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1
Theoretical Foundations

1.1
Units

1.1.1
Lengths, Masses, Times, and Temperatures

We use Gaussian centimetre-gram-second (cgs) units throughout. Lengths are
measured in centimetres, masses in grams and time in seconds. The derived units
of force, energy and power are listed in Table 1.1. Temperatures are unvariedly
measured in Kelvin (K).

The main reason for using these rather than SI units is they allow electromag-
netic relations to be expressed in a much easier way, as we shall now discuss.

1.1.2
Charges and Electromagnetic Fields

The unit of charge is chosen such that the Coulomb force between two charges q
separated by the distance r is

FCoulomb D q2

r2 . (1.1)

Table 1.1 The units of force, energy and power are listed here in the cgs system together with
their relations to SI units.

Quantity cgs unit Alternatives

Force mass � acceleration
g cm

s2 dyn 10�5 N

Energy mass � velocity2 g cm2

s2 erg 10�7 J

Power energy/time
erg
s

10�7 W
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2 1 Theoretical Foundations

Table 1.2 This table lists the units of charge, electric and magnetic field in the Gaussian cgs
system, their physical dimensions, and alternative units.

Quantity cgs unit Alternative

Charge force1/2 � length
g1/2 cm3/2

s
esu

Electric or magnetic field force/charge
g1/2

cm1/2 s
gauss

With this choice, the dielectric constant of the vacuum, �0, becomes dimensionless
and unity. Electric and magnetic fields are defined to have the same unit. This is
most sensible in view of the fact that they are both related, and can be converted
into each other, by Lorentz transforms. Their unit is chosen such that the force
caused by an electric field E on a charge q is

Felectric D qE . (1.2)

This implies that charge, electric and magnetic fields must have the units given in
Table 1.2. The squared electric or magnetic field strengths then have the dimension
of an energy density.

By definition, the units of charge in the SI and the Gaussian cgs systems are
related by

1 Coulomb D 2.9979 � 109 esu . (1.3)

Electrostatic potential differences, or electrostatic potential energy changes per unit
charge, are measured in volts in SI units. Consequently, we must have

1 V D 1
J
C

D 107 erg
2.9979 � 109 esu

D 1
299.79

g1/2 cm1/2

s
. (1.4)

The energy gained by a unit charge moving through an electrostatic potential dif-
ference of 1 Volt, defined as the electron volt, must then be

1 eV D 1.6022 � 10�12 erg . (1.5)

1.1.3
Natural Constants

The most frequently used natural constants in cgs units are tabulated in Table 1.3.

1.2
Lorentz Invariance

This section summarises the concepts of special relativity and their consequences for the
structure of space-time and for the dynamics of a particle. Its most important results
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1.2 Lorentz Invariance 3

Table 1.3 The most frequently used natural constants are tabulated here with their common
symbols and their values in cgs units. The values are taken from the Particle Data Group (http:
//pdg.lbl.gov/, last accessed 25 September 2012).

Quantity Symbol Value in cgs units

Light speed c 2.9979 � 1010

Elementary charge e 4.8032 � 10�10

Electron mass me 9.1094 � 10�28

Proton mass mp 1.6726 � 10�24

Boltzmann’s constant kB 1.3806 � 10�16

Newton’s constant G 6.6738 � 10�8

Planck’s constant „ 1.0546 � 10�27

are the relativistic time dilation (1.32) and the Lorentz contraction (1.36), the addition
theorem for velocities (1.38) and the transformation of angles (1.41), the combination
of energy and momentum into the momentum four vector (1.59) and the relativistic
relations (1.62) and (1.63) between energy, momentum and velocity.

Perhaps it is helpful to begin with the statement that classical physics aims to
quantify the behaviour of physical entities in space with time. Point mechanics, for
example, studies the trajectories of particles with negligible extension. A trajectory
can be quantified by a vector-valued function Ex (t) which assigns a spatial vector Ex
to any instant t from a finite or infinite time interval. Field theory describes forces
as the effect of fields, which are functions of space and time obeying their own dy-
namics. Immediately, we are led to the question of how we want to identify points
in space and instants in time in a quantifiable manner.

This is achieved by a reference frame or a coordinate system. In Newtonian phys-
ics, space and time were both assumed to be absolute. A rigid reference frame was
assumed to exist which identified each point in space by a triple Ex of real-valued,
spatial coordinates, and by a real number t for the time. Having formulated the
laws of physics in this absolute frame, the immediate further question arises as to
how other frames of reference, or coordinate systems, could be chosen such that
those laws would remain valid without changing their form. The answer of New-
tonian physics was that the laws of physics are the same in all so-called inertial
frames. In slightly different words, the laws of physics were claimed to be invariant
under all transformations, leading from one inertial frame to another.

A clarifying remark should be in order here before we move on. Notice the per-
haps trivial point that not the physical quantities are generally assumed to be un-
changed under transformations from one inertial frame to another, but the form of
the physical laws relating them. For example, Newton’s second axiom, that is, force
is mass times acceleration, is expected to hold in all inertial frames, irrespective
of the specific values of the acceleration and the force. In another inertial frame,
the values of force and acceleration may and generally will be different, but the
statement of the law, force equals mass times acceleration, is expected to remain
valid. Valid physical laws are expected to be invariant in this sense. If, in addition,



�

�

Matthias Bartelmann: Theoretical Astrophysics — Chap. bartelmann0040c01 — 2012/10/18 — page 4 — le-tex

�

�

�

�

�

�

4 1 Theoretical Foundations

physical quantities can be identified that remain invariant under transformations
from one inertial frame to another, such conserved quantities play an important
role in the analysis of specific physical systems under consideration. It is thus of
central importance for any part of theoretical physics to clearly state which type of
transformation should lead from one inertial frame to another.

In a more mathematical language, transformations between inertial frames form
groups. Admissible physical laws are those which are invariant under the operation
of those groups. The identification of the invariance group of a physical theory is
perhaps the most fundamental step in its foundation.

1.2.1
The Special Lorentz Transform

In Newtonian mechanics, inertial frames are related by Galilei transformations. If
one inertial frame is given, any Galilei transform turns it into another one. The
Galilei transforms form a ten-parameter group of transformations. They contain
shifts of the origin in space and time (four parameters), translations with constant
velocity (three parameters) and rotations in space (further three parameters, for
example, the Euler angles). Consequences of the Galilei invariance of Newtonian
mechanics are the existence of an absolute time and the Galilean addition theorem
for velocities.

However, the Galilei invariance of Newtonian mechanics leads to contradictions
with experience. The decay of muons sets a prominent example. Myons are leptons
comparable to the electron, but with a mass of 105.6 instead of 0.511 MeV. They
decay according to

μ ! e� C Nν e C νμ (1.6)

into electrons and (anti-) neutrinos with a half-life of τμ D 1.5 � 10�6 s. Experi-
ments show, however, that the lifetime increases if the muon moves in the laborat-
ory frame with velocities near the speed of light. The electron emitted in the decay
almost has light speed, but never exceeds it, even if the muon had already moved
with almost the speed of light. Clearly, the muon seems to live longer in the labor-
atory rest frame than in its own rest frame, and the Galilean theorem for adding
velocities no longer applies.

Einstein’s theory of special relativity replaced the Galilei invariance of Newtonian
mechanics by the Lorentz invariance of relativistic physics. Special relativity grew
from the problem that the speed of light c appears as an absolute velocity in Max-
well’s vacuum equations of electrodynamics. Einstein radically solved this problem
by elevating the postulate to a principle that the speed of light c is a universal con-
stant, independent of the state of motion of the light source relative to the observer.
Interestingly, the concepts of absolute space and time underlying Newtonian phys-
ics were thus replaced by the concept of an absolute, observer-independent max-
imal velocity.

Consider now two inertial frames, S and S 0, moving relative to each other at
an arbitrary, constant speed (Figure 1.1). Imagine a flash of light going off. By the
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1.2 Lorentz Invariance 5
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Figure 1.1 (a) Two inertial frames are shown
moving with constant velocity Ev relative to
each other. They are synchronised such that
their origins coincide at t D 0 D t0 . (b)
A light signal emerging from a source at the

common origin of both frames, illustrated
by the coloured spheres, propagates in the
same way in both frames, despite the relative
motion of the two frames.

principle of the constant light speed, the wave front of the flash must propagate
in the same way in both frames irrespective of their relative velocity and therefore
obey the condition

dEx2 � c2dt2 D dEx 0 2 � c2dt0 2 . (1.7)

For definiteness and without loss of generality, we now rotate the coordinate
frames S and S 0 such that they move with respect to each other along their com-
mon Eez axis, and further set the origin of time such that both frames coincide at
t D 0 D t0. Requiring further that the transformation between S and S 0 be linear
leads directly to the special Lorentz transform

x 0 3 D γ (x3 C �c t) , c t0 D γ (c t C �x3) , (1.8)

where � D v/c is the relative velocity in units of the light speed, and the Lorentz
factor

γ WD (1 � �2)�1/2 (1.9)

appears. In the limit of low velocities, � � 1, the Lorentz factor is γ � 1 C
�2/2 to second-order in �, or γ � 1 to first-order. Note that we write the vector
indices in (1.8) as superscripts. This may appear arbitrary here, but has a deeper
mathematical sense that will shortly be explained.

