. Moreover, he placed this law first. The only reason why he could have
done so was his intention to single out a special class of forces – the kinematic
forces of inertia – from the rest of genuine dynamical interactions, and to introduce
a special class of inertial reference frames in which the forces of inertia F in vanish
so that the second law of Newton is reduced to pure dynamical form

d p
d t

D F . (1.6)

This logic makes it clear that the first Newton’s law is not a tautology following
the second Newton’s law, but a crucial element of the entire theory introducing a
special class of reference frames excluding the inertial forces. It may look simple
now, but it took Newton’s successors centuries to arrive at the modern formulation
of the law of inertia:

“There exist reference frames called inertial, such that a particle at rest or with
constant velocity in one inertial frame will remain at rest or have constant veloc-
ity in all inertial frames, provided the net external force F acting on the particle
is nil.”

Crucial in this formulation is that it deliberately omits any mentioning of the ab-
solute motion. This is because all inertial frames are effectively equivalent in the
sense that the second law of Newton (1.6) is invariant (remains the same) irrespec-
tively of the choice of the inertial frame.

Descartes–Newton’s idea of inertia differs from the modern understanding of
this phenomenon in that they both regarded uniform motion and rest as different
bodily states. Of a special interest is the position of Descartes who was partially a
relationist and partially an absolutist.1) On the one hand, he argued that space and
matter are inseparable aspects of one phenomenon, and that motion is always the
motion of bodies relative to one another. On the other hand, despite holding motion
to be relational, Descartes also held there to be a privileged sense of motion (“true
motion”) over and above the merely relative motions. In distinction from Descartes,
Newton was a pure absolutist whose system of views consistently stemmed from his
belief that space (and, likewise, time) has existence of its own, independently of the
bodies residing in it. The concept of absolute space and time proposed in Principia
laid a foundation for a version of the æther theory developed by Newton in his
Opticks, a book in which he proposed a corpuscular theory of light. As the theory

1) Absolutism is a philosophical paradigm, according to which space and time are fundamental
entities existing independently of matter. Relationism denies this paradigm so that space and time
exist only as a supplementary mathematical tool to express relationships between the material
bodies (and material fields). Relationism denies the existence of privileged coordinates, but may
admit that some configurations of the bodies (fields) may have a privileged value for the observer.
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1.1 Prolegomena – Classical Mechanics in a Nutshell 5

had trouble explaining refraction, Newton claimed that an “æthereal medium” was
responsible for this effect. He then went further to suggest it might be responsible
for other physical effects such as heat transfer.

The law of conservation of the linear momentum of a closed system of mutually-
interacting bodies required from Newton to postulate his

Third Law: Whenever a particle exerts a force, F 12, on another particle, the latter
one simultaneously exerts a force, F 21 on the former, with the same magnitude
and in the opposite direction,

F 12 D �F21 . (1.7)

Be mindful that although the magnitude of the forces are equal, the accelerations
of the bodies are not: the less massive body will have a greater acceleration due to
Newton’s second law (1.5). Let us apply the third law to a system of two interact-
ing particles having instantaneous linear momenta, p1 and p2, respectively. The
second Newton’s law for two particles written down in an inertial reference frame
is

d p1

d t
D F12 , (1.8a)

d p2

d t
D F21 . (1.8b)

Adding (1.8a) and (1.8b) together, and applying the third law of Newton (1.7) yields

d
d t

(p1 C p2) D 0 , (1.9)

which is equivalent to the statement that the total linear momentum of the system,
p D p1 C p2, is constant in any inertial reference frame. One has to pay attention
that this constancy of the overall linear momentum is preserved only in the inertial
frames since in a noninertial frame, the overall momentum may be not conserved
because the inertial forces, Fin, may not obey the third law of Newton. The law (1.9)
can be extended to a system of N interacting particles.

An important property of the force postulated in the third law of Newton is that
physical interaction between bodies is instantaneous. It was in perfect agreement
with the experimental situation at the time of Newton. Much later, after the de-
velopment of electrodynamics, special and general theories of relativity, and other
field theories, it became clear that there must be no instantaneous forces in nature.
This does not undermine the validity of the Newtonian mechanics which remains
fully self-consistent and works very well in the limit of low velocities and small ac-
celerations. Post-Newtonian celestial mechanics in the solar system can be treated
in most cases on the premise of the instantaneous gravitational interaction. Only
dedicated experiments require that one include the finite speed of propagation of
gravity to get theoretical predictions consistent with observations.2)

2) See Section 7.9 for particular details and explanations.
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6 1 Newtonian Celestial Mechanics

The idea of absolute motion was also challenged in seventeenth century by Leib-
niz, Huygens, and other relationists. Leibniz found the Newtonian notion of ab-
solute space unacceptable because two universes whose bodies occupied different
absolute positions but identical relative positions would be indistinguishable from
one another. Despite the objections, the indisputable authority of Newton kept the
theory of æther afloat for more than two hundred years. As Ferraro (2007) put it:
“The controversy between relationists and absolutists quieted down in the follow-
ing centuries due to the success of the Newtonian science. Actually it remained in
a latent state because it would resurge at the end of the nineteenth century.” The
issue indeed returned to the center of attention in 1887 after the Michelson–Morley
experiment challenged the possibility of æther’s existence. The discussion contin-
ued and even spilled out into the twentieth century, with Poincaré and Einstein
being on the opposite sides of the fence.

Although in his Saint Louis address of 1904, Poincaré came up with an early for-
mulation of the relativity principle, he never granted this principle the fundamen-
tal status Einstein gave it in 1905 (Kobzarev, 1975). Defending the idea of æther,
Poincaré believed that some dynamical effects conspire to prevent us from observ-
ing it by mechanical or electromagnetic means. On 11 April 1912, three months
before his death, Poincaré gave to the French Society of Physics a talk entitled “The
Relations between Matter and Æther.” This duality of Poincaré’s concept of motion
brings up strong parallels with Descartes.

Einstein, on his part, strictly followed the line of Leibniz, rejecting absolute mo-
tion. Thus, he had no need to introduce æther in special relativity because in special
relativity this entity, in its classical meaning, was redundant. Years later, after gen-
eral relativity was developed, Einstein (1920) admitted in his Leiden’s address that
the general theory of relativity does not yet compel us to abandon æther. Einstein
said that “according to the general theory of relativity, space is endowed with phys-
ical qualities (the metric potentials); in this sense, therefore, there exists an æther.”
At the same time, Einstein acknowledged that this general-relativistic meaning of
the word “differs widely from that of the æther of the mechanical undulatory theory
of light.” At any rate, Einstein’s interpretation deprives æther of its ability to define
a reference frame.

Einstein’s viewpoint was later corroborated by Dirac on the grounds of hole the-
ory of vacuum. According to Dirac (1951), vacuum is a substance of complex struc-
ture and therefore may be regarded as a physical medium, a kind of æther. Howev-
er this medium is Lorentz-invariant and thus defines no preferred inertial frame of
reference. This viewpoint has now become conventional in quantum physics (Lee,
1981). The reason why the term æther is seldom applied to quantum vacuum in the
modern literature is the necessity to avoid confusion with the old concept of æther,
one associated with absolute motion.
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1.1 Prolegomena – Classical Mechanics in a Nutshell 7

1.1.3
Newton’s Law of Gravity

Having formulated the three fundamental laws of motion, Newton went on in his
Principia to explore a particular force, gravity. In this endeavor, Newton was getting
inspiration from the works by Kepler and from correspondence with Hooke.3)

In 1666, Robert Hooke explained to the Royal Society his concept on what made
the planets describe closed orbits about the Sun. According to Hooke, a force was
needed, not to push a planet along from behind, but to pull it in towards a fixed
gravitating center, so as to make the planet describe a closed curve instead of mov-
ing off along a straight tangent line into outer space. Circa 1680, in his correspon-
dence with Newton, Hooke hypothesized that above ground level the gravity force
changes inversely as the square of the distance from the Earth’s center, and that
below ground the force falls off as the center is approached. Hooke inquired as
to what curve should be followed by a body subject to a central force obeying the
inverse-square law.4) Soon, Newton proved that an orbit in the form of a conic sec-
tion, with the center of attraction located in one of the foci, necessarily implies
an inverse-square attraction5) – a result perfectly fitting Kepler’s first law. We shall
never know what made Newton procrastinate for almost five years with making
his calculation public. For the first time, the discovery saw light in the Principia in
1687. In Newton’s own words,

“I deduced that the forces, which keep the planets in their orbs must [be] re-
ciprocally as the squares of their distances from the centers about which they
revolve: and thereby compared the force requisite to keep the Moon in her Orb
with the force of gravity at the surface of the Earth; and found them answer
pretty nearly.”

In the modern notations, the law will read (see Figure 1.1)

F12 D �G
m1m2

r3
12

r12 , (1.10)

where F12 is the gravitational force wherewith body 2 acts on body 1, G D
(6.67428 ˙ 0.00067) � 10�11 m3 kg�1 s�2 denotes the Newtonian gravity constant,
m1 and m2 are the masses of the two interacting bodies located at positions with

3) For historical analysis of the life and work
of Newton and the contemporary scholars,
see Cohen and Smith (2002).

4) Newton, in his letter to Halley on June 20,
1686, seeking to rebut Hooke’s claim to
have provided him originally with the idea
of inverse-square gravity law, emphasized
that the idea had been published before by
Boulliau. In fact, Boulliau did not believe in a

universal attraction force. At the same time,
in his book he indeed argued that had such a
force existed, it would likely obey the inverse-
square law (Boulliau, 1645).

5) Be aware that Newton proved that orbits
being conics entail the inverse-square
law. He did not prove that the inverse-
square radial force results in orbits being
conics (Weinstock, 1982).
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8 1 Newtonian Celestial Mechanics

x1

x2

r12

o

x = x1

z = x3

y = x2

m1

m2

F12

F21

Worldline of the body 2x1(t)

x2(t)Worldline of the body 1

Figure 1.1 Newton’s law of the universal
gravitational attraction. The coordinates
x i D (x , y , z) represent an arbitrary inertial
reference frame with the origin O. This frame

is assumed to be nonmoving and its axes are
nonrotating. Time t is absolute and parame-
terizes the worldlines of the bodies.

spatial coordinates x1 and x2 respectively, the vector

r12 D x1 � x2 (1.11)

is aimed from the second body to the first one, the quantity r12 being this vector’s
Euclidean magnitude r12 D jr12j. According to the third Newton law of reciprocal
action, body 1 acts on body 2 with a force

F21 D �F12 D �G
m1m2

r3
21

r21 , (1.12)

where r21 D x2 � x1 D �r12, and r21 D jr21j D jr12j D r12.
Combining the gravity law with Newton’s second law (the law of impulse), one

gets

d
d t

(m1 Px1) D �G
m1m2

r3
12

r12 , (1.13)

d
d t

(m2 Px2) D �G
m2m1

r3
21

r21 , (1.14)

with overdot standing for an ordinary time derivative. If the masses of the bod-
ies are constant,6) (1.13)–(1.14) can be simplified to the form usually employed in
celestial mechanics,

m1 Rx1 D �G
m1m2

r3
12

r12 , (1.15)

6) This is not always true. For example, mass of the Sun changes due to the emission of the solar
wind and radiation. In many cases, however, the mass loss is slow and can be neglected.
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1.1 Prolegomena – Classical Mechanics in a Nutshell 9

m2 Rx2 D �G
m2m1

r3
21

r21 . (1.16)

Summing up (1.13) and (1.14), and integrating the result over the time, one ar-
rives at the law of conservation of linear momentum of the gravitating two-body
system,

m1 Px1 C m2 Px2 D P , (1.17)

where P is a constant vector of the linear momentum of the system. The center of
mass of the two-body system is, by definition, a point given by the vector

X D m1x1 C m2x2

m1 C m2
. (1.18)

Integration of (1.17) with respect to time gives birth to a vector integral of motion
of the center of mass,

M X D D C P (t � t0) . (1.19)

Here,

M D m1 C m2 (1.20)

is a constant total mass of the two-body system,

D D M X0 , (1.21)

and X0 is the constant position of the center of mass at the fiducial time, t0, which
is often called an epoch in dynamic astronomy. A constant vector

V D PX D P
M

, (1.22)

is termed the velocity of the center of mass. Equation 1.19 tells us that the center of
mass X of the two-body system moves uniformly along a straight line with the
constant velocity V .

Solving (1.11) and (1.18) elucidates that inertial coordinates of the bodies, x1 and
x2, can always be represented as a sum of two vectors, X and r12,

x1 D X C m2

m1 C m2
r12 , x2 D X � m1

m1 C m2
r12 , (1.23)

where r12 is a vector of a relative position of body 2 with respect to body 1. Substi-
tuting these equations to the equations of motion (1.15) and (1.16) and accounting
for the conservation of the integral of the center of mass of the two-body system,
RX D 0, one obtains the equations of relative motion

μ Rr12 D �G
M μ
r3

12
r12 , (1.24)
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10 1 Newtonian Celestial Mechanics

where

μ D m1m2

M
, (1.25)

is called the reduced mass. Equations of relative motion for vector r21 is obtained
by exchanging the body indices, 1 $ 2, but it does not provide us with a new in-
formation. Equations of relative motion (1.24) are naturally termed the equations
of motion of the reduced two-body problem. They could be also derived by subtract-
ing (1.16) from (1.15). It may make an impression that the conservation of the
integral of the center of mass is not important in derivation of the equations of the
relative motion. However, this point of view is mistaken since if the integral of the
center of mass were not exist, the equations of the relative motion would have extra
terms associated with the force of inertia.

Inertial coordinates with the origin fixed at the center of mass of the gravitating
system are named barycentric. In the barycentric frame of reference, the total mo-
mentum of the system is zero, P D 0, while the position of the center of mass
is constant and can be set to zero as well, X0 D 0. In this coordinate system, at
any instant of time, one has X D V D 0, as follows from the conservation of
momentum. Hence, in this frame, (1.23) are simplified as

x1 D m2

m1 C m2
r12 , x2 D � m1

m1 C m2
r12 , (1.26)

and the problem of motion is reduced to solving of only one differential equation
of the relative motion (1.24) that can be re-written as

Rr12 D �G
M
r3

12
r12 , (1.27)

since the reduced mass μ is canceled out. In the barycentric reference frame, the
problem of motion can be viewed as a problem of a single body with the reduced
mass, μ, moving around a fixed center of gravity located at the barycenter of the
two-body system and having a total mass, M D m1 C m2. In general, N-body prob-
lem, a similar procedure of introducing the relative coordinates can be employed
to reduce the problem to an (N � 1)-body setting.

1.2
The N-body Problem

Let us consider an isolated self-gravitating system consisting of a number of point-
like massive bodies. In neglect of the gravitational pull from the Milky Way and
the Hubble expansion of the universe, the solar system is a typical example but
the consideration given in this chapter is applicable equally well to other isolated
astronomical systems like a binary or multiple stellar system or a planetary system
around other star. We shall enumerate the massive bodies with the capital letters
A, B, C, . . . taking the values of 0, 1, 2, . . . , N , the index 0 being assigned to the
primary body. Depending on a particular situation under consideration the primary
can be either the Sun, or the Earth, or any other major planet.
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1.2 The N-body Problem 11

1.2.1
Gravitational Potential

Let us begin at the discussion of the gravitational potential of a point-like mass
m located at the origin of an inertial reference frame x D (x i ) D (x1, x2, x3).
Gravitational force of the mass m on a test particle of unit mass is given by the
expression

f i D � G m
r3

x i , (1.28)

where r D jx j D p
(x1)2 C (x2)2 C (x3)2 is the Euclidean distance from the mass

to the field point x D (x i ). Elementary gravitational force, f i , can be represented
as a gradient of gravitational potential

φ D G m
r

. (1.29)

Therefore,

f i D @φ
@x i D

�
@φ
@x1 ,

@φ
@x2 ,

@φ
@x3

�
. (1.30)

If the mass m is displaced to the point with coordinates x 0 D (x 0 i ), the gradient
expression (1.30) for gravitational force, f i , remains the same but the value of the
potential, φ, at the point x i becomes

φ D G m
jx � x 0j . (1.31)

Let us now consider an extended massive body made up of a continuous dis-
tribution of matter having a compact support (enclosed in a finite volume) with a
mass density �(t, x ). One assumes that the body’s matter can move that explains
the time dependence of the mass density which obeys the equation of continuity

@�

@t
C @(�v i )

@x i D 0 , (1.32)

where v i D v i (t, x ) is the velocity of an infinitesimally-small element of body’s
matter, and the repeated Roman indices mean the Einstein rule of summation from
1 to 3. Einstein’s summation rule was invented to avoid the explicit (but in many
cases unnecessary) appearance of the sign of summation,

P
, in tensor equations.

It tacitly assumes that a pair of repeated (dummy) indices assume summation over
corresponding values of the indices. In what follows, one uses the Einstein rule for
summation of coordinate indices. For example, a scalar product of two vectors a D
(ai ) and b D (bi) will be written as a �b D ai b i � P3

iD1 ai b i D a1 b1Ca2b2Ca3b3.
Integration of (1.32) over the finite volume V of the body tells us that the overall

mass of the body,

M D
Z
V

�(t, x )d3x , (1.33)
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12 1 Newtonian Celestial Mechanics

is constant. Indeed, taking the time derivative from both sides of (1.33) yields

dM
dt

D d
d t

Z
V

�(t, x )d3x D
Z
V

@�

@t
d3x C

I
@V

�v i dSi , (1.34)

where the surface integral is taken over the body’s surface, @V , and accounts for
the presumable time-dependence of the boundary of integration due to the motion
of matter. Applying now the Gauss theorem to the surface integral recasts (1.34) to

dM
dt

D
Z
V

�
@�

@t
C @(�v i )

@x i

�
d3x D 0 , (1.35)

due to the equation of continuity. It proves that the overall mass of the extended
body remains constant, that is, the mass of the body is the integral of motion of
matter.

Gravitational potential U of the extended body is found as an integral taken
over the body’s volume comprised of the contributions of the “elementary” po-
tentials (1.31) of the “point-like” elements of the body with mass m replaced with
m ! �d3x . It yields

U(t, x ) D G
Z
V

�(t, x 0)d3x 0

jx � x 0j . (1.36)

The equation for the gravitational force, F i , exerted by the extended body on a probe
unit mass at point x i is defined as a gradient of the gravitational potential (1.36),
that is,

F i D @U
@x i

D
�

@U
@x1

,
@U
@x2

,
@U
@x3

�
. (1.37)

By taking second-order partial derivatives from the potential U, one can prove that
the gravitational potential, U, obeys the second-order partial differential equation

δ i j @2U
@x i@x j D �4πG� , (1.38)

where δ i j D diag(1, 1, 1) is the unit matrix, and one has used the Einstein summa-
tion rule to avoid the appearance of the double sum of summation,

P3
iD1

P3
j D1,

in the right side of this equation. The differential operator acting on gravitational
potential U in the left side of this equation is called the Laplace operator

4 � δ i j @2

@x i@x j , (1.39)

and (1.38) is known as the Poisson equation, conventionally written as

4U D �4πG� . (1.40)
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1.2 The N-body Problem 13

Gravitational potential (1.36) is the solution of the (inhomogeneous) Poisson equa-
tion that is valid both inside and outside of the body’s volume. However, if one is
interested in the gravitational potential and force only outside of the body, a homo-
geneous Laplace equation

4U D 0 , (1.41)

is sufficient.

