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The Standard Model

1.1
Introduction

The electroweak theory (also known as the Glashow—Weinberg-Salam theory) is
a unified theory describing the weak and electromagnetic interaction of elemen-
tary particles. Its prototype was Glashow’s [34] model to combine the weak and
electromagnetic interaction in the framework of SU(2) x U(1) symmetry. Wein-
berg and Salam [35, 36] supplemented the Higgs mechanism [37] to generate
masses of gauge particles and fermions, and succeeded in placing the model in the
mathematical framework of gauge theories. Its renormalizability was proved by 't
Hooft [38, 39], completing it as a self-consistent mathematical theory.

The quantum chromodynamics (QCD) is a gauge theory based on color SU(3)
symmetry. Its prototype was an idea that the color charge which comes in three
kinds is the source of the strong interaction acting among the quarks [40, 41]. It
has been elevated to the theory of strong interaction when the asymptotic freedom
was discovered by Gross, Politzer, and Wilczek [42—44].

The essence of the Standard Model, a name to denote GWS theory and/or QCD,
can be summarized in the following phrases.

1. Building blocks of matter are quarks and leptons.
Their interactions are described in the mathematical framework of the gauge
field theory.

3. The vacuum is in a sort of superconducting phase.

This chapter gives a simple introduction to axioms of the electroweak theory and
prepares tools for calculating cross sections at least at the tree level. For under-
standing the physical (or rather geometrical) picture of the gauge theory, we refer
the reader to Vol. 1, Chapt. 18.

Starting from the fundamental Lagrangian based on a gauge symmetry and apply-
ing spontaneous symmetry breaking, one obtains a Lagrangian which is more rel-
evant for describing observed phenomena and which can provide associated Feyn-
man rules. A simple description on the role of gauge symmetry as well as the Higgs
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field to maintain unitarity in the framework of the spontaneously broken gauge
theory is also given.

1.2
Weak Charge and SU(2) x U(1) Symmetry

Based on the accumulated evidence described in Vol. 1 of this book, we choose to
start from axioms of the electroweak theory and derive equations of motion. We
will use the word “charge” for an object that is capable of producing a force field.
This is in analogy to the electric charge which is the source of the electromagnetic
force. Then, the source of the weak force may be called the weak charge. It has
remarkable characteristics similar to the electric charge in the sense that the static
weak charge produces Coulomb-like weak force potential and the moving charge,
that is, the weak current, like the electric current produces “weak” magnetic fields
whose dynamic characteristic is very similar to that in QED. However, there are
two conspicuous differences between the two forces.

The weak charge appears in two kinds and the symmetry they obey is SU(2), in
contrast to U(1) of the electric charge. Its value could be, and generally are, differ-
ent for the left- and right-handed particles in contrast to the electric charge which
does not differentiate between the two. This is referred to as the chiral symmetry.
Understanding its concept is fundamental for clarification of the weak phenomena.

The electromagnetic force is the essential force at molecular and atomic levels.
The electromagnetic phenomena at their fundamental level do not differentiate left
from right unless we elaborate in order to closely examine it. We have been accus-
tomed to this concept for over a hundred years. Besides, a massive particle can be in
either state depending on an observer’s position. Accordingly, we take it for granted
that the left- and right-handed particles are the same particle, though just in differ-
ent states. The discovery of the different weak charge carried by the left- and right-
handed particles made us recognize that they could be different particles. Since
the fundamental forces which we know respect the local gauge symmetry, we need
to apply gauge transformations differently for the left- and right-handed particles,
which is referred to as the chiral gauge transformation. The name is a misnomer
because it connotes a different operation from the ordinary gauge transformation.
Indeed, for the fermion, one can define the chiral gauge transformation by

Yy =Ty (1.1)

Since ysw% = Y1 F y3)2ly = Fy, it certainly produces different transfor-
mations for left- and right-handed fields. However, the weak charge carriers are
not restricted to fermions. We had better avoid the use of y° in the gauge oper-
ator. Instead, we shall consider that the difference lies in the operand field. We
must consider that the operation is just the same old gauge transformation, but
the operand acts differently depending on the weak charge it carries. All we need
to recognize is that fermions of different chirality carry different charges.



1.2 Weak Charge and SU(2) x U(1) Symmetry

As an example, let us consider the chiral gauge transformation which follows the
U(1) symmetry and denote the charge operator as “Y” (call it hypercharge). Then,
the gauge transformation for the fermion field f = 1y or scalar ¢ is"”

fL — f]: — e—ianL — e—iaY(fL)fL
fR — f}{ — e—ianR — e—iaY(fR)fR
¢ — ¢/ — e—iaY¢ — e—aY(¢)¢ (13)

where Y( f1), and so on, are the hypercharges that each field carries.

We said that the weak charge comes in two varieties and respects the SU(2) sym-
metry. Actually, the true weak and the electromagnetic force are based on a mixture
of SU(2) and U(1), and we need to be careful about the terminology. The weak
force in its original form, that is, before mixing and spontaneous symmetry break-
down, has chiral SU(2) symmetry. In SU(2) terminology, all the weak force carri-
ers constitute isospin multiplets. All the left-handed fermions constitute doublets.
For instance, the electric-type neutrino v, and the electron e~ are members of a
doublet. ¥|T = (ver, er). All the right-handed particles belong to SU(2) singlets
(I = I = 0), namely, they do not carry weak charges. In the Standard Model, all
the leptons can be classified by their isospin component as

Iy =+41)2

Leptons =+l Y = (Vf) , (Vﬁ) ) (Vi)
Iy =-1/2 ¢ Jy “Jy L (1.4)
I=1=0 ex  UR TR

The leptons which have I3 = 1/2, that is, the neutrinos are electrically neutral and
those which have I3 = —1/2 have electric charge Q = —1 in units of the positron
charge. In the Standard Model, the right-handed neutrinos do not exist.” For the

quarks

uarks , ,

Q %[3 =-1/2 a'j, s'), bJ, (1.5)
I=1=0 UR, dr, Cr, SR, tr, bR

where D’'T = (4, ¢, b’) are Cabibbo—Kobayashi-Maskawa rotated fields:

d Ve Vs Vup d
D' = VexmD, — S| =1V Vi Vi S (1.6)
b’ Vid Vis Vi b
1) The equation is an abbreviated version. In 2) In reality, they do exist as demonstrated by
the quantum field theoretical treatment, the the discovery of the neutrino oscillation.
transformation equation should read In the context of this textbook, it is more
. . . simple and no inconvenience is encountered
CWYI/)C iaY _ e mYW)lp (12)

by assuming the massless neutrino. The
neutrino oscillation phenomena will be

where Y is the generator of the gauge
treated separately in Vol. 3.

transformation (see Vol. 1, Eq. (9.159)) and
Y(y) is the eigenvalue of Y that the field
carries.
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The quarks with I3 = 1/2 have Q = 2/3 and those with I; = —1/2 have Q = —1/3.
Each quark carries another degree of freedom, that is, three colors which are the
source of the strong interaction. Its dynamics will be treated in detail later, as now
we must put aside the strong interaction in the discussion of the electroweak force
and simply consider that they have an extra three degrees of freedom.

The original Lagrangian for the weak force is invariant under SU(2) gauge trans-
formations which are generically denoted as U. Denoting the isospin operator as t,
we have

Y (x) —> ¥ (x) = U¥P(x) = exp(—igwe(x) - t)¥Pi(x) = exp[—igwa - T/2] WL (x)
Pr(x) = Wr(x) = UWr(x) = exp(—igwa(x) - t) Pr(x) = Pr(x) (1.7)
where ¥ is any fermion doublet in Egs. (1.4) and (1.5), & = (a1(x), az(x), asz(x))
is a set of three independent continuous variables and x is a simplified notation

for the Lorentz coordinate variables x = (x°, x). 7 is the Pauli 2 x 2 matrix that
operates on the isospin components of doublets.

o R R A

The field g does not receive any change by SU(2) transformation simply because
I(¥R) = 0. If we denote the gauge bosons of SU(2) as

W(x) = (Wi(x), Wa(x), W3(x)) (1.9)

which constitute an isospin triplet (I = 1), the gauge transformation changes them
to

i
W, t— W, t=UW, tU + Pl U (1.10)
w

but keeps the covariant derivative
D, =19, +igw W, -t (1.11)

invariant, thatis, D’ = 19, + igw W/, - t.

Now, we must treat the U(1) part of S U(2) x U(1) in the GWS theory. It acts on
all the leptons and quarks. We tentatively call it the B-force. It respects chiral U(1)
symmetry whose gauge transformation was given by Eq. (1.3). Each left- or right-
handed fermion has its own hypercharge in addition to isospin component I3 due
to SU(2). The weak isospin and the hypercharge satisfy Nishijima—Gell-Mann’s
law:

Q=L+Y/2 (1.12)
From this relation, one deduces that

Y(wer) = Y(ep ) =1, Y(ver) =0, Y(eg)=-2
Y(u) = Y(d) =1/3, Y(ur) =4/3, Y(dg)=-2/3 (1.13)
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Assignment of Y to other fermions is obtained similarly.

