1
Introduction

1.1
Goals of the Book

A plasma is an assembly of charged particles, making its behavior inseparable from
that of the electromagnetic field. When a plasma includes neutrals and when the
collisions are numerous enough between charged and neutral particles, it causes
the plasma to behave more like a neutral gas. This book will focus on the fully
ionized plasmas, so emphasizing more the specific plasma properties.

Plasma evolution is governed by a loop: the charged particles move under the
effect of the electromagnetic fields, and the particles, by their density and their ve-
locities, create collective electromagnetic fields. This is true for any kind of plasma,
collisional or not, fully ionized or not, and whatever the plasma and field parame-
ters.

This “plasma loop” is sketched in Figure 1.1. One can observe on this sketch that
two subloops can exist.

1. There is an electromagnetic loop, which can exist even in the absence of par-
ticles. In this case, the fields E and B are related to each other only by the
vacuum Maxwell equations. The local source of the magnetic field is then just
the displacement current €,0, E since there is no electric current due to parti-
cle motions. The signature of this electromagnetic loop is the existence of the
electromagnetic waves in vacuum.

2. There is a collisional loop, which can exist in the absence of a collective field,
and even with neutral particles (although the notion of collision is then differ-
ent). The collisions between particles also allows information to propagate. The
signature of this collisional loop is the existence of pressure (/sound) waves in
the medium.

The general loop of Figure 1.1 can exist even with negligible collisions and with
negligible displacement current. It is clear from this that in these conditions, any
plasma evolution, for instance, any plasma wave, must always involve both kinds of
evolution: particle and fields. In neutral gas like air, we are familiar with an almost
complete separation between electromagnetic waves (light, radio, and so on), only
involving E and B, and sound waves, only involving the gas properties like mass
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Figure 1.1 The plasma loop. The electro- eas concern, respectively, the electromagnetic
magnetic fields indicated in the sketch are the  subloop and the collisional subloop, which
“collective” ones, that is, where the collision can exist in the absence of charged particles,
fields have been subtracted. The shaded ar- but which are then not coupled to each other.

density p, fluid velocity u, and pressure P. This separation is of course prohibited
in a plasma.

The sketch of Figure 1.1 makes use of the notion of a “collective field”. This no-
tion will be defined in detail, but how can it be understood first from an intuitive
point of view? In a small volume, the difference between the electron and ion den-
sities makes a collective charge density which is a source for the electrostatic field,
and the difference between their mean velocities makes a current which is a source
for the magnetic field and the induced electric field. This loop is the intrinsic plas-
ma loop. The displacement current, if not negligible, is never essential: it is just
an additional complication to the fundamental phenomenon. Similarly, the pres-
ence of collisions is not essential to plasma phenomena, even if they bring specific
properties to the plasma, which can allow for simplified modeling.

The collisions, when present, insure a continuous velocity redistribution be-
tween particles. It is the reason why they can allow simplified statistical descrip-
tions: they make the thermodynamical functions such as entropy meaningful. In
the absence of collisions, on the contrary, all these notions must be used with care.
This book will particularly emphasize the collisionless limits of plasmas, in order
to focus on the most intrinsic properties of the plasmas and understand what the
descriptions are that remain valid without collisions and those which are specific
to the collisional hypothesis.

The question of the collisionless limit is particularly crucial when considering
the so-called fluid models. These models, such as MHD (magnetohydrodynamics),
allow describing the plasma with a small number of macroscopic parameters, typ-
ically density, fluid velocity and pressure. Such a description is of course a huge
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Figure 1.2 Principles of the fluid and kinetic methods in the case of an initial value problem.
Note that, if the moments p, u, P, can always be calculated from the distribution function f(v),
the opposite is not feasible without strong hypotheses.

reduction if compared to the description of all individual particles, but it is still an
extremely big reduction with respect to the kinetic one, which describes the particle
populations by their distribution function f(v), that is, the density of probability of
each velocity in small volumes. This reduction is, however, necessary, for computa-
tion time reasons, for any complex problem, in particular large scale and 3D. The
validity of the fluid models is well established in the collisional case, but not in a
general manner in the collisionless one. It is, therefore, important to understand
what is universal in these models and what has to be questioned. We will show
that all the weaknesses of these models lie in the so-called closure equation and
emphasize the consequences of different choices for this equation.