1.2.2
Gravitational Multipoles

In many practical tasks of celestial mechanics and geodesy, one does not need the
integral form of the Newtonian gravitational potential, but its multipolar decom-
position describing gravitational field in terms of multi-index objects called multi-
poles. It can be obtained by expanding gravitational potential (1.36) outside of the
body into an infinite Taylor series by making use of decomposition of the reciprocal
distance jx � x 0j�1 around the point x 0 i D 0 with respect to the so-called harmonic
polynomials. One has7)

1
jx � x 0j D

1X
lD0

(�1)l

l !
x 0 hi1 x 0 i2 . . . x 0 i l i

@l

@x i1@x i2 . . . @x il

�
1
r

�

D 1
r

C x i x 0 i

r3 C 1
2

�
3(x i x 0 i )(x j x 0 j )

r5 � r 0 2

r3

�
C . . . , (1.42)

where r D jx j, r 0 D jx 0j, the multi-index notation of spatial indices has been
used, each index i1, i2, . . . , i l runs from 1 to 3, and the angular brackets around
the indices denote an algebraic operation making an object having such indices,
symmetric and traceless (STF) tensor with respect to spatial rotations (see Ap-
pendix A). This expansion is more commonly written in terms of the Legendre
polynomials Pl(cos θ ). Formula (1.42) can be easily converted to these polynomi-
als after re-writing the scalar product of two vectors x i x 0 i in trigonometric form,
x i x 0 i D r r 0 cos θ , and substituting it to expression (1.42). It yields

1
jx � x 0j D 1

r

1X
lD0

(�1)l

l !

�
r 0

r

�l

Pl (cos θ ) . (1.43)

Though this form of expansion of the reciprocal distance looks more simple, it
requires further elaboration of Pl (cos θ ) in terms of the associated Legendre func-
tions P m

l (cos θ ) which is effectively equivalent to the expansion in terms of the
harmonic polynomials. The harmonic polynomials have many mathematical ad-
vantages in theoretical studies (Hartmann et al., 1994), and will be preferred almost
everywhere in this book to describe the multipolar decompositions of gravitational
potentials in classical and relativistic gravity theories.

7) Notice the usage of Einstein’s summation rule for indices i1, i2, . . . , il numerating spatial
coordinates.
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14 1 Newtonian Celestial Mechanics

After substituting the Taylor expansion (1.42) in the definition (1.36) of the New-
tonian gravitational potential, one obtains its multipolar expansion

U(t, x ) D G
1X
lD0

(�1)l

l !
I hi1 i2...i l i@i1 i2...i l

�
1
r

�
, (1.44)

where one has used a shorthand notation for partial derivatives @i D @/@x i ,
@i1 i2...i l D @i1@i2 . . . @i l , and I hi1 i2...i l i are the mass multipole moments of gravita-
tional field of the body which are integrals from the density, �(t, x ), taken over the
body’s volume

I hi1 i2...i l i D
Z
V

�(t, x )xhi1 x i2 . . . x il id3x , (1.45)

with xhi1 x i2 . . . x ili representing the harmonic polynomial of the lth degree. The
angular brackets around the indices of the polynomial denote a special kind of
symmetry which is imposed on the harmonic polynomial by the condition that it
must be a solution of a homogeneous Laplace equation, that is,

4
	

xhi1 x i2 . . . x il i



D 0 . (1.46)

It is this condition which demands for the lth order harmonic polynomial,
xhi1 x i2 . . . x il i, to be a fully-symmetric and trace-free (STF) tensor with respect
to rotations in three-dimensional Euclidean space (Blanchet and Damour, 1989;
Pirani, 1965; Thorne, 1980). The word “trace-free” means that contraction of any
pair of indices nullifies the STF tensor,

xhi1 x i1 x i3 . . . x il i D δ i1 i2 xhi1 x i2 . . . x il i � 0 , (1.47)

which is a mathematical property of any polynomial solution of the homogeneous
Laplace equation (1.46). We provide more details on the structure of the harmonic
polynomials in Appendix A.

Let us define a symmetric moment of inertia of the lth order,

I i1 i2...i l D
Z
V

�(t, x )x i1 x i2 . . . x il d3x . (1.48)

Then, the STF multipole moment (1.45) is expressed in terms of the moments of
inertia as follows (Pirani, 1965)

I hi1 i2...i l i D
[l/2]X
kD0

al
k δ(i1 i2 δ i3 i4... δ i2k�1 i2k I i2kC1...i l ) j1 j1... j k j k , (1.49)

where the round brackets around a group of indices denote full symmetrization
with respect to permutation of the indices, [l/2] denotes the integer part of l/2, the
repeated indices denote Einstein’s summation, and the numerical coefficient

al
k D (�1)k l !

(l � 2k)!(2k)!!
(2l � 2k � 1)!!

(2l � 1)!!
. (1.50)



�

� Sergei Kopeikin, Michael Efroimsky, and George Kaplan: Relativistic Celestial Mechanics
of the Solar System — Chap. kopeikin8566c01 — 2011/6/14 — page 15 — le-tex

�

�

�

�

�

�

1.2 The N-body Problem 15

The STF multipole moments I hi1 i2... i l i are well-known in celestial mechanics, and
other areas of theoretical physics. For example, the zero-order (l D 0) multi-
pole moment I is simply a constant mass M of the body having been introduced
in (1.33). Dipole moment (l D 1)

I i D
Z
V

�(t, x )x i d3x , (1.51)

defines position of the center of mass of the body with respect to the origin of the
coordinates. The quadrupole moment (l D 2)

I hi j i D
Z
V

�(t, x )
�

x i x j � r2

3
δ i j

�
d3x , (1.52)

and the multipole moments of higher-order provide an integral characteristics of
various asymmetries in the distribution of matter inside the body with respect to
its equatorial and meridional planes.8) If the origin of coordinates is placed to the
center of mass of the body, the dipole moment vanishes, I i D 0, and the multipolar
expansion (1.44) can be written as follows

U(t, x ) D G M
r

C G
1X
lD2

(�1)l

l !
I hi1 i2... i li@i1 i2... i l

�
1
r

�
, (1.53)

where mass M is constant, but the multipole moments I hi1 i2...i l i (l � 2) can depend
on time. In many cases, contribution of higher-order multipoles to the overall grav-
itational field is fairly small and can be neglected, thus, leaving only the first term
in the right side of (1.53). Extended body with spherically-symmetric distribution
of mass has no multipole moments at all. Thus, its gravitational potential

U D G M
r

, (1.54)

is the same as that of the point-like mass M placed at the coordinate origin.

1.2.3
Equations of Motion

Let us derive the Newtonian equations of motion of extended bodies comprising
the N-body system under consideration. We introduce a global inertial reference
frame with time t and spatial coordinates x D (x i) D (x1, x2, x3) and assume
that each body A occupies a finite volume VA of space. The interior distribution
of matter is characterized by mass density � D �(t, x ) and by the symmetric ten-
sor of stresses π i j (t, x ) D π j i (t, x ), which is reduced in case of a perfect fluid to an

8) Notice that contraction of two indices of the quadrupole moment gives I hi ii � 0, that is, its trace
is indeed zero.
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16 1 Newtonian Celestial Mechanics

isotropic pressure p D p (t, x ) such that the trace of this tensor, π i j D p δ i j .
Macroscopic equations of motion of matter are9)

@(�v i )
@t

C @(�v i v j )
@x j D �@π i j

@x j C �
@U
@x i , (1.55)

where v i D dx i/d t is velocity of matter and, U D U(t, x ), is gravitational potential
that is a linear superposition of potentials of all bodies of the system

U(t, x ) D
NX

BD0

UB (t, x ) , (1.56)

UB (t, x ) D G
Z
VB

�(t, x 0)
jx � x 0j d3x 0 . (1.57)

Making use of the equation of continuity (1.32), the equations of motion (1.55) can
be recast to the form

�
dv i

d t
D �@π i j

@x j C �
@U
@x i , (1.58)

where the operator of the total derivative

d
d t

� @

@t
C v j @

@x j , (1.59)

describes differentiation along the worldline of the element of body’s matter. We
define the dipole moment of body A with respect to a point with coordinates x A D
(x i

A) by the expression

I i
A D

Z
VA

�(t, x )
�
x i � x i

A

�
d3x . (1.60)

The point x i
A coincides with the center of mass of the body in the case when I i

A D 0,
and one imposes and keeps this condition for any instant of time. Hence, the time-
dependent position x A D x A(t) of the center of mass of body A is defined in the
inertial coordinates by equation

mAx i
A D

Z
VA

�(t, x )x i d3x , (1.61)

where

mA D
Z
VA

�(t, x )d3x , (1.62)

is a constant mass of the body A. Equations of orbital motion of body A can be
obtained after double differentiation of both sides of (1.61) with respect to time and

9) Observe the use of Einstein’s summation rule in application to the repeated indices.
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1.2 The N-body Problem 17

application of the macroscopic equation of motion of matter (1.58). For doing this
calculation, an important formula giving a value of the time derivative of integral
quantities will be required. More specifically, for any smooth function, f D f (t, x ),
multiplied with density � D �(t, x ), the following differentiation rule is valid

d
d t

Z
VA

� f d3x D
Z
VA

�
d f
d t

d3x , (1.63)

where the total time derivative in the right side must be understood in the sense
of (1.59). The proof of this rule is rather straightforward. The time derivative of the
integral is

d
d t

Z
VA

� f d3x D
Z
VA

�
@�

@t
f C �

@ f
@t

�
d3x C

I
@VA

� f v i dSi , (1.64)

where the surface integral in the right side of this equation takes into account that
the volume of the body changes as time passes on. By applying the equation of
continuity (1.32) and the Gauss theorem, one can bring (1.64) to the following
form, Z

VA

�
@�

@t
f C �

@ f
@t

�
d3x C

I
@VA

� f v i dSi D

Z
VA

�
�@(�v i)

@x i f C �
@ f
@t

C @(� f v i)
@x i

�
d3x , (1.65)

which is immediately reduced to the right side of (1.63) after applying the Leibniz
rule to the partial derivative

@(� f v i )
@x i

D @(�v i )
@x i

f C �v i @ f
@x i

. (1.66)

Applying (1.63) two times to the center-of-mass definition (1.61), one obtains

mAv i
A D

Z
VA

�(t, x )v i d3x , (1.67)

mAai
A D

Z
VA

�(t, x )
dv i

d t
d3x , (1.68)

where v i
A D dx i

A/d t is velocity, and ai
A D dv i

A/d t is acceleration of the body’s
center of mass, respectively. Now, one replaces the time derivative, dv i/d t, in the
right side of the integral in (1.68) with the macroscopic equations of motion (1.58),
and split the gravitational potential, U, in two parts – internal and external,

U D UA C NU , (1.69)
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18 1 Newtonian Celestial Mechanics

where

NU D
NX

BD0
B¤A

UB (t, x ) . (1.70)

It yields

mAai
A D �

Z
VA

@π i j

@x j d3x C
Z
VA

�
@UA

@x i d3x C
Z
VA

�
@ NU
@x i d3x . (1.71)

The first term in the right side of this equation vanishes,

Z
VA

@π i j

@x j d3x D
I

@VA

π i j dS j D 0 , (1.72)

because stresses disappear on the surface of each gravitating body (Landau and
Lifshitz, 1959). The integral of the derivative of the internal gravitational potential
also vanishes,

Z
VA

�
@UA

@x i d3x D �
Z
VA

Z
VA

�(t, x )�(t, x 0)
x i � x 0 i

jx � x 0j3 d3x d3x 0 D 0 , (1.73)

due to anti-symmetry of the integrand with respect to the exchange of coordinates,
x $ x 0. Thus, all internal forces exerted on the body cancel out exactly, and equa-
tions of motion of the center of mass of body A are reduced to

mAai
A D

Z
VA

�
@ NU
@x i d3x . (1.74)

External potential, NU , can be expanded in Taylor series around the point x A with
respect to the harmonic (STF) polynomials,

NU D
1X
lD0

1
l !

rhi1
A r i2

A . . . r il i
A @i1 i2...i l

NU(t, x A) , (1.75)

where r i
A � x i � x i

A, the angular brackets around indices denote STF symmetriza-
tion defined in (1.49), the partial derivative @i D @/@x i , and the lth partial derivative
@i1 i2...i l

NU(t, x A) � �
@i1 i2...i l

NU(t, x )
�

xDx A
. The appearance of the harmonic polyno-

mials in this expansion is justified because the external potential NU satisfies the
Laplace equation: 4 NU D 0. Hence, the symmetric polynomial rhi1

A r i2
A . . . r il i

A must
be apparently traceless. Substituting expansion (1.75) in (1.74) yields

mAai
A D

1X
lD0

1
l !

I hi1 i2...i l i
A @i i1... i l

NU(t, x A) , (1.76)
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1.2 The N-body Problem 19

which is the equation of motion of body A given in terms of its (time-dependent)
STF multipole moments

I hi1 i2... i li
A D

Z
VA

�(t, x )rhi1
A r i2

A . . . r il i
A d3 x , (1.77)

coupled with the partial derivatives of the external potential NU taken at the center
of mass of the body. Development of this theory is getting progressively complicat-
ed if one continues to keep all multipole moments of the bodies in equations of
motion (Kopeikin, 1988). We shall show how to deal with these complications in
Section 6.1. The present section is restricted with the case of spherically-symmetric
bodies neglecting their tidal and rotational deformations. In such cases, the exter-
nal potential NU is simplified to a linear superposition of potentials of point-like
masses

NU(t, x ) D
NX

BD0
B¤A

G mB

jx � x B j , (1.78)

where x B D x B (t) are time-dependent positions of the external bodies B ¤ A
defined by an equation being similar to (1.60) where index A must be replaced with
index B. Substituting the potential (1.78) in (1.76) and assuming that body A is also
spherically-symmetric (so that only l D 0 monopole term, IA � mA, remains),
one arrives at the final form of dynamical equations of motion of N C 1 point-like
masses mA located at coordinate positions x A,

mA Rx A D �
NX

BD0
B¤A

G mAmB

r3
AB

r AB , (1.79)

with vector r AB D x A � x B being directed from body B to A, rAB D jr AB j.

1.2.4
The Integrals of Motion

The system of equations (1.79) admits ten integrals of motion: three integrals of the
linear momentum P ; three integrals of the initial position of the center of mass,
X0; three integrals of the angular momentum, J , and one integral of the energy,
E. The integrals of the linear momentum and the center of mass are obtained by
summing up (1.79) over all the bodies of the system, followed by integration with
respect to time. The net gravitational force in the sum is reduced to zero due to the
third Newton’s law, so one obtains the following two vectorial integrals of motion:

NX
AD0

mA Px A D P , (1.80)

NX
AD0

mAx A D P (t � t0) C D , (1.81)
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20 1 Newtonian Celestial Mechanics

with t0 being the epoch, and the constant vector

D D M X0 , (1.82)

where the total mass of the system

M D
NX

AD0

mA , (1.83)

is constant. To obtain one more integral of motion, take the dot-product of (1.79)
with the velocity Px A, with the subsequent summation over all the bodies of the
system,

NX
AD0

mA Rx A � Px A D �
NX

AD0

NX
BD0
B¤A

G mAmB

r3
AB

r AB � Px A . (1.84)

With aid of the equalities

NX
AD0

NX
BD0
B¤A

G mAmB

r3
AB

rAB � Px A D 1
2

NX
AD0

NX
BD0
B¤A

G mAmB

r3
AB

r AB � PrAB , (1.85)

and

G mAmB

r3
AB

r AB � Pr AB D � d
d t

G mAmB

rAB
, (1.86)

(1.84) becomes

dE
d t

D 0 , (1.87)

with E standing for a scalar integral of motion – the energy:

E D 1
2

NX
AD0

mA Px2
A � 1

2

NX
AD0

NX
BD0
B¤A

G mAmB

rAB
. (1.88)

Clearly, the first term in the right side makes up the kinetic energy of the bodies,
while the second one represents the gravitational potential energy. The former is
always positive, while the latter is always negative.10)

The last integral of motion – the angular-momentum vector J – is derived
from (1.79) by taking the cross product of both sides of this equation with the po-
sition vector x A, summing up over all the equations, and subsequent integration
over time. This entails

J D
NX

AD0

mA (x A � Px A) , (1.89)

10) The gravitational potential energy being negative makes the relativistic masses of self-gravitating
astronomical objects, like planets or stars, smaller than the algebraic sum of the rest masses of
their constituent particles – baryons. See Section 6.1.3 for further details.
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1.2 The N-body Problem 21

the sign � denoting the Euclidean cross product of two vectors. Constant vector
J defines an invariant plane of the N-body problem called the invariable plane of
Laplace.

1.2.5
The Equations of Relative Motion with Perturbing Potential

It would be instructive to rewrite the equations of motion (1.79) in terms of the
relative distances of the bodies from the primary body, the one denoted with the
index B D 0. To this end, one introduces the relative-to-the-primary vectors

R A D x A � x0 , R B D x B � x0 (1.90)

where x0 denotes the position of the primary. Equation 1.79 written for the primary
is11)

Rx0 D G mA

R3
A

R A C
NX

BD1
B¤A

G mB

R3
B

R B , (1.91)

and for the other bodies

Rx A D � G m0

R3
A

RA �
NX

BD1
B¤A

G mB

r3
AB

r AB , (1.92)

where r AB D x A � x B D RA � RB is a vector of relative distance directed from
body B to A. The difference between (1.92) and (1.91) amounts to

RR A D � G(m0 C mA)
R3

A
R A �

NX
BD1
B¤A

G mB

�
rAB

r3
AB

C RB

R3
B

�
, (1.93)

whose right side can be recast to a gradient form

RR A D @U
@R A

, (1.94)

where

U D G(m0 C mA)
RA

C W (1.95)

consists of an algebraic sum of a potential of a point-like mass, m0 C mA, and the
perturbing potential

W D
NX

BD1
B¤A

G mB

�
1

rAB
� 1

RB
� R A � R B

R3
B

�
. (1.96)

11) Notice that the mass, m0, of the primary cancels out.
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22 1 Newtonian Celestial Mechanics

The perturbing potential W acting on a mass mA is generated by all external mass-
es mB other than mA or the primary with the mass m0. It depends on the total
gravitational potential of the external bodies with masses mB taken at the position
of body A, from which one subtracts a monopole term, 	 R�1

B , and a dipolar com-
ponent, 	 (R A �R B )R�3

B , which can be interpreted as a force of inertia Fin emerging
in the noninertial frame associated with the primary. It is interesting to notice that
in the case of a two-body problem, the perturbing potential vanishes identically,
W � 0.

1.2.6
The Tidal Potential and Force

When the distance RA happens to be much smaller than any of the distances RB ,
the problem of relative motion of the body A around the primary becomes a two-
body problem with the perturbation caused by the tidal forces from the external
bodies. An example of such a motion is rendered by the Earth–Moon system that
moves in the external gravitational field of the Sun and the major planets. In this
case, the Earth assumes the role of the primary, the Moon plays the role of the
secondary body A, while the external bodies B ¤ A are the Sun and the major
planets of the solar system. An expansion of the perturbing potential W in the
Taylor series with respect to a small parameter RA/RB is obtained by expanding
the function r�1

AB about the point RA D 0 in terms of the harmonic polynomials.
This gives us

1
rAB

D
1X

lD0

1
l !