We denote the gauge bosons of U(1) as B, and the covariant derivative as D, =
0, +i(gs/2) By, where the factor 1/2 is introduced for later convenience. Then, the
covariant derivative including both W and B is given by

i
Dy =0, +igwW, t+ %B,,
igW lgB
=9, + T(Wﬂlrl + Wity + W, 3) + - B (1.14)
There is another important player of the electroweak force, namely, the Higgs
field,
+

0[] 019

in the electroweak interaction. ¢, ¢° are two complex scalar fields. Together,
they constitute an isospin doublet (I = 1/2, I; = +1/2) and carry hypercharge
Y(¢pT) = Y(¢° = 1. The self-interaction of the Higgs field is the cause of the
spontaneously symmetry breaking of the SU(2). x U(1), giving mass to the gauge
bosons as well as to the fermions. The original Lagrangian before mixing and spon-
taneous symmetry breaking is given by

. 1 o1
xEW = lel'}/‘ D/‘llj_ ZF/“/'F‘ V—ZB/“/B’MV

+ (D, @) (D" ®) — V(P) — Gsler(PT¥) + (PLP)er]  (1.16)

Fruv=0,W,—0,W,—gwW,x W, (1.17a)

B,uv = a,qu -0y B,u (1171))

Dy =0d,+igwW, t+i (%B) YB, (1.17¢)
2\ 2

V(®) =z(|¢|2+§7) >0 (1.17d)

This is the master equation to calculate reaction rates of any electroweak pro-
cesses. We shall use, for example, v, ¢~ to denote quantized fields, that is, v,(x) =
Yy, (x), €7 (x) = .(x), where there is no confusion. Here, we have only written
down the Lagrangian of the ¥ = (v, e~) which will be needed in the following
discussions. The Lagrangian for other fermions can be written down similarly. The
first line of Eq. (1.16) is referred to as the gauge sector and the second line as the
Higgs sector. V(@) is the self-interacting potential of the Higgs field. The whole
expression satisfies the SU(2) x U(1) gauge symmetry manifestly. It is important to
remember that both the gauge and the Higgs sectors are constructed to respect the
gauge symmetry separately. The last term of Eq. (1.16) referred to as the Yukawa
interaction was added to generate fermion masses. It can be written down as

er(PTW) + (P P)er = Crverdp” +Vererd T +ererg® +21ergp” (1.18)
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The case that this term is also SU(2) x U(1) invariant can be illustrated as follows.
Because we constructed the Higgs field as belonging to the I = 1/2 doublet, and
the product with another isospin doublet ¥, then (@ T¥) is therefore isospin
rotation invariant. By multiplying eg which is a scalar in SU(2) transformation, the
expression becomes Lorentz invariant because each term is of the form Y yr¢
or P Yr¢. One can show that each term is also chiral U(1) invariant by referring
to the hypercharges in Eq. (1.13). For instance, take a look at the first term on the
right hand side of Eq. (1.18). By the chiral U(1) gauge transformation

—iY(er)

’ ’ —iY(v,
erR — €= ¢ er, Ve —> Vi =e TWelfy

g — ¢ =TT o (1.19)

Considering Y(er) = —2, Y(ver) = —1, Y(¢~) = —1, one sees that the product
(erVver)® ™ is U(1) gauge invariant. Other terms can be proven similarly.

Mixing of SU(2) and U(1) The interaction of the gauge boson with the fermion is
contained in the covariant derivative of Eq. (1.16). It is given by

8B

—Lwrr=gw¥y" W, t¥+ = VW B, (1.20)

Since t = 7/2 acts only on the left-handed fields and B, couples to the hypercharge
Y which acts on the left- and right-handed fields differently, we have

—x\x/ff = gTwij/” (Wulfl + Wluz‘fz + W;‘h) L3

8B

+ 528, (TL)/'“Y'I’L + WR)/'“YII’R) (1.21)

We wrote “Y” explicitly to remind the reader that B,, is acting on the hypercharge.

Since both Wj and B can couple to the same fermion, they mix and constitute
the electromagnetic field (the photon) and the neutral gauge boson Z. To determine
how they mix, we consider their coupling to the electron doublet.

W (x) = (”e("))L (1.22)

e (x)

Then, the coupling to the neutral boson part (terms containing W, and B, in
Eq. (1.21)) is expressed as

Bl oy va— ey e) W2 + S (—Tay v —uy"eL — 227" ex) B,
(1.23a)
Rearranging the equation, we obtain

[VeLV”VeL (gw W,f —gB B#) —eyfer (gw W,f + g8 By) —2gg(ery“er) B/t]
(1.23b)

1
2



1.2 Weak Charge and SU(2) x U(1) Symmetry

Since the electromagnetic field should not couple to the neutrino, we define the
weak neutral boson Z” by Z ~ gw W,} — gp B, and its orthogonal component as
the electromagnetic field. With suitable normalization, they can be expressed as

1
Ve + g5
1
Z" = —sin Oy B" 4 cos Oy W' = ————[—gpB" + gw W5'| (1.24b)
/52 2
Sw 88
which also defines the Weinberg angle Oy . The Weinberg angle is related to the
gauge coupling strength of the SU(2) (gw) and U(1) (gg) by

A" = cos Oy B" + sin Oy W' [gwB" +gs W3] (1.24a)

tan Oy = 22 (1.25)

sw

As a result, the Z boson couples to the right-handed component of the fermion
(via B¥) as well as to their left-handed component (via W;'). This is the reason
that we have to be careful about saying that the weak force works only on the left-
handed particles. The statement is true only for charged current reactions which
couple to W=. The neutral current which couples to Z contains the right-handed
components. The photon couples to I3 component and hypercharge of the particle
which is the origin of the Nishijima-Gell-Mann’s law.”

The kinetic energy part (derivatives of the fields) of the gauge fields can be rewrit-
ten as

1
Lxe = —- Z Fiy FoY — = By B

a—l

1
— otuv Z pZuv A Auv
- (ZFMF “Y g FZ MY 4 R A )

EL=0,W,F -0, W], F%=0,2,-9,2", FJ =0,A,—0A"

(1.26)
where W,F = (W, & i W?2)/+/2 are charged boson field operators.
3) The nomenclature “neutral boson” is used 5) This is a circular logic. Historically, the
in general to mean any charge neutral hypercharge is assigned to satisfy the
member including the photon, but hereafter Nishijima-Gell-Mann law. Here, however,
we use the word “neutral gauge boson” to we are starting from an axiom that the
specifically mean the Z unless otherwise hypercharge is the fundamental constants
noted. that all the particles possess transcendentally.

4) In the following, sin 6y appears more often
than Oy itself. It will also be referred to as
the Weinberg angle.

9
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13
Spontaneous Symmetry Breaking

When the equation of motion satisfies a certain symmetry, its solution generally
possesses the same symmetry. However, the solution is not necessarily stable. In
such a case, the chosen state could break the symmetry. When the ground state
(or vacuum in the field theory) does not respect the symmetry which the equation
of motion has, we have the spontaneous symmetry breaking. Let us see how it
happens. The Higgs potential Eq. (1.17d) contains a quartic term as well as the

quadratic term.
odel= et + 902 (1.27)

V(0) is arbitrary and usually assumes a value to make the vacuum energy vanish.
Only the energy difference from the vacuum matters unless we deal with the grav-

ity.

V(@) = V(0) + u?| @ * + AP

1.3.1
An Intuitive Picture of Spontaneous Symmetry Breaking

Let us consider what happens to the field after the symmetry breakdown. For sim-
plicity, let us consider a case V(0) = 0 and @ is an isospin singlet complex field
@ = ¢ = (¢p1 + i$,)/~/2. The potential is expressed as

V(p)=u*¢ e + A(pTp) (1.28)

The symmetry which the field satisfies is the Abelian U(1) gauge symmetry,
namely, the Lagrangian is invariant under the transformation ¢ — ¢’ = ¢~ '%¢.
If 2 = 0 and u? > 0, the potential represents a harmonic oscillator. Energy excited
states appear as particles in the quantized field theory and u represents the mass
of the quanta. If 1 # 09, the potential still has a minimum at |¢| = 0 as described
by the curve denoted T > T, in Figure 1.1a. In this case, the particle picture still
holds, the quartic term represents self-interactions of the particles.

Let us consider #? not as an a priori given mass squared, but some dynamical
object that changes with temperature, that is, u*> = C(T — T.), where T is a criti-
cal temperature whose meaning will soon be clarified. By doing so, we regard the
vacuum not as an empty space, but some dynamical object which changes its char-
acteristics with temperature just like any medium in condensed matter physics.
As the temperature goes down, the u? changes sign at T = T, and below T, the
potential develops minima at ¢ # 0. The u? being negative cannot be interpreted
as the mass squared, but should be regarded as a part of the potential. If the field ¢
is complex as we assumed, the potential shape is like a Mexican hat (Figure 1.1b).
The old vacuum |¢| = 0 is no longer a stable point and the vacuum moves to a
stable point, the minimum at |¢| = /—u2/2A = v/+/2. The field ¢ is not zero at
the new vacuum, or the vacuum expectation value of the field is finite.