As (1.8) shows, the time t and the spatial coordinates x i cannot be uniquely
or invariantly separated under special Lorentz transforms. They lose their inde-
pendent identity and become coupled to each other, depending on the relative mo-
tion of the frames in which they are measured. Instead of the rigid Newtonian,
Euclidean space-time with its uniquely defined, absolute time axis, we thus need
to adopt a four-dimensional space-time with a different structure. We introduce
c t WD x0 as a further coordinate and combine the coordinate quadruples to four-
vectors x D (x μ) D (x0, x1, x2, x3)T. This four-dimensional space with a structure
to be clarified below is called Minkowski space M D R3C1.
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6 1 Theoretical Foundations

The Lorentz transform connects any two inertial frames in the four-dimensional
Minkowski space. General Lorentz transforms are composed of special Lorentz
transforms in all spatial directions, the so-called Lorentz boosts, plus the ortho-
gonal three-dimensional spatial rotations, plus arbitrary translations in space and
time. Like the Galilei transformations, general Lorentz transformations have ten
parameters: the three Euler angles for the orthogonal three-dimensional rotations,
the four translations, and one velocity for the Lorentz boosts in all three independ-
ent spatial directions. In relativistic mechanics, the Lorentz transformations re-
place the Galilei transformations of Newtonian mechanics.

1.2.2
Minkowski Space

Since Lorentz transforms leave the expression �(x0)2 C Ex2 invariant by construc-
tion, we define the scalar product between two four-vectors as

hx , yi D �x0 y 0 C Ex � Ey D η(x , y ) , (1.10)

where Ex � Ey is the ordinary scalar product between two vectors in Euclidean space.
It is a pseudo-scalar product because it is not positive semi-definite. Based on this
scalar product, the Lorentz group as the invariance group of relativistic physics, ab-
breviated by O(3, 1), can now formally be defined as the set of all linear transforms
represented by real-valued, square, 4 � 4 matrices M(4, R) that leave the scalar
product (1.10) unchanged,

O(3, 1) D fΛ 2 M(4, R)jhΛx , Λ yi D hx , yi8x , y 2 Mg . (1.11)

This clearly repeats as a mathematical statement that Lorentz transforms are
defined as those linear transforms leaving the speed of light invariant.

The object η introduced in (1.10) satisfies the definition of a second-rank tensor,
as it is a bilinear map of two vectors from Minkowski space M into the real num-
bers,

η W M � M ! R , (x , y ) 7! η(x , y ) D hx , yi . (1.12)

This tensor is the metric tensor of Minkowski space, or the Minkowski metric.
Generally, a metric is a second-rank, symmetric tensor which is non-degenerate.
This means that if hx , yi D 0 for all x 2 M, then y D 0. Once a Cartesian coordin-
ate basis is introduced for Minkowski space, the metric can be represented by the
diagonal matrix

(ημν) D diag(�1, 1, 1, 1) , (1.13)

which allows us to write the scalar product (1.10) as

hx , yi D
X
μ,ν

ημν x μ y ν . (1.14)
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1.2 Lorentz Invariance 7

The subscripted indices introduced here are again not arbitrarily set and will be
further illustrated below. By means of the metric, the linear map x� defined by

x� W M ! R , y 7! x�(y ) D η(x , y ) D hx , yi (1.15)

can be introduced on Minkowski space. It maps vectors into the real numbers
as shown. The set of all such linear maps forms the dual vector space M� to
Minkowski space M.

While vector components are identified by upper indices, dual vector compon-
ents are written with lower indices. Then, according to

hx , yi D
X
μ,ν

ημν x μ y ν D
4X

νD0

0
@ 4X

μD0

ημν x μ

1
A y ν , (1.16)

the dual vector x� of a four-vector x has the components

xν D
4X

μD0

ημν x μ D (�x0, x1, x2, x3) . (1.17)

In Euclidean space, the distinction between vectors and dual vectors is irrelevant
because its metric can be represented by the unit matrix. In Minkowski space,
it becomes vitally important because of the minus sign of the time-time (or 0-0)
component in the metric.

We now introduce Einstein’s sum convention in the following form. If an index
appears twice in a product and at different levels (i.e. one sub- and one superscrip-
ted), a sum over the repeated index is implied. Thus, for example,

xμ y μ D
3X

μD0

xμ y μ . (1.18)

This notation simplifies the previous expressions considerably. Written in compon-
ents, the scalar product between two vectors x and y simply becomes

hx , yi D xμ y μ . (1.19)

The notation of four-vectors and their dual vectors is made consistent by writing
the inverse Minkowski metric η�1 with superscripted indices, since then

x μ D ημα xα D ημα ηαν x ν D δμ
ν x ν . (1.20)

Thus, we must have

ημα ηαν D δμ
ν , (1.21)

from which we conclude that the matrix representations of the Minkowski metric
as well as of its inverse can be brought into the diagonal form

(ημν) D (ημν) D diag(�1, 1, 1, 1) . (1.22)
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8 1 Theoretical Foundations

In the notation developed so far, the special Lorentz transform (1.8) can be writ-
ten as

x 0μ D Λμ
ν x ν with (Λμ

ν ) D

0
BB@

γ 0 0 γ �
0 1 0 0
0 0 1 0

γ � 0 0 γ

1
CCA . (1.23)

Since the Lorentz transform is constructed to leave the Minkowski scalar product
invariant, recall (1.11), we must have

ηα� x α x � D hx , xi D hx 0, x 0i
D ημν Λμ

α x α Λν
� x � D

�
ημν Λμ

α Λν
�

�
x α x � , (1.24)

showing that the Lorentz transform also leaves the Minkowski metric invariant,

ηα� D ημν Λμ
α Λν

� . (1.25)

This relation replaces the perhaps more familiar orthonormality relation in Euc-
lidean space. There, orthonormal transformations R need to satisfy the condition

(R Ex ) � (R Ey ) D Ex � Ey , (1.26)

which implies the condition RT D R�1 on matrix representations of R.
The Minkowskian orthonormality relation (1.25) implies that dual-vector com-

ponents must transform under Lorentz transformations as

x 0
μ D Λ ν

μ xν , (1.27)

which differs from the transformation (1.23) of vector components. Quantities
transforming like vector or dual-vector components under Lorentz transforms are
called Lorentz covariant or contravariant, respectively. Quantities unchanged by
Lorentz transforms are Lorentz invariant. Vectors are consequently sometimes ad-
dressed as covariant vectors, that is, dual vectors as contravariant vectors, which is
a terminology which we avoid here because it hides the more fundamental math-
ematical distinction between vectors and dual vectors (which is also decisively im-
portant elsewhere, for example, in quantum mechanics).

Since the coordinate time becomes largely arbitrary in special relativity as it loses
any invariant meaning, it needs to be replaced by an invariant measure of time. The
only Lorentz-invariant quantity that can be defined to characterise the separation
between two space-time points x μ and x μ C dx μ is the so-called line element of
the Minkowski metric (1.10),

ds2 D ημνdx μdx ν . (1.28)

This line element is interpreted as the so-called proper time dτ by the identification

ds2 D �c2dτ2 . (1.29)
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1.2 Lorentz Invariance 9

This definition is meaningful since the proper time equals the time measured by
an observer in his or her own rest frame. In that frame, an observer arbitrarily
placed at the spatial coordinate origin has the Minkowski coordinates (x0, 0, 0, 0)T.
Two subsequent events experienced by that observer at instants of coordinate time
separated by dx0 in the rest frame have the invariant distance

c2dτ2 D (dx0)2 D c2dt2 , (1.30)

which shows that the proper time agrees with the coordinate time in any observer’s
rest frame.