Figure 1.2 shows the two main methods for modeling the behavior of a particle
population. Both methods assume that one knows a valid kinetic equation, that
is, a differential equation which describes the variations of the distribution func-
tion f(v) with time t and space r. In a collisionless plasma, this equation is the
“Vlasov equation.” In a collisional plasma, several equations such as the Boltzmann
equation, can be used depending what approximate modeling has been adopted to
describe the collisions.

Supposing, for instance, that we have to solve an initial value problem, the prin-
ciples of the two methods are as follows:

1. Kinetic. To use this method, one is supposed to know the distribution func-
tion f(t = 0) in the initial condition. The kinetic equation then allows one to
determine f(t) at any later time. Finally, as one is generally interested in the
macroscopic parameters such as p(t), u(t) and P(t), the resulting distribution
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function has to be integrated over velocities to determine them (they will be
shown to be moments of f{(t)).

2. Fluid. Starting for the initial macroscopic parameters such as p(t = 0), u(t = 0)
and P(t = 0), one solves a differential system relating the variations of the
moments to each other. The result is then directly the values of the moments
at time t: p(t), u(t) and P(t).

For comparing the two methods, first one has to know the relationship between
the “fluid moment” system and the original kinetic equation. We will show that
all the equations of this system, except one, can be derived directly from the ki-
netic equation by integration. These moment equations are, therefore, as exact as
the initial kinetic equation and do not introduce any further approximation with
respect to it. Nevertheless, we will see that the systematic integration actually pro-
vides an infinity of moment equations (continuity equation, transport of momen-
tum, pressure, and so on), but that each of them relate the moment of order n to the
moment of order n + 1 (for instance, the pressure temporal variations to the heat
flux spatial ones). For this reason, for solving a closed system with a finite number
of equations, one is obliged to add a “closure equation”, which is not obtained by
integration. This is where all the approximation lies.

Another difference between the two methods has to be outlined, however: the
fluid method supposes that the moments are known in the initial condition, while
the kinetic one demands that the full distribution function is known. This makes
a big difference. If only the initial moments are known, the later evolution is a pri-
ori not unique since a finite number of moments does not determine a unique
distribution function. We will see that some evolutions are much more probable
than others, but it is clear from this remark that, whatever the closure equation,
the fluid method selects a particular class of distribution function perturbations.
We will show in Chapter 5 that this point is crucial to understand why waves in
a collisionless plasma are always damped with ordinary initial conditions (Landau
damping [13]).

This book intends to be a basic textbook of plasma physics, and it, therefore, cov-
ers most classical topics of the domain, such as turbulence (weak/strong), magnetic
reconnection, linear waves, instabilities, and nonlinear effects. In each domain, it
starts from zero and tries to lead in a self sufficient manner to a view in accordance
with the 2013 state of the art. Its main specificity is, however, to pay particular
attention, in each domain, to the collisionless limit and the consequences of the
different modelings, fluid or kinetic in this case. Many kinetic results in the colli-
sionless limit may appear counterintuitive. For instance, it may appear surprising
that the nondissipative Vlasov equation always leads to a damping of the waves; it
is surprising as well to find a heat flux in the low solar corona, in a sense opposite
to the temperature gradient. The main reason for all these surprises, is that our
intuition, for many fundamental physical notions such as irreversibility, has been
built in the more usual strongly collisional limit. This makes separating the univer-
sal concepts from those that are linked to this limit difficult. These basic notions,
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for this reason, are specially developed in the book, beginning with the nontrivial
notion of collision and of mean free path in a plasma.

The book is designed for an audience of students and researchers. Those who
discover the domain should find the essential basic notions. Those who already
know them should find the necessary perspective to approach some profound ques-
tions concerning the collisionless limit. The book should also help understanding
the necessary compromises to be made for modeling plasmas in different circum-
stances, the global fluid modeling being often necessary to complement the kinetic
one, the latter being easily handleable only at small scales and for simple geome-
tries such as 1D.