6) We do not consider the case 1 < 0 because the vacuum becomes unstable.
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(a) Phase transition (b) Mexican hat potential

Figure 1.1 (a) Depending on the temperature, the potential changes its shape. (b) lllustration
of a Mexican hat potential as required for the Higgs field. The ground state is degenerate and
the choice of one specific value spontaneously breaks the symmetry.

For the complex ¢, the new vacuum is infinitely degenerate because any point
on the circle that satisfies the above condition is eligible as a vacuum. The vac-
uum the nature picks up can be anywhere on the circle. We conveniently set a new
coordinate system such that the new vacuum is at ¢; = v/+/2, ¢, = 0. As the ex-
perimentally observed energy is the excitation from the new vacuum, we are now
dealing with new fields

Pr=¢p1—v, @)= 129)
and the Higgs Lagrangian is rewritten as
E=0,010"p— V(g) = 0.0 0"’ = V(v + ¢)
! 1
= E (8,u¢;a’u¢; — 2].1)2(]52(]%) + E (3,,¢>§8”¢;)

A
- [wi @)+ (02"} + 7 {00 + (¢;)2}2] (1.30)

As one can see, the terms in the penultimate line show that the new field ¢ has
mass m2, = 24v% and the ¢} has vanishing mass. The last line describes the
interaction between the two fields and among themselves. The different mass of
the two fields can be pictorially understood from Figure 1.1b. ¢/ is in the bottom
of the potential valley and it takes energy to excite the field, that is, to climb up
the potential. However, for ¢/, there is no potential to hinder the motion, that is,
it takes no inertia to move on the circle. The massless field ¢ is referred as the
Goldstone boson. They no longer satisfy the gauge symmetry. Remnants of the
original symmetry can be seen in the fact that any point on the circle is equivalent
and could have been chosen as the new vacuum.

The important point is that the new vacuum, once chosen, is fixed there. This is
because of the infinite degrees of freedom that the field possesses. It may not be
apparent intuitively, so perhaps an example in condensed matter physics that obeys
the same mathematics may help to clarify it. ¢ is referred to as the order parameter
there. Think of a ferromagnet which we discussed in Vol. 1, Chapt. 18. The order
parameter in this case represents the magnetization. Above the critical tempera-

1
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ture, the spin is not aligned because of thermal motion and there is no magnetiza-
tion, namely, the medium is a paramagnet. Naturally, the order parameter vanishes
in the ground state of the paramagnet. The medium respects the rotational sym-
metry because the spin has no preferred orientation. Below the Curie temperature,
the spins begin to be aligned due to spin-spin force, and at absolute zero tempera-
ture, the whole medium is aligned. The magnetization in the ground state is finite
and the medium is a ferromagnet. The spontaneous symmetry breaking is nothing
but the phase transition in condensed matter physics and it is a metamorphose of
the entire medium.

In a medium where all the spins are aligned in the same direction, it is possible to
excite a spin or two by giving a small energy A E to each spin to change its direction.
The turbulence propagates as a wave which, if quantized, is the Goldstone boson
represented by ¢/. However, changing the whole ground state, namely, changing
the spin orientation of the entire medium, takes energy A E x Ny where N, is of the
order of the Avogadro number which is large but finite. Macroscopically, it is possi-
ble to heat the medium above the critical temperature to transfer the ferromagnet
back to paramagnet. However, the vacuum in the field theory is the vacuum of the
universe. It has infinite degrees of freedom. The vacuum, once chosen, is impossi-
ble to change. We cannot heat up the whole universe!

1.3.2
Higgs Mechanism

Now, we go back to the original SU(2) non-Abelian Higgs field Eq. (1.15) and we
include the gauge field. The reason to consider a doublet Higgs field is that we
want to use three Goldstone bosons later and an isospin doublet of the Higgs fields
is the minimum requirement within the SU(2) symmetry. The physics aspect of
the theory changes from that of the ferromagnet, but the role of the Higgs field
in inducing the spontaneous symmetry breaking is the same. Below the critical
temperature, the Higgs field acquires the vacuum expectation value (vev)

|2 = 9P + 9% = v?)2 (1.31)
Notice that there are three fields that can vanish. The vacuum is infinitely degen-
erate and we choose the new vacuum at Re[¢°] = v/«/z, Im[¢°] = ot =0,
namely,

0
Q' = 1.32
e (52

where we use nomenclature H = Re[¢°] — v+/2 to denote it as a real observable
Higgs field. This is the spontaneous symmetry breakdown of the SU(2) symme-
try (or SU(2) x U(1) if we include Z instead of Wj). The Higgs field before the
symmetry breaking can be parametrized as

+ 1 /
@ (x) = [io] - [V(T;iﬂﬁz] (1.33)
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Without loss of generality, it can be rewritten as

O T 0
P =exp(tj~5) |:vj—/iHi| (1.34)

In fact, in the vicinity of the chosen vacuum where v > |H|, |®|, Eq. (1.34) reduces
to Eq. (1.33). The reason to place three of the fields in an exponent is because we
can realize the new Higgs field Eq. (1.32) by a gauge transformation

D - ' =UD =expl—io-1/(20)]|P (1.35)

The @ components disappear from the Higgs field. As the gauge transformation
also changes the gauge field W, they are transformed to W7,.

i
W, t—> W, t= UW/,~tU_1-I—g—U3/,U_1
w

=UW, - tU ' - 0t (1.36)

gwv
with t = 7/2. The field @ has reappeared as the third (longitudinal) component of
the gauge bosons. Namely, three of the Higgs fields are absorbed by the gauge field
and have become their third component.” We rename the new fields @’ and W/,
again as @, W,. They are the physical observables because we live in a vacuum
where the gauge symmetry has been spontaneously broken.

Now, we realize that when the broken symmetry is a local gauge symmetry, the
Goldstone bosons do not appear. Three Goldstone bosons are produced by a dou-
blet Higgs, but they are absorbed by the three gauge bosons (W, Z). The new
gauge bosons acquire the third component which means they have become mas-
sive and the electroweak force has become short ranged. The appearance of the
mass term will be explicitly shown later in Eq. (1.37). Analogous phenomenon actu-
ally happens in the superconductor below the critical temperature where the gauge
symmetry is spontaneously broken and the electromagnetic force is converted to
a short ranged force. The phenomenon that the magnetic force cannot penetrate
into the superconducting medium and is wholly repelled is known as the Meiss-
ner effect. This is the reason that we said the physics outcome is different if the
broken symmetry is the local gauge symmetry. The whole mechanism, the spon-
taneous breakdown of the gauge symmetry and associated mass generation of the
gauge bosons, is referred to as the Higgs mechanism. The mathematics we devel-
oped is more appropriate to the superconductivity rather than the ferromagnetism.
Indeed, the nonrelativistic Hamiltonian derived from the Abelian Lagrangian after
spontaneous symmetry breakdown has identical form to the Ginzburg-Landau free
energy of the superconductivity (see the boxed paragraph in Vol. 1, Sect. 18.5.2).
In this case, the order parameter is the wave function of the Cooper pair whose
condensation induces the superconductivity. This is the reason we said that the
vacuum where we live is in a sort of superconducting phase.

7) They are sometimes referred as the would-be-Goldstone bosons because if the symmetry is not

the gauge symmetry, they would have manifested themselves as physically observable Goldstone
bosons.
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13.3
Unitary Gauge

We have seen that the Higgs field after the spontaneous symmetry breaking (= @)
is equivalent to that obtained as the result of the gauge transformation, that is,
@’ = exp[—io - t/v]P. Since we chose the vacuum to fix the Higgs field in this
form, this simply means a special gauge is chosen and fixed. This gauge is referred
to as the unitary gauge or U-gauge. The unitary gauge is one where the physical
meaning of the various fields is clearest.

Notice that the new fields do not respect the gauge symmetry, not because the
symmetry was broken, but because we chose the new field (old @) as the excitation
from a specific vacuum point to describe phenomena in our world. In doing so,
we also fixed the gauge. Mathematically, the whole procedure is just choosing an
appropriate gauge and fixing it. We can equally describe nature using old variables
in the original gauge. From a theoretical point of view, it is much more convenient
because it respects the gauge symmetry manifestly. However, then it is hard to
make connections with observables and the physical interpretation of mathematics
gets complicated. The symmetry was not really broken, rather it was hidden as a
result of choosing new variables.

What is the physical meaning of the phase field?

In the U-gauge, the Higgs field takes the form given in Eq. (1.34). Mathemati-
cally, it removes extra Higgs components beautifully which are absorbed by the
gauge bosons. It can also be cast in a form given by Eq. (1.33) which looks more
familiar. What is the difference between the two choices? Let us remember that a
particle picture of the quantized field is obtained by quantizing a harmonic poten-
tial which is quadratic in the field variables. The potential of the field in general,
however, is not necessarily quadratic. It may have quite a complicated structure
depending on the property of the field. In the framework of the quantum field
theory, we refer to particles as excited states, or small perturbations around a
stable environment which we call the vacuum. Mathematically, it may be a local
minimum and we always expand the potential in a Taylor power series. If we use
only up to quadratic terms, we get the particle picture of the quantized field.