1.2.3
Some Properties of the Minkowski World

We briefly summarise some essential conclusions from the Lorentz covariance
of the Minkowski world (see also Figure 1.2). First, let two events happen in the
unprimed system S at the same location Ex D 0, but with a time difference δ t
or δx0 D cδ t. These events have the four-vectors x1 D (0, 0, 0, 0)T and x2 D
(δx0, 0, 0, 0)T. By the special Lorentz transform (1.23), they are transformed into
the events

x 0
1 D (0, 0, 0, 0)T , x 0

2 D (γ δx0, 0, 0, �γ δx0)T . (1.31)

Thus, in the primed system S 0, they are separated by the larger time interval

δx 00 D γ δx0 or δ t0 D c�1δx 00 D γ δ t . (1.32)

This is the relativistic time dilation: Moving clocks go slow.
Next, we consider a unit rule oriented in the direction of the relative motion of

the two frames and resting in the unprimed system S. Its end points, measured at

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

t, 
t’

x, x’

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

t, 
t’

x, x’(a) (b)

Figure 1.2 Lines of constant t0 and x 0 are shown in the unprimed system S for � D 0.25 (a)
and � D 0.5 (b). The lines are inclined with an angle arctan(�) relative to the unprimed axes.
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10 1 Theoretical Foundations

an arbitrary time c t D x0 in S, are marked by the four-vectors x1 D (x0
1 , 0, 0, 0) and

x2 D (x0
2 , 0, 0, 1). Now, an observer in S 0 measures its end points. It is important

that he does so at one fixed instant of his coordinate time, which we arbitrarily and
without loss of generality set to be x 00 D 0. By (1.23), this requires

0 D x 00 D γ x0 C �γ x3 or x0 D ��x3 . (1.33)

For the two end points of our unit rule, this simultaneity condition implies that

x0
1 D 0 and x0

2 D �� (1.34)

since x3
1 D 0 and x3

2 D 1 by construction. The unit rule’s end points x1,2 appear at

x 0
1 D �

γ x0
1 , 0, 0, �γ x0

1

�T
, x 0

2 D �
γ x0

2 C �γ , 0, 0, �γ x0
2 C γ

�T
(1.35)

in the primed observer’s rest frame S 0. Inserting (1.34) here gives

x 03
1 D 0 and x 03

2 D (1 � �2)γ D γ�1 . (1.36)

Thus, in the primed system S 0, the unit rule turns out to have the length x 03
2 �x 03

1 D
γ�1, which is smaller than its unit length in the rest frame. This is the relativistic
length contraction: Moving rods are shorter.

Let us now consider a particle moving with velocity Eu D (u x , u y , u z)T in the
unprimed system. Its four vector in S, x D (x0, u x t, u y t, u z t)T D x0(1, u x /c,
u y/c, u z/c)T is transformed into

x 0 D x0

�
γ C �γ

u z

c
,

u x

c
,

u y

c
, �γ C γ

u z

c

�T
. (1.37)

The velocity components of the particle in the primed system S 0 are then found to
be

u0
x ,y D c

x 01,2

x 00 D u x ,y

γ (1 C �u x ,y/c)
, u0

z D c
x 0 3

x 00 D v C u z

1 C v u z/c2 . (1.38)

The last equation is the relativistic law for the addition of velocities. While the ve-
locity components perpendicular to the relative motion of the two frames S and S 0

are reduced by the Lorentz factor γ , the velocity component parallel to the motion
adds to the relative velocity of the two frames in such a way that the sum of the two
velocities u z and v never exceeds c.

Let the particle now fly with the speed of light into a direction enclosing the
angle θ with the Eez axis along which the two frames move relative to each other. For
simplicity, but without loss of generality, we further rotate both coordinate frames
about their common Eez axis such that the particle moves in the x–z coordinate
plane. Then,

u x D c sin θ , u y D 0 , u z D c cos θ (1.39)
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1.2 Lorentz Invariance 11

in the unprimed system, and

u0
x D c sin θ , u0

y D 0 , u0
z D v C c cos θ

1 C � cos θ
(1.40)

in the primed system. Since the absolute velocity must also remain j Eu0j D c in the
primed frame, the direction of motion in S 0 is

cos θ 0 D u0
z

c
D � C cos θ

1 C � cos θ
. (1.41)

This is the relativistic aberration of light: Light rays propagating perpendicularly to
Eez in S enclose an angle θ 0 D arccos � with the Ee0

z axis in S 0. For non-relativistic
velocities, � � 1 and cos θ 0 � � C cos θ to first-order in �.

Consequently, the solid-angle element spanned by light rays also changes due to
the relative motion of S 0 relative to S. As the velocity components perpendicular
to the direction of motion are unchanged, so is the azimuthal angle, φ0 D φ and
dφ0 D dφ. From the aberration formula (1.41), we have

d cos θ 0 D d cos θ
1 C � cos θ

� (� C cos θ )�d cos θ
(1 C � cos θ )2

D d cos θ
γ 2(1 C � cos θ )2

, (1.42)

which implies that the solid-angle element spanned by a light bundle transforms
as

dΩ 0 D dφ0d cos θ 0 D dφd cos θ
γ 2(1 C � cos θ )2 D dΩ

γ 2(1 C � cos θ )2 . (1.43)

This is relativistic beaming: Isotropic radiation in the unprimed system S attains
a highly anisotropic angular distribution in S 0, pointing strongly into the forward
direction (Figures 1.3 and 1.4).

2

1

0

1

2

 4  3  2  1  0  1

β=0.2
β=0.4
β=0.6

Figure 1.3 Illustration of the relativistic
deformation of the solid-angle element
dΩ 0/dΩ for the three different velocities
� D 0.2, 0.4, 0.6 as indicated. The curves il-

lustrate how isotropic radiation emitted by a
point source resting in the unprimed system S
would appear focussed into the direction of
motion in the primed system S 0.
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12 1 Theoretical Foundations

Figure 1.4 The relativistic deformation of the
solid angle is shown here in a pseudo-three-
dimensional representation. The dark sphere
around a source at rest illustrates isotropy.

When the source is moving, the sphere sur-
rounding it in its rest frame appears strongly
distorted into its forward direction.

1.2.4
Relativistic Dynamics

Since the coordinate time has no invariant meaning any more in relativity, the
definition of velocity must be changed. The four-velocity is introduced as the deriv-
ative of a position four-vector with respect to the invariant proper time τ,

uμ D dx μ

dτ
. (1.44)

By definition of the proper time in (1.28),

dτ D c�1
p

�ds2 D c�1
q

�dx μdxμ D c�1
p

c2dt2 � dEx2

D dt
p

1 � �2 D γ�1dt . (1.45)

Accordingly, the components of the four-velocity are

uμ D γ (c, Ev )T D cγ (1, E�)T , (1.46)

and hence its (Minkowski) square is

u2 D hu, ui D uμ u μ D �c2γ 2(1 � �2) D �c2 , (1.47)



�

�

Matthias Bartelmann: Theoretical Astrophysics — Chap. bartelmann0040c01 — 2012/10/18 — page 13 — le-tex

�

�

�

�

�

�

1.2 Lorentz Invariance 13

which is obviously and by construction invariant. Since dτ is also invariant, uμ

transforms like the four-vector x μ under Lorentz transformations, and is thus also
a four-vector.

Similarly, the four-momentum of a particle with mass m is defined as

p μ D muμ D γ mc(1, E�) . (1.48)

Up to second-order in �, the zero (time) component of the four-momentum is

p 0 D γ mc � mc
�

1 C �2

2

�
D c�1

�
mc2 C m

2
v2
�

. (1.49)

Here, the non-relativistic kinetic-energy mv2/2 appears together with the rest-
energy mc2.

In analogy to classical mechanics, we now search for the action S of a free, relativ-
istic particle, that is a particle moving relativistically in absence of external forces.
The action must be Lorentz invariant since it must not depend on the arbitrary
state of motion of any observer. Therefore, it must only depend on Lorentz scalars
characterising a free particle. For a free particle, the only such scalar is the proper
time τ, scaled with a constant α to be determined later,

S D α

bZ
a

dτ , (1.50)

where a and b mark the fixed four-dimensional start and end points of the particle’s
trajectory. The action must have the dimension [energy] � [time]. Since τ has the
dimension [time], the constant α must be a constant energy, which we shall de-
termine later.

Writing the action as a function of the coordinate time t, we find

S D α

tbZ
ta

dt
p

1 � �2 , (1.51)

from which we can identify the Lagrange function

L( Ex , Ev , t) D α
p

1 � �2 (1.52)

for the free relativistic particle. For non-relativistic motion, � � 1, this must re-
produce the Lagrange function of a free particle in Newtonian mechanics,

α
p

1 � �2 � α
�

1 � �2

2

�
D α � αv2

c2
. (1.53)

Ignoring the irrelevant constant α left as a first term on the right-hand side, the
second term shows that α D �mc2 must be chosen to satisfy the limit of non-
relativistic mechanics. Accordingly, the action of the free relativistic particle is

S D �mc2

bZ
a

dτ , (1.54)
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14 1 Theoretical Foundations

and its Lagrange function is

L D �mc2
p

1 � �2 . (1.55)

The Euler–Lagrange equation requires

d
dt

@L
@Ev D d

dt

 
γ mc2

E�
c

!
D mc

d
dt

�
γ E�
�

D 0 , (1.56)

which implies
PE� D 0 D PEv : The free particle moves on a straight line, as expected.

The momentum conjugate to the three-dimensional position vector Ex is

Ep D @L
@Ev D m Evp

1 � �2
D γ m Ev . (1.57)

The particle’s Hamilton function follows from the Legendre transform

H D Ev � Ep � L D γ mv2 C mc2
p

1 � �2 D γ mc2
�

�2 C 1
γ 2

�
D γ mc2 .