Rhi1
A R i2

A . . . R il i
A

"
@l

@R i1
A @R i2

A . . . @R il
A

�
1

rAB

�#
RAD0

D 1
RB

C R A � R B

R3
B

C 1
2

�
3(R A � R B )2

R5
B

� R2
A

R3
B

�
C . . . , (1.97)

where the angular brackets around spatial indices denote the STF (symmetric and
traceless) tensor, and one has used vector notation R il

A D R A (l D 1, 2, . . .), with
each index i l taking the values (1, 2, 3) corresponding to the three Cartesian coor-
dinates (x1, x2, x3). Substituting this expansion into (1.96), one sees that both the
monopole (l D 0) and dipole (l D 1) terms canceled out, so the tidal expansion of
the disturbing potential acquires the following form

W D
1X

lD2

(�1)l

l !
Rhi1

A R i2
A . . . R il i

A
@l NU

@R i1
B @R i2

B . . . @R il
B

, (1.98)

where

NU D
NX

BD1
B¤A

G mB

RB
(1.99)

is the gravitational potential created by the external bodies at the position of the pri-
mary. The lowest-order term of the tidal potential W is l D 2, which corresponds to
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1.2 The N-body Problem 23

the quadrupole moment in the expansion of the external gravitational potential NU
in the immediate neighborhood of the primary. It is worthwhile to point out that
the partial derivatives in the expansion for the tidal potential possess the following
property: contraction with respect to any couple of indices identically gives zero
because the external potential NU satisfies the homogeneous Laplace equation

4 NU � δ i j @2 NU
@R i

B @R j
B

D 0 , (1.100)

where the repeated indices assume summation from 1 to 3, and δ i j D diag(1, 1, 1)
is the unit matrix (the Kronecker symbol).

The tidal force Ftide D �
F i

tide

�
exerted on the body A orbiting the primary is

calculated as a partial derivative of the tidal potential

F i
tide D @W

@R i
A

D
1X

lD2

(�1)l

(l � 1)!
Rhi1

A R i2
A . . . R il�1i

A
@l NUA

@R i1
B . . . @R il�1

B @R i
B

, (1.101)

so the equation of the relative motion of the body A around the primary is

RR A D � G(m0 C mA)
R3

A
RA C Ftide

D � G(m0 C mA)
R3

A
RA C

NX
BD1
B¤A

G mB

R3
B

�
3(R A � R B )RB

R2
B

� R A

�
C . . . , (1.102)

primary external body B

Figure 1.2 The vector field of the quadrupole
tidal force is shown at different points in
space around the primary kept fixed at the
coordinate origin. The tidal force is caused
by the external body B laid out on the x-axis
far away from the primary. The circle depicts
a circular orbit in the plane x–y that would be

described by the body A about the primary in
the absence of the perturbing tidal force. The
quadrupole tidal force squeezes the circular
orbit in the plane x–y along the direction to-
ward the body B so that the orbit becomes an
ellipse with the ratio of its axes equal to 2.
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24 1 Newtonian Celestial Mechanics

where one has only shown the leading (quadrupole) term in the tidal force perturb-
ing the motion of the body A. If the orbit of the body A around its primary is circular
and there is only one external body B lying on the x-axis, the quadrupole tidal force
is maximal at the point of intersection of the orbit with x-axis, and is minimal at the
points of intersection of the orbit with the y-axis. The ratio of the maximal-to-mini-
mal values of the tidal force amounts to two. A plot of the quadrupole tidal force at
different points in space around the primary is demonstrated in Figure 1.2.

1.3
The Reduced Two-Body Problem

In the simplest case of two bodies, only a primary of mass m0 located at x0, and a
secondary of mass m1 located at x1 are present. The disturbance W vanishes be-
cause the subscript B in (1.96) runs through one value solely, B D 1, and there are
no other values to be taken by the index B ¤ A. The motion becomes mathemati-
cally equivalent to the Newtonian one-body problem, that is, to movement about a
fixed center of mass, M D m0 C m1, given by equation

Rr D � G M
r3

r , (1.103)

where r � r1. Equation 1.103 has been derived independently in Section 1.1.3. A
fortunate aspect of the two-body problem is that it is integrable in terms of elemen-
tary functions. The outcome is Newton’s celebrated result: the generic solution is a
conic with the gravitating center in one of its foci. This then grants one a possibility
to thoroughly discuss multiple aspects of the orbital motion of the bodies making
use of various parameterizations of the conics.

1.3.1
Integrals of Motion and Kepler’s Second Law

Let the center of attraction be located in the origin of an inertial reference frame
parameterized with axes x i D (x1, x2, x3) D (x , y , z), as shown in Figure 1.3. The
directions of the axes are defined via three unit vectors ex , e y , ez with the following
components

ex D (1, 0, 0) , e y D (0, 1, 0) , ez D (0, 0, 1) . (1.104)

The position of a moving body is given by the radius-vector r . The projection of the
velocity v D Pr of the body12) onto the direction of the radius-vector r gives the rate
Pr at which the radial distance evolves. In other words, the Euclidean dot product

12) Remember that a dot over any function of time denotes an ordinary derivative with respect to
time, for example, Pr D d r/dt, and so on.
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x

Orbital plane

Reference plane

z

y

k

l

m

Ω

f

ω

i
r

Q

P

Figure 1.3 Inertial reference frame
(x1, x2, x3) D (x , y , z) has its origin at the
fixed center of gravity with mass M. The or-
bital plane is orthogonal to the unit vector k

and intersects with the reference plane (x , y)
along the apsidal line defined by the unit vec-
tor l. Position of the moving body is character-
ized by the radius-vector r .

Pr � r D Pr r . Keeping this in mind, one sees that the dot-product of (1.103) by Pr is

Pr � Rr C G M
Pr
r2 D 0 . (1.105)

Integration of the latter results in a conservation law of the orbital energy,

E D 1
2

Pr2 � G M
r

, (1.106)

with the constant E being the energy per unit mass.
Taking the cross-product of both sides of (1.103) with vector r, one trivially ends

up with

r � Rr D 0 , (1.107)

integration whereof gives us another conservation law of the orbital angular mo-
mentum,

J D r � Pr . (1.108)

Here the constant vector, J , is orthogonal to both r and Pr and is easily identifiable
with the orbital angular momentum per unit mass. Conservation of this vector tells
us that the plane defined by r and Pr stays unchanged. This circumstance gives birth
to the term orbital plane. Notice that both magnitude and direction of vector J are
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26 1 Newtonian Celestial Mechanics

conserved, so that each component Jx , Jy , and Jz of this vector is an independent
integral of motion.

Orientation of the orbital plane is uniquely defined by the orientation of the an-
gular momentum vector J that is parallel to the unit vector k, that is J D J k as
shown in Figure 1.3. The orbital plane intersects with the reference plane (x , y )
along the apsidal line defined by the unit vector l that is directed towards the
ascending node of the orbit which assumes that the body in Figure 1.3 moves
counter-clockwise if one watches the motion from the tip of vector k. The unit
vector m D k � l, and lies in the orbital plane. The triad of unit vectors l , m, k is
related to the triad of unit vectors ex , e y , ez defining orientation of three axes of the
inertial frame, as follows

l D ex cos Ω C e y sin Ω , (1.109)

m D �ex cos i sin Ω C e y cos i cos Ω C ez sin i , (1.110)

k D ex sin i sin Ω � e y sin i cos Ω C ez cos i . (1.111)

Here, the angle Ω is the longitude of the ascending node of the orbit, and the
angle i is the inclination of the orbit with respect to the reference plane.

Let us now introduce within the orbital plane the polar coordinates of the moving
body which are the radial distance, r, and the argument of latitude, θ , that is the
angle between vectors r and l reckoned counter-clockwise in the orbital plane from
the direction l. In terms of r and θ one has,

r D r(l cos θ C m sin θ ) , (1.112)

Pr D l
	

Pr cos θ � r Pθ sin θ



C m
	

Pr sin θ C r Pθ cos θ



. (1.113)

The angular momentum J being expressed in the polar coordinates becomes,

J D k r2 Pθ , (1.114)

with its absolute value

J D j J j D r2 Pθ D const. (1.115)

In time δ t, the radius-vector r sweeps out the angle δθ D Pθ δ t and the area

δA D 1
2

r(r C δ r) sin(δθ ) D 1
2

r2δθ . (1.116)

After dividing each side of (1.116) by δ t and taking the limit δ t ! 0, one gets a
differential equation for the area’s temporal change,

PA D 1
2

r2 Pθ D J
2

. (1.117)
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1.3 The Reduced Two-Body Problem 27

Integration of this equation ensures Kepler’s second law of planetary motion: equal
areas are swept out in equal times, as can be envisaged from the right side of (1.117),
telling us that the time derivative of the area is equal to constant J/2. Thus, Kepler’s
second law has been shown to follow from Newton’s theory. Our next step will be
to demonstrate that Kepler’s first and third laws do so as well.

1.3.2
The Equations of Motion and Kepler’s First Law

Let us write the equation of motion (1.103) with respect to inertial Cartesian axes
defined by the unit vectors l , m, k. In fact, due to the law of conservation of the
angular momentum, only two components of this equation in the orbital plane
will be present. By differentiating the law of conservation of the angular momen-
tum (1.114), one obtains

r Rθ C 2Pr Pθ D 0 . (1.118)

Differentiating (1.113) with respect to time and making use of (1.118) allows us to
express the acceleration of the body in the following form,

Rr D r
� Rr

r
� Pθ 2

�
. (1.119)

Equation 1.115 also tells us that the time derivative of the angle θ is

Pθ D J
r2 . (1.120)

Substituting this expression in (1.119) and the result of the substitution into the
vectorial equation of motion (1.103) brings about a differential equation for the
radial motion of the body

Rr C G M
r2

� J2

r3
D 0 , (1.121)

where J is the constant angular momentum of the orbital motion. The solution of
this differential equation was not known at the time of Newton. For this reason, in
his Principia, Newton only proved that orbits in the form of conics necessitate an
inverse-square gravity law. To prove the inverse statement, that is, that the gravity
law entails this type of orbits, Newton would have to cope with (1.121) which was
not solved until 1710. On 13 December 1710, two Swiss mathematicians, Johann
Bernoulli and Jakob Hermann13), presented their solutions of (1.121) to a meeting
of the Paris Academy of Sciences. Both speakers provided valid proofs (to which
they had come upon independently) that Newton’s gravity law yields orbits shaped
as conics. For a historical account of those events, see Weinstock (1982).

13) The two were former disciples of Johann’s older brother, Jakob Bernoulli; and Hermann was a
distant relative of Euler.
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28 1 Newtonian Celestial Mechanics

In the middle of the eighteenth century, the solution of this problem was great-
ly simplified due to an elegant mathematical trick independently pioneered by
d’Alembert and Clairaut. The first step of this method is to employ (1.120) as a
means of switching from differentiation with respect to time t to differentiation
with respect to the angle θ . The rationale beneath this replacement of variable is to
find the shape of an orbital curve, that is, the dependence of r upon θ . Thus, one
replaces the time derivatives of r with those with respect to θ

Pr D Pθ r 0 , (1.122)

Rr D Rθ r 0 C Pθ 2r 00 , (1.123)

where a dot signifies the time derivative, and the prime denotes the derivative
with respect to θ . Making use of (1.118), (1.120), and (1.122), one can recast equa-
tion (1.123) to the following form:

Rr D J2

r2

�
r 00

r2
� 2

r 0 2

r3

�
. (1.124)

The second crucial step is to replace r with a reciprocal radial variable u D 1/r ,
thus obtaining:

u0 D � r 0

r2 , (1.125)

u00 D � r 00

r2
C 2

r 0 2

r3
. (1.126)

Comparing this equation with (1.124), and using the substitution u D 1/r , one
obtains

Rr D � J2u2u00 . (1.127)

This expression, along with Pθ D J r�2 D Ju2, helps us to transform (1.121) to the
Binet equation

u00 C u D G M
J2 , (1.128)

which is the equation of harmonic oscillator subject to a constant perturbation
G M/ J2. Solution of this equation is a linear superposition of general solution of
a homogeneous equation u00 C u D 0, and a particular solution of the inhomoge-
neous equation (1.128)

u D B cos(θ � ω) C G M
J2 , (1.129)

where B and ω are constants of integration depending on the initial conditions.
This solution looks similar to a well-known analytic geometry expression for the
reciprocal distance from a point on a conic to one of its foci,

p
r

D 1 C e cos f , (1.130)
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1.3 The Reduced Two-Body Problem 29

where f is the true anomaly, that is, the angular separation of the point from the
periapse (subtended at the said focus), while p D a(1 � e2) is a constant parameter
being expressed in terms of the semi-major axis a and eccentricity e, and called
semilatus rectum.14)

To convert the resemblance to equivalence, one must choose the constants B
and J in (1.129) in the following form

B D e
a(1 � e2)

D e
p

, (1.131)

J D p
G M p , (1.132)

and equate the angular variables

f D θ � ω . (1.133)

After these identifications, the orbital elements e and p turn out to be interconnect-
ed with the integrals of motion via formulae

p D J2

G M
, (1.134)

e D
s

1 C 2E J2

G2M2
, (1.135)

so the constant B from (1.129) becomes

B D G M
J2

s
1 C 2E J2

G2M2 , (1.136)

and the integral of the reduced total energy

E D G M
2p

(e2 � 1) . (1.137)

For different conics, the parameters of the orbit are defined as

circle: p D a , e D 0 , (1.138a)

ellipse: p D a(1 � e2) , 0 < e < 1 , (1.138b)

parabola: p D 2q , e D 1 , (1.138c)

hyperbola: p D a(e2 � 1) , e > 1 . (1.138d)

14) To derive (1.130) for an ellipse, a circle, or a hyperbola, start with (1.147) written in a Cartesian
coordinate system (� , η) whose origin is located in one of the foci, the axis � going through the
foci, as shown in Figure 1.4. For a point on the conic, � D r cos f and η D r sin f , plugging of
which into (1.147) entails (1.130).
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30 1 Newtonian Celestial Mechanics

Equation 1.132 demonstrates that the angular momentum, J, of the orbit only de-
pends on the focal parameter, p, and is always positive for any type of the orbit

J2 D G M p > 0 . (1.139)

On the other hand, (1.137) reveals that the reduced total energy E of the two-body
system depends only on the semi-major axis, a, and has either positive or negative,
or zero value for different types of conics

ellipse: E D � G M
2a

< 0 , (1.140a)

parabola: E D 0 , (1.140b)

hyperbola: E D G M
2a

> 0 . (1.140c)

The case of a parabola is exceptional in that its eccentricity e D 1, and the semi-
latus rectum is defined as p D 2q, where q is the minimal distance of the orbit to
the gravitating center at body’s closest approach. As parabolic (or near-parabolic)
orbits are considered in extremely rare situations, they will be omitted below.15)

The point of the closest approach of the orbit to the attracting center is called
the pericenter, and the opposite point on the orbit is called the apocenter.16) Let us
define a unit vector P directed from the attracting center towards the pericenter
and another unit vector Q lying in the orbital plane so that the triad P , Q, k make a
right-handed system of three vectors (see Figure 1.3). Vectors P and Q are related
to vectors l and m by rotation at the angle ω

P D l cos ω C m sin ω , (1.141)

Q D �l sin ω C m cos ω . (1.142)

The angle ω is the same as in (1.133). It measures in the orbital plane the angular
distance of the pericenter from the ascending node. In terms of the constant unit
vectors P and Q, the radius-vector of the body is expressed as follows:

r D r(P cos f C Q sin f ) . (1.143)

Derivation of velocity, v D Pr, is achieved by direct differentiation of (1.143),

Pr D Pr(P cos f C Q sin f ) C r Pf (�P sin f C Q cos f ) . (1.144)

15) One possibility of integrating such orbits is
through switching to the Kustaanheimo–
Stiefel variables (Stiefel, 1976). Treatment
by more conventional means is offered, for
example, by Osman and Ammar (2006).

16) In case of a planetary orbit around the Sun,
these orbital points are called, respectively,
the perihelion and aphelion. Corresponding
points on the orbit of the Moon and on the
orbit of artificial satellites of the Earth are
called perigee and apogee.
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1.3 The Reduced Two-Body Problem 31

Making use of (1.130) describing the first Kepler’s law along with equation Pf D Pθ ,
the integral of the angular momentum taken in the form of (1.120) and (1.132)
allows us to get the time derivative of the radial distance,

Pr D e
p

sin f (r2 Pf ) D J e
p

sin f D
s

G M
p

e sin f . (1.145)

Substituting this expression in (1.144) and making use of the law of conservation
of the angular momentum result in

Pr D
s

G M
p

[�P sin f C Q(cos f C e)] . (1.146)

1.3.3
The Mean and Eccentric Anomalies – Kepler’s Third Law

To start with, introduce a coordinate system (� , η) with an origin fixed at the attrac-
tion center F, and with the unit vectors P and Q directed along the axes � and η,
respectively. Draw an auxiliary circle of radius a equal to the semi-major axis, and
centered at the midpoint O between the foci. Let the body be located on the conic
at point B at time t, as shown in Figure 1.4. One draws a straight line parallel to
the η-axis and passing through the orbiter. The line is orthogonal to the � -axis,
and intersects the auxiliary circle at point C. The eccentric anomaly E is defined as

F

B

C

O
A

P

Q
r

fE

p

ae
ξ

η

Elliptic orbit

Auxiliary circle

Figure 1.4 The orbiting body is at the point B.
The eccentric anomaly is the angle E between
directions OA and OC. The true anomaly f is
the angle between the � -axis and the radius-

vector r . The distance between the center of
the auxiliary circle and the conic is ae, where a
is the semi-major axis and e is the eccentricity.
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32 1 Newtonian Celestial Mechanics

the angle subtended at the circle’s center between the axis � and a straight line
pointing at the point C on the circle.

As the distance between the origin and a focus is ea, one writes down the equa-
tion for the conic

(� C ae)2

a2
C η2

a2(1 � e2)
D 1 , (1.147)

valid for a circle, an ellipse, or a hyperbola.
The abscissa of point B on the conic is equal to � D r cos f . At the same time, it

is equal to

� D a cos E � ae D a(cos E � e) (1.148)

because the distance O F between the attraction center at point F and the center
of the auxiliary circle at point O is equal to ae, in accordance with definitions of
eccentricity e and the semi-major axis a. Equating the two expressions for the ab-
scissa of the point B, and making use of (1.130) of the conic, one gets a formula
interconnecting the two anomalies:

cos E D e C cos f
1 C e cos f

. (1.149)

The ordinate of point B on the conic is η D r sin f . Accounting for (1.147) of the
conic and (1.148), one obtains

η D a
p

1 � e2 sin E . (1.150)

Again, equating the two expressions for η gives us another interconnection,

sin E D
p

1 � e2 sin f
1 C e cos f

, (1.151)

which leads us to the expression for the distance from the focus as a function of
the eccentric anomaly:

r D a(1 � e cos E ) . (1.152)

In combination with (1.149), the latter renders:

r D a(1 � e2)
1 C e cos f

. (1.153)

Equation 1.149 can be rewritten in the following equivalent forms:

1 � cos f D (1 C e)
1 � cos E

1 � e cos E
, (1.154a)

1 C cos f D (1 � e)
1 C cos E

1 � e cos E
. (1.154b)
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1.3 The Reduced Two-Body Problem 33

With aid of the standard double-angle formulae, these relations can be reshaped
correspondingly into

sin2 f
2

D 1 C e
1 � e cos E

sin2 E
2

, (1.155a)

cos2 f
2

D 1 � e
1 � e cos E

cos2 E
2

. (1.155b)

The ratio of these two formulae furnishes yet another elegant interconnection be-
tween the true and eccentric anomalies,

tan
f
2

D
r

1 C e
1 � e

tan
E
2

. (1.156)

Our next project is to link the anomalies with the time. To this end, one em-
ploys (1.120) and (1.133) to write

d f D dθ D J
r2 d t . (1.157)

As the formulae (1.132) and (1.153) enable us to express J and r via the elements,
one can rewrite (1.157) as

d f D
r

G M
a3

(1 C e cos f )2

(1 � e2)3/2
d t . (1.158)

Introducing a widely used quantity

n D
r

G M
a3 , (1.159)

called mean motion or mean angular frequency, one can write down (1.158) as

nd t D (1 � e2)3/2

(1 C e cos f )2 d f . (1.160)

In the special case of a bound orbit, that is, when the conic is a circle or an ellipse,
the above formula shows an important property. As integration of its right side over
a period, that is, from f D 0 through f D 2π, gives exactly 2π, one has

nT D 2π , (1.161)

where T is the time of the orbital period. Obviously, the mean motion n is the
angular velocity in the case of a circular orbit, and an average angular velocity (as
seen from the focus) in the case of ellipse. Combining expression (1.161) with the
definition (1.159), one arrives at Kepler’s third law in a two-body problem,

T 2 D 4π2a3

G M
, (1.162)
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34 1 Newtonian Celestial Mechanics

which reads: the square of the orbital period of a body is directly proportional to the cube
of the semi-major axis of its orbit.