Higher order terms are treated as the interaction among particles. The inter-
action is different depending on where and how we expand the potential. The
expanded power series contains hints for the global structure of the whole po-
tential. Inclusion of the higher order terms is to consider more global character-
istics of the field which may not behave like particles. Consider, for instance, a
superconducting object which we modeled in developing the Higgs formalism.
It behaves as a macroscopic quantum fluid rather than as particles. The vacuum
we developed as the result of the spontaneously broken symmetry is in a state of
a superconducting phase. In the local vicinity of which we call the vacuum, the
potential may well be approximated by the quadratic potential and the familiar
particle picture is valid.
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However, globally, it may be a part of circulating field or may be spatially ex-
panding just as our universe. If it is happening in the cosmic scale, we will not
notice it because we are only dealing with particles which are simply small exci-
tations of a local minimum. The @ field in Eq. (1.34) is referred to as the phase
filed. Locally, however, it is equivalent to linear fields in Eq. (1.33), that is, from a
phenomenological point of view, there is no difference. The potential form given
in Eq. (1.30) could be considered as representing the global circle structure of the
vacuum, but for a description of phenomena we observe locally, it only appears
as higher order corrections. However, a glimpse of the global structure may be
obtained by investigating the particle interactions.

Our next task is to find what the Higgs sector of the Lagrangian have produced
after the spontaneous symmetry breakdown.

1.3.4
Mass Generation

Mass of the Gauge Boson First, we take a look at the kinetic energy part of the
Higgs sector. Substituting Eq. (1.32) in the first term of the second line of Eq. (1.16),
we obtain

(D, @)/(D"®) = (3, ®)! (3" @) + & (guw W, -t + (g8/2) By - Y)' &
2
= 9, 2) " @) + " [agh W W (mgu W0+ g B,]

o v+ H)\ 1 v+ H)\’
=(3ﬂ¢)'(3/ @)_'_(%) W# W+M+E(%) Z/,Z”

(1.37)

Linear terms in the derivative vanish and we used

gwW, —gsBu=82Zu, 8z= g%+ 8% (1.38)

In the absence of the interaction with the Higgs field (i.e., when H = 0), the second
and third term in the last line of Eq. (1.37) gives the mass terms for W and Z. The
H term gives the interaction of the Higgs field with W and Z. Considering that
there is a factor 1/2 difference between the charged and neutral vector bosons, we
have

- g‘;’;v, my = 827 (1.39)

m
v 2

We have just explicitly shown that the gauge bosons have acquired mass after sym-
metry breaking. Notice that Eq. (1.37) does not contain the electromagnetic field.
Therefore, the photon does not acquire mass. This is not accidental. Remember
that the symmetry was broken by the vacuum. This means that the vacuum expec-
tation value of both the isospin (SU(2)) operator ¢ and the hypercharge operators Y
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do not vanish.

HD) =

N S

0
v |[#0, Y(P)=(DP)#0 (1.40)
V2

which is another statement of the symmetry breaking in the new vacuum. On the
other hand,as Q = I3 + Y/2and Y(®) =1,

P) = %(1+r3)[i} =0 (1.41)
V2

Therefore, the vacuum is not invariant under SU(2). or U(1)y gauge transforma-

tion separately, but is invariant under the combined gauge transformation U =

exp[— Qea(x)]. The photon field which is generated by the charge operator Q has

kept its freedom of the gauge transformation which means the gauge field has

vanishing mass.

Careful readers might have noticed that a massive vector has three degrees of
freedom (two transverse polarizations and one longitudinal polarization), whereas
the massless vector boson has only two degrees of freedom. Is it not a contradic-
tion? As a matter of fact, the extra degree of freedom was provided by the Higgs
components (w1, w,, ®3) that had disappeared. This can be seen in the expression
of Eq. (1.36) in which the second term provides the longitudinal component. Orig-
inally, there were four components in the Higgs field. Three of them are absorbed
by the three gauge bosons, and the degree of freedom that the gauge boson had,
increased from 2 x 3 to 3 x 3. The total number of the degrees of freedom is invari-
ant.

The Vacuum Expectation Value We can determine the value of the vacuum expec-
tation value by comparing the muon decay amplitude with the conventional four-
Fermi interaction Lagrangian.

The fermion interaction with charged gauge bosons can be extracted by in-
specting the covariant derivative of the fermion (the first term in the first line of
Eq. (1.16)). By including the second fermion doublet with the muon-flavor, the
interaction Lagrangian takes the form

Lwry= —%(ﬂw“a + VY u) W, + he (1.42)

Here h.c. means hermitian conjugate. From Eq. (1.42), one can extract the tree
decay amplitude for the 4™ (p1) — €7 (p4) + vu(p3) + ve(p2) (see Feynman rules
in Section 1.6 or Vol. 1, Chapt. 6 for more details)
_ i 1—y°
Spi= 0 i = =)0 (p1 = p2 — P — pa)(p) (%y) Co g
_i g,uv - a:_zq” 1 1— 5
( W)ﬁ(pzx)(gwj/v)( 7/)

g2 — m3, + i€

X

V2

mky >4 Yo . 5 _ 5
— u(ps)y" (1 — v u(pr)u(pa)vu(l — 7°)v(p2) (1.43)

NigW
8m

2
w
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The expression agrees with the transition amplitude obtained from the four-Fermi
theory provided (compare this with Vol. 1, Eq. (15.75))
Gr _ 8w

1
SF = 1.44
V2 8m3, 202 (1.44)

Inserting the value of Gg = 1.16637 x 107> GeV ™2, we obtain v = 246 GeV.

Mass of the Fermion  Let us take a look at the Higgs-fermion interaction (the third
term in the second line of Eq. (1.16)).

—Liee = G[er(PTWL) + (V1D )er] (1.45)

After the symmetry breakdown, the Higgs-fermion interaction becomes

Lree — Ge(v—l—H)(Ee + Brer) = m ee + — (ee)H = Gev

— — =m — , Mg =

Hee \/i RCL LER e v e \/E
(1.46)

The first term gives the mass and the second, the Higgs interaction with the
fermion. As a by-product of obtaining the fermion mass term, a new interaction
of the Higgs with the fermion has appeared. Its interaction can be obtained by
replacing the mass term v by v 4+ H, just as the interaction with the gauge bosons
in Eq. (1.37). Notice that the coupling strength is proportional to the mass of
the fermion. Feynman diagrams for the Higgs-fermion interaction are given in
Section 1.6.

One important side effect of the fermion mass generation is that the axial current
no longer conserves.

A" (x) = 0,3 (x)y " 9 (x) = 2mP (x)p(x) # 0 (1.47)

This applies to the charged current as well as to the neutral current. Therefore,
the chiral gauge symmetry is broken by the mass term and only the vector current
conserves.” One refers to the phenomenon as the symmetry breakdown of SU(2)1 x
SUR)r — SUQ)v.

Mass of the Higgs The Lagrangian of the Higgs field can be extracted from the
first and second term on the second line of Eq. (1.16). If we use the transformed @,
we note that ?7® = (v + H)?/2 and (3, P)T(3“ ®) = 9, Hd" H/2. Putting aside

8) This is not to be confused with the chiral this was the Nambu'’s original proposal of

symmetry breaking in QCD. In QCD, the
chiral symmetry breaking also occurs due to

spontaneous breakdown of the QCD vacuum.

More details will be given in Section 7.1.5. It
is a global chiral symmetry breaking caused
Dby the strong interaction among the quarks,
and qq’ plays the role of Higgs. Incidentally,

the spontaneous symmetry breaking [45, 46].
In QCD, additional explicit chiral symmetry
breaking is induced by the fermion mass
term. It is treated as an external perturbation
because it is a product of the electroweak
symmetry breaking.
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the interactions with the gauge field and fermions, the Higgs part of the Lagrangian
is expressed as

1 2
Ly =0, HV'H —Av*H? — (/lvH3 + ZH“)

1 1 g2
:E(aﬂHaﬂH—mgHz)——f‘” m2 HY — — BW 2 g

my 32mi, 1 (1.48a)
mk, = 2Av? (1.48D)

where Eq. (1.39) was used to express the coupling constants in terms of masses
and gauge couplings. The coupling strength, again, is proportional to the masses
of the interacting particles. This is a conspicuous feature of the Standard Model.
From this Lagrangian, one can construct the Higgs propagator and Feynman rules
for the interactions of the Higgs field. They are listed in Section 1.6.

1.4
Gauge Interactions

Coupling with Fermions Interactions of the gauge boson with fermions are con-
tained in the covariant derivative and are given by Eq. (1.21). As it is the starting
point to derive the Feynman rules for the gauge interactions, we reproduce it here.