(1.58)

This is to be interpreted as the energy E of the particle. Taking the results (1.57)
and (1.58) together and comparing them with the momentum four-vector shows
that we can write the latter in the form

p μ D
�

E
c

, Ep
�T

. (1.59)

This identifies the momentum four-vector with the energy-momentum vector of a
relativistic particle. Its Minkowski square is

hp , p i D pμ p μ D � E 2

c2
C Ep 2 , (1.60)

while the equivalent definition p μ D muμ implies

hp , p i D m2hu, ui D �m2c2 . (1.61)

Together, (1.60) and (1.61) form the relativistic energy-momentum relation

E 2 D c2 Ep 2 C m2c4 . (1.62)

Combining (1.57) and (1.58) finally gives the very useful relation

Ep D E
c2 Ev D E

c
E� . (1.63)
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1.2 Lorentz Invariance 15

Let us conclude this section with a remark on energy, momentum and their con-
servation in relativity. Energy and momentum are conserved if the Lagrange or
Hamilton functions of a system are invariant under translations in time and space,
respectively. In relativity, time and space lose their independent existence. Time in-
tervals and spatial distances can at least partially be transformed into each other, de-
pending on the observer’s state of motion relative to the system considered. There-
fore, separate energy-momentum conservation cannot retain an invariant meaning
in relativistic mechanics, and must be combined to the joint energy-momentum
conservation.

Problems

1. Repeat the mathematical definitions of a group, a field, a vector space, a scalar
product, a dual vector space and a tensor.

2. Write down the transformations of time t ! t0 and position Ex ! Ex 0 under
Galilei transformations.

3. Which of the following quantities are Lorentz invariant?

Ex2 , xμ x μ , x μ x ν , ημν , ds2 , (dx0)2 , γ , dτ2? (1.64)

4. Compute the following expressions:

@α x μ , @α xμ , @αhx , xi D @α
�
x μ xμ

�
. (1.65)

5. Light rays are described by their wave vector k μ D (ω/c, Ek), where Ek is the three-
dimensional wave vector pointing into the propagation direction of the light ray
and satisfying the vacuum dispersion relation ω D ck with the frequency ω.

a) Compute the (Lorentz-invariant) scalar product of the wave vector k μ and
an arbitrary four-velocity uμ . Explain why the frequency measured by an ob-
server moving with four-velocity uμ is

ωobs D �hu, ki D �u μ k μ . (1.66)

b) Comparing two observers, one at rest and one moving with respect to the
first with velocity Ev , derive the relativistic Doppler relation

ω0

ω
D 1 � En � E�p

1 � �2
, (1.67)

where E� D Ev/c and En D Ek/ k.
c) The four-momentum of a particle is p μ D muμ , where the four-velocity

uμ D dx μ

dτ
(1.68)

is the derivative of the coordinates x μ with respect to the proper time τ. Start-
ing from the relativistic Hamilton function

H D 1
2m

pμ p μ , (1.69)
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16 1 Theoretical Foundations

of a free particle, derive the equations of motion and show that its Lagrange
function is

L D m
2

u μ uμ . (1.70)

1.3
Electromagnetism

This section summarises the foundations and some important results of classical electro-
dynamics. The theory is motivated as the only Lorentz invariant, linear theory for six
field components that satisfies Coulomb’s force law. Maxwell’s equations are derived in
covariant form from the appropriate action and solved by means of the retarded Greens
function. The general formalism for the energy-momentum tensor of a field theory is
introduced and applied to the electromagnetic field. From the Liénard–Wiechert poten-
tials, Larmor’s formula is derived in relativistic form, and the covariant expression for
the Lorentz force is derived from the action. The main results are Maxwell’s equations
themselves, most compactly expressed in Lorenz gauge by the wave equation (1.94), the
energy-momentum tensor (1.104) for the electromagnetic field, the Liénard–Wiechert po-
tentials (1.111), the relativistic Larmor formula (1.132), its solid-angle integrated ver-
sion (1.135) and its non-relativistic approximation (1.137), and finally the relativistic
expression (1.141) for the Lorentz force.

1.3.1
Field Tensor and Sources

Electromagnetism is a classical field theory with six degrees of freedom, namely,
the three components each of the electric and magnetic fields EE and EB. Fields are
functions of space and time. Since special relativity teaches us that space and time
are not independent, any field theory must be explicitly constructed to agree with
the space-time structure of special relativity. The electromagnetic field must thus be
expressed as a four-vector or a tensor field. Obviously, a four vector is not sufficient
to describe six degrees of freedom. The simplest object available is a rank-2 tensor,
which offers 16 independent components in its most general form. A symmetric
rank-2 tensor in four dimensions still has ten independent components, while an
antisymmetric rank-2 tensor has exactly the required six degrees of freedom. The
simplest possibility to describe six degrees of freedom with a Lorentz-covariant
object in four dimensions is thus provided by an antisymmetric field tensor F of
rank two, whose components must satisfy

F μν D �F νμ , Fμν D �Fνμ . (1.71)
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1.3 Electromagnetism 17

The antisymmetry is most conveniently ensured expressing the components of F
as derivatives of a four-potential A with components

Aμ D
 

Φ
EA

!
, (1.72)

where Φ is the ordinary scalar potential and EA is the three-dimensional vector
potential. The components of the rank-(2, 0) field tensor are then written in the
manifestly antisymmetric form

F μν D @μ Aν � @ν Aμ . (1.73)

They can be conveniently summarised as

(F μν) D
 

0 EE
� EE B

!
(1.74)

where the matrix

Bi j D �i j a B a (1.75)

is formed from the components of the magnetic field. The fields themselves are
thus given by

EE D � 1
c

PEA � ErΦ , EB D Er � EA . (1.76)

Given our signature (�, C, C, C) of the Minkowski metric, the associated rank-
(0, 2) tensor has the components

(Fμν) D
 

0 � EE
EE B

!
. (1.77)

The source of the electromagnetic field is the four-current density j which has
the components

( j μ) D
 

�c
Ej

!
, (1.78)

where � is the charge density and Ej is the three-dimensional current density.
Charge conservation is expressed by the vanishing four-divergence of the four-
current,

@μ j μ D @�

@t
C Er � Ej D 0 . (1.79)
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18 1 Theoretical Foundations

1.3.2
Lorentz Transform of the Electromagnetic Field

Changing from one inertial frame to another, moving with a velocity Ev D c E� with
respect to the original frame, the field tensor is Lorentz transformed according to

F 0 μν D Λμ
α Λν

� F α� . (1.80)

Orienting both coordinate frames such that their Eez axes coincide with the direction
of relative motion, the special Lorentz transform is represented by the matrix given
in (1.22), and (1.80) gives the following transformation rules for the electric and
magnetic field components:

E 0
x D γ (Ex C �By ) , E 0

y D γ (Ey � �Bx ) , E 0
z D Ez ,

B 0
x D γ (Bx � �Ey ) , B 0

y D γ (By C �Ex ) , B 0
z D Bz . (1.81)

While the field components in the direction of motion remain unchanged, the
transverse components are enhanced by the Lorentz factor γ . In particular, a purely
electric or magnetic field in one frame obtains a magnetic or electric component
in the other, moving frame, respectively. It is, however, not possible to transform a
purely electric field into a purely magnetic field or vice versa. This is easily under-
stood because the Lorentz transform must keep all Lorentz invariants unchanged
that can be formed from the field tensor. These invariants can be written as

Fμν F μν D �2( EE 2 � EB2) , (�F )μν F μν D �2 EE � EB , (1.82)

where �F is the (Hodge-) dual field tensor. Any Lorentz transform must thus con-
serve ( EE 2 � EB2) and EE � EB. Starting with EB D 0 in one inertial frame first of all
demands that EE 0 and EB 0 must remain perpendicular to each other in any inertial
frame. By the invariance of ( EE 2 � EB2), a complete conversion of a purely electric to
a purely magnetic field would require

EE 2 D � EB 0 2 , (1.83)

which is only possible in the trivial case EE D 0 D EB 0 because EE 2 and EB 02 are
positive definite otherwise.

One remark on the transformation formula (1.80) may be in order to avoid confu-
sion. In Euclidean space, a transformation R from one coordinate frame to another
changes the matrix representation of a tensor T according to

T 0 D R T R�1 D R T RT (1.84)

if R is orthogonal, R�1 D RT. Although the matrix representation (1.22) of the
Lorentz transform does not satisfy this relation, the Lorentz transform is still or-
thogonal in the sense that it leaves (Minkowski) scalar products invariant, just as
orthogonal transformations in Euclidean space leave the Euclidean scalar product
unchanged; see also the discussion of this issue in Section 1.1.2 above. For this
reason, (1.80) remains valid for Lorentz transformations.
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1.3 Electromagnetism 19

1.3.3
Maxwell’s Equations

The dynamical equations of a field theory are the Euler–Lagrange equations ap-
plied to a Lagrange density which, for a linear theory like electrodynamics, must
satisfy three conditions: It must be Lorentz invariant, it must contain at most quad-
ratic terms in the field quantities to ensure a linear theory, and it must reproduce
the Coulomb force law in the case of electrodynamics. The only Lagrangian that
satisfies these criteria is

L D � 1
16π

F μν Fμν � 1
c

A μ j μ , (1.85)

where the constants must be chosen such as to reproduce the measured coupling
strength of the electromagnetic field to matter. The otherwise perfectly legitimate
term A μ Aμ is excluded because it would give the electromagnetic field an effective
mass and thus violate the Coulomb force law.