Our next step is to interconnect the time with the eccentric anomaly. From the
afore-proven equality (1.156), one deduces

dE D
p

1 � e2

1 C e cos f
d f . (1.163)

Moreover, (1.152) and (1.153) yield

1 � e cos E D 1 � e2

1 C e cos f
. (1.164)

Formulae (1.163), (1.164) and (1.160), being put together, entail

nd t D (1 � e cos E )dE D d(E � e sin E ) , (1.165)

where from a simple integration yields

E � e sin E D n(t � t0) C M0 , (1.166)

where t0 is the fiducial time, called the epoch, and M0 is the integration constant.
The latter compels us to define, following Kepler, a convenient quantity

M D M0 C n(t � t0) , (1.167)

called mean anomaly, with M0 now termed as the mean anomaly at epoch. Accord-
ing to (1.166), M obeys the Kepler equation

M D E � e sin E . (1.168)

Therefore, it is clear that for elliptic and circular orbits, M changes by 2π over
a period because the eccentric anomaly changes by 2π, and sin E is a periodic
function with period 2π.

Finally, let us notice that (1.163) and (1.168) enable us to interconnect the mean
and eccentric anomalies:

dM D (1 � e cos E )dE D (1 � e2)3/2

(1 C e cos f )2 d f . (1.169)

For bound orbits, this yields for one period of orbital revolution

I
orbital
period

dM D
2πZ

0

(1 � e2)3/2

(1 C e cos f )2 d f D 2π . (1.170)

Thus, we once again see that M changes by 2π over a period.
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1.3 The Reduced Two-Body Problem 35

Be mindful that one did not necessarily imply t0 to be the instant of the first
periapse passage τ. The time τN of the Nth periapse passage is defined from the
condition that the eccentric anomaly

E D 2π(N � 1) , (1.171)

with N being an integer chosen so that N D 1 corresponds to E D 0 that is the first
periapse passage. As evident from (1.168), condition (1.171) can also be rewritten
as

M D 2π(N � 1) . (1.172)

From here and (1.167), it is easy to demonstrate that the Nth periapse passage takes
place at the time

τN D t0 C 2π(N � 1) � M0

n
. (1.173)

In celestial mechanics, the time of the first periapse passage, τ1, is simply denot-
ed as τ, which is

τ D t0 � M0

n
. (1.174)

Hence, the mean anomaly expressed in terms of the first periapse passage will look
like

M D n(t � τ) . (1.175)

Over one orbital revolution, the mean anomaly changes by 2π, while the time
changes by period T. Thus, (1.175) naturally renders (1.161).

1.3.4
The Laplace–Runge–Lenz Vector

One has already learned that the reduced two-body problem obeying the Newton
gravity law (1.103) permits four integrals of motion – the energy, E , and the three
components of the angular-momentum vector, J . It is remarkable that the reduced
two-body problem admits one more integral of motion. To demonstrate this fact,
consider the so-called Laplace–Runge–Lenz vector

A L D Pr � J � G M
r
r

, (1.176)

where J is the conserved angular-momentum vector. Despite its name, the
Laplace–Runge–Lenz vector was discovered by neither of these three scholars.
The honor of its discovery belongs to the aforementioned Jakob Hermann. It was
also Hermann who demonstrated that A L is conserved in the two-body problem
governed by Newton’s gravity law of inverse squares (Hermann, 1710).



�

� Sergei Kopeikin, Michael Efroimsky, and George Kaplan: Relativistic Celestial Mechanics
of the Solar System — Chap. kopeikin8566c01 — 2011/6/14 — page 36 — le-tex

�

�

�

�

�

�

36 1 Newtonian Celestial Mechanics

One way to explore this vector is to make use of (1.143), (1.146) defining the
position r and velocity Pr of the orbiting body in terms of the orthogonal unit vectors
P and Q shown in Figures 1.3 and 1.4. Together, these equations yield the following
expression for the angular-momentum vector defined in (1.108)

J D k
p

G M p , (1.177)

where one has used (1.132) and employed the relationship k D P � Q. Insertion
of (1.146) and (1.177) in the right side of (1.176) entails

A L D G M eP , (1.178)

which tells us that the Laplace–Runge–Lenz vector is a constant vector directed
towards the pericenter, the closest point of the orbit.

It would also be instructive to express the magnitude of the Laplace–Runge–Lenz
vector through the other conserved quantities. Squaring both sides of (1.176) gives

A2
L D G M2 � 2G M

r
r � (Pr � J ) C J2 Pr2 . (1.179)

At the same time, permuting of the scalar triple product as

r � (Pr � J ) D J � (r � Pr) D J2 (1.180)

enables us to rewrite the latter equation as

A2
L D G M2 C 2 J2

�
1
2

Pr2 � G M
r

�
D G M2 C 2 J2E , (1.181)

with E being the constant reduced energy per unit mass.
Conservation of both the absolute value and the direction of A L tells us that

its three components, (A Lx , A Ly , A Lz ), are integrals of motion. However, only one
of these three components can be regarded as an independent integral of motion.
Indeed, as can be seen from (1.181), the magnitude of the Laplace–Runge–Lenz
vector, A2

L D A2
Lx C A2

Ly C A2
Lz , can be expressed through two known integrals –

the energy, E , and the magnitude of the angular-momentum vector, J. Another
constraint follows from the fact that the vector A L belongs to the orbital plane and,
thus, is always orthogonal to the vector of the angular momentum:

A L � J D A Lx Jx C A Ly Jy C A Lz Jz D 0 . (1.182)

This explains why the conservation of the Laplace–Runge–Lenz vector increases
the number of the independent integrals of motion in the reduced two-body prob-
lem not by three, but only by one – from four to five.17) Together with the initial
condition (expressed, for example, by fixing M D M0 at the epoch t0), this gives

17) Generally, a system that has k degrees of freedom and has, at the same time, more than k integrals
of motion is called super integrable. However, a system with 2k � 1 integrals is called maximally
super integrable, the reduced two-body problem being the case with k D 3.
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1.3 The Reduced Two-Body Problem 37

us six constants in total that should single out a particular trajectory of the body
out of the entire multitude of parameterized conics. This observation agrees with
the aforementioned fact that an arbitrary solution to the reduced two-body Kepler
problem should depend upon six constants like the initial position and velocity of
the body.

It can also be demonstrated that the existence of five independent integrals of
motion makes it possible to integrate the equations of motion of the reduced two-
body problem in quadratures. This fact turns out to be intimately related to the
highly symmetrical nature of the reduced two-body problem. A central-force prob-
lem is trivially invariant under the spatial rotations making up the group SO(3),
hence, the conservation of the angular momentum. However, the inverse-square
force proportional to 1/r2, and the space harmonic oscillator with the force of elas-
ticity proportional to r2, possess a symmetry under a bigger group (Landau and
Lifshitz, 1975). In the case of the inverse-square gravity law, this is: SO(4) for a
negative energy E < 0; or SO(1,3), for a positive energy E > 0 (Dubrovin et al.,
1984, Section 34). Both SO(4) and SO(1,3) are rotational groups of symmetry in
four-dimensional Euclidean and pseudo-Euclidean space respectively, and the Lie
algebras of their generators have the dimension of six. This circumstance gives
birth to six conserved quantities – the three components of J and the three com-
ponents of A L. Keep in mind though that these components and the energy are
interconnected by the two constraints, (1.181) and (1.182). Further details on this
interesting topic can be found in a series of excellent textbooks by Vozmischeva
(2003) and Mathúna (2008).

1.3.5
Parameterizations of the Reduced Two-Body Problem

1.3.5.1 A Keplerian Orbit in the Euclidean Space
As shown in Section 1.2, the two-body problem is equivalent in the barycentric
frame of reference to its reduced version (1.103) which, mathematically, looks as a
motion of a particle of reduced mass μ about a fixed gravitating center of mass M.
The generic solution to (1.103) is a Keplerian conic characterized by six constant
parameters:

a – the semi-major axis,
e – the eccentricity,
M0 – the mean anomaly at epoch,
Ω – the angle of the ascending node,
i – the orbital inclination,
ω – the longitude of pericenter.

Three of these parameters, Ω , i, and ω, define the orientation of the orbit in space.
Two parameters, a and e, fix the shape of the orbit. The remaining one, M0, deter-
mines the position of the body on the orbit at the initial epoch t0. In an arbitrary
inertial reference frame, there exist six additional constant parameters – the lin-
ear momentum (1.80) and the position of the center of mass (1.81). As a rule, a
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38 1 Newtonian Celestial Mechanics

barycentric reference frame is chosen, so these integrals of motion get nullified
and do not appear explicitly in any equation. Still, it is useful to keep in mind that
these integrals actually exist.

Substituting (1.109)–(1.111), (1.141), (1.142) and (1.153) for expressions (1.143),
(1.146) and applying simple trigonometric identities, the explicit form of the posi-
tion and velocity of the body can be written down in the barycentric inertial coordi-
nates as

r D x ex C y ey C z ez , (1.183)

Pr D Px ex C Py e y C Pz ez , (1.184)

where

x D a(1 � e2)
1 C e cos f

�
cos Ω cos(ω C f ) � sin Ω sin(ω C f ) cos i

�
, (1.185a)

y D a(1 � e2)
1 C e cos f

�
sin Ω cos(ω C f ) C cos Ω sin(ω C f ) cos i

�
, (1.185b)

z D a(1 � e2)
1 C e cos f

sin(ω C f ) sin i , (1.185c)

and

Px D � nap
1 � e2

�
cos Ω sin(ω C f ) C sin Ω cos(ω C f ) cos i

Ce(cos Ω sin ω C sin Ω cos ω cos i)
�

, (1.186a)

Py D � nap
1 � e2

�
sin Ω sin(ω C f ) � cos Ω cos(ω C f ) cos i

Ce(sin Ω sin ω � cos Ω cos ω cos i)
�

, (1.186b)

Pz D nap
1 � e2

�
cos(ω C f ) C e cos ω

�
sin i , (1.186c)

with n being the mean motion (1.159).
Expressions 1.185–1.186 give us one possible form of the generic solution of

equation of motion (1.103) – a form corresponding to parametrization of a conic
by a set of six Keplerian constants (a, e, Ω , i, ω,M0) and the variable true anoma-
ly f. Since the true anomaly is a function of time, through the relation (1.160),
then (1.185)–(1.186) define a dependence of r and Pr upon the constants and the
time, as required. This dependence, however, is implicit, and requires solution
of the transcendental Kepler equation (1.168) along with a trigonometric equa-
tion (1.156).

The same solution can be parameterized via some other constants, for exam-
ple, those of Delaunay: M0, ω, Ω ,

p
G M a,

p
G M b,

p
G M b cos i , where b D

a
p

1 � e2 is the semi-minor axis of the conic. Another possibility is to con-
sider the solution as a function of the initial conditions: then the constants
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1.3 The Reduced Two-Body Problem 39

(x0, y0, z0, Px0, Py0, Pz0) are the six parameters defining a particular orbit. The latter
option is natural when the integration is carried out numerically in the Cartesian
coordinates, but is impractical for analytic treatments. Numerous other param-
eterizations have been introduced for various purposes. Whatever the set of the
constants of integration chosen, their number should generally be six. A switch
from the Keplerian constants to the Delaunay ones, or to any other parametriza-
tion, will still give the same geometric image of the curve in the coordinate (x , y , z)
space. The velocity vector of the body being a tangent vector to that curve will not
depend on the curve’s parametrization either. However, the specific mathematical
presentation of r and Pr as functions of the new parameters will, of course, be
different from those given by (1.185)–(1.186).

To avoid confusion, one would like to point out that the set of Delaunay constants
differs from the set of Delaunay elements, as the latter set includes M instead of
M0. In the same way, the set of Keplerian constants differs from the set of Kep-
lerian elements: the former set contains M0, the latter M. Employing the mean
anomaly M D M0 C n(t � t0) is convenient because this enables one to keep track
of, via one variable, the explicit time dependence and the dependence upon the
integration constant M0 – see the comprehensive treatise by Plummer (1918).

1.3.5.2 A Keplerian Orbit in the Projective Space
A generic solution to the reduced two-body problem is a section of cone, that is, a
plane conic curve described by a quadratic polynomial. It would be instrumental
to study a conic from the viewpoint of projective geometry, as this approach will
allow us to treat any Keplerian orbit – circular, elliptical, parabolic, hyperbolic, and
two-body collisional linear orbit – in a unified way. The approach adopted in this
section has been proposed by Satō (1998).

A Keplerian orbit in the plane (� , η) is given by (1.143), (1.130)

� D q(1 C e) cos f
1 C e cos f

, η D q(1 C e) sin f
1 C e cos f

, (1.187)

where q � rmin D a(1 � e) is the distance to the pericenter. Eliminating the true
anomaly f, one obtains an ordinary quadratic form for the orbit

[(1 � e)� C eq]2 C 1 � e
1 C e

η2 D q2 . (1.188)

We now assume that coordinates � and η are dimensionless18) and replace � D
�1/�0, η D �2/�0 using homogeneous coordinates (�0, �1, �2) that map (1.188) to
the projective plane P 2 (Casse, 2006)

�(1 C e)q� 2
0 C 2e�0 �1 C 1 � e2

(1 C e)q
� 2

1 C 1
(1 C e)q

� 2
2 D 0 . (1.189)

18) The dimensionless aspect of coordinates is an integral part of the definition of the projective plane
P 2 (Casse, 2006, Section 4).
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40 1 Newtonian Celestial Mechanics

Equation 1.189 can be written in a matrix form as

[�0, �1, �2]

2
664

�(1 C e)q e 0
e (1 C e)k 0

0 0
1

(1 C e)q

3
775
2
4�0

�1

�2

3
5 D 0 , (1.190)

where k � 1/rmax D (1 � e)/[(1 C e)q] is the reciprocal of the apocenter distance
rmax. We emphasize that there are only two free parameters (q, e) with k being ex-
pressed in terms of these two. Furthermore, parameters q and k are dimensionless
in accordance with the definition of the homogeneous coordinates to which they
are related through (1.190).

Equation 1.189 can be reduced to a canonical quadratic form by rotation in the
projective space which diagonalizes the matrix in (1.190). The characteristic equa-
tion for eigenvalues λ of the matrix is

[(1 C e)qλ � 1][λ2 � (1 C e)(k � q)λ � 1] D 0 , (1.191)

and it has three solutions

λ0 D 1
2

�
�(1 C e)(q � k) �

q
(1 C e)2(q C k)2 C 4e2

�
, (1.192)

λ1 D 1
2

�
�(1 C e)(q � k) C

q
(1 C e)2(q C k)2 C 4e2

�
, (1.193)

λ2 D 1
(1 C e)q

, (1.194)

where one has used the identity (1 C e)2k q D 1 � e2 for transforming the root
square terms in λ0 and λ1.

The next step is to replace parameters (q, e) with another set (φ, ψ) by making
use of identifications

cosh φ cos 2ψ D 1
2

(1 C e)(q C k) , (1.195a)

cosh φ sin 2ψ D e , (1.195b)

sinh φ D 1
2

(1 C e)(q � k) , (1.195c)

which makes the eigenvalues λ0 D � exp φ, λ1 D exp(�φ). It is now rather
straightforward to find the eigenvectors of the matrix in (1.190) that are

E0 D [cos ψ, � sin ψ, 0] , E1 D [sin ψ, cos ψ, 0] , E2 D [0, 0, 1] . (1.196)

Canonical homogeneous coordinates of conic in the projective space P 2 corre-
sponding to these eigenvectors are

f�0 W �1 W �2g D
(

1p�λ0

W cos Θp
λ1

W sin Θp
λ2

)
, (1.197)
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1.3 The Reduced Two-Body Problem 41

where Θ is called the projective anomaly (Satō, 1998). Matrix of rotation from the
canonical homogeneous coordinates (�0, �1, �2) to the original ones is made of the
components of the eigenvectors. The transformation has the following form of the
rotation about the �2-axis2

4�0

�1

�2

3
5 D

2
4 cos ψ sin ψ 0

� sin ψ cos ψ 0
0 0 1

3
5
2
4�0

�1

�2

3
5

D
2
4 1 C exp φ tan ψ cos Θ

� tan ψ C exp φ cos Θp
exp 2φ � tan2 ψ sin Θ

3
5 exp

�
� φ

2

�
cos ψ . (1.198)

Therefore, substituting

α � exp φ D 1
2

�
(1 C e)(q � k) C

q
(1 C e)2(q C k)2 C 4e2

�
, (1.199)

� � tan ψ D 2e

(1 C e)(q C k) Cp
(1 C e)2(q C k)2 C 4e2

, (1.200)

one obtains parametrization of the Keplerian conic in the projective space

f�0 W �1 W �2g D
n
1 C α� cos Θ W �� C α cos Θ W

p
α2 � �2 sin Θ

o
,

(1.201)

where α is the semi-major axis and � is a coordinate of the center of the conic
in P 2.

Semi-major axis a and eccentricity e of the Keplerian orbit in the Euclidean space
are related with the parameters α and � of the projective space. The relationship is
established after matching the Euclidean coordinates of pericenter and apocenter
in (1.187) with similar points in the homogeneous coordinates

� D �1

�0
D α cos Θ � �

1 C α� cos Θ
(1.202)

η D �2

�0
D
p

α2 � �2 sin Θ
1 C α� cos Θ

(1.203)

r D
p

� 2 C η2 D α � � cos Θ
1 C α� cos Θ

. (1.204)

It yields for the semi-major axis, a, and eccentricity, e, the following relationships

a D α(1 C �2)
1 � α2�2 , e D �(1 C α2)

α(1 C �2)
. (1.205)

Moreover, parameters

q D α � �
1 C α�

, k D 1 � α�
α C �

, (1.206)
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42 1 Newtonian Celestial Mechanics

and

1 � e D (α � �)(1 � α�)
α(1 C �2)

, 1 C e D (α C �)(1 C α�)
α(1 C �2)

. (1.207)

The orbit is circular for � D 0, elliptical for α� < 1, parabolic for α� D 1, and
hyperbolic for α� > 1. The orbit is degenerated to a straight line (collisional trajec-
tory) if α D �.