8B

—x\x/ff =gW¢V”W” StV + == By 'IIV”WB#

gW V2% % (W/}‘L’l + VV#ZTZ + \X/;‘L'g) L4y
n %B# (Py ns + Way” YR'I’R) (1.49a)

where t = 7/2 was used. We removed the right-handed fields from the W inter-
action and added the hypercharge operator “Y” explicitly to remind the reader that
both W and B, act differently on the left- and right-handed fields. Using Eq. (1.24)
to rewrite W} and B, in terms of A, and Z,, and denoting the charged W bosons

as WT = (W, £ W,)/+/2, we have
_ 8w + _
—cfwff = EIPLJ/” (W,u T4+ WM ‘L’_) v
+ Py [gw hlewZ + swAy) + £ Vil-swZ, + cwa )|

+ Wyt [gz_B Ya(—swZ, + cWA,,)] P (1.49b)
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where we abbreviated sy = sin Oy, cw = cos Oyw. Using Q = I3+ Y/2, ¥R =0,
we finally obtain

~Lwps= %Ww" (Wihos + W o) Wi+ g2 Wy" (I — Q%) ¥ 2,

+ eV y“QWA,

e=gwsinly, gz =gw/cosby = e/sin0Ow cosOw (1.50)

which defines the electromagnetic coupling constant (i.e. the electric charge) in
terms of gw and the Weinberg angle. Here, L in I3 is there to remind the reader
that it only acts on the left-handed components.

For actual calculations, it is more convenient to separate couplings to the left
and right or alternatively, to vector and axial vector parts. Coupling types which
appear in the Feynman amplitude rule are given by the matrix element iL .
Therefore, omitting the field operators and attaching a suffix to differentiate the
fermion flavor, they are expressed as

y—ff: —iQrey” (1.51a)
+ _ . _g_W w1 _ A5
wE—ff: iS5 =v) (1.51b)
zZ-ff: =iy faNa- ) + el )1+ 7]
= _i%zyﬂ (v —asy’) (1.51¢)
el(f)=h—Qyshy, er(f)=—-Qrs% (1.51d)
vp=1-2Qs%, af=1 (1.51e)

The Feynman rules are given in Section 1.6.

Self-interactions of the Gauge Boson The Lagrangian of the non-Abelian gauge
field contains, in addition to the quadratic kinetic term, higher powers of the field’s
operator which represent self-interactions.

1 w1 1 w1

Loauge = _ZF,”.F. ”—ZFB,”ng =— XA: FA,”F'A”—ZFBWng (1.52a)
FA,uv = 8/4 War — av WA# - gW(W,u X WV)A

(Wux Wo)a=Y €eanc Wau Wey (1.52b)

B,C
Fpuy = 0,B, —0,B, (1.52¢)
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The self energy of the gauge boson is given by its triple and quartic terms in
Eq. (1.52a). It can be unpacked into

Lows = Lxe + Lse

1 v
= —S 0 W, =0, W,)- (W)

2

g (W, x W, -0 W) = EX (W, - Wi — (W, W) (W W)

(1.52d)

From this Lagrangian, one can derive Feynman amplitudes corresponding to 3-
gauge and 4-gauge boson vertices.
3-W vertex: Let us first treat the 3-W vertex matrix elements. Rewriting
W, x W, 0"W" = (W, W, — Wy, Wi,,)0" W3 + (cyclic)
=W, W," — W} W,)d"(cwZ +swA)’

+ (cyclic) (1.53)
where we used W+ = (W, F i W,)/+/2 and Eq. (1.24). Feynman diagrams of the
interaction can be obtained by calculating matrix elements of Eq. (1.53).

As an example, let us consider the y — W W~ vertex. For symmetry reasons,
we treat all the momenta as incoming (see Figure 1.5). Denoting the polarization

and momentum of the incoming photon as €3, k3 and those of outgoing W’s as
€n, —ky, n = 1,2, the scattering matrix element of the 3-W vertex is given by

Spi— 05 =—Q2m)* 0% (ki + ko + k3)iM f;
=i [ atxle (W ke k-l k)
= (27)*0* (k1 + k2 + ks)(i) (igwsw)
x [{(e14€20) = (€20€12)}(—iK})€] + (cyclic)] (1.54)
bl = [(igm (Wi () Wi () = W,F () W ()
x {cy Z(x) + SWA(x)}Vj| (1.54b)
Omitting the ever present 0 function, the matrix element becomes

—iMyi = (—igwsw)l(ks - €1)(€2 - €3) — (k3 - €2) (€3 - €1) + (cyclic)]
tef{(k1 — k2) - &3}(e1 - €2) + {(ka — k3) - €1}(€2 - €3)
+ {(ks — k1) - €2}(€3 - €1)]
= (W) (W)
< [(ie)[guv(k1 — ka)i + gua(ka — k3)u + grulks — k1) ]le* (¥)  (1.55)
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The Feynman amplitude for the vertex is given by the content in the bracket.

ie[guv(kr — k2)z + gua(ka = ks)u + gau(ks — k1)) (1.56)

4-W vertex: The Lagrangian of quartic interaction is given by

Low = —gTW(W‘M X W) (W' x W)
2
= S (W, W) (W, W)= (W, W)W W] (157a)
2
_ _gTW[(le + sz + W32)2

- (Wl,u le + WZ,u WZV + W},u W3V) (Wl/u le + WZ# WZV + W;l W3V):|
_ 8w { W2 W) — (W - Wa)?}
=-5 T W = (W W)

+ (WP + W7) Wi — (Wh - Ws)2 — (W, W3)2}]

1
= gzw|:5 {(wHw=y — (w- wop|
- {(W+ W)X — (W X)W X)}} (1.57b)
X=cwZ+swA (1.57¢)

where A%, (A - B) stand for the Lorentz scalar product A, A*, (A, B"). The first
bracket describes the W+ W~ <> W+ W~ process and the second A(Z)A(Z) <
wtw-.

Next, we consider A, Zg — WM"' W,~. By taking the matrix element and remov-
ing the 0 function, we can get the scattering matrix amplitude

—iM ~ i/ d*xLaw (x)
~—ighyswew(e(W)e(WH)[(WT . w)x?
— (W X) (W™ - X)lle(y)e(2))
= —ie’ cot Ow[2{e(W ) - e(W ) He(y) - (2)}
—{e(W7) - e(Z)He(WT) - e(y)} — {e(W™) - e(y)He(WT) - e(2)}]
= eﬂ(w—i_)gv(w_) [_iez cot Ow (28ap8uv — Gau8pv — gavgﬁ/t)]
x e%(y)ef (2) (1.58)

Other processes can be calculated similarly. The Feynman diagrams for the triple
and quartic coupling of the gauge bosons are summarized in Section 1.6.
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1.5
Higgs Interactions

Coupling with Gauge Bosons  We have seen that the mass is generated in the Higgs
sector and that its value is proportional to the vacuum expectation value “v.” As
the physical Higgs always appears in combination with the vacuum expectation
value, its coupling is closely related with the mass of particles which it couples.
It is obtained by replacing v by (v + H) as is seen in Eq. (1.37) and Eq. (1.46).
The interaction Lagrangian for the Higgs-gauge coupling is obtained by expanding
Eq. (1.37) and picking terms that contain the Higgs field H, that is,

v+ H)\* . _ 1 v+ H)N\ L L,
Lw—y = (gW( 2 )) VV/‘ W+M+E(7g2( 5 )) Z,uZ‘ — Lomass

W tu 8% 8w 12 +
j— - - /)
_TVHW” w ”+TVHZ‘MZ”+TH W/A w H

g% .
+ ?H Z,Z"

_ 1
= [ngW W, wte 4 EgszZﬂZ”] H
g 1g’
+ [TW W, w4+ ETZZ/,Z”] H? (1.59)

It contains interactions of the type HW W, HZZ and H2W?, H?Z2. Because of
Eq. (1.39), the coupling strength can be expressed in terms of the mass of the
particle.

2

2
HWW 82 —gymy, HZZ : % =g;m;
26 PR (1.60)
HHWW :&c==2p, HHZZ £ - rg

Feynman diagrams for these interactions are given in Section 1.6.

Coupling with Fermions The coupling is again obtained from the fermion mass
term by replacing v — v + H which is given by the second term of the last equality
of Eq. (1.46).

me__ er

Lusr= —wawa = —gw—MWUfwa (1.61)

Self Coupling  The self-interaction of the Higgs is already given in Eq. (1.48).

Ly lfz_gW m2 Ha_lgzw m2 H* (1.62)

= dmy M 32mk, M '
The expression is simple, but in extracting matrix elements, one needs to
count the symmetry factor carefully, for instance, (0|H3|hihyh3) — 3! and

(0| H*|hy1hyh3hy) — 4! where h;’s are the ith Higgs particles. Then, the Feyn-
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man rules are given by

3

—i= LS mZH : triple-Higgs interaction (1.63a)
2 mw
3 2

—i— g_\;/ mZH :  quartic-Higgs interaction (1.63D)
4 myy,

1.6
Feynman Rules of Electroweak Theory

Now that we have given all the rules to calculate transition matrix elements for the
electroweak interaction, we summarize the Feynman rules in the unitary gauge
below.

Feynman Rule 1: External Lines: We attach wave functions to fermions or polariza-
tions to bosons for each incoming or outgoing particle (Fig. 1.2). Spinor indices for
fermions are sometimes omitted.