Since the field tensor depends on Aμ only through derivatives, it is invariant
under the gauge transformation

Aμ ! Aμ C @μ � , (1.86)

where � is an arbitrary function of all four coordinates x μ . At first sight, the Lag-
rangian (1.85) appears to violate gauge invariance, but Gauss’ law applied to the
action

S D
Z

d4xL (1.87)

shows that charge conservation (1.79) ensures gauge invariance.
Maxwell’s equations are now the Euler–Lagrange equations

@ν @L
@(@ν Aμ)

� @L
@Aμ

D 0 (1.88)

of the Lagrangian (1.85). They turn out to be

@ν F μν D 4π
c

j μ , (1.89)

which are four inhomogeneous equations. Since the field tensor is antisymmetric,
it identically satisfies the equation

@[α F�γ ] D 0 , (1.90)

which represents the homogeneous Maxwell equations. For α D 0, (�, γ ) D (1, 2),
(1, 3) and (2, 3), the homogeneous equations (1.90) give

PEB C c Er � EE D 0 , (1.91)
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while we find

Er � EB D 0 (1.92)

for α D 1, (�, γ ) D (2, 3). Setting μ D 0 and μ D i , the inhomogeneous equa-
tions (1.89) give

Er � EE D 4π� , c Er � EB � PEE D 4π Ej , (1.93)

respectively.
With the definition (1.73) of the field tensor in terms of the four-potential and

with the Lorenz gauge condition @μ Aμ D 0, the inhomogeneous equations (1.89)
can be cast into the form

�Aμ D � 4π
c

j μ , (1.94)

where � D �@2
0 C Er2 is the d’Alembert operator. The particular solution of this

inhomogeneous wave equation is given by the convolution of the source with the
retarded Greens function

G(t � t0, Ex � Ex 0) D 1ˇ̌ Ex � Ex 0
ˇ̌ δ

 
t � t0 �

ˇ̌Ex � Ex 0
ˇ̌

c

!
, (1.95)

that is by

Aμ(t, Ex ) D 1
c

Z
d3x 0

Z
dt0G(t � t0, Ex � Ex 0) j μ(t0, Ex 0) . (1.96)

The Greens function (1.95) has an intuitive meaning (Figure 1.5). Its first factor,
proportional to the inverse distance between the observer and the source, expresses
Coulomb’s force law, which is an immediate consequence of photons being mass-
less. If photons had a mass, the Greens function would have a Yukawa shape with
an exponential cut off. The second factor, the delta function, shows that only such
sources can influence the potential at the observer whose world lines intersect with
the observer’s backward light cone.

Since the Greens function is defined as

�G(t � t0, Ex � Ex 0) D �4πδ(t � t0, Ex � Ex 0) , (1.97)

it represents any component of the four-potential created by a point source on the
backward light cone of the observer. The convolution (1.96) assembles the complete
four-potential by superposition of all contributing sources. This is possible only
because electromagnetism is a linear field theory.
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x

t

world line

Figure 1.5 Illustration of the geometrical meaning of the retarded Green’s function: All signals
received from the observer on the world line at a given instant of time must originate from the
backward light cone ending at that time.

1.3.4
Energy-Momentum Conservation

A field theory with a Lagrangian L(q, @ν q) for a single field q and its derivatives @ν q
has the energy-momentum tensor

T μ
ν D @L

@(@μ q)
@ν q � Lδμ

ν , (1.98)

which simply corresponds to the Legendre transformation leading from the
Lagrange to the Hamilton function in classical mechanics. Should the expres-
sion (1.98) turn out to be asymmetric, it needs to be symmetrised to ensure the
symmetry of the energy-momentum tensor. For the electromagnetic field, any Aγ

can take the role of q, thus

T μ
ν D @L

@(@μ A γ )
@ν A γ � Lδμ

ν . (1.99)

With the Lagrange density of the free electromagnetic field,

L D � 1
16π

F μν Fμν , (1.100)

this implies the energy-momentum tensor

T μ
ν D 1

4π

�
F μλ Fνλ � 1

4
F α� Fα� δμ

ν

�
(1.101)

of the electromagnetic field. From the representations (1.74) and (1.77) of the field
tensor, we find first

F μλ Fνλ D
 

� EE 2 EE � EB
EE � EB �Ei E j C δ i j EB2 � Bi B j

!
(1.102)
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and

F α� Fα� D �2( EE 2 � EB2) . (1.103)

Thus, the energy-momentum tensor can be written as

T μ
ν D 1

4π

 
�( EE 2 C EB2)/2 EE � EB

EE � EB 0

!
C
�

0 0
0 Ti j

�
, (1.104)

where

Ti j D 1
4π

��
1
2

EE 2δ i j � Ei E j

�
C
�

1
2

EB2δ i j � Bi B j

�	
(1.105)

is Maxwell’s stress tensor. The energy density of the electromagnetic field is

ε D T 00 D
EE 2 C EB2

8π
. (1.106)

The energy-momentum tensor satisfies the conservation equation

@ν T μν D 0 (1.107)

which, for μ D 0, returns the continuity equation

@ε
@t

C Er � ES D 0 (1.108)

for the energy density, where the Poynting vector

ES D c
4π

EE � EB (1.109)

represents the energy-current density of the electromagnetic field.

1.3.5
Liénard–Wiechert Potentials and the Larmor Formula

A particle with charge q on a trajectory Er0(t) has the current density

j μ D q
�

c
Ev
�

δ[Er � Er0(t)] . (1.110)

When inserted into the convolution (1.96) with the retarded Greens function, this
yields the Liénard–Wiechert potentials

Φ (Er) D q

R(1 � Ee � E�)
, EA(Er) D q E�

R(1 � Ee � E�)
D Φ E� , (1.111)
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1.3 Electromagnetism 23

where the right-hand sides have to be evaluated at the retarded time

t0 D t � R
c

. (1.112)

The vector ER � Er � Er0(t0) points from the retarded particle position to the observer,
R D j ERj, and Ee is the unit vector in ER direction,

Ee D
ER
R

. (1.113)

The fields EE and EB are obtained as the usual derivatives of Φ and EA, but it must
be taken into account that the potentials are expressed in retarded coordinates,
while we need the derivatives with respect to the observer’s coordinates. The spatial
derivatives of Φ are

@i Φ D � q

(R � ER � E�)2
(@i R � � j @i R j � R j @i � j ) . (1.114)

While the first two terms decrease / R�2, the third decreases / R�1. Aiming at
the fields far away from any source, we only retain the latter, and thus

(@i Φ )far D qR j @i � j

(R � ER � E�)2
D q(Ee � PE�)@i t0

R(1 � Ee � E�)2
. (1.115)

The remaining spatial derivative of the retarded time is

@i t0 D �@i R
c

D � R j

R
@i R j D �e j

�
δ i j

c
� � j @i t0

�
D � e i

c
C (Ee � E�)@i t0 .

(1.116)

This equation gives

@i t0 D � e i

c(1 � Ee � E�)
, (1.117)

which implies with (1.115)

( ErΦ )far D � q(Ee � PE�)Ee
R c(1 � Ee � E�)3

(1.118)

for the gradient of Φ in the far-field. The time-derivative of EA is

(@t EA)far D Φ@t
E� C E�@t Φ D q

PE�@t t0

R(1 � Ee � E�)
C q E�(Ee � PE�)@t t0

R(1 � Ee � E�)2
(1.119)

if we again drop all terms with a steeper R dependence than R�1 to isolate the
far-field. Now, the time-derivative of t0 is given by

@t t0 D 1 � @t R
c

D 1 � R j

R c
@t R j D 1 C Ee � E�@t t0 , (1.120)
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thus

@t t0 D 1

1 � Ee � E�
. (1.121)

The far-field time-derivative of EA then turns into

(@t EA)far D q

R(1 � Ee � E�)3

�
(1 � Ee � E�)

PE� C E�(Ee � PE�)
	

. (1.122)

From this, together with (1.118), and using the identity Ea�(Eb � Ec) D (Ea � Ec)Eb�(Ea � Eb)Ec
twice, we find the electric field far from the source,

EEfar D q

R c(1 � Ee � E�)3
Ee �

�
(Ee � E�) � PE�

	
. (1.123)

The magnetic field is

EB D Er � EA D Φ Er � E� � E� � ErΦ . (1.124)