Most of the examples of the book for illustrating the theoretical concepts are tak-
en in space physics (planetary magnetospheres) and in solar wind. Some others
examples concern more remote astrophysical objects (see, for instance, Chapter 8).
This choice of “natural plasmas” has been done for insuring homogeneity of the
book and respecting the specialties of the authors. However, these examples must
be understood only as illustrations. The concepts that are so illustrated are univer-
sal and of course not limited to them. Researchers working on laboratory plasmas,
in particular, on magnetic confinement for nuclear fusion, are expected to find their
interest as well in the presentation.

1.2
Plasmas in Astrophysics

1.2.1
Plasmas Are Ubiquitous

Most of the baryonic matter in the universe resides in the stars, whose hot interi-
ors are made of plasma. Apart from the coolest ones, most star atmospheres are
made of plasmas, as are their coronas. The outer parts of stellar coronas are made
of tenuous plasmas generally in expansion, called stellar winds. Some of the gas
clouds in galaxies can be ionized by neighboring stars. This is the case in the HII
regions, forming vast clouds of hot and tenuous hydrogen rich plasmas. On a larg-
er scale, in clusters of galaxies, the development of X-ray astronomy has revealed
huge clouds of hot plasma filling the space between the galaxies.

If most of the planetary materials are made of neutral atoms and molecules, their
nucleus is composed of a very dense nucleus of degenerate plasma partly supported
by the Fermi pressure of free electrons. On the opposite side, the outskirts of the
planetary atmospheres are an ionosphere, and possibly a magnetosphere, made of
dilute plasmas in interaction with the wind of their star.

The physics of the fully ionized collisionless plasmas is the key element to un-
derstanding the corona and wind of stars (including the Sun), the magnetosphere
of the planets, and a large variety of shock waves present in various astrophysical
contexts.

5
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1.2.2
The Magnetosphere of Stars

The lower layers of a star atmosphere are made of collisional plasma, and the ambi-
ent magnetic field has a complex structure involving many scales. It is often repre-
sented as a global simple magnetic field superimposed with a multiplicity of open
or closed magnetic flux tubes. Some groups of magnetic flux tubes can be isolat-
ed, and constitute relatively coherent systems dominated by the plasma pressure
forces and the magnetic field. Both the plasma and the magnetic fields evolve; they
constitute a dynamical system.

Itis not possible to measure directly the magnetic field in the star magnetosphere
(itis only possible on the photosphere). Therefore, analytical and numerical models
play an important role in their study. The models are generally based on the theory
of dissipative plasmas, and the dissipation is attributed to collisions.

As the distance to the star increases, the density is reduced, while the tempera-
ture tends to increase (above the chromosphere) and then remains at a high level
(typically 10° K). Therefore, farther from the star, the magnetosphere is less and
less collisional. At the altitude where the magnetic flux tubes are open, the plas-
ma flow velocity is high and supersonic; it is called a stellar wind. The solar wind
is a collisionless plasma. With spacecrafts, in situ measurements of the magnetic
field of waves, chemical composition and particle distribution functions have been
performed down to sun distances of 0.3 au. As far as it has been measured, the so-
lar wind was always supersonic and faster than MHD waves (see Section 5.1) and
noncollisional.

From a theoretical point of view, the boundary conditions that define a star coro-
na are a hot and collisional plasma with a generally complex magnetic field at its
base, and a fast expanding plasma wind expanding into the interstellar medium on
the other side. The star rotation must be taken into account for the consideration
of the overall structure of the magnetosphere.

1.2.3
Shock Waves

As soon as a stellar wind meets another kind of medium, there is an interaction
that is preceded by a shock, as long as the difference of velocities between the wind
and the object exceeds the speed of sound and/or MHD waves. In collisionless
plasmas, shock waves do not have visual signatures, but they can be radio emitters.
Therefore, some of them can be studied remotely. In the solar wind, shock waves
happen when a stream of fast wind reaches a slower one. They also develop up-
stream of planets or comets, provided that they are surrounded by an atmosphere.
The shocks upstream of a solid obstacle are called bow shocks. The bow shock of
the Earth is at a distance of about 10 earth radii, in a purely collisionless plasma.
Bow shocks upstream of nonmagnetized planets such as Mars or Venus are, along
the Sun—planet direction, very close to or inside the ionosphere that is a collisional
plasma.
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Figure 1.3 Shells of magnetic field lines (starting at the same magnetic latitude from the Earth’s
surface) showing various regions of the Earth’s magnetosphere. The solar wind comes from the
left-hand side. Image: courtesy of Bruno Katra, computed with the model [1].