Kepler’s equation for the projective anomaly Θ is obtained by using the law of
conservation of angular momentum,

� Pη � P� η D p
G M q(1 C e) . (1.208)

Substituting the formulas for the corresponding quantities into this law, one ob-
tains

α � � cos Θ
(1 C α� cos Θ )2

dΘ
d t

D
s

G M
α(1 C �2)

. (1.209)

In the case of an elliptic orbit (α� < 1), the integral with respect to Θ is reduced
by the substitution

tan
Θ
2

D
s

1 C α�
1 � α�

tan
E
2

, (1.210)

where E is the eccentric anomaly, into an ordinary form of Kepler’s equation

E � e sin E D n(t � t0) C M0 , (1.211)

with

n D
s

G M
α3

�
1 � α2�2

1 C �2

�3

D
r

G M
a3 , (1.212)

being the mean orbital motion defined earlier in (1.159). If α D � (a parabolic
orbit), the integral is reduced by the substitution

s D tan
Θ
2

, (1.213)

into a cubic equation

s3 � 3
1 � α2

1 C α2 s D 6

s
G M

α(1 C α2)3 (t � t0) C M0 . (1.214)

A hyperbolic case with α� > 1 is treated similarly to the elliptic case after replace-
ments: 1 � α� ! α� � 1 and tan(Θ/2) ! tanh(Θ/2).
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1.3.6
The Freedom of Choice of the Anomaly

One has already encountered several options for defining the instantaneous posi-
tion of a body on its orbit as a function of time. One option was to keep M0 among
the integration constants, and to use the time t as a variable defining the position
of the body at each moment. This method is seldom employed in practice because
it is impossible to analytically express the components of r and Pr as explicit func-
tions of t. A better option would be to use the true anomaly f instead of the time.
This method is more practical as it is directly implemented by the explicit expres-
sions (1.185), (1.186). Similarly, one can keep M0 among the constants and use the
eccentric anomaly E instead of the time. It is also possible to unite the integration
constant M0 and the epoch t0 into one constant parameter τ defined in (1.174) as
the instant of the body’s first passage through the pericenter. This is possible be-
cause in the unperturbed two-body problem, these two quantities show up in the
linear combination, M D M0 C n(t � t0), when the transition from the eccentric
anomaly to the time is performed –see (1.166). Sometimes, it is also convenient to
employ the angular anomaly subtended by the empty focus. A transition to this,
the so-called anti-focal anomaly, was offered by Callandreau (1902a, 1902b), and
has proven to be very useful for numerical integration of weakly-perturbed elliptic
trajectories with low eccentricities (Fukushima, 2004).

Thus, one sees that the freedom of parametrization is not exhausted by one’s
preferences in choosing the constants of integration. Another freedom lies in one’s
choice of the “fast” variable – the anomaly. One can exploit this freedom in ana-
lytical calculations by parameterizing the relationship between the time and the
anomaly and keeping it arbitrary through the calculation. The arbitrariness is elim-
inated by breaking the freedom at the end to simplify the resulting expressions or
to serve another particular goal. The generalized anomaly W is defined as a solution
to a simple differential equation

dE
sin E

D d W
sin W

, (1.215)

that establishes the following trigonometric mapping between the eccentric anoma-
ly E and the generalized anomaly W,

tan
W
2

D � tan
E
2

, (1.216)

with � emerging as an integration constant and, thus, playing the role of a free
constant parameter. It parameterizes a particular choice of the general anomaly W
among a whole family of such anomalies. Equation 1.216 shows that the new
anomaly W generalizes the relationship (1.156) between the true and eccentric
anomalies, and relationship (1.210) does so between the projective and eccentric
anomalies.

Making use of (1.216) in order to express the eccentric anomaly E in terms of
the generalized anomaly W and the parameter �, and substituting the so-obtained
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expression to (1.148), (1.150), and (1.152), one can derive the following formulae
for the perifocal coordinates defined in Figure 1.4,

� D �2 � (1 C e)/(1 � e) C [�2 C (1 C e)/(1 � e)] cos W
�2 C 1 C (�2 � 1) cos W

q , (1.217)

η D 2�
p

(1 C e)/(1 � e) sin W
�2 C 1 C (�2 � 1) cos W

q , (1.218)

and for the distance from the gravitating center to the orbiter,

r D �2 C (1 C e)/(1 � e) C [�2 � (1 C e)/(1 � e)] cos W
�2 C 1 C (�2 � 1) cos W

q , (1.219)

where q D a(1 � e) is the distance from the pericenter to the focus wherein the
attracting mass is located.

The generalized anomaly W was originally introduced into celestial mechanics
by Subbotin (1936a, 1936b) who used a different parameter σ instead of �.19) Intro-
ducing an auxiliary quantity

� D
p

1 � e2 C σ2 , (1.220)

Subbotin (1936a, 1936b) was able to derive the following expressions for the peri-
focal coordinates:

� D a
�

� cos W C σ
� C σ cos W

� e
�

, (1.221)

η D a
(1 � e2) sin W
� C σ cos W

. (1.222)

To establish a relationship between the parameter � standing in (1.216)–(1.219) and
the parameter σ introduced by Subbotin, equate the expression (1.217) with (1.221),
and that (1.218) with (1.222) for the perifocal coordinates. This will render

� D �2 C 1
2�

p
1 � e2 , σ D �2 � 1

2�

p
1 � e2 . (1.223)

From here, one sees that the parameter � admits two values corresponding to one
value of Subbotin’s parameter σ,

�C D σ C �p
1 � e2

, (1.224)

�� D σ � �p
1 � e2

. (1.225)

The value �C corresponds to the generalized focal anomaly, WC, and the value ��

corresponds to the generalized anti-focal anomaly, W�, that is,

tan
WC

2
D �C tan

E
2

, tan
W�

2
D �� tan

E
2

. (1.226)

19) In fact, Subbotin denoted his parameter α. Here, the notation σ is used to avoid confusion with
the projective parameter α from the previous section.
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One can see that

tan
W�

2
tan

WC

2
D � tan2 E

2
. (1.227)

Now, one can see that (1.221) and (1.222) are actually valid for the focal anomaly
W D WC. For the anti-focal anomaly W�, the corresponding equations should
read

� D a
�

�σ cos W�

� � σ cos W�

� e
�

, (1.228)

η D a
(1 � e2) sin W�

� � σ cos W�

. (1.229)

For more details on Subbotin’s anomalies, see the paper by Sokolov (2009) who also
corrected some misprints in Subbotin’s works.

The advantage of parametrization (1.217)–(1.219) stems from the fact that it en-
ables one to establish a correspondence between the generalized anomaly of Sub-
botin (1936a, 1936b) and the projective anomaly Θ of Satō (1998). Indeed, (1.217)–
(1.219) tell us that the (focal) generalized anomaly W coincides with the eccentric
anomaly E, for � D 1 (σ D 0); with the true anomaly f, for � D p

(1 C e)/(1 � e)
(σ D e); and with the projective anomaly Θ , for � D p

(1 C α�)/(1 � α�) corre-
sponding to Subbotin’s parameter σ D �

p
α2 � �2/(1 C �2).

The freedom of the anomaly choice in the Newtonian celestial mechanics re-
mains greatly under-exploited, the work by Fukushima (2004) being a rare excep-
tion. We believe, though, that the future use of this freedom will yield fruits. We
also think that the use of this freedom in the relativistic two-body problem may be
equally productive, including this problem’s practical application in data process-
ing of binary-pulsar-timings. We shall return to this topic in Section 6.4.

1.4
A Perturbed Two-Body Problem

1.4.1
Prefatory Notes

Celestial mechanics of the two-body problem is insufficient in many practical ap-
plications where one has to take into account gravitational perturbations exerted
on the Keplerian motion by external agents. Hence, one needs a mathematical ex-
tension of the unperturbed two-body formalism to perturbed settings. One such
setting is that of a binary system embedded in the gravitational field of N exter-
nal bodies which affect the orbital motion of the binary through tidal forces. Other
types of perturbations include triaxiality of the interacting bodies as well as atmo-
spheric drag, magnetic fields, tides, relativistic corrections, or forces of inertia if a
noninertial reference frame is used for calculations. Since the disturbing forces are
normally small compared to the gravitational interaction between the two bodies,
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Perturbed orbit

Perturbed orbit

Osculating Ellipse

Osculating Ellipse

a

b

c

d

e Tangent Line

Tangent Line

Focus

Figure 1.5 This picture illustrates the method
of variation of parameters in application to the
reduced two-body problem. A perturbed orbit
can be presented as an envelope of a family
of instantaneous conics sharing the common
focus F. Each instantaneous conic is oscu-
lating – it touches the physical orbit, sharing
with it the tangent line at the point of contact.

The Keplerian parameters of the instanta-
neous conic evolve in time as the body moves
through the positions a, b, c, d, e. Be mindful
that the method of variation of parameters, in
application to this problem, implies variation
of the elements of the instantaneous conic,
but not of the position of the focus. Therefore,
the instantaneous conics are always confocal.

one may presume that each body moves along a conic that is osculating (tangent)
at each instant of time to the actual physical trajectory and slowly evolving (see
Figure 1.5). This approach was offered circa 1687 by Newton in his unpublished
Portsmouth Papers. Very succinctly, in purely geometric terms, Newton also men-
tioned it in Corollaries 3 and 4 of Proposition 17 in the first book of his Princip-
ia. Implementation of this idea in the language of calculus was initiated by Euler
(1748, 1753) and got its final shape in the works of Lagrange (1778, 1783, 1788a,
1788b, 1808a, 1808b, 1809).

Before explaining their developments, let us point out that the smallness of per-
turbations is, by itself, a rather shaky foundation for the varying-conic method.
Indeed, one is immediately faced by the following questions:

1. To what degree of rigor can a perturbed orbit be modeled with a family of in-
stantaneously osculating conics having the primary body in one of their foci?

2. Does this modeling admit an exact mathematical formulation?
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3. Is this representation of the perturbed orbit by a family of the osculating conics
unique?

These questions will not seem trivial if one recalls that the concept of evolving
instantaneous conics had been introduced into practice (and that major devel-
opments of the disturbing-function theory had been accomplished) long before
Frenet and Serret developed the theory of curves with their concept of the moving
Frenet–Serret frame being closely associated with the curvature and torsion of the
curve (Dubrovin et al., 1984). This order of historical events explains the reason
why the terms curvature and torsion of the orbit are rarely used in the dynamic as-
tronomy books. Fortunately, Lagrange fortified his developments with the tools of
calculus, which were powerful enough to completely surpass the theory of curves.
Moreover, these tools in no way relied on the smallness of the disturbing forces.
Hence, Lagrange’s treatment of the problem already contains an affirmative answer
to the first two questions. The answer to the third question, surprisingly, turns out
to be negative. Below, this point is explained in more detail and one demonstrates
that celestial mechanics permits internal freedom in description of perturbed or-
bits.

1.4.2
Variation of Constants – Osculating Conics

We shall start in the spirit of Lagrange (1808a, 1808b, 1809), but shall soon deviate
on two points. First, in distinction from Lagrange, one will not assume that the
disturbing force is conservative and depends upon the positions solely, but shall
permit it to depend also upon velocities. Second, one’s intention is to eventually
relax the Lagrange constraint, that is, the assumption that the instantaneous con-
ics should be tangent to the resulting perturbed curve. This will bring up orbital
variables which will not be osculating, though mathematically useful.

In the modern, vectorial notations, Lagrange’s line of reasoning looks as follows.
A generic solution to the reduced two-body problem described by equation

Rr C G M
r3 r D 0 , (1.230)

is a Keplerian conic that is defined by the set of six orbital elements fCig D
C1, . . . , C6 implementing the chosen orbital parametrization. In some fixed iner-
tial Cartesian coordinate system, this conic reads

r D r(C1, . . . , C6, t) , Pr D v (C1, . . . , C6, t) . (1.231)

The expressions for orbital radius-vector, r , and velocity, v , were written down in
the previous section. By definition, function v is the partial derivative of r with
respect to time,

v �
�

@r
@t

�
Ci Dconst.

. (1.232)
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Of course, since the orbital elements are constants of motion in the unperturbed
two-body problem, the partial and ordinary time derivatives of vector r coincide.

The functions entering expression (1.231) can be used as an ansatz for solving
the perturbed two-body problem

Rr C G M
r3 r D F , (1.233)

with vector F being a known disturbing force of whatever nature (including inertial
forces). To solve (1.233), one assumes that the perturbed orbit coincides at each
instant of time with an instantaneous Keplerian conic. This way, by going smoothly
from one instantaneous conic to another, one endows the orbital parameters Ci

with a time-dependence of their own,

r D r[C1(t), . . . , C6(t), t] , (1.234)

keeping the functional form of r the same as in (1.231). As the parameters Ci are
now time-dependent, the velocity of the body,

Pr D d r
d t

D @r
@t

C
6X

iD1

@r
@Ci

dCi

d t
D v C

6X
iD1

@r
@Ci

dCi

d t
, (1.235)

acquires an additional input besides v , while the term v retains the same functional
form as it has in the unperturbed setting (1.231).

Substitution of expression (1.235) into the perturbed equation of motion (1.233)
gives birth to three independent scalar differential equations of the second order.
These three equations contain one independent variable – time, and six time-de-
pendent parameters, Ci (t), whose evolution is to be determined. Evidently, this
cannot be done in a unique way because the number of the parameters exceeds, by
three, the number of equations. This means that though the perturbed orbit given
by the locus of points in space and by the values of velocity at each of these points is
unique, its parametrization in terms of the orbital elements admits a certain free-
dom. The fact that the system of differential equations for the parameters Ci (t) is
underdetermined was noticed by Lagrange in his treatment. To make it solvable,
he decided to amend it with three supplementary conditions imposed on functions
Ci and their first time derivatives. His choice was

6X
iD1

@r
@Ci

dCi

d t
D 0 , (1.236)

a so-called Lagrange constraint that is often imposed in the theory of ordinary dif-
ferential equations. Imposition of this supplementary constraint was motivated
by both physical considerations and by Lagrange’s desire to simplify calculations.
Since, physically, the perturbed orbit r with a time-dependent set of orbital ele-
ments fCi (t)g can, at each fixed time t, be interpreted as an instantaneous conic,
Lagrange decided to make the Ci (t) osculating, that is, to keep the instantaneous
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1.4 A Perturbed Two-Body Problem 49

conics tangential to the perturbed trajectory, as displayed in Figure 1.5. This means
that the physical trajectory of a body defined by C1(t), . . . , C6(t) must, at each in-
stant of time, coincide locally with the unperturbed orbit that the moving body
would follow if perturbations were to cease instantaneously. This can be achieved
only when the dependence of the velocities upon the elements, in the perturbed
setting, is the same as that in the original unperturbed case, Pr D v . This, in turn,
can be true only if the second term on the right side of (1.235) vanishes, that is,
if one sets the extra condition (1.236). This vector condition, the Lagrange con-
straint, consists of three scalar equations which, together with the three equations
of motion (1.233), constitute a well-defined system of six equations for six variables
C1(t), . . . , C6(t).

As it was recently pointed out in Efroimsky (2002a, 2002b), the choice of the sup-
plementary condition in the form of (1.236) is not always optimal. Moreover, as
explained by Efroimsky and Goldreich (2003, 2004), in some important situations,
this choice is simply unavailable. We shall address this topic below in Section 1.5.
For now, though, one sticks to the supplementary condition in the form of La-
grange’s constraint (1.236).

1.4.3
The Lagrange and Poisson Brackets

As a prerequisite to the subsequent calculations, it would be of use to introduce
the so-called Lagrange and Poisson brackets of the orbital elements. The Lagrange
bracket of two elements, Ck and Ci , is denoted by [Ck Ci ], and the entire set of the
Lagrange brackets form a 6 � 6 matrix. Each element of the matrix is defined as
a certain linear combination of scalar products of partial derivatives of the com-
ponents of vectors r(C1, . . . , C6, t) and v(C1, . . . , C6, t) with respect to the orbital
elements Ci . Namely,

[Ck Ci ] � @r
@Ck

� @v
@Ci

� @r
@Ci

� @v
@Ck

, (1.237)

where the dot between two vectors denotes the Euclidean dot product.
The Poisson bracket of two elements, Ck and Ci , is denoted by fCk Cig. It is de-

fined as a scalar product between two vectors that are partial derivatives of the
orbital elements Ci with respect to coordinates and velocity of the body20)

fCk Cig � @Ck

@r
� @Ci

@v
� @Ck

@v
� @Ci

@r
. (1.238)

The 6 � 6 matrix of the Poisson brackets is the negative inverse to the matrix of the
Lagrange brackets,

6X
iD1

[C j Ci ]fCi Ckg D �δ j k , (1.239)

20) In differential geometry, the partial derivatives with respect to the coordinates and velocity are
associated with covectors. This detail is ignored here because one works in a Euclidean space
where vectors and covectors are formally equivalent to each other.
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50 1 Newtonian Celestial Mechanics

where δ j k D diag(1, 1, 1, 1, 1, 1) ( j, k D 1, 2, . . . , 6) is the Kronecker symbol (the
unit matrix) in six-dimensional Euclidean space of the orbital parameters, Ci . This
relation can be easily derived if one expresses the orbital parameters in terms of
radius-vector and velocity, Ci D Ci (r , v), and applies the chain rule of differentia-
tion,

@Ci

@r
� @r

@C j
C @Ci

@v
� @v

@C j
D @Ci

@C j
D δ i j , (1.240)

in calculation of the product of two brackets in (1.239). Both the Lagrange and
Poisson brackets are antisymmetric,

[Ck C j ] D �[C j Ck ] , fCk C j g D �fC j Ckg . (1.241)

The antisymmetry of the brackets evidently yields vanishing diagonal elements:

[Ck Ck ] D 0 , fCk Ckg D 0 . (1.242)

A remarkable property of both the Lagrangian and Poisson brackets, which great-
ly facilitates their evaluation, is that they do not depend on time explicitly (Brouwer
and Clemence, 1961; Schaub and Junkins, 2003), that is, their partial time deriva-
tives vanish:

@

@t
[Ck Ci ] D 0 ,

@

@t
fCk Cig D 0 . (1.243)

To verify this, let us take the partial time derivative of the Lagrange brackets (1.237).
One obtains

@

@t
[Ck Ci ] D @r

@Ck
� @a

@Ci
� @r

@Ci
� @a

@Ck
, (1.244)

where a D @v/@t is the orbital acceleration on an instantaneous conic. For Keple-
rian conics,

a D � G M
r3

r D @

@r

�
G M

r

�
, (1.245)

with r D jrj. Hence,

@

@t
[Ck Ci ] D @r

@Ck
� @

@r
@

@Ci

�
G M

r

�
� @r

@Ci
� @

@r
@

@Ck

�
G M

r

�

D @2

@Ck@Ci

�
G M

r

�
� @2

@Ci@Ck

�
G M

r

�
D 0 (1.246)

since the second partial derivatives commute. It proves that the Lagrange brackets
bear no explicit dependence on the time variable. The proof that the Poisson brack-
ets do not depend explicitly on time follows immediately after taking partial time
derivative from both sides of (1.239).
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Table 1.1 The Lagrange brackets for the Keplerian osculating elements (C1, C2, C3, C4, C5, C6)
D (a, e, i, Ω , ω,M0). The notation b D a

p
1 � e2 stands for the semi-minor axis.

[ea] D 0, [M0Ω ] D 0, [M0ω] D 0,

[ia] D 0, [i e] D 0, [ωΩ ] D 0,

[Ω a] D nb
2

cos i, [Ω e] D � na3 e
b

cos i, [Ω i] D �nab sin i,

[ωa] D nb
2

, [ωe] D � na3 e
b

, [ω i] D 0,

[M0a] D na
2

, [M0e] D 0, [M0 i] D 0.

Table 1.2 The Poisson brackets for the Keplerian osculating elements (C1, C2, C3, C4, C5, C6) D
(a, e, i, Ω , ω,M0). The notation b D a

p
1 � e2 stands for the semi-minor axis.

feag D 0, fM0Ωg D 0, fM0 ωg D 0,

fiag D 0, fi eg D 0, fωΩg D 0,

fΩ ag D 0, fΩ eg D 0, fΩ ig D � 1
nab sin i

,

fωag D 0, fωeg D � b
na3 e

, fω ig D cos i
nab sin i

,

fM0 ag D 2
na

, fM0eg D b2

na4 e
, fM0 ig D 0.