Taking the curl of the velocity E�, we must be aware that E� depends on position
through the retarded time t0. In components, we have� Er � E�

�
i

D �i j k@ j �k D �i j k
P�k@ j t0 . (1.125)

With the help of (1.117), we then find

Er � E� D � Ee � PE�
c(1 � Ee � E�)

, (1.126)

which, together with (1.118), allows us to write

EBfar D � q

R c(1 � Ee � E�)3
Ee �

� PE� C Ee � (E� � PE�)
	

. (1.127)

Compared to (1.123), it is straightforward to confirm that

EBfar D Ee � EEfar . (1.128)

Using this result, the Poynting vector far away from the source is

ES D q2

4πR2c(1 � Ee � E�)6

ˇ̌̌
ˇEe �

�
(Ee � E�) � PE�

	ˇ̌̌
ˇ2 Ee . (1.129)

This quantifies the energy received per unit area per unit time by the observer. We
now need to distinguish between a time interval dt measured by the observer and
the corresponding interval dt0 of the retarded time. The latter is the time interval
during which the source needs to emit for the observer to see its radiation for the
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time interval dt. Since, according to (1.121), the retarded time interval dt0 is related
to the time interval dt measured by the observer through

dt D (1 � Ee � E�)dt0 , (1.130)

the energy emitted per the observer’s unit time dt into the solid angle element dΩ
is

dE D ES � EeR2dΩ dt D q2

4πc(1 � Ee � E�)5

ˇ̌̌
ˇEe �

�
(Ee � E�) � PE�

	ˇ̌̌
ˇ2 dΩ dt0 , (1.131)

and thus the power emitted per unit solid angle and per unit retarded time dt0 is

dP
dΩ

D q2

4πc(1 � Ee � E�)5

ˇ̌̌
ˇEe �

�
(Ee � E�) � PE�

	ˇ̌̌
ˇ2 . (1.132)

This is the relativistic Larmor formula which describes the power radiated by a
source per unit solid angle (Figures 1.6 and 1.7).

The total emitted power is the solid-angle integral of (1.132). This calculation is
not difficult to carry out, but lengthy. Perhaps the most straightforward way begins
by expanding the double vector product using the identity

Ea � (Eb � Ec) D (Ea � Ec)Eb � (Ea � Eb)Ec , (1.133)

followed by squaring the result. Then, it is useful to introduce coordinates such

that the velocity E� points into the Eez direction, E� D �Eez , the acceleration
PE� falls

into the x–z plane,
PE� D P�(sin αEex C cos αEez ), and

Ee D
0
@cos φ sin θ

sin φ sin θ
cos θ

1
A . (1.134)
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Figure 1.6 The radiation power according to the relativistic Larmor formula is illustrated for a
charge accelerated parallel (a) and perpendicular (b) to its relativistic velocity. Three curves are
given for three arbitrary values of the acceleration.
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Figure 1.7 Three-dimensional illustration of
the radiation power of two accelerated charges
with � D 0.5. A charge accelerated perpendic-
ular to its direction of motion has its emission

peaked strongly into the forward direction of
its motion, while the radiation of a charge ac-
celerated parallel to its direction of motion is
emitted into a collar surrounding its trajectory.

Then, the φ and θ integrations can be carried out in this order, giving the result

P D 2e2

3c
γ 6
�

P�2 � (E� � PE�)2
	

. (1.135)

The factor γ 6 is most remarkable: A relativistically moving charge with a high
Lorentz factor radiates with an enormous power. For non-relativistically moving
charges, (1.132) and (1.135) simplify to

dP
dΩ

D q2

4πc

ˇ̌̌
ˇEe �

�
Ee � PE�

�ˇ̌̌
ˇ2 D q2

4πc

ˇ̌̌
ˇ PE� �

� PE� � Ee
�

Ee
ˇ̌̌
ˇ2 D q2

4πc
P�2

? , (1.136)

where
PE�? is the acceleration perpendicular to Ee, and

P D 2q2

3c
P�2 . (1.137)

1.3.6
The Lorentz Force

The action for a relativistic particle with mass m and charge q in an electromagnetic
field with vector potential Aμ is

S D �mc2
Z

dτ C q
c

Z
A μdx μ . (1.138)

This is the simplest Lorentz-invariant expression that can be formed from the only
Lorentz-invariant quantity of a free particle, that is, its proper time τ, the four po-
tential Aμ and the coordinates x μ of the particle trajectory. Variation of the ac-
tion (1.138) with respect to the particle trajectory under a fixed four-potential Aμ
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and equating the result to zero leads to the equation of motion

m
duμ

dτ
D q

c
F μ

ν uν . (1.139)

With u0 D γ c, ui D γ v i and dτ D γ�1dt, the 0-component of this equation
means

d
dt

(γ mc2) D q EE � Ev , (1.140)

showing that the work done by the electric field changes the energy γ mc2 of the
particle. The spatial components give

m
d(γ Ev)

dt
D q EE C q

c
Ev � EB . (1.141)

For non-relativistic motion, γ D 1 and (1.141) reproduce the common equation of
motion under the Lorentz force.

Problems

1. Starting from the Lorentz transform (1.80) of the electromagnetic field tensor,
expressly derive the Lorentz transform (1.81) of the field components.

2. Show by explicit calculation that Maxwell’s equation in three-dimensional form
follows from their relativistic forms (1.89) and (1.90).

3. Convince yourself that the components of the energy-momentum
tensor (1.104) have the appropriate physical units.

4. From the invariants (1.82) of the electromagnetic field tensor, derive the follow-
ing statements:

a) If EE and EB have the same amplitude, j EE j D j EBj in one inertial frame, then
also in all other inertial frames.

b) If EE and EB are orthogonal in one inertial frame, then also in all other inertial
frames.

5. Apply the Larmor formula to the classical picture of an electron in a hydrogen
atom.

a) Decide whether the non-relativistic approximation of the Larmor formula can
be applied.

b) Estimate the classical lifetime of a hydrogen atom.
6. Derive the electromagnetic field of a point charge q uniformly moving with the

velocity Ev0.

a) Calculate the Liénard–Wiechert potentials (1.111) for a point charge moving
with constant velocity along a straight line and compute the electromagnetic
fields from them. Hint: Since the velocity is constant, we never need the re-
tarded time itself, but only the separation R between the charge and any point
Ex at the retarded time. Introducing the vector Eω D Ex � Ev0 t helps greatly.
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b) Find the fields by a suitable Lorentz transform and compare the two
results.

1.4
Elementary Kinetic Theory

This section serves a two-fold purpose. The discussion of the Boltzmann equation and the
BBGKY hierarchy prepares the derivation of the hydrodynamical equations later in this
book. The Fokker–Planck equation derived thereafter from a diffusion approximation of
the collision terms occurs under a variety of circumstances in astrophysics, from radiation
transport to stellar dynamics. The main results are the Boltzmann equation (1.150), the
master equation (1.155), the Fokker–Planck equation in its original form (1.157), its
form (1.166) with one of the diffusion coefficients eliminated by equilibrium considera-
tions, and its form (1.174) for small changes in absolute momentum.

1.4.1
The BBGKY Hierarchy and the Boltzmann Equation

Kinetic theory describes how ensembles of particles change in time, in absence or
in presence of mutual collisions. In classical mechanics, generalised coordinates
qi are assigned to the degrees of freedom that the system under consideration has.
The number of degrees of freedom d depends on the number of components of
the system and their mutual relations to each other. If the system consists of N
independent point particles in three-dimensional space, d D 3N . If those particles
are linked to form a solid body, d D 6, because only three degrees of translational
and three degrees of rotational freedom remain. By Newton’s Second Law, two ini-
tial conditions must be given for each degree of freedom, which can be chosen to
be the generalised coordinates qi and the associated velocities, Pqi , at some initial
time.

If the system can be described by a Lagrange function L(qi , Pqi , t), the canonically
conjugated momenta

pi D @L(qi , Pqi , t)
@ Pqi

(1.142)

can be substituted for the velocities Pqi by the Legendre transform

H(qi , pi , t) D
dX

iD1

Pqi p i � L


qi , Pqi(pi), t

�
, (1.143)

leading to the Hamilton function H(qi , pi , t). The equations of motion for all de-
grees of freedom are then Hamilton’s equations,

Pqi D @H(qi , pi , t)
@pi

, Ppi D �@H(qi , pi , t)
@qi

. (1.144)
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The physical state of such a system is fully characterised by the d generalised
coordinates Eq D (q1, . . . , qd) and their d canonically conjugated momenta Ep D
(p1, . . . , pd ). The generalised coordinates Eq span the configuration space of the sys-
tem. Together with their conjugate momenta, they span the 2d-dimensional phase-
space.

It is by no means unique how the 2d phase-space coordinates are to be divided
into generalised coordinates and their conjugate momenta. Canonical transform-
ations applied to phase-space leave Hamilton’s equations invariant, but can turn
coordinates into momenta and vice versa.