Far from the Sun, the interface between the solar wind and the interstellar plas-
ma is expected to include two shock waves. One has already been crossed by the
Voyager 1 and 2 spacecrafts. This interface is called the heliopause.

The phenomenology of collisionless shocks is associated with particle accelera-
tion, radio wave emissions and turbulence. They also exist on the borders of fast
plasma flows associated with the remnants of supernovae. These shocks are poten-
tial sources of galactic cosmic rays (see Chapter 8).

1.2.4
Planetary Magnetospheres

From a theoretical point of view, planetary magnetospheres are the interface be-
tween a rotating spherical and magnetized body with a conducting surface (usually
an ionosphere) and a stellar wind. The Earth and all the giant planets (Jupiter, Sat-
urn, Uranus, Neptune) have a magnetic field; they are all surrounded by a magne-
tosphere. The largest magnetosphere in the solar system is that of Jupiter. It itself
contains the smaller magnetosphere of its magnetized satellite Ganymede.

The most explored magnetosphere is, of course, that of the Earth, represented
in Figure 1.3. As with other magnetospheres, it is first preceded by a bow shock,
mentioned in Section 1.2.3. Behind the bow shock is a region of fast and turbu-
lent plasma called the magnetosheath. In the magnetosheath, the majority of the
magnetic field lines are convected in the same direction as the magnetic field (see
Section 1.3.1.3 for the explanation of field lines motion), and they are not connected
to the Earth. Then, a sharp transition is met: the magnetopause. Behind the magne-
topause, all the magnetic field lines are connected to the Earth, at least on one end.

7
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white arrows represent the current density di-  of Bruno Katra, computed with the model [1].

The region enclosed by the magnetopause is properly called the magnetosphere.
The magnetopause has a few singularities, where magnetic field lines connected in
these regions to the Earth can easily (from a topological point of view) be connected
to solar wind field lines. The most well known are the polar caps, but there are also
the flanks of the magnetopause at low latitude, also called the low latitude boundary
layer (Figure 1.4). The magnetosphere has an asymmetric profile. On the dayside,
its extent is of the order of 10 earth radii. On the nightside, the magnetosphere
is very elongated, forming the magnetotail. Two vast regions, where the magnetic
field is almost aligned with the Earth—Sun direction, on the northern and southern
sides have a very low density, and are called the lobes. The lobes are among the
least dense regions of the solar system (about 0.1 particle/cm?). Between the two
lobes is a region of inversion of the direction of the magnetic field; it is the neutral
sheet (see Figure 1.4). Because an electric current oriented in the east-west direc-
tion supports this magnetic field inversion, it is also called the current sheet. But
this region is also much denser than the lobes, and it is called the plasma sheet. The
various names of this region are a token of its importance in regards to the physics
of the magnetosphere.

Closer to the Earth, and at low latitudes (below the polar cap) there is a denser
region of plasma that corotates with the Earth, called the plasmasphere. The inner
boundary of the plasma sheet is close to the nightside of the plasmasphere bound-
ary, at a distance of about 6-10 earth radii. At higher latitudes, in a region where
the magnetic field lines are still connected to the magnetotail, there is an occasion-
al plasma acceleration that causes polar auroras on the ionosphere. This area (from
the ionosphere up to a few earth radii of altitude along the field lines) is called the
auroral region. At even higher altitudes, the plasma is connected to the solar wind
via open field lines, in the polar cap and the cusp regions.
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At the distance of the giant planets the solar wind is weaker (especially because
of its density varying as d~2 where d is the Sun—planet distance). It, therefore,
exerts a weaker pressure than on the Earth. Planetary rotation is another source of
energy. For Jupiter, with a 10h rotation and a strong magnetic field, the effect of
the rotation dominates those of the solar wind. The plasma in corotation extends
quite far from the planet, and the particles inertia in the rotating motion favors the
settlement of an extended ring current region.

A ring current also exists around the Earth and is associated with the magneto-
spheric compression by the solar wind; therefore, its origin is of a different nature
than fast rotating planets.