Feynman Rule 2: Internal Lines To each internal line, we attach one of the propa-
gators depicted in Figure 1.3, depending on the particle species. For fermions, the
sign of momentum follows that of an arrow.

Feynman Rule 3: Fermion-Gauge Boson Vertices  For vertices of fermions and gauge
bosons, we attach coupling constants and appropriate y factors (Fig. 1.4). The pho-
ton couples to the electromagnetic current with charge Q re and is of the vector

ur(pi) / Us(pp) ¥ Vs(pi) y ve(pp) 5 e(k,) 5 e*(k', A)
) ) (e) (f)

(a (b) (c (d)

Figure 1.2 Wave functions to fermions and polarization vectors to bosons are to be attached to
each external line.

fermion Higgs scalar
o———s—0 *————— °

i F5 + mg i

p2-m2+ie p2-mgZ+ie

photon W, Z boson

L VAVAVAVAVAVAVAVA' ) L VAVAVAVAVAVAVAVA' ]
: qQudv
. —i(g,—
18y ( v my2 ) M = me m
Q2 +ie @2-my2+ie V=W T

Figure 1.3 Propagators are to be attached to each internal line.
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type. Qs are given by

Leptons : ;Qvﬁ Qv, =0y, =0
Q,e— Q.M: Qt:—l

Quarks : Qu=Qc= Q= +2/3, o
Qi=0Qs=0Qp=-1/3

with opposite charge assigned to the antifermions. The neutral Z boson couples to
the neutral current which is a mixture of the left- and right-handed fermions. Its
coupling constant is a product of a common constant

e

= 1.65
gz sin By cos Oy ( )

and flavor dependent constants
el(f) = Ly — Qsin’ Oy, er(f)=—Qysin’ Oy (1.66)

where f = e, u,toru,d,s, c,b,t. An alternative expression in terms of the vector
and axial vector couplings is also used. Using

1—y° 1+y5) gz

gzv" (eL(f) + erlf)—5 Zytvr—apy’)  (167)

the vector and the axial vector couplings are expressed as

vp=13-2Qysin’ Oy, as=1I (1.68)

(Y”(l Y7) Vji

sin By,

(a) (b) () Vji = KM matrix

¢ - —Y“[SL(f)(l—V )+ e (F)(1+77)]

Z o i &)
_ (S
82= sin Oy cos Oy,
f . .
eL(f)=I— Qgsin?0y  €r()=— Qrsin0y

(d) Ve =T3p—2Q¢sin2 By ap=I3

Figure 1.4 Vertices of fermions with gauge bosons.
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They are mutually related by

vp=e(f)+te(f), ap=e(f)—er(f) (1.69)

The charged W boson couples to left-handed fermions and its strength is given
by

e

BV = Sin Oy (1.70)
Notice that the fields that appear in the original Lagrangian are so-called weak
eigenstates. However, when we calculate cross sections, we use mass eigenstates.
For the electromagnetic and neutral current interactions, we do not need to differ-
entiate the mass eigenstates from the weak eigenstates, but for the charged cur-
rent interactions they are different. They are related by the Cabibbo-Kobayashi—
Maskawa (CKM) matrix V;;”. Therefore, for the W *.-fermion interaction with up-
quark j (= u, ¢, t) and down-quark i (= d, s, b), the CKM elements V;; have to be
attached.

Feynman Rule 4: Nonlinear Couplings of the Gauge Bosons: Because of the non-
Abelian nature of the electroweak theory, the gauge bosons have self couplings
which were given in Egs. (1.56) and (1.58). Their Feynman graphs are shown in
Figure 1.5. Note that there are no y ZZ or ZZ Z couplings. In the figure, all the
momenta are taken to be inward going.

Feynman Rule 5: Higgs Couplings: In Figure 1.6 we list vertices which include at
least one Higgs particle. Notice, the coupling strength is proportional to the mass
of the connecting particles.

Feynman Rule 6: Momentum Assignment and Loops The momenta of external
lines are fixed by experimental conditions. Then, at each vertex, the energy-
momenta have to conserve. The energy-momentum conservation constrains that
sum of all energy-momenta of external lines have to vanish assuming all the ex-
ternal momenta are inward going. It also fixes all the momenta for tree diagrams
which do not contain loops. Each loop leaves one momentum unconstrained and
has to be integrated, leading to divergent integrals. The integration includes a sum
over spinor indices and polarizations, depending on the particle species that form
the loop. For each closed fermion loop, an extra sign (—) has to be attached. Itis a
result of the anticommutativity of the fermion fields.

Amplitude for e“et — ff: Once all the Feynman diagrams are given, calcula-
tion of scattering amplitudes can be carried out in a straightforward way. As an
example, we construct an amplitude for the reaction e"et — f f in the O(a?)
process where fis any of the leptons or quarks.

9) Details of the CKM matrix elements are discussed in Chapter 6.
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igy [ guv (ki -kt gy, (ko - k3)y + gy (k3 - kpy ]
gy=¢ for Vv=y
gy=ccotBy for V=27

W+H V]a =Y Zo
\ / - igvlsz [ Zgocﬁ v ~ o Epv ~ o gBu]
/ \ gy=e for v=y
) V2[3=“{[3,Z[3 gy=ecotfy for V=27
Wy
(b)
W, Wy

/ ing[ 2ga[3 Zuv ~ o 8pv ~ Bav g[}u]
\ [

fw= SinQw

N4

W_V W+B
(©)

Figure 1.5 Nonlinear gauge boson couplings.

According to the Feynman rules we just described, we attach appropriate func-
tions to every part of the Feynman diagram as shown in Figure 1.7. The S-matrix
and the cross section is written as

Spi= 05— (2m)*0*(p1 + p2 — p3 — pa)iM (1.71a)
do = %ispmwﬁdups (1.71D)
pol
d’p3 d’py

dLIPS = (27)*0*(p1 + p2 — p3 — pa) (1.71c)

(27)32F5 (27)32E,
F=4[(p1-p2)’ — (mimy)’] ~2s for s= (p1+py)* > mi,mj (1.71d)
where F is the initial flux and dLIPS is the Lorentz invariant phase space of the final

state. Y denotes the average of the initial state and sum over final state degrees
of freedom which is valid when polarizations are not observed. Referring to the
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f Wiu Zy

7
— /
£/ it Bme WA igymygt Zus iggmugt 1O/ i3 B mye
7

myy w
(a) (b) (@ (d)
Whin, /o 7 A omN o
W, \\‘\HO Zv \\\Ho H9// AT
(e) (f) (2)

Figure 1.6 Vertices that include the Higgs boson.
Feynman diagram in Figure 1.7, the transition amplitude M can be written as

. Qudv
i (50 = 4%)
Suv m

g2 —mk +ie

it = [Bp3) (&2 7 (o = as7") ) v(p4)]

cevi 0 —h8p - .

x (—lzy 7(q )) Tt ic [7(p2) (—i Qiey”) u(p)] (1.72a)

d*p ilq=p)+my gz
_vzvv/l 2 :_/ T 182,V — 5
2% () o r[(q_p)z_m%k{ &y vr —apy)

iytmys - i

— 1.72b

I )} (1.72b)

where (p3), u(p1), ... are plane wave solutions of the Dirac equation [see Ap-

pendix A]. We have separated the fermion loop part of the Feynman diagram be-
cause it has to be integrated over the internal momentum and an extra (-) sign has
been attached according to the rule (6). = % (g% is a diverging integral and has to
be treated with a renormalization prescription which will be discussed in detail in
Chapter 5 and in Appendix C'".

A Note on the Ghosts The loop Feynman diagram in Figure 1.7 was given just
to illustrate how the Feynman rules work in the unitary gauge. In general, once
we go to higher order diagrams which contain loops, things are more complicated
and we need to consider ghost’s contributions. We did not include the ghosts in
our Lagrangian and their associated Feynman rules were not given either because
technical details of higher order calculations are beyond the scope of this book. We
only mention their role in the non-Abelian gauge theories."”

10) Generally, in this book, we derive cross compared with theoretical calculations
sections only at the tree level and describe including radiative corrections.
higher order corrections qualitatively. The 11) Some notes are given in the Appendix D for
only exception is the description of precision settings of the R-gauge and Feynman rules

Z resonance data in Chapter 5 which are for the ghosts.
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Figure 1.7 An example of the Feynman diagram in order O (a?) for the process e"et —
u~ut. To every element of the Feynman diagram (wave functions, vertices and propagators),
corresponding functions are attached.

Ghosts are fictitious scalar fields having the same isospin degrees of freedom as
the gauge particles, but obeying the Fermi-Dirac statistics. They are mathematical
artifacts that appear in the covariant gauge and only appear in the internal lines
of the Feynman diagrams. They do not appear in the physical gauge'”. They only
couple to the gauge fields. Their sole role is to compensate the unphysical degrees
of contributions in the loop generated by self-interactions of the non-Abelian gauge
fields in the internal lines. Unphysical contributions are generated by unphysical
components, that is, scalar components of the massive gauge particle. Therefore,
whenever loop diagrams of the non-Abelian gauge fields like that in Figure 1.8a
appear, the ghosts (Figure 1.8b) have to be included to compensate unphysical con-
tributions.