The classical physical state of the system is given by the system’s location in the
2d-dimensional phase-space. Statistical mechanics is not interested in the phase-
space coordinates of all particles in an ensemble. Rather, it divides phase-space into
cells of small, but finite size, sums the number of particles in each cell and studies
the time-evolution of this number instead of the time evolution of each individual
pair (qi , pi ) of phase-space coordinates. We thus introduce a distribution function
f (d)(t, Eq, Ep ) such that the probability for finding the system in a small phase-space

cell around to the phase-space point (Eq, Ep ) at time t is

dP (d)(t, Eq, Ep ) D f (d)(t, Eq, Ep )dd qdd p . (1.145)

For systems with several degrees of freedom, the full phase-space distribution func-
tion f (d) becomes utterly unmanageable, apart from the fact that the complete
knowledge of the evolution of all d degrees of freedom is then neither desired nor
necessary. Rather, we are then interested in the reduced phase-space distribution
function f (k ), obtained by integrating f (d) over d � k coordinates and momenta,

f (k )(t, q1, . . . , qk , p1, . . . pk)

D
Z

dqkC1 . . . dqd

Z
dpkC1 . . . dpd f (d)(t, Eq, Ep ) . (1.146)

By Liouville’s theorem and Hamilton’s equations, the time-evolution of the full
phase-space distribution function f (d) is determined by Liouville’s equation

@ f (d)

@t
C Pqi

@ f (d)

@qi
C Pp j

@ f (d)

@p j
D @ f (d)

@t
C @H

@pi

@ f (d)

@qi
� @H

@q j

@ f (d)

@p j
D 0 . (1.147)

Searching for an evolution equation for any of the reduced phase-space distribution
functions f (k ), we have to integrate Liouville’s equation over d � k degrees of free-
dom and sort terms accordingly. It then appears that the evolution of the reduced
distribution function f (k ) depends on the reduced distribution function at the next
higher level, f (kC1). This establishes the so-called BBGKY hierarchy of equations
of motion for the reduced distribution functions, where the acronym stands for the
authors Born, Bogoliubov, Green, Kirkwood and Yvon.

To see what the BBGKY hierarchy means, let us begin with the reduced phase-
space distribution f (1) for a single degree of freedom. It will depend on the distri-
bution function f (2) for two degrees of freedom, which expresses the notion that
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individual degrees of freedom do not evolve in isolation, but in correlation with oth-
ers. In an ensemble of particles, the motion of a single particle is determined by
two-body correlations with other particles, which in turn are affected by three-body
correlations, and so forth. Clearly, the BBGKY hierarchy needs to be terminated
somewhere, or closed, for us to make any progress. This closure is typically set by
ignoring any correlations above a certain level.

We are particularly interested in the evolution of the distribution function for
single particles. Let us therefore imagine that we have an ensemble of N point
particles with d D 3N degrees of freedom. We then integrate out all 3N � 3 D
3(N � 1) degrees of freedom belonging to N � 1 of the N particles and arrive at
an evolution equation for the one-particle distribution function. According to the
BBGKY hierarchy, this evolution equation will contain two-particle correlations.
Closure can now be achieved by assuming that any two particles are statistically
uncorrelated. The joint probability for finding a pair of particles at two positions
in phase-space is then simply the product of the probabilities for finding one of
the particles at one position and the other at the other position. The two-particle
distribution function can then be written as a product of one-particle distribution
functions.

This closure condition means that any two particles affect each others motion ex-
clusively by direct two-body collisions. They move independently until they collide,
and continue moving independently after the collision. This is possible if the inter-
action potential between any two particles is short-ranged compared to the mean
inter-particle distance.

Following these considerations, we introduce a one-particle distribution function
f (t, Eq, Ep ) by integrating f (d) over all but those degrees of freedom that belong to

a single particle. For an ensemble of point particles in three-dimensional space,
f (t, Eq, Ep ) is then defined on an effective, six-dimensional phase-space. Moreover,

we normalise f (t, Eq, Ep ) such that

f (t, Eq, Ep )d3qd3 p D dN (1.148)

is the number of particles expected to be found within the infinitesimal phase-
space volume dΓ D d3qd3 p around the phase-space position (Eq, Ep ). For this one-
particle phase-space distribution function f (t, Eq, Ep ), Liouville’s equation reduces to
Boltzmann’s equation,

@ f
@t

C PEq � @ f
@Eq C PEp � @ f

@ Ep D C[ f ] , (1.149)

where the term C[ f ] is called collision term: According to our closure condition for
the BBGKY hierarchy, particle interactions are determined by direct particle col-
lisions only and thus by the one-particle distribution function itself. The collision
term must then be a functional of f. For a Hamiltonian system with Hamilton func-
tion H D H(t, Eq, Ep ), Boltzmann’s equation reads

@ f
@t

C @H
@ Ep � @ f

@Eq � @H
@Eq � @ f

@ Ep D C[ f ] . (1.150)
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If, as usual, the Hamilton function can be written as H D TCV , with the kinetic-
energy T depending on the conjugate momenta Ep only and a potential energy V
depending only on the generalised coordinates Eq, and if further T D Ep 2/(2m),
then we can write

@ f
@t

C @ f
@Eq � Ep

m
� @ f

@ Ep � @V
@Eq D C[ f ] . (1.151)

1.4.2
Collision Terms

In presence of collisions, the phase-space density changes schematically according
to

d f
dt

D gain � loss , (1.152)

where the gain and loss terms are due to scattering into and out of the phase-space
element d Ew under consideration. Let ψ( Ew , δ Ew)dδ Ewdt be the transition probability
due to scattering by an amount δ Ew from Ew to Ew C δ Ew within the time interval dt.
Typically, ψ would be quantified by a scattering cross section. Then, the gain term
is

gain D
Z

dδ Ew ψ( Ew � δ Ew , δ Ew) f (t, Ew � δ Ew) (1.153)

since the integral quantifies the expected number of particles moving per unit time
from the phase-space coordinates Ew � δ Ew to the phase-space coordinates Ew : It mul-
tiplies the number of particles at the original phase-space point with their transition
probability per unit time and integrates over all possible changes δ Ew . Similarly, the
loss term is

loss D
Z

dδ Ew ψ( Ew , δ Ew) f (t, Ew ) . (1.154)

Inserting these gain and loss terms (1.153) and (1.154) into (1.152) yields the so-
called master equation

d f (t, Ew)
dt

D
Z

dδ Ew 
ψ( Ew � δ Ew , δ Ew) f (t, Ew � δ Ew) � ψ( Ew , δ Ew) f (t, Ew )
�

,

(1.155)

describing the change of the phase-space density due to the collisions causing the
transition probability ψ in phase-space.

1.4.3
Diffusion in Phase-Space: The Fokker–Planck Approximation

We study the time-evolution of the phase-space density f here under the quite relev-
ant assumption that the phase-space coordinates of particles only change by small
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amounts in individual collisions. Then, the particles diffuse in phase-space and
their phase-space density changes gradually in a way that can be described with
two diffusion coefficients. As we shall see in the course of this treatment, it is suf-
ficient for this approximation if the absolute values of the phase-space coordinates
only change very little in each collision, while the scattering angles can even be
large. Under these circumstances, this diffusion approximation is most useful to
describe all kinds of particle ensembles which either have low mass or low en-
ergy and interact with another particle ensemble of high mass or high energy. The
equation describing how the phase-space density f changes with time under this
approximation is called the Fokker–Planck equation. Its derivation, and general
methods for its solution, are the main subject of the following treatment.

Specifically, let us assume that conditions are such that it is permissible to as-
sume that the change Δ Ew in the phase-space coordinates is small enough for the
transition probability and the phase-space density at Ew � Δ Ew to be approximated
by Taylor expansions up to second-order,

ψ( Ew � δ Ew , δ Ew) f (t, Ew � δ Ew)

� ψ( Ew , δ Ew) f (t, Ew) � @

@wi



ψ( Ew , δ Ew) f (t, Ew )

�
δwi

C 1
2

@2

@wi@w j



ψ( Ew , δ Ew) f (t, Ew )

�
δwi δw j . (1.156)

Inserting this into the master equation (1.155) already leads us to the Fokker–
Planck equation

d f ( Ew )
dt

D � @

@wi



f ( Ew)D i

1( Ew)
�C @2

@wi@w j

h
f ( Ew)D i j

2 ( Ew)
i

, (1.157)

which approximates scattering as a second-order diffusion process in phase-space.
The first- and second-order diffusion coefficients are

D i
1( Ew) D

Z
dδ Ew ψ( Ew , δ Ew)δwi ,

D i j
2 ( Ew) D 1

2

Z
dδ Ew ψ( Ew , δ Ew)δwi δw j . (1.158)

The first-order coefficient D i
1 integrates the change δwi in the phase-space coordin-

ate wi over the transition probability per unit time and thus quantifies the mean
change of wi per unit time. Similarly, the second-order coefficient D i j