13
Upstream of Plasma Physics: Electromagnetic Fields and Waves

1.3.1
Electromagnetic Fields

The Maxwell equations describe the time and space variations of the electromag-
netic field due to its sources: the charge density ¢ and the current density j. In
classical physics and in special relativity, the electromagnetic field can be split into
two different fields, the electric field E and the magnetic (or induction) field B.
The four Maxwell equations relating their variations are respectively called the
Maxwell-Gauss, Maxwell-Ampere, Maxwell-Faraday, and divergence-free equa-
tions, and they are:

Gauss V. (e0E) =0 (1.1)
Ampere 'V x (B/ug) = j + 9¢(¢0E) (1.2)
Faraday V x E =—0,B (1.3)
div-free V-B=0. (1.4)

The constants & et u( are called, respectively, the “dielectric permittivity” and
“magnetic permeability” of the vacuum, and they appear in the Gauss and Am-
pére equations, which explicitly relate the fields to the ¢ and j sources. They are
linked by the relation: eouoc?® = 1, which makes the constant ¢ (speed of light)
enter the system. In the Maxwell-Ampeére equation, the term 9;(g¢E) is called the
displacement current. The pure “Ampere equation”, applicable in magnetostatic
fields, does not include this term. Nevertheless, in short, we use here the name
“Ampere equation” even in the nonstationary case.

In vacuum, the source terms ¢ and j are zero and the electromagnetic field is
made of harmonic functions of space for each field, superposed with a linear su-
perposition of electromagnetic waves propagating with the speed ¢. When sources
are present (in particular in plasmas), the charge density changes the electric field,

9
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adding an “electrostatic” component; the electric current modifies the magnetic
field and also the electric field via an “induced” component (whenever the magnet-
ic field varies in time). The two kinds of sources are always related by the equation
of charge conservation:

V.j+d0=0. (1.5)

This equation can of course be derived from the equations of motion of the source
charges, but also from the above Maxwell equations (divergence of Eq. (1.2) and
temporal derivative of Eq. (1.4)), which outlines the necessary consistency between
the electromagnetic fields and its sources.

From the Maxwell equations, an equation can be derived for the electromagnetic
energy:

9 Em+V-S=—j-E. (1.6)
It relates the temporal variations of the electromagnetic energy
Eem = €0E?/2 4+ B?/2uq (1.7)

to the divergence of the Poynting flux vector (energy arriving through the bound-
aries of a volume):

S = E x Bjuo (1.8)

and to the term — j - E, which represents the energy exchanges in volume between
the electromagnetic field and the matter (for example the plasma).

1.3.1.1 The Scalar and Vector Potentials

The last two Maxwell equations (Faraday and divergence-free) are independent of
the sources. They can usefully be integrated once, the former with respect to time,
the latter with respect to space. This allows replacing the original fields E and B by
two other functions: the scalar and vector potentials, @ and A, defined as:

B=VxA (1.9)
E=-V® —),A. (1.10)

With this formalism, the two last Maxwell equations are automatically satisfied and
the first two (Gauss and Ampere) become:

Vi + 9,(V- A) = —0/e (1.11)
VIA—07A/c" = —uoj + V(V-A+0,D/c?) . (1.12)

The potentials are prime integrals of the original fields; therefore, they are not
unique. Each particular choice is characterized by a “gauge”. The two most famous
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ones are called the Coulomb and Lorentz gauges. The Coulomb gauge is the sim-
plest. It is defined by:

V-A=0. (1.13)
With this choice, Gauss and Ampeére equations simplify into:
VD = o/, (1.14)
VZA— AP = —uoj + V (3, D/c?) . (1.15)

In this gauge, the scalar potential is simply a solution of a Poisson equation (no
propagation involved for @).

The Coulomb gauge is invariant in the nonrelativistic case (it keeps the same
form in any inertial frame change), but not in relativity. The Lorentz gauge has
better properties in this respect. It is defined by:

V-A+0,P/*=0. (1.16)

It is slightly less simple, but it has the great advantage of dissociating @ and A
in their relations with the source terms. Indeed, Gauss and Ampére equations be-
come in this case:

Vi — 92 [c* = —p/e (1.17)
VZA - A/ = —poj . (1.18)

In vacuum, the potentials defined in the Lorentz gauge just propagate at speed c.