Because of this remarkable property, it does not matter at which point of the
instantaneous orbit one evaluates the brackets. Thus, one can chose the most con-
venient point of the orbit in order to reduce the amount of algebra involved. After
the Lagrange brackets are found, the elements of the Poisson brackets (1.238) can
be obtained by matrix inversion from (1.239). The results are presented in Table 1.1
and Table 1.2.

1.4.4
Equations of Perturbed Motion for Osculating Elements

One is now prepared to derive the equations describing evolution of the osculating
elements Ci with the Lagrange constrain (1.236) imposed. As the second term on
the right side of (1.235) vanishes, one can write the acceleration as

d2r
d t2

D @v
@t

C
6X

iD1

@v
@Ci

dCi

d t
D @2r

@t2
C

6X
iD1

@v
@Ci

dCi

d t
, (1.247)

insertion whereof in the perturbed equation of motion (1.233) entails:

@2r
@t2 C G M

r3 r C
6X

iD1

@v
@Ci

dCi

d t
D F , (1.248)
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where r � jrj. The function r is, by definition, a Keplerian solution to the unper-
turbed two-body problem, with constant orbital elements. So this function obeys
the unperturbed equation (1.230), which means that the sum of the first two terms
on the left side of (1.248) must be equated to zero. This simplifies equation (1.248)
to

6X
iD1

@v
@Ci

dCi

d t
D F . (1.249)

This is the equation of disturbed motion, written in terms of the osculating orbital
elements Ci D Ci (t). Together with Lagrange’s constraint (1.236), they constitute
a well-defined system of six equations that can be solved with respect to Ci for
all i D 1, 2, . . . , 6. However, the mathematical form of (1.249) is not optimal for
finding its solution because the time derivatives dCi/d t in the left side of this
equation are algebraically coupled with vectors @v/@Ci . Therefore, the next step is
to decouple derivatives dCi/d t from @v/@Ci . It can be achieved with the formalism
of the Lagrange brackets.

Let us make a Euclidean dot-product of both sides of (1.249) with vector, @r/@Ck .
It yields

6X
iD1

�
@r

@Ck
� @v

@Ci

�
dCi

d t
D @r

@Ck
� F , (1.250)

where k D 1, 2, . . . , 6, while the dot between the two vectors denotes their Eu-
clidean dot product. Making a dot-product of the Lagrange constraint (1.236) with
vector @v/@Ck brings about

6X
iD1

�
@v

@Ck
� @r

@Ci

�
dCi

d t
D 0 . (1.251)

Subtraction of (1.251) from (1.250) results in

6X
iD1

[Ci Ck ]
dCk

d t
D @r

@Ci
� F . (1.252)

With aid of (1.239), the derivative dCi/d t can be decoupled so that one obtains

dCi

d t
D �

6X
j D1

fCi C j g @r
@C j

� F , (1.253)

which is a system of six ordinary differential equations of the first order for the
osculating elements of the perturbed orbit. The equations are valid in arbitrary
Cartesian coordinates and for arbitrary parametrization of the Keplerian conic. For
this reason, (1.253) have a wide range of applications in celestial mechanics. The
method of variation of parameters is also used in the theory of ordinary differential
equations for finding their general solutions.
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1.4.5
Equations for Osculating Elements in the Euler–Gauss Form

Though (1.253) are invariant with respect to the change of coordinates and/or the
orbital parametrization of the unperturbed orbit of a two-body system, choosing an
appropriate parametrization can simplify their right side, thus, facilitating a solu-
tion. One of the most convenient parameterizations is given in terms of the Kepleri-
an elements (a, e, i, Ω , ω,M0) by formulae (1.185)–(1.186). From these formulae,
one can calculate the matrix of the Lagrange brackets in a fairly straightforward way.
The calculation can be greatly simplified if one recalls that the Lagrange brackets
do not explicitly depend on time and, therefore, also upon the true anomaly, f, that
may be set to nil, f D 0. The outcome of the calculation is displayed in Table 1.1
where one has shown only 15 elements of the matrix since the anti-symmetry of
the Lagrange brackets immediately gives the other 15 off-diagonal elements. The
remaining six diagonal elements are, of course, identically zero. As many elements
of the matrix of the Lagrange brackets are zero, it is relatively easy to invert the
matrix in order to calculate the Poisson brackets. The result is presented in Ta-
ble 1.2. Calculating the partial derivatives @r/@a, @r/@e, and so on, from (1.185)
and (1.186), forming their scalar dot-products with the perturbing force F , and
making transvection of these products with the Poisson brackets from Table 1.2
yield a system of ordinary differential equations for the Keplerian elements21) in the
Euler–Gauss form:

da
d t

D 2

n
p

1 � e2

	
eFR sin f C FT

p
r



, (1.254a)

de
d t

D
p

1 � e2

na

�
FR sin f C FT(cos f C cos E )

�
, (1.254b)

d i
d t

D r cos( f C ω)

na2
p

1 � e2
FN , (1.254c)

dΩ
d t

D r sin( f C ω)

na2
p

1 � e2 sin i
FN , (1.254d)

dω
d t

D � cos i
dΩ
d t

C
p

1 � e2

nae

�
�FR cos f C FT

�
1 C r

p

�
sin f

�
, (1.254e)

dM0

d t
D �

p
1 � e2

�
dω
d t

C cos i
dΩ
d t

�
� 2r

na2 FR , (1.254f)

where the radial distance r has to be expressed in terms of the orbital elements of
the two-body problem,

r D a(1 � e2)
1 C e cos f

, (1.255)

21) These equations are called the planetary equations in celestial mechanics.
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while FR, FT, and FN are the radial, transversal, and normal to the orbit compo-
nents of the perturbing force F ,

FR D n � F , FT D (k � n) � F , FN D k � F , (1.256)

while the unit vector n D r/r and the unit vector k is set to be orthogonal to the
instantaneous orbital plane. The mean anomaly of the perturbed motion obeys the
following equation,

M D M0 C
tZ

t0

n(t0)d t0 , (1.257)

where M0 is the solution of (1.254f), and n(t) is the mean orbital frequency given
by (1.159) where the semi-major axis a D a(t) is the solution of the correspond-
ing (1.254a).

Equation 1.254a–1.254f can be also independently derived by differentiating
the two vectorial integrals of motion, the angular-momentum vector J and the
Laplace–Runge–Lenz vector A L, which are not conserved in the perturbed motion.
Differentiating their vectorial definitions, (1.108) and (1.176), and making use of
the equations of perturbed motion (1.233), result in:

d J
d t

D r � F , (1.258)

dA L

d t
D 2(Pr � F )r � (r � F )Pr � (r � Pr)F . (1.259)

As the Lagrange’s principle of the variation of orbital elements demands that all
relationships of the unperturbed Keplerian orbit remain valid in the perturbed mo-
tion, one can also use the expressions (1.177) and (1.178) of these vector integrals
for calculating the time derivatives. Differentiating (1.177) and (1.178) and keep-
ing in mind that the unit vectors k and P are also functions of time via (1.111)
and (1.141), leads to the following results,

d J
d t

D na

2
p

1 � e2

d p
d t

k C na2
p

1 � e2

�
l sin i

dΩ
d t

� m
d i
d t

�
, (1.260)

dA L

d t
D G M e

��
dω
d t

C cos i
dΩ
d t

�
Q C

�
sin ω

d i
d t

� cos ω sin i
dΩ
d t

�
k
�

C G M
de
d t

P , (1.261)

where the unit vectors P and Q have been defined in (1.141), (1.142) and are also
shown in Figure 1.3. After decomposing the perturbing force in the three com-
ponents (1.256), and equating right sides of the corresponding equations, (1.258)
and (1.260) as well as (1.259) and (1.261), it can then be demonstrated that the
Euler–Gauss equations (1.254) are again obtained.
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As a historical aside, one would mention that in his work on the lunar mo-
tion, Euler (1753) derived the planetary equations for the longitude of the node, Ω ,
the inclination, i, and the semilatus rectum, p, with the time derivatives of these
three elements expressed through the three components of the disturbing force F .
Sixty years later, the method was amended by Gauss, who wrote down similar equa-
tions for the other three Keplerian elements, thus obtaining a full system of the
planetary equations. Although many books refer to the system of equations (1.254)
as the Gauss equations, it seems fair to pay the tribute evenly, calling them the
Euler–Gauss equations.

1.4.6
The Planetary Equations in the Form of Lagrange

So far, one did not impose any limitation on the functional form of the perturb-
ing force. Now, let us assume that the force is conservative and depends only on
coordinates of perturbing bodies. This assumption was made by Lagrange (1778,
1783, 1788a, 1788b, 1808a, 1808b, 1809) in his treatment of planetary motions in
the solar system. Being dependent solely on the positions of the moving bodies,
this force can be expressed as a gradient of the disturbing function,

F D @R
@r

D �@W

@r
, (1.262)

with the disturbing function, R, being negative to the disturbing potential W intro-
duced above in (1.96). The chain rule for partial derivatives provides us with

@r
@Ci

� F D @r
@Ci

� @R
@r

D @R
@Ci

. (1.263)

Hence, substituting the force (1.262) into (1.253) for osculating elements results in

dCi

d t
D �

6X
kD1

fCi Ckg @R
@Ck

. (1.264)

Finally, insertion of the Poisson brackets from Table 1.2 to (1.264) takes us to the
celebrated system of planetary equations in the form of Lagrange:

da
d t

D 2
na

@R
@M0

, (1.265a)

de
d t

D 1 � e2

na2e
@R

@M0
�

p
1 � e2

na2e
@R
@ω

, (1.265b)

d i
d t

D cos i

na2
p

1 � e2 sin i

@R
@ω

� 1

na2
p

1 � e2 sin i

@R
@Ω

, (1.265c)

dΩ
d t

D 1

na2
p

1 � e2 sin i

@R
@ i

, (1.265d)
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dω
d t

D � cos i

na2
p

1 � e2 sin i

@R
@ i

C
p

1 � e2

na2e
@R
@e

, (1.265e)

dM0

d t
D � 1 � e2

na2e
@R
@e

� 2
na

@R
@a

. (1.265f)

The advantage of the Lagrange planetary equations is that the right sides of (1.265)
depend on a single function R, in contrast to the Euler–Gauss equations (1.254)
whose right sides depend on three components of the disturbing force F .

Disadvantages of employing the Lagrange (and the Euler–Gauss) equations are
that the right ascension of the ascending node becomes indeterminate as the in-
clination tends to zero, and the argument of perigee becomes indeterminate as
the eccentricity tends to zero. The difficulty is, of course, of a purely mathemat-
ical nature, and has nothing to do with the actual motion. It can be sidestepped
by switching from the Keplerian elements to the, so-called, equinoctial orbital el-
ements (p, f , g, h, k, L), that are related to the Keplerian orbital parameters as fol-
lows (Broucke and Cefola, 1972; Walker et al., 1985);

p D a(1 � e2) ,

f D e cos(Ω C ω) ,

g D e sin(Ω C ω)

h D tan
i
2

cos Ω ,

k D tan
i
2

sin Ω ,

L D Ω C ω C f .

The equinoctial orbital elements are useful for trajectory analysis and optimiza-
tion of space flights. They are valid for circular, elliptic, and hyperbolic orbits. The
Lagrange equations for equinoctial elements exhibit no singularity for zero eccen-
tricity and orbital inclinations equal to 0 and 90ı . However, two of the components
are singular for an orbital inclination of 180ı , though this can be handled by an
appropriate re-definition.

1.4.7
The Planetary Equations in the Form of Delaunay

Another advantageous set of orbital elements is the Delaunay variables l, g, h, L,
G, H . In terms of the Keplerian orbital elements, they are defined as

l � M0 the mean anomaly at epoch,
g � ω the argument of the pericenter,
h � Ω the longitude of the ascending node,
L � p

G M a
G � L

p
1 � e2 the magnitude of the angular-momentum vector J ,

H � G cos i the angular-momentum component normal to equatorial plane,
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By using the chain rule of differentiation, one can easily rewrite the planetary equa-
tions (1.265) in terms of these variables:

dL
d t

D @R
@l

,
d l
d t

D �@R
@L

(1.266a)

dG
dt

D @R
@g

,
dg
d t

D � @R
@G

, (1.266b)

dH
dt

D @R
@h

,
dh
d t

D � @R
@H

, (1.266c)

where one deliberately wrote the equations in pairs to emphasize their symplectic
structure with the Hamiltonian being equal to the disturbing function R. In both
sets of equations, (1.265) and (1.266), the element, M0 D l , can be substituted by
the mean anomaly, M, provided R is simultaneously substituted with R 0 D R C
G M/2a. The advantage of the Delaunay equations is that they can be analyzed with
the powerful mathematical technique of a symplectic geometry (Arnold, 1995). Just
as in the Euler–Gauss and Lagrange planetary equations, the equations in the form
of Delaunay become singular both in the limits of circular and/or equatorial orbits.
Accordingly, a transition to the so-called canonical elements of Poincar’e can be an
option (Brouwer and Clemence, 1961, p. 540).

1.4.8
Marking a Minefield

The most logical way of introducing the Delaunay variables would be to start out
with the polar coordinates and their conjugate momenta, and to carry out the
Hamilton–Jacobi procedure to find a canonical transformation to variables, which
will remain mutually conjugated with respect to a vanishing Hamiltonian, that
is, they will be canonical integrals of motion (Arnold, 1995; Landau and Lifshitz,
1975). These canonical variables are found through solution of the Hamilton–
Jacobi equation, as demonstrated in numerous books – see, for example,22) Plum-
mer (1918, Sections 135–136), Kovalevsky (1967, Sections 25–32), or Vinti (1998,
Chapters 6 and 9). Within this approach, the Lagrange-type planetary equations are
derived from those of Delaunay.

Unfortunately, neither of these books address the following important question:
will the Hamilton–Jacobi procedure always result in osculating canonical elements?
As one will see in the subsequent sections, the answer to this question is affirma-
tive if the disturbance depends solely on positions of bodies, and is negative for
velocity-dependent perturbations. This happens because the Hamilton–Jacobi pro-
cedure implies that the resulting Delaunay elements are canonical, while the con-
dition of canonicity becomes incompatible with the condition of osculation when
the disturbance depends not only on the coordinates, but also upon velocities.

22) Plummer used notations � and �2 for the negative Delaunay elements, �l and �g,
correspondingly.
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As a result, the customary Delaunay and Lagrange planetary equations, when
employed for such velocity-dependent perturbations, furnish orbital elements
which are not osculating. In other words, the instantaneous conics parameterized
by the so-obtained elements will not be tangent to the orbit. This means that these
elements will render the correct position of the body, r , but the partial deriva-
tive of r with respect to time will not provide its instantaneous velocity as in the
case of the osculating elements. While the use of such nonosculating elements is
sometimes beneficial mathematically, their physical interpretation is not always
apparent. Interestingly, the Andoyer elements which are the analogues of the De-
launay elements employed in the canonical description of a rigid-body rotation, are
subject to the same reservation.

1.5
Re-examining the Obvious

Don’t ever take a fence down until you know the
reason it was put up.

G. K. Chesterton

1.5.1
Why Did Lagrange Impose His Constraint? Can It Be Relaxed?

When deriving the planetary equations, Lagrange amended the equations of mo-
tion (1.249) with constraint (1.236) in order to make the overall system of the equa-
tions well-defined mathematically. In the case of the conservative perturbing force,
which are represented as a gradient of the perturbing potential, it provided a max-
imal simplification of the resulting (1.264) for osculating elements. Besides, the
physical interpretation of the elements, Ci , obeying constraint (1.236) was geo-
metrically straightforward. Indeed, by assuming that at each instant of time the
perturbed velocity Pr is equal to the unperturbed Keplerian velocity v , Lagrange set
the instantaneous conics tangent to the perturbed orbital curve and, thus, made
the appropriate orbital elements osculating – see Figure 1.5.

It would then be natural to inquire if the Lagrange constraint should always be
imposed on the orbital elements. Specifically: are there situations in which this
constraint is not the best choice or is incompatible with a particular form of the
equations for orbital elements? Indeed, a careful examination by Efroimsky and
Goldreich (2003, 2004) reveals that the attempt of modeling of an orbit by tangen-
tial (osculating) confocal conics may be in conflict with the canonical equations.
More specifically, if the perturbing function R D R(r , v), depends not only on po-
sitions of the bodies but also on their velocities23) the demand of osculation comes
into a contradiction with one’s desire to keep the Delaunay variables canonical. An-
alytical solution of the Delaunay equations will then furnish an answer that will

23) Examples of such forces are dissipative forces, the Coriolis forces in a precessing frame, or
relativistic perturbations (see Section 6.4).
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be mathematically consistent, but it will come out in terms of nonosculating orbital
elements violating the Lagrange constraint (1.236). The Delaunay elements in this
case will render a correct instantaneous position of the perturbed body (satellite,
planet), but a wrong value of its instantaneous velocity. In celestial calculations,
this “booby trap” is often encountered, though rarely noticed (Brumberg, 1972,
1991).

To explore the mathematical consequences of choosing a particular constraint
imposed on the perturbed orbital parameters, one will deliberately permit a cer-
tain degree of nonosculation in the differential equations describing their evolu-
tion. This gives us some so-called gauge freedom in choosing the constraint so that
by imposing a constraint different from that of the Lagrange, one can sometimes
greatly simplify the resulting equations for the orbital, but no longer osculating,
elements. The situation resembles that of one emerging in the Maxwell electro-
dynamics where a suitable choice of the gauge imposed on electromagnetic vec-
tor potential can considerably simplify calculations without changing the physical
observables. Planetary equations, obeying a constraint more general than that of
Lagrange, were derived in Efroimsky (2002a, 2002b). Before addressing that for-
malism, one would show an elementary example of the gauge freedom of differen-
tial equations due to Newman and Efroimsky (2003) in order to illustrate the idea
underlying the method.

1.5.2
Example – the Gauge Freedom of a Harmonic Oscillator

A one-dimensional harmonic oscillator with coordinate, x D x (t), and disturbed
by a force F(t) obeys the second-order differential equation,

Rx C ω2
0x D F(t) , (1.267)

where overdot denotes a time derivative and ω0 is the oscillation frequency of un-
perturbed motion. We also impose some initial conditions, x (0), and, Px (0), at the
initial instant of time t0 D 0.

The method of variation of parameters suggests that the solution of (1.267) be
sought for using a solution of a homogeneous equation with the integration con-
stants replaced with yet unknown functions of time,

x D C1(t) sin ω0 t C C2(t) cos ω0 t , (1.268)

where C1(t) and C2(t) are to be determined. Differentiation of x (t) will lead us to

Px D PC1(t) sin ω0 t C PC2(t) cos ω0 t C ω0[C1(t) cos ω0 t � C2(t) sin ω0 t] .

(1.269)

It is common, at this point, to set the sum, PC1(t) sin ω0 t C PC2(t) cos ω0 t, equal
to zero in order to remove the indeterminacy which stems from having only one
equation for the two variables, C1(t) and C2(t). This is equivalent to imposing the
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Lagrange constraint which is convenient though not obligatory. Let us see what will
happen if one does not impose this particular constraint by assuming that

PC1(t) sin ω0 t C PC2(t) cos ω0 t D Φ (t) , (1.270)

with Φ (t) being an arbitrary smooth function of time. We call (1.270) the gauge
condition and Φ (t) the gauge function because picking up various Φ (t) leads to
different solutions for C1(t) and C2(t) without changing the solution of the origi-
nal (1.267) for function x (t), as demonstrated below.