2 quantifies
the variances D i i

2 of the changes in wi , and the covariances D i j
2 of different phase-

space coordinates wi and w j for i ¤ j . Thus, the combined vector with compon-
ents D i

1 is the mean change per unit time of the position vector Ew in phase-space,
while D i j

2 is the covariance matrix of all individual changes.
Suppose now that any change in the spatial coordinates is irrelevant, for example,

because all relevant particle species are homogeneously distributed in space. In
fact, this assumption is much less restrictive than it might seem. It can also be
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satisfied statistically in the sense that although particles may move in space, the
number of particles moving away from a specific point in space is compensated by
an equal number moving there. In other words, what we set out to consider now
is a dynamical spatial equilibrium. Then, we can concentrate on the d-dimensional
momentum subspace of phase-space, restrict Ew D Ep and δ Ew D δ Ep and consider
the phase-space distribution function f as a function of (t, Ep ) only. The total time
derivative of f (t, Ep ) then equals its partial time-derivative because

@ f (t, Ep )
@Eq D 0 and

@ f (t, Ep )
@ Ep � PEp D 0 for PEp D �@H

@Eq D 0 . (1.159)

Then, the Fokker–Planck equation (1.157) simplifies to a partial differential equa-
tion in time and momentum only,

@ f (t, Ep )
@t

D � @

@pi



f (t, Ep )D i

1( Ep )
�C @2

@pi@p j

h
f (t, Ep )D i j

2 ( Ep )
i

D � @

@pi

��
D i

1( Ep ) � @

@p j
D i j

2 ( Ep )
	

f (t, Ep ) � D i j
2 ( Ep )

@ f (t, Ep )
@p j


.

(1.160)

This equation manifestly has the form of a continuity equation, where the term in
brackets represents the current density Ej p in momentum space,

@ f (t, Ep )
@t

C Erp � Ej p D 0 ,

j i
p D

�
D i

1( Ep ) � @

@p j
D i j

2 ( Ep )
	

f (t, Ep ) � D i j
2 ( Ep )

@ f (t, Ep )
@p j

. (1.161)

At this point, it is important to note that the two diffusion coefficients D i
1 and

D i j
2 are generally not independent. In an equilibrium situation, the momentum

current Ej p must vanish. Setting j i
p D 0 in (1.161) for an equilibrium phase-space

distribution Nf (t, Ep ) implies that then the coefficient D i
1 can be expressed by D i j

2
and the derivative of Nf (t, Ep ) with respect to the momentum,

D i
1( Ep ) D @D i j

2 ( Ep )
@p j

C D i j
2 ( Ep )

@ ln Nf (t, Ep )
@p j

. (1.162)

However, since both coefficients do not depend on the specific form of f, we can
now use them in the more general situation of an arbitrary phase-space distribu-
tion. Inserting the relation (1.162) into (1.161), the derivative of D i j

2 with respect to
the momenta cancels, and the momentum current

j i
p D �D i j

2 ( Ep ) f (t, Ep )
@

@p j

h
ln f (t, Ep ) � ln Nf (t, Ep )

i
(1.163)

is shown to be driven by the momentum gradient of the ratio between the actual
and the equilibrium phase-space distributions.
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Suppose, for example, that the equilibrium distribution of the particle species
under consideration can be described as a Maxwellian momentum distribution
with a temperature NT . Then,

Nf (t, Ep ) / exp
�

� p 2

2mk NT
�

,
@ ln Nf (t, Ep )

@p j
D � p j

mk NT , (1.164)

the components of the momentum current simplify to

j i
p D �D i j

2 ( Ep ) f (t, Ep )
�

@ ln f (t, Ep )
@p j

C p j

mk NT
	

, (1.165)

and the Fokker–Planck equation becomes

@ f (t, Ep )
@t

� @

@pi

�
D i j

2 ( Ep ) f (t, Ep )
�

@ f (t, Ep )
@p j

C p j

mk NT
	

D 0 . (1.166)

1.4.4
Diffusion in Absolute Momentum

Quite frequently, the scattering process changes the absolute value of the mo-
mentum by a small amount only, while the scattering angle may be large. Then,
the diffusion approximation is still valid in terms of the absolute momentum, but
not in the full three-dimensional momentum space any more. In other words, mo-
mentum can then be considered as slowly diffusing between spherical shells in
momentum space, while its direction angles may be vastly redistributed from one
shell to another. Instead of the phase-space density f (t, Ep ), we must then consider
the density f (t, p )p 2 of particles in absolute momentum, irrespective of its dir-
ection. The Fokker–Planck approximation then still applies between momentum
shells, and the Fokker–Planck equation becomes

@( f p 2)
@t

D @

@p

��
D1 C @D2

@p

	
( f p 2) C D2

@( f p 2)
@p


, (1.167)

with the diffusion coefficients

D1(p ) D
Z

dδ p ψ(p , δ p )δ p , D2(p ) D 1
2

Z
dδ p ψ(p , δ p )δ p 2 . (1.168)

Both coefficients are now one-dimensional. The first-order coefficient D1 is the
mean momentum change per unit time, while the second-order coefficient D2 is
its mean-square.

We can now express the Fokker–Planck equation as a radial diffusion equation
in momentum space,

@ f
@t

C 1
p 2

@( j p p 2)
@p

D 0 , j p D
�

D1 C @D2

@p

�
f C D2

p 2

@( f p 2)
@p

, (1.169)
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where now j p is the radial component of the momentum current. Notice that the
operator applied to the momentum current is the divergence in spherical polar
coordinates, so the meaning of the equation has not changed: It remains a conser-
vation equation, expressing that any change in phase-space density is caused by a
momentum current.

Again, j p must vanish in an equilibrium situation, expressed by an equilibrium
phase-space density Nf . This requirement establishes the relation

D1 D �
�

2D2

p
C @D2

@p

�
� D2

@ ln Nf
@p

(1.170)

between D1 and D2. Inserting this result into the current density in (1.169) gives,
after some straightforward rearrangement,

j p D D2 f
@

@p

�
ln f � ln Nf

�
D D2 f

@

@p
ln

f
Nf . (1.171)

To give an example, let us assume that both the actual and the equilibrium phase-
space distributions, f and Nf , are Maxwellians characterised by two different tem-
peratures T and NT , respectively. Then,

@ ln f
@p

� @ ln Nf
@p

D � p
mkT

�
1 � T

NT
�

, (1.172)

the momentum-current density becomes

j p D �D2
p f

mkT

�
1 � T

NT
�

, (1.173)

and the Fokker–Planck equation reduces to

@ f
@t

D 1
p 2mkT

�
1 � T

NT
�

@

@p

�
D2 p 3 f

�
. (1.174)

1.4.5
Calculation of the Diffusion Coefficient D2

For an actual calculation of the diffusion coefficient D2, we return to its definition
in (1.158) or the more specialised form (1.168) and recall that the physical mean-
ing of D2 is (one-half) the mean-squared momentum change per unit time of the
particle species considered,

D2 D 1
2

hδ p 2i . (1.175)

Consider, for example, a species of heavy particles with mass M embedded in a
sea of light particles with mass m � M . Then, the energy of the heavy particles
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is almost unchanged by the collisions with the light particles, while momentum
conservation implies a small change δ p in absolute momentum determined by

δ p 2 D 2q2(1 � cos θ ) (1.176)

per collision, if q and θ are the momentum and the scattering angle of the light
particle. The probability of a light particle with velocity v D q/m scattering off a
heavy particle per unit time into the solid-angle element dΩ is

nv
dσ
dΩ

dΩ D nq
m

dσ
dΩ

dΩ , (1.177)

where n is the number density of light particles. Thus, the mean-squared mo-
mentum change per unit time of a heavy particle is

˝
δ p 2˛ D 2n

m

�Z
q3(1 � cos θ )

dσ
dΩ

dΩ
�

, (1.178)

where the average has to be taken over the momentum distribution of the light
particles. Suppose that the heavy particles can be considered as hard spheres with
radius R, while the light particles approximate point masses. Then, in the idealised
situation of light particles bouncing off heavy, hard spheres,

dσ
dΩ

D R2

4
,

Z
(1 � cos θ )

dσ
dΩ

dΩ D πR2

2

1Z
�1

(1 � cos θ )d(cos θ ) D πR2 ,

(1.179)

and the diffusion coefficient D2 becomes

D2 D 1
2

˝
δ p 2˛ D π nR2

m

˝
q3˛ , (1.180)

where the average over the cubed momentum of the light particles remains. If their
velocity distribution is of Maxwellian form with temperature NT ,

hq3i D 8
p

2p
π

(mk NT )3/2 , (1.181)

and the diffusion coefficient finally assumes the form

D2 D 8nR2[2π m(k NT )3]1/2 (1.182)

which is even independent of the momentum p. This result can now be used
with the Fokker–Planck equation (1.174) to calculate how a non-equilibrium phase-
space distribution f evolves in time towards its equilibrium by collisions with heav-
ier particles.
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