1.7
Roles of the Higgs in Gauge Theory

Unitary Gauge and R-Gauge So far, we emphasized the role of the Higgs field in
attaching mass to the gauge as well as matter particles. Here, we describe another
role in maintaining renormalizability of spontaneously broken gauge theories.

A major difficulty in the theory of weak interaction is the existence of massive
gauge bosons because they violate the gauge symmetry. In the GWS theory, it has
been shown that the symmetry is not broken, but hidden. In the unitary gauge, the
dynamical variables are chosen to match observed phenomena. However, in this

12) Coulomb gauge in QED and axial gauge in
non-Abelian gauge. See Section 7.1.1.
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(@) (b)

Figure 1.8 The non-Abelian ghost field which only appears as internal lines. The propagation of
the ghosts are denoted by dashed lines. Feynman diagrams containing a ghost loop (b) cancels
unphysical contributions created by a self-interacting non-Abelian gauge loop (a).

gauge, the massive vector bosons have three degrees of freedom corresponding to
three polarization states. The longitudinal polarization has components

€“(3) = (0,0,0,1) (1.73)

in the particle’s rest frame. When it is in motion, it is Lorentz boosted and has
components

|k| a)) k* m ~ - k
=(Xo02)="1 " 1k, k=~ 1.74
6L (m m) = wm T k] (1.74)

in a coordinate system where the particle momentum is expressed as k* =
(@,0,0,k), o = +/|k|*> + m?. Accordingly, the propagator of a massive vector
meson takes a form

. kuk
i (5= 57)

iAF(k) =
k2 —m?

(1.75)
At high energy as k — oo, the value of the propagator approaches a constant and
is the cause of bad divergences in the loop integral (see Appendix C or Vol. 1,
Sect. 15.8). In QED, we saw that the gauge invariance controlled the divergence
in order to not grow faster than the logarithm of the momenta. There, the gauge
propagator behaved like ~ 1/k? and the divergences were removed by introducing
a few number of counter terms, in other words, the theory was renormalizable (see
Vol. 1, Chapt. 8). However, presence of the longitudinal polarization adds an extra
diverging contribution. This is why the unitarity of the process involving the mas-
sive gauge boson is broken. However, if the gauge symmetry is not really broken,
but merely hidden, there must be a mechanism in the framework of spontaneous
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symmetry breaking to guarantee that the divergence created by the longitudinal
polarization of the gauge boson is somehow canceled.

't Hooft conceived of a clever gauge containing & as a parameter. Its formal set-
ting is given in Appendix D. Here, we only mention its usefulness for higher order
calculations and for the role of the longitudinal polarization. In this gauge (referred
to as the R-gauge), the vector boson propagator is expressed as

(1.76)

iAF<k>=—[g”—<1—s> L } :

kl_éml k2 — m2

For m — 0, it reproduces the photon propagator and by setting & = 1, it becomes
the Feynman gauge in QED. The ordinary massive vector propagator can be re-
produced by setting & = oo. However, for such a setting, which is the case in the
U-gauge, many divergent terms appear. If the theory is convergent as claimed, one
has to carry out the algebra very carefully, otherwise one easily gets lost.

As long as & is kept finite, the propagator has a built-in cut-off and the longitu-
dinal part can be calculated without difficulty. Setting & = 1, which is referred to
as the 't Hooft Feynman gauge, makes the calculation especially simple. Therefore,
it is the preferred setting for most theoretical calculations. Only logarithmic diver-
gences appear in the R-gauge and the calculation can be carried out in a straight-
forward way.

From a renormalization point of view, one sees that Ar — 1/k? as k? — oo and
is assured of the healthy theory applying the same logic to prove the renormaliz-
ability of the massless gauge boson, that is, the QED. Since it includes the U-gauge
as a special choice of & — oo, the gauge invariance assures the renormalizability
of the spontaneously broken gauge symmetry.

The price to pay is the appearance of the & dependent poles which has to be re-
moved because it is not physical. Also, would-be-Goldstone bosons reappear. They
vanish in the U-gauge because they are absorbed by the gauge bosons to become
their longitudinal component. In the R-gauge, they appear as redundant degrees
of freedom. However, it has been shown that the redundant would-be-Goldstone
bosons exactly cancels the unwanted fictitious pole of the gauge bosons. The sec-
ond price is that dynamical properties of each chosen variable in this gauge are
not directly connected to observable quantities. Obtained mathematical results are
hard to interpret in physical terms. Thus, the usual convention is to use the unitary
gauge for physical interpretation, but rely on the R-gauge for actual calculation in
order to address various theoretical technicalities.

Calculations are not difficult as long as one stays in the tree approximation. As
we do not want to get involved in the higher order loop calculations too much, we
will work in the unitary gauge in the following and restrict ourselves to qualitative
discussions using a simple example. We calculate certain tree processes faithfully
a’la Feynman rules and show how the renormalizability is restored in the spon-
taneously broken symmetry frame. Hopefully, we can obtain intuitive and clear
insight by staying in the unitary gauge.
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How is the Unitarity Maintained? Postulating the SU(2) gauge symmetry for the
weak interaction, the existence of the neutral vector boson W° was required. In the
spontaneously broken symmetry, the existence of the Higgs field is also required.
We shall see that they are necessary ingredients to keep the unitarity. Specifically,
we show in qualitative arguments that their role is to eliminate badly diverging
integrals induced by the massive gauge bosons. We take a simple example and see
how the unitarity of the theory can be maintained.

v¥ - WH W™ Let us consider the process of v — W1 W~ (Figure 1.9a).
This is not a practically doable process, but serves as an illustration where the the-
oretical problem lies.

_ wT A
v n v
P2 ky ky
p
kit+ky WO (1,2
pP+p2 2
P1
p P2
i v (e” v (et
) @ Ve
(©)
wt w-
E+
\Y v
(f)
Figure 1.9 The role of various processes u-channel (f), one possibly compensates the
in the non-Abelian gauge theory. (a) Cross leading divergent term. (d) A massive fermion
section for v¥ — W W™ increases in introduces another divergence. The wrong
proportion to the energy squared (~ s). (b) helicity component associated with massive
Because of (a), integration over the W T W — fermions diverges. As it contributes to the
intermediate state diverges badly. The rem- J = 0 partial wave, it can be compensated
edy is two-fold: by introducing an additional by introducing a scalar particle (the Higgs)
contribution due to either a neutral W in intermediate state (e).

the s-channel (c) or a new charged E™ in the
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Using the Feynman rules listed in Section 1.6, the scattering amplitude for the
process is given by

—iMaIEZMﬂV@ﬂY”(4f%%ﬂ—Y5)

_ ,&_ f(ri— ) A7)
= ) ) (1.77)

The polarization vectors €,(4), A = 1—3 satisfy e(A) - €(A') = —=0,1, k-€(4) =0.
An expression for the longitudinal polarization was given in Eq. (1.74). It shows
that at high energy (|k| > my), where we are interested in, the longitudinal po-
larization can be approximated as €” ~ k*/my . Replacing €/ with k*/my, we
have

L= ) H(1—7°) ~falti— J) Fa(1—7°)
Zkz{Z(Pl k)= K ph — mzw}(l -7’
=-D k(1-y)—mk (1 +7°) (1.78a)

where D = m?%, —2(p1 - k1) and we used pru(p1) = mu(p1), V(p2) 2 = —V(p2)m
For vV reactions, m = 0, but we retain it for later discussions when the neutrino
is replaced with the electron. Using p; — k1 = ky — pa, it can be rewritten as

=Ja(fo= 1) Ja(1 = 7®) = {mhy = 2p2- ka)+ 1 Jo} (1= 7)
=D Jh(l—-y’)—m o fo(1—7") (1.78b)

= 2Dl =) = m b o (175

Equation (1.78c¢) is obtained by taking average of Eq. (1.78a) and Eq. (1.78Db). The
second term in Eq. (1.78c¢) can further be rewritten as

—m oy Jo = mD + m’(}i— k) (1.78d)
The second term is O(m?/s) compared to the first and can be neglected. Substitut-

ing Eqgs. (1.78¢) and (1.78d) in Eq. (1.77), the amplitude for v¥ — W W~ athigh
energy is given by
2

—iMa = —i 2 F(p)(fi— Fo)(1 = %) + 2m]u(py) (1.79)
SmW

It rises linearly with |k|. As V(p)u(p) ~ E in the relativistic normalization, the
cross section grows like do ~ |M|?[s ~ s = (k1 + k3)2.