Substituting the gauge condition (1.270) in (1.269) and differentiating one more
time results in

Rx D PΦ C ω0[ PC1(t) cos ω0 t � PC2(t) sin ω0 t]

� ω2
0[C1(t) sin ω0 t C C2(t) cos ω0 t] . (1.271)

Replacing this result along with (1.268) in the original equation of motion (1.267)
yields the dynamical equation rewritten in terms of the new variables, C1 and C2.
Together with the gauge condition (1.270), it constitutes the following system of two
differential equations,

PΦ C ω0
� PC1(t) cos ω0 t � PC2(t) sin ω0 t

� D F(t) , (1.272a)

PC1(t) sin ω0 t C PC2(t) cos ω0 t D Φ (t) . (1.272b)

This system can be algebraically solved with respect to time derivatives of functions
C1 and C2:

dC1

d t
D ω�1

0

�
F cos ω0 t � d

d t
(Φ cos ω0 t)

�
, (1.273a)

dC2

d t
D ω�1

0

�
�F sin ω0 t C d

d t
(Φ sin ω0 t)

�
, (1.273b)

with the initial conditions

C1(0) D Px (0) � Φ (0)
ω0

, C2(0) D x (0) , (1.274)

imposed on the variables C1 and C2 in terms of the known values of x (0) and Px (0)
taken at the time t0 D 0. Notice that the initial value, Φ (0), of the gauge function
remains arbitrary. Clearly, (1.273) are a simple analogue to the Lagrange system of
planetary equations, whence one expects that the concept of gauge freedom may
be equally applicable to the planetary equations of celestial mechanics.

In the example under consideration, the unperturbed problem was deliberately
chosen to be extremely simple – a harmonic oscillator. Therefore, one ended up
with a very simple system of equations for variables, C1 and C2, with the gauge-
dependent terms being the total time derivatives. While, in general, one would have
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arrived to a system of differential equations that can be integrated only numerically,
in this simple case, the analytical integration is possible,

C1(t) D C1(0) C ω�1
0

2
4 tZ

0

F(t0) cos ω0 t0d t0 � Φ (t) cos ω0 t

3
5 , (1.275a)

C2(t) D C2(0) � ω�1
0

2
4 tZ

0

F(t0) sin ω0 t0 d t0 � Φ (t) sin ω0 t

3
5 . (1.275b)

One sees that the solution for functions, C1(t) and C2(t), explicitly depends on the
gauge function, Φ , which vanishes if the Lagrange constraint, Φ D 0, is imposed.
On the other hand, substitution of (1.275) in (1.268) leads to a complete cancella-
tion of the Φ -dependent terms:

x D ω�1
0

tZ
0

F(t0) sin ω0(t � t0)d t0 C C1(0) sin ω0 t C C2(0) cos ω0 t , (1.276)

where the first term is a particular solution of the inhomogeneous equation, and
the last two terms are a general solution of a homogeneous equation (1.267). This
simple exercise proves that the physical trajectory, x D x (t), of the perturbed os-
cillator remains invariant irrespectively of the choice of the gauge function, Φ (t),
though the mathematical description (1.275) of its motion in terms of the variables
C1(t) and C2(t) is gauge-dependent and rather arbitrary up to the following trans-
formation of the variables

C1 �! QC1 D C1 C Φ (t) cos ω0 t , C2 �! QC2 D C2 � Φ (t) sin ω0 t .

(1.277)

This gauge-dependence of the variables C1 and C2, if not taken into account prop-
erly, may greatly influence the numerical error in finding solution for x (t). In-
deed, in settings more complicated than the perturbed harmonic pendulum, a
choice of gauge may change the numerical error of integration by several orders of
magnitude (Gurfil and Klein, 2006). Specifically, choosing the Lagrange constraint
Φ (t) D 0 is not necessarily optimal.

An equally important feature illustrated by this example may also concern
timescales. Suppose the unperturbed oscillator’s frequency, ω0, is much high-
er than an upper cut-off frequency, γ0, of the spectrum of the perturbing force
F(t) 	 A cos γ0 t. Naively, one may expect that a “slow” disturbance would cause an
appropriately slow modulation of C1(t) and C2(t) in the perturbed problem. The
fact that this is not necessarily so can be easily seen after integration of (1.275),
where the slow and fast frequencies mix under the integral. The perturbing force
brings about the following “fast” components to the solution, that is,

C1(t) 	 A cos γ0 t
ω2

0 � γ 2
0

sin ω0 t , C2(t) 	 � A cos γ0 t
ω2

0 � γ 2
0

cos ω0 t . (1.278)
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This tells us that, in principle, C1(t) and C2(t) can undergo fast changes even under
a slowly-evolving, γ0 
 ω0, disturbance. To a numerist, this indicates that the
integration step used in solving (1.275) should not be much larger than the one
employed in the unperturbed setting. Again, in some situations, a clever choice
of gauge function Φ may relax this restriction. As demonstrated by Gurfil and
Klein (2006), a special choice of gauge turns the integration problem, in the linear
case, into a simple quadrature. This means that for a complicated systems with
significant timescale differences, for which integration of the variational equations
with the Lagrange constraint using a fixed time step is impossible, the variational
form of the equations with the specially-adapted gauge, Φ (t), can be integrated
using a fixed time step.

1.5.3
Relaxing the Lagrange Constraint in Celestial Mechanics

1.5.3.1 The Gauge Freedom
Recall that a solution to the unperturbed equation of motion (1.230) of a restricted
two-body problem is a conic whose functional form can be denoted with

r D r(C1, . . . , C6, t) , (1.279a)

Pr D @r(C1, . . . , C6, t)
@t

, (1.279b)

where, here and everywhere else, the overdot representing a total time derivative
d/d t, Ci (i D 1, 2, . . . , 6) are the constants of integration that do not depend on
time. In the presence of a perturbing force, F , the two-body system obeys (1.233).
Solving the perturbed equation (1.233) by the method of variation of parameters
implies that the functional form of the solution for the perturbed radius-vector, r ,
remains the same as in the unperturbed problem

r D r[C1(t), . . . , C6(t), t] , (1.280)

while the constants of integration become functions of time. The perturbed velocity
of the body is given by the total time derivative

Pr D v C Φ , (1.281)

where the vector function,

v D @r [C1(t), . . . , C6(t), t]
@t

, (1.282)

has the same functional form as the unperturbed two-body velocity (1.279b), and

Φ D
6X

iD1

@r
@Ci

PCi , (1.283)
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denotes a so-called gauge function, taking into account that the orbital elements of
the perturbed motion are not kept constant any longer but become functions of
time.

Standard procedure in application of the method of variation of variables is to
use the Lagrange constraint, Φ D 0. Let us step away from the standard procedure
and explore what will happen if one does not set the function Φ to nil, but keeps
it unconstrained. Then, one can proceed further to calculate the acceleration of the
body,

Rr D @v
@t

C
6X

iD1

@v
@Ci

PCi C PΦ . (1.284)

After substituting this result in the perturbed equation of motion (1.233) and re-
calling that the method of variation of parameters implies @v/@t D �G M r/r3, one
will obtain three equations of motion for the variables Ci (t),

6X
iD1

@v
@Ci

dCi

d t
C dΦ

d t
D F . (1.285)

This equation should be compared with (1.249) that was derived on the basis of
the Lagrange constraint. Equation 1.285 clearly demonstrates that the system of
ordinary differential equations of the second order for the orbital elements, Ci D
Ci (t), admits rather large freedom of transformations associated with the gauge
function Φ .

To find Ci (t), one will have to solve a system comprised of the equations of mo-
tion (1.285) and the expression (1.283), which so far is merely a notation for the
yet unspecified, vector function Φ . The identity (1.283) will become an addition-
al differential equation for variables, Ci (t), if one chooses a particular functional
form for the gauge function Φ D Φ [C1(t), . . . , C6(t)t] as a function of time and
the variables Ci (t). The necessity to fix a functional form of Φ , that is, to impose
three additional differential conditions upon Ci (t), evidently follows from the fact
that one has six variables Ci (t) while the number of equations of motion (1.285) is
only three. What functional form to attribute eventually to Φ will depend on the
specific type of the perturbation. This gauge freedom of the differential equations
of the perturbed motion corresponds to a specific freedom of transformations in
the space of six parameters Ci . A particular example of these transformations is
delivered by the canonical transformations preserving the form-invariance of the
Hamiltonian equations like the Delaunay equations (Arnold, 1995, Section 44).
Our approach, however, goes beyond the canonical transformations and includes
a more general class of transformations of the orbital elements which is discussed
in Section 1.5.3.2. The gauge freedom of the solutions of differential equations of
motion can be used in:

1. Computer simulations of orbits where the choice of gauge considerably influ-
ences the error propagation process. A good or bad choice of gauge function,



�

� Sergei Kopeikin, Michael Efroimsky, and George Kaplan: Relativistic Celestial Mechanics
of the Solar System — Chap. kopeikin8566c01 — 2011/6/14 — page 64 — le-tex

�

�

�

�

�

�

64 1 Newtonian Celestial Mechanics

Φ , can optimize or destroy the numerical procedure. Specifically, the Lagrange
gauge, Φ D 0, is not guaranteed to always be optimal.

2. Analytical treatment, in order to simplify the integration procedure, perhaps,
reducing it to quadratures.

The functional dependence of Φ can be chosen arbitrary insofar as its substitution
in (1.283) entails no conflict with the equations of motion in the sense that if a
specific function, Φ is chosen in (1.283), exactly the same function should appear
in the equations of motion (1.285), and vice versa. The caveat here is that taking
a particular form of the equations of motion (1.285) also fixes the gauge function
Φ which may not be nil. If this fact is overlooked and the Lagrange constraint,
Φ D 0, is used, it will lead to an erroneous solution for Ci . For example, taking the
perturbed equations for the Delaunay canonical variables fixes the gauge. Under
position-dependent disturbances, the gauge coincides with the Lagrange constraint
Φ D 0, and the resulting Delaunay elements are osculating. However, in case
of velocity-dependent perturbations, the Delaunay gauge turns out to be different
from the Lagrange constraint. Therefore, the ensuing Delaunay elements must be
treated as nonosculating. If one works with the gauge function Φ properly, its
particular choice will never influence the eventual solution for the physical variable
r, similar to that having been discussed in the previous Section 1.5.2 for the one-
dimensional case of a harmonic oscillator.

1.5.3.2 The Gauge Transformations
As emphasized above, the split of the orbital velocity, Pr , given by (1.281) is not
unique since there is no any limitation on the freedom of choice of the gauge
function Φ . It means that the solution of the perturbed problem of motion given
in terms of the orbital elements Ci admits a large freedom of the infinitesimal
gauge transformations of the variables generated by various choices of Φ . The
gauge transformation of the variables is given by equation

QCi D Ci (t) C α i(Ck , t) , (i D 1, 2, . . . , 6) (1.286)

where α i are smooth functions of the “old” variables Ci D Ci (t) (i D 1, 2, . . . , 6),
and the time t. The group of the transformations is defined by the condition that
the coordinate position of the body has the same value under the change (1.286) of
the variables,

r
� QC1(t), . . . , QC6(t), t

� D r [C1(t), . . . , C6(t), t] , (1.287)

and the functional form of (1.283) remains the same, that is,

Φ D
6X

j D1

@r
@C j

PC j , QΦ D
6X

iD j

@r

@ QC j

PQC j , (1.288)

but the gauge functions Φ D Φ (Ci , t) and QΦ D QΦ ( QCi , t) are different: Φ ¤ QΦ .
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In order to derive a relationship between functions α i and the gauge function Φ ,
let us expand the left side of (1.287) in the Taylor series with respect to α i which is
considered as a small parameter of the expansion. By canceling the radius-vector
r(Ci , t) in both parts of the equation, one obtains an algebraic equation

6X
j D1

@r
@C j

α j D 0 . (1.289)

Taylor expansion of the second equation (1.288) and making use of (1.286) yields

QΦ D Φ C
6X

j D1

@r
@C j

@α j

@t
. (1.290)

Taking a partial time derivative from (1.289) provides us with a useful equality

6X
j D1

@r
@C j

@α j

@t
D �

6X
j D1

@v
@C j

α j . (1.291)

Making use of this identity in (1.290) transforms it into

6X
j D1

@v
@C j

α j D Φ � QΦ . (1.292)

The next step is to make a dot product of (1.289) with vector @v/@Ci and a dot
product of (1.292) with vector @r/@Ci . Then, subtract one equation from another.
Accounting for definition of the Lagrange brackets (1.237), one arrives at an alge-
braic equation for the transformation functions α i ,

6X
j D1

[Ci C j ]α j D @r
@Ci

� (Φ � QΦ ) , (1.293)

which can be solved with the help of the matrix of the Poisson brackets (1.238). In-
deed, after performing the matrix multiplication of (1.293) with the Poisson brack-
ets and accounting for their property of orthogonality with the Lagrange brack-
ets (1.239),

α i D
6X

j D1

fCi C j g @r
@C j

� ( QΦ � Φ ) . (1.294)

This equation substituted in (1.286) allows us to calculate the correspondence be-
tween one set of the orbital elements, Ci , associated with the gauge function Φ ,
and another set of the elements, QCi , associated with the choice of another gauge
function, QΦ . For a fixed gauge function Φ , there is a residual gauge freedom
of transformations of the orbital elements Ci given by the smooth functions α i
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which has no explicit dependence on time, that is, @α i/@t D 0. The residual gauge
freedom is limited by the class of functions α i that satisfy (1.289). The right side
of (1.294) is functionally similar to the right side of (1.253) for the osculating ele-
ments. Hence, by expanding the difference QΦ � Φ in the radial, transversal and
normal to-the-orbit components, one can write the right side of (1.294) in the form
being similar with the right side of the Euler–Gauss equations (1.254).

1.5.4
The Gauge-Invariant Perturbation Equation in Terms of the Disturbing Force

Let us assume that one has picked up a particular function Φ D Φ [C1(t), . . . ,
C6(t), t]. Then, the perturbed problem of motion is reduced to a system of two
vector differential equations for six variables Ci (t):

6X
iD j

@v
@C j

PC j D � PΦ C F , (1.295a)

6X
iD j

@r
@C j

PC j D Φ . (1.295b)

Now, take the dot product of the first equation with @r/@Ci , and the dot product of
the second equation with @v/@Ci . The difference between these two products will
amount to

6X
j D1

[Ci C j ] PC j D (F � PΦ ) � @r
@Ci

� Φ � @v
@Ci

, (1.296)

where the left side contains the Lagrange brackets defined in (1.237). It is worth
emphasizing that the Lagrange brackets are defined in a gauge-invariant, that is,
Φ -independent fashion. Indeed, the dependence on Φ could appear, if and only if,
the brackets contained time derivatives from the variables Ci (t). However, neither
the function, r, nor the function v D @r(Ci , t)/@t include differentiation of param-
eters Ci with respect to time. The Poisson brackets defined in (1.238) are gauge-
invariant for the same reason. Equation 1.296 implements the gauge-invariant gen-
eralization of the planetary equations (1.252) in the Euler–Gauss form.

Be mindful that Φ is set to be a single-valued function Φ (Ci , t) of the time t
and parameters Ci D Ci (t), but not of their time derivatives, PCi . In principle,
the gauge functions with dependence upon the parameters’ time derivatives of
all orders are also conceivable, especially in the post-Newtonian celestial mechan-
ics of binary pulsars (Damour, 1983; Grishchuk and Kopeikin, 1986; Lorimer and
Kramer, 2004) and coalescing binary stars (Pati and Will, 2000). Such gauge func-
tions generate second and higher-order derivatives in the system of equations for
parameters Ci (Damour and Schäfer, 1985; Grishchuk and Kopeikin, 1986) which
solution is a highly nontrivial mathematical endeavor (Chicone et al., 2001).
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The full time derivative of the chosen Φ D Φ (Ci , t) contains the time derivatives
of the parameters Ci ,

PΦ D @Φ
@t

C
6X

j D1

@Φ
@C j

dC j

d t
. (1.297)

It will then be reasonable to move these derivatives to the left side of (1.296), thus,
recasting the equation into

6X
j D1

�
[Ci C j ] C @r

@Ci
� @Φ

@C j

�
dC j

d t
D @r

@Ci
� F � @r

@Ci
� @Φ

@t
� @v

@Ci
� Φ , (1.298)

which is the general form of the gauge-invariant perturbation equation (Efroimsky
and Goldreich, 2003, 2004). If the Lagrange gauge, Φ D 0, is imposed, (1.298) nat-
urally coincides with (1.252) which is equivalent to the Lagrange equation (1.264)
when the perturbing force has a potential R D R(r) only depending on positions,
r , but not on the velocities, Pr , of the bodies.

Sometimes, other gauges become advantageous for analytical calculations. In
those gauges, the orbital elements, Ci (t), are nonosculating with the instantaneous
conics are not tangent to the actual orbit. A useful example of nonosculating ele-
ments is the set of contact orbital elements which is discussed below. Other settings
wherein employment of nonosculating variables considerably simplifies calcula-
tions are the Gyldén–Meshcherskii problem, that is, the orbital motion of a body
of variable mass (Gurfil and Belyanin, 2008); the Lense–Thirring effect, that is, the
relativistic motion of a satellite about a rotating mass (Ashby and Allison, 2007;
Chashchina et al., 2009; Ciufolini, 1986); evolution of relative orbits of spacecrafts
under perturbations (Gurfil, 2007). An important example of such forces appears
in the equations of motion of the post-Newtonian celestial mechanics, a topic to be
discussed at length in Section 6.3 below, especially in conjunction with the different
parameterizations of the relativistic two-body problem.

1.5.5
The Gauge-Invariant Perturbation Equation in Terms of the Disturbing Function

Let us assume that the perturbed dynamics of the reduced two-body problem can
be described by the Lagrangian

L(r, Pr, t) D Pr2

2
C G M

r
C ΔL(r, Pr , t) , (1.299)

where the first two terms in the right side defines the unperturbed Lagrangian and
the perturbation, ΔL D ΔL(r, Pr , t), depends on both the position, r , and velocity,
Pr , of the body, and on the time t. The linear momentum of the body is defined by

p D @L
@Pr D Pr C @ΔL

@Pr . (1.300)
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If the perturbation ΔL is not singular, and one assumes that it is not, (1.300) can be
solved, thus obtaining velocity Pr as a function of the momentum p and position r ,

Pr D p � @ΔL
@Pr , (1.301)

where the second term in the right side is a function of p and r . One can derive
the Hamiltonian function, H, by making use of the Legendre transformation of the
Lagrangian supplemented by (1.301),

H(r, p , t) D p � Pr � L . (1.302)

Straightforward calculation reveals that the Hamiltonian corresponding to the La-
grangian (1.299) is

H D p 2

2
� G M

r
C ΔH , (1.303)

where the perturbation

ΔH � �ΔL � 1
2

�
@ΔL
@Pr

�2

. (1.304)

The disturbing function R, being often used in celestial mechanics, is defined as
the Lagrangian’s perturbation,

R(r, Pr , t) � ΔL(r, Pr, t) . (1.305)

While the Hamiltonian’s perturbation is denoted as

V(r , p , t) � ΔH(r , p , t) . (1.306)

In virtue of (1.304), the interconnection of the Hamiltonian’s perturbation with the
disturbing function is written as

V D �R � 1
2

�
@R
@Pr
�2

. (1.307)

In many situations, the disturbance bears no dependence upon the velocity Pr .
Therefore, the disturbing function in these cases coincides with the negative
Hamiltonian’s perturbation as the second term in (1.307) becomes nil. One as-
sumes a more general case and intends to address disturbances with a velocity-
dependence present. Hence, the necessity to use the full formula (1.307).