Let us first consider the massless neutrino case. Then, the second term in the
bracket is absent. We remark that the first term is a pure | = 1 amplitude. To
prove it, we insert an explicit representation for the y matrices and the plane wave
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solution for the Dirac particle (see Appendix A).

u(p) = [ \/—VE;’;;‘E} v(p) = [_ \/7%77] 3(p) = v1(p)y° (1.80a)

k= |:w +0k-¢r w_Ok'aj| ’ yS - [_(1) (1)] ’ yO - |:(1) (1)] (1.80b)
Ey = [(1)] L E = m o (1.800)

Choosing helicity eigenstates for &,, ,, and evaluating in the center of mass frame
(ky =k, =k,p, = —p, = p),wehaveforv(h = -1)v(h = +1) > Wt w—,

P(p2)(]i— Jo) (L — v ) u(p1) = (VE + p &4, —VE — p&y)

1t 3t e

= 4(E 4 p)é4(k-0)E— = 4(E + p)|k|sin@e™"? (1.81)

If the scattering amplitude is expressed in terms of the Jacob—-Wick’s partial wave
expansion (see Vol. 1, Eq. (9.47)),

Mo = 87/S 304010

1
Sasrgnn = 2ip] DT+ 1)(ul(s) - 1)|/1>d,{,/1(9)
J
N D%Z(ZJJFI)CMJ sinéjd,{j(O) (1.82)
J

where d/{, ; is the rotation matrix elements with angular momentum J. Setting the
initial helicity A = 1/2—(—1/2) = 1 and the final helicity u = 0—0 = 0, d},(0) =
sin 6, it proves that the first term of Eq. (1.81) is a pure | = 1 contribution. Since
the unitarity (S; = €?'%/) constrains |e*®/ sin & ;| < 1 which, in turn, means | M|
should not grow more than a constant. Therefore, Eq. (1.81) violates the unitarity
badly at high energy.

It is also the cause of the diverging loop integral. Consider Figure 1.9b. The dia-
gram, if cut in half, is the scattering amplitude vv — W1 W~ squared. Indeed,
the unitarity of the scattering matrix dictates that the imaginary part of the for-
ward scattering amplitude in Figure 1.9b is proportional to the total cross section
of v¥ — WT W~ (see Eq. (I.36)). Since the intermediate state can have any mo-
mentum p as can be seen from Figure 1.9b, it has to be integrated over p which
results in a bad divergence, the integrand growing ~ s.

To ameliorate the situation, we consider adding other diagrams just to cancel
the bad divergence. Cancellations either in the u-channel or in the s-channel are
possible. One in the t-channel does not help because it gives a similar amplitude
with the same sign. Since Eq. (1.77) is in the pure | = 1 state, we consider adding
another neutral vector boson V! in the s-channel.
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The corresponding amplitude is depicted in Figure 1.9c. The amplitude can be
calculated to give
— M
(go/l 2 )

—iM, = v(pz)( ‘SgZVI (1- )) (pl)m
x (igva)€iu€an V" (—ky, —k1)

VI (ky, kp) = g°" (k1 — ka)z + 87 (ko — ka)* + g (k3 — ka)”
g=ki+ky, ks=—(ki+ k) (1.83)

The trilinear coupling part can be simplified by using (€1 - k1)= (€2 - k2) = 0 and
k3 = (kl + kz)

E1uean VI (— ey, —ky) = [(e1 c&) (ke — ko)t — 2(es - kr)ed + 2er - kz)e;]

(1.84a)
Inserting €; ~ k;/my, we have
1
1veu VI (—ka, —k1) = ——— (k1 - ka) (k1 — ka)* (1.84b)
My
Substituting Eq. (1.84D) in Eq. (1.83), the matrix element becomes
. gv1gvz_ 5 (k1 - k2)
—iM, = — 1-— _ 1.85
i S T )= ) R (185)

If gvigvs = g% /2, Eq. (1.85) cancels the first term of Eq. (1.79) for |k| > m?,. This
is exactly the case for the V to be I3 member of the gauge boson in SU(2). This is
also true for the case of SU(2) x U(1) where W is replaced by y and Z. For the y,
Eq. (1.51) and Figure 1.5 gives

g1

3 (1 T Qre= Qrgwsinby, gy, =¢e=gwsinby (1.86a)

Note, we deliberately retained the charge Q ¢ to do similar arguments later for the
electron. For the neutrino, Q, = 0 and the photon does not contribute. For the Z,
Eq. (1.51e) and Figure 1.5 gives

%(1— y°) — gTZ(Vf —ary®), gva= ecotby = gw cos by
g2= 20—, vp=Ly—2Qssin by, o= Ly (1.86b)
W

Then,
Zgwgvz =20Q gk sin’ Oy + i (I3y —2Q sin® 6 — Izy°)
v.Z
= gwhr(1-7)

iy {7

5 (1—y°) for v (1.87)
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Namely, the gauge invariance provides exactly the proper counter terms in order to
not give bad high energy behavior.

In passing, we mention that the divergence can also be compensated by intro-
ducing a “heavy electron ET” in the u-channel, provided it also has the coupling
required by the gauge symmetry."”” The model eliminates the neutral current. It was
proposed as an alternative to the GWS theory before the discovery of the neutral
current, and hence was ruled out by its discovery. However, the example illustrates
the power of the gauge symmetry in controlling the divergence.

Problem 1.1

Prove that the diagram Figure 1.9f cancels the dominant contribution of Figure 1.9a
provided the same coupling constant is used.

Higgs in the renormalization When the initial fermion pair is massive as is the
case for the electron, the diverging term reappears. This is because the massive
fermion can have opposite helicity for the same chirality. The left-handed neutrino
is in a pure helicity (b = —1) state, but the electron can have a positive helicity
component with amplitude proportional to its mass ~ m,/p'". This induces an
extra component, namely, the second term in Eq. (1.79). Note, the first term also
changes sign because W is interchanged in the transition e”e™ — W~ W
as shown in Figure 1.9d. Then, the contribution of Figure 1.9c also changes sign
because I3(e”) = —1/2, and thus the compensation mechanism is again valid
here.

As is clear from the expression, this term has J = 0 and is proportional to the
fermion mass. This is not the dominant divergence as that of the J] = 1 com-
ponent. Nevertheless, it is a divergence that grows faster than the logarithm. It
gives the O(s) term to the loop integral. A scalar meson is necessary to compen-
sate it and this is the place where the Higgs comes in. The coupling of the Higgs
field after spontaneous symmetry breakdown is proportional to the fermion’s mass
(Eq. (1.46)) just as required. It does not couple to the neutrino because it is not
needed. The scattering amplitude corresponding to e"et — H® — Wt Ww—
(Figure 1.9e) is given by

. — i i . v
—lMe = V(pz) (—Ei—v;me) u(pl)mﬁgwmwg )EIIMEZV
(1.88a)

13) This is equivalent to asking that E+ be a member of the multiplet in which v and e~ belong. In
other words, the fermions constitute a triplet as opposed to a doublet in the Standard Model. The
model is based on SU(2) gauge theory and identifies I3 as the electric charge operator [47].

14) See arguments in Vol. 1, Sect. 4.3.5. It is also apparent in Eq. (1.80a) because for E > |p|, the
opposite helicity component does not vanish.
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Inserting €;, — ki, /mw again and neglecting m2, relative to (ky - k,), we obtain

2
Sw
2

—iM, 1
4my,

mev(p2)u(p1) (1.88b)
which cancels the second term of Eq. (1.79).

WW — WW scattering The cancellation mechanism we just mentioned is at
work for the vector boson scattering as well. The two diagrams with two triple
boson vertices in Figure 1.10a,b produces a term ~ (k3 - k4){(k3 — k4) - (k1 — k2)} (k1 -
k;) ~ s* which is reduced to ~ s? by the propagator. Therefore, the amplitude
includes terms O(s?) + O(s) + O(In's). The term of O(s?) is compensated by the
quartic coupling diagram of Figure 1.10c if the latter has the right coupling as is
required by the gauge theory. The O(s) term can be compensated by a term which
includes a scalar field in the intermediate state if it has the right coupling as is
given by the second and last term of Eq. (1.37). Thus, the remaining divergence is
at most logarithmic and can be handled with the renormalization prescription.

In summary, the gauge theory which has broken spontaneously has a built-
in mechanism to compensate all the annoying divergences and make the theory
renormalizable [38, 39]. Conversely, if one tries to compensate diverging integrals
by introducing additional particles and determines their particle species, coupling

wt w-

Y, Z
wt w-
(b)
wt w-
HO
wt w-

Figure 1.10 W-W scattering goes through triple vector coupling (a,b), quartic coupling (c) and
Higgs coupling (d,e).
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constants and masses, they always end up with the spontaneously broken gauge
theory [48-51]. We conclude, therefore, that the spontaneously broken gauge the-
ory is the only renormalizable theory that can handle massive vector bosons.

In retrospect, the role of the Higgs to rescue the divergence problems whenever
they occur is clear if one accepts the fundamental role of the gauge symmetry to
overcome the difficulties and looks at the original Lagrangian. The gauge sector
(the first line of Eq. (1.16)) and the Higgs sector (the second line of Eq. (1.16)) both
independently satisfy the SU(2) x U(1) gauge symmetry. The masses are generated
in the Higgs sector. If the symmetry is broken spontaneously, which is equiva-
lent to rewriting fields in a certain gauge, the gauge invariance as a whole is still
maintained mathematically. The gauge invariance is broken when one separates
the mass terms, add them alone to the gauge sector and discard the rest of the
Higgs contributions. Since the whole Lagrangian which includes the Higgs part is
gauge invariant, it is no wonder that the difficulty is solved by including the Higgs
contributions.
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