The Euler–Lagrange equations

d
d t

@L
@Pr � @L

@r
D 0 , (1.308)

written for the perturbed Lagrangian (1.299) are

Rr C G M
r3 r D F , (1.309)
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with the perturbing force given by

F D @R
@r

� d
d t

�
@R
@Pr
�

, (1.310)

which should be substituted in the right side of (1.298). One notices that the per-
turbation R is an implicit function of the orbital elements,

R D R(r , Pr, t) D R
�
r(Ci , t), Pr(Ci , t), t

�
, (1.311)

where Ci D Ci (t). Hence, the partial derivative

@R
@Ci

D @R
@r

@r
@Ci

C @R
@Pr

@v
@Ci

C @R
@Pr

@Φ
@Ci

. (1.312)

The time derivative entering (1.310) can be written as

d
d t

@R
@Pr D @

@t

�
@R
@Pr
�

C
6X

j D1

@

@C j

�
@R
@Pr
�

dC j

d t
. (1.313)

Inserting the expression (1.310) for the force F in the generic equation (1.298), and
making use of the expressions (1.312) and (1.313), one arrives at the general form
of the gauge-invariant equation of orbital evolution for an arbitrarily-chosen set of
orbital elements Ci (Efroimsky, 2005b; Efroimsky and Goldreich, 2003, 2004):

6X
j D1


[Ci C j ] C @r

@Ci
� @Ψ

@C j

�
dC j

d t
D � @V

@Ci
�
�

@v
@Ci

C @R
@Pr

@

@Ci
C @r

@Ci

@

@t

�
�Ψ ,

(1.314)

where one has used definition (1.307) of the Hamilton’s perturbation V, and intro-
duced a new notation

Ψ � Φ C @R
@Pr (1.315)

for the gauge function shifted from its original value, Φ , by the partial derivative of
the perturbing function, R, with respect to velocity of the body. The gauge function
Ψ is arbitrary with the only limitation that comes from the decision to keep Φ as
a function of the time and the orbital elements but not of their time derivatives.

1.5.6
The Delaunay Equations without the Lagrange Constraint

As an example, let us consider the generic perturbation equation (1.314) for the
Delaunay elements defined in Section 1.4.7. We permit the perturbation to depend
both on the position and the velocity of the orbiting body, but do not impose the
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condition of osculation. Thus, the gauge function Ψ remains arbitrary. The system
of the generic Delaunay equations read (Efroimsky and Goldreich, 2003):

dL
d t

D �@V
@l

� @R
@Pr � @Ψ

@l
� @r

@l
� dΨ

d t
� @v

@l
� Ψ , (1.316a)

d l
d t

D @V
@L

C @R
@Pr � @Ψ

@L
C @r

@L
� dΨ

d t
C @v

@L
� Ψ , (1.316b)

dG
dt

D �@V
@g

� @R
@Pr � @Ψ

@g
� @r

@g
� dΨ

d t
� @v

@g
� Ψ , (1.316c)

dg
d t

D @V
@G

C @R
@Pr � @Ψ

@G
C @r

@G
� dΨ

d t
C @v

@G
� Ψ , (1.316d)

dH
dt

D �@V
@h

� @R
@Pr � @Ψ

@h
� @r

@h
� dΨ

d t
� @v

@h
� Ψ , (1.316e)

dh
d t

D @V
@H

C @R
@Pr � @Ψ

@H
C @r

@H
� dΨ

d t
C @v

@H
� Ψ . (1.316f)

In case of a disturbance only depending on the position, one has V D �R . In
this situation, it would be most convenient to fix the gauge in the Lagrange-con-
strain form: Φ D 0. This sets the Delaunay elements osculating, while (1.316)
become the well-known canonical equations of Delaunay (1.266). When the distur-
bance also depends upon the velocity, (1.316) can still be reduced to the canonical
form (1.266) by choosing another gauge, Ψ D 0, though this can be done only at
the cost of osculation loss. Indeed, while after imposing such a gauge the (1.316)
will look similar to (1.266), but the instantaneous conics parameterized by the De-
launay elements will be nontangent to the perturbed orbit. This situation is depict-
ed in Figure 1.6.

Our example reveals that a blithe use of the Delaunay elements in problems
with velocity-dependent perturbations R D R(r , Pr) may lead to erroneous geomet-
ric interpretation of the orbital motion as the loss of osculation may be not noticed.
Another moral of the story is that often, the Delaunay elements are considered in
the framework of the Hamilton–Jacobi theory of canonical transformations which
treats these elements as canonical variables obeying the Hamilton equations. How-
ever, (1.316) are not necessarily Hamiltonian depending upon the gauge chosen.
Hence, the canonicity of the Delaunay elements should not be taken for granted
without checking upon which gauge conditions have been imposed. For example,
the nonosculating orbital inclination can differ in the first order from the osculat-
ing inclination of the orbit that can be important for correct interpretation of the
theory of Iapetus’s inclination evolution developed by Ward (1981).

The main conclusion is: whenever one encounters a disturbance that depends
not only upon positions, but also upon velocities or momenta, implementation
of the canonical-perturbation method necessarily yields equations that render
nonosculating canonical elements. It is possible to keep the elements osculating,
but only at the cost of sacrificing canonicity. For example, under velocity-depen-
dent orbital perturbations (like inertial forces, atmospheric drag, or relativistic



�

� Sergei Kopeikin, Michael Efroimsky, and George Kaplan: Relativistic Celestial Mechanics
of the Solar System — Chap. kopeikin8566c01 — 2011/6/14 — page 71 — le-tex

�

�

�

�

�

�

1.5 Re-examining the Obvious 71

Perturbed orbit

Perturbed orbit

Osculating Ellipse

Osculating Ellipse

a

b

c

e

Focus

vr·
Ф

d

Figure 1.6 This picture illustrates the method
of variation of parameters in the reduced
two-body problem without imposing the
condition of osculation. A perturbed orbit
is a set of points, each of which is donated
by a representative of a sequence of confo-
cal instantaneous conics a, b, c, d, e, that
are not supposed to be tangent, nor even
coplanar to the orbit. As a result, the phys-

ical velocity Pr D d r/dt that is tangent to
the perturbed orbit differs from the Keple-
rian velocity v that is tangent to the conic.
The sequence of nonosculating conics is
characterized by vector Φ ( QC1, . . . , QC6, t) D
Pr( QC1, . . . , QC6, t) � v( QC1, . . . , QC6, t) expressed
as a function of time and six (nonosculating)
orbital elements.

correction), the equations for osculating Delaunay elements (Φ D 0 constraint is
imposed) will no longer be Hamiltonian (Efroimsky, 2002a, 2002b).

For the first time, nonosculating orbital variables were encountered probably
by Poincaré in his studies of the three-body problem, though he never explored
these variables from the viewpoint of a non-Lagrange constraint choice. Having
performed a transition from the barycentric to the heliocentric reference frame
(Poincaré, 1896, 1897) noticed a subtle difference between the instantaneous con-
ics parameterized by the canonical Delaunay variables defined in the two frames.
A conic parameterized by the Delaunay elements in the barycentric frame deviated
from the perturbed trajectory at the rate of t2 of the time t. At the same time, a conic
parameterized by the Delaunay elements in the heliocentric frame deviated from
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the perturbed trajectory at the linear rate t. As became evident later, the variables
in the barycentric frame were osculating, while the heliocentric variables were not.
Evolution of the heliocentric set of variables was governed by a Hamiltonian per-
turbation that turned out to be velocity-dependent, which is natural because the
heliocentric frame is noninertial with the Hamiltonian perturbation depending on
linear momenta of the bodies. In the language of symplectic geometry, Poincaré’s
finding, including the issue of choosing either osculating or nonosculating ele-
ments in the three-body problem, was briefly addressed in Abdullah and Albouy
(2001).

1.5.7
Contact Orbital Elements

The generic equation (1.314) evidently reveal the convenience of the constraint

Ψ D 0 () Φ D �@R
@Pr . (1.317)

It cancels many terms in (1.314), reducing them to

6X
j D1

[ QCi QC j ]
d QC j

d t
D � @V

@ QCi
, (1.318)

where one has denoted QCi , the orbital elements corresponding to the constraint
(1.317) in order to distinguish them from the osculating elements Ci . The so-de-
fined orbital elements QCi are called the contact elements. They are often used for
analysis of orbits perturbed by velocity-dependent forces (Efroimsky, 2005a).

The term “contact elements” was offered in celestial mechanics by Brumberg
et al. (1971). Later, Kinoshita (1993) employed these variables. At that time, though,
it was not yet clear that such variables obey conditions (1.317). It can be proven
that variables obeying the same conditions also show up when one tries to preserve
the interrelation j J j � jr � p j in the frame precessing at a rate μ where the mo-
mentum per unit mass, p D Pr C μ � r is not equal to Pr , making this situation
similar to the case of the velocity-dependent perturbations of orbital motion (Gold-
reich, 1965). Calculations carried out in terms of these variables are often greatly
simplified. At the same time, one should be aware that the instantaneous conics pa-
rameterized by these variables are not tangent to the actual trajectory. Brumberg et
al. (1971), Kinoshita (1993), and Goldreich (1965) employed the contact variables to
describe motion of a satellite orbiting a precessing oblate massive body. Although
the instantaneous values of the contact variables differ from their osculating coun-
terparts already in the first order, their averages differ only in the second order,
provided the motion is periodic. However, in other situations, the absence of a peri-
odic precession can invalidate geometric interpretation of the averaged values of
these elements already in the first order.

Derivatives of the contact elements can be decoupled from the Lagrange brackets
in (1.318) with the help of the matrix orthogonality condition (1.239). Thus, one
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obtains a system of ordinary differential equations for the contact elements,

d QCi

d t
D

6X
j D1

˚ QCi QC j
� @V

@ QC j
, (1.319)

which looks similar to the Lagrange planetary equation (1.264), except that now the
perturbation, V, is given by more complicated expression (1.307) that involves the
partial derivative of the disturbing function, R, with respect to velocity of the body,
and the elements QCi obey the constraint (1.317), instead of the Lagrange constraint,
Φ D 0. More specifically, for the set of the contact elements ( Qa, Qe, Qi, QΩ , Qω, QM0), one
gets (Brumberg, 1972, 1991):

d Qa
d t

D 2
Qn Qa

@V

@ QM0
, (1.320a)

d Qe
d t

D 1 � Qe2

Qn Qa2 Qe
@V

@ QM0
�

p
1 � Qe2

Qn Qa2 Qe
@V
@ Qω , (1.320b)

d Qi
d t

D cos Qi
Qn Qa2

p
1 � Qe2 sin Qi

@V
@ Qω � 1

Qn Qa2
p

1 � Qe2 sin Qi
@V

@ QΩ , (1.320c)

d QΩ
d t

D 1

Qn Qa2
p

1 � Qe2 sin Qi
@V

@Qi , (1.320d)

d Qω
d t

D � cos Qi
Qn Qa2

p
1 � Qe2 sin Qi

@V

@Qi C
p

1 � Qe2

Qn Qa2 Qe
@V
@ Qe , (1.320e)

d QM0

d t
D � 1 � Qe2

Qn Qa2 Qe
@V
@ Qe � 2

Qn Qa
@V
@ Qa . (1.320f)

As the right side of the resulting equation (1.319) only contains the Hamiltonian
variation V, it may be logical to christen the constraint (1.317) the Hamiltonian
gauge. Insertion of this gauge in the expression (1.281) for the perturbed velocity
makes this velocity read,

Pr D v � @R
@Pr . (1.321)

Comparing this with (1.300) and (1.305), one sees that in the Hamiltonian gauge,
the partial time derivative of the perturbed coordinates, v D @r/@t, is equal to the
canonical momentum,

v
� QC1(t), . . . , QC6(t), t

� D p
� QC1(t), . . . , QC6(t), t

�
. (1.322)

Equation 1.322 allows us to interchange the velocities and the corresponding mo-
menta in the expressions for the Lagrange and Poisson brackets whenever one
is working in the Hamiltonian gauge. It also tells that the contact elements QCi

represent an osculating instantaneous orbit in the phase space (r, p ) in contrast
to the canonical osculating elements in the Lagrange gauge, which represent an
osculating conic in the configuration space (r, Pr). The relationship between the os-
culating elements Ci in the configuration space and the contact elements QCi in
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the phase space can be found from (1.294). Indeed, substituting the Lagrange con-
straint, Φ D 0, and the Hamiltonian gauge, QΦ D �@R/@Pr , one obtains

QCi � Ci D �
6X

j D1

fCi C j g @r
@C j

� @R
@Pr . (1.323)

The right side of this equation looks the same as that (1.253) with the “force” F D
QΦ D �@R/@Pr . Therefore, the differences between the elements, ( Qa, Qe, Qi, QΩ , Qω, QM0)

and (a, e, i, Ω , ω,M0) are given by the right side of (1.254).
It is possible to prove that the Hamiltonian gauge condition (1.317) is compulso-

ry imposed by the canonical perturbation theory of the Hamiltonian equations for
any dynamic system. Indeed, let us assume that the orbital elements QC1, . . . , QC6 are
associated with generalized coordinates Q D (Q i) D ( QC1, QC2, QC3) and generalized
momentum P D (Pi ) D ( QC4, QC5, QC6), which obey the Hamiltonian equations

dQ i

d t
D @ QH

@Pi
,

dPi

d t
D � @ QH

@Q i
, (1.324)

where the perturbed Hamiltonian

QH D QH(Q, P , t) D V(r, p , t) C @�/@t , (1.325)

and � D �(r, p , t) is a generating function defining the canonical transformation
from (r, p ) to (Q, P ) (Arnold, 1995; Landau and Lifshitz, 1969) so that radius-vector
(r i) D r(Q, P , t) and momentum (p i) D p (Q, P , t).

The total time derivative of r is expressed as follows

Pr D @r
@t

C @r
@Q i

dQ i

d t
C @r

@Pi

dPi

d t
D @r

@t
C fr QHg , (1.326)

where

fr QHg D @r
@Q i

@ QH
@Pi

� @r
@Pi

@ QH
@Q i

, (1.327)

is the Poisson brackets of r and QH expressed in terms of the canonical variables
(Q i , Pi ), and the Einstein summation rule is used for the repeated indices. How-
ever, due to the invariance of the Poisson brackets with respect to the canonical
transformations (Landau and Lifshitz, 1969), one has

fr QHg D frVg D @r
@r i

@V
@p i

� @r
@p i

@V
@r i

D @V
@p

. (1.328)

However, the partial derivative @V/@p D @R/@Pr (Landau and Lifshitz, 1969, Sec-
tion 40). Hence, going back to (1.326) it reveals that any system of canonical vari-
ables leads to (1.321) which implies the Hamiltonian constraint (1.317) telling us
that the variables (Q, P ) must be interpreted as the contact elements QC1, . . . , QC6.
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This gauge-stiffness24) property of the system of the Hamiltonian equations should
be taken into account in the theory of the gauge transformations of the parameter
space.

1.5.8
Osculation and Nonosculation in Rotational Dynamics

Interestingly, the phenomenon of osculation versus nonosculation emerges not
only in the theory of orbits, but also in rotational dynamics, provided the method of
variation of parameters is employed (Efroimsky and Escapa, 2007). This should not
be surprising because the mathematics underlying rotational mechanics is virtually
identical to that underlying orbital mechanics. In orbital mechanics, a perturbed
trajectory of a body consists of points, each of which is donated by a representative
of a sequence of instantaneous Keplerian conics. If one now disembodies this idea
of its particular implementation, one should agree that:

1. a trajectory may be assembled of points contributed by a family of algebraic
curves of an essentially arbitrary type, not necessarily conics;

2. it is not obligatory to set the family of curves tangent to the perturbed trajectory.
In fact, it is often beneficial to choose them to be nontangent.

In its generality, the approach can be applied, for example, to describe the time evo-
lution of Euler’s angles characterizing orientation of a rotating body with respect
to inertial space. A disturbed rotation can be thought of as consisting of a series of
small turns along different Eulerian cones, each of which is an orbit on the Euler
angles’ manifold corresponding to an unperturbed state of the angular momentum
(spin) of the body. Just as in orbital mechanics, a transition from one instantaneous
Keplerian conic to another is caused by a disturbing force. Therefore, a transition
from one instantaneous Eulerian cone to another is governed by either an external
torque, or the torque due to precession of the frame, or other perturbations like re-
distribution of matter within the rotating body. Thus, in rotational mechanics, the
Eulerian cones play the same role as the Keplerian conics do in the orbital dynam-
ics. Most importantly, a perturbed rotation may be parameterized by the elements
of the Eulerian cones in an osculating or in a nonosculating manner that is picked
up by imposing a constraint on the rotational elements that is similar to choosing
the gauge function, Φ , in the orbital dynamics. In many cases, the osculating Eule-
rian cones are convenient, but the nonosculating parametrization may sometimes
be more beneficial.
When the equations for the rotational elements are required to be canonical, the so-
called Andoyer variables are typically chosen. However, like in the case of the De-
launay orbital elements, the Andoyer variables may share the important peculiarity:
under certain circumstances, the standard Hamiltonian equations of rotational mo-
tion render the elements nonosculating. In the theory of orbits, the standard form

24) This term was suggested by Peter Goldreich.
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76 1 Newtonian Celestial Mechanics

of the Lagrange and Delaunay planetary equations yield contact elements when
perturbations depend on velocities. To keep the elements osculating in the con-
figuration space, the equations must be amended with extra terms that are partial
derivatives of the disturbing function with respect to velocities. It complicates the
planetary equations and makes, for example, the Delaunay equations noncanon-
ical. In rotational dynamics, whenever a perturbation depends upon the angular
velocity, the canonical approach makes the Andoyer variables entering the Hamil-
tonian equations to be nonosculating to the Eulerian cones. To make them osculat-
ing, extra terms should be added to the standard Hamiltonian equations, but then
the equations will no longer be canonical (Efroimsky and Escapa, 2007).

1.6
Epilogue to the Chapter

As with any physical theory, Newtonian mechanics have a restricted realm of ap-
plicability. The first example of this realm’s limitations, the problem of Mercury’s
apsidal precession, was encountered by astronomers back in the second part of the
nineteenth century. By then, it had long been known that within the unperturbed
Keplerian two-body problem, the Laplace–Runge–Lenz vector is preserved and is
always pointing toward the pericenter. Hence, if one neglects the planets’ mutu-
al disturbances, the periapses of their orbits would remain idle. The disturbances
however make the periapses move. The effect is especially pronounced in the case
of Mercury, which has a small mass and therefore is most sensitive to the pull of
the other planets. At the same time, since Mercury has an orbit of a high eccen-
tricity and a small period, the advance of its pericenter is fairly easy observable,
and it was accurately measured back in the nineteenth century. However, the rate
of this advance turned out to differ from the predictions of the classical planetary
theory by about 43 arcsec per century. To explain the discrepancy, astronomers had
to wait until the theory of general relativity was created. Explanation of Mercury’s
anomalous apsidal precession then became one of the first triumphs of Einstein’s
theory.

During the twentieth century, astronomers came across many other examples
of celestial motion, for whose accurate description in terms of the Newtonian me-
chanics turned out to be insufficient. An incomplete list includes the orbital mo-
tion of neutron stars and accretion-disk particles in binary systems; the motion
of artificial satellites, the Moon, asteroids, and inner planets in the Solar System;
and propagation of light through gravitational field. Recently, several so-far-unex-
plained anomalies in the orbital motion of spacecraft, planets, and the Moon have
been registered (Anderson and Nieto, 2010). They may indicate that even more
subtle relativistic effects in the orbital motion of the bodies should be taken in-
to account. Still, the problem of Mercury’s pericenter advance marks the starting
point whence the science of relativistic celestial mechanics reckons its history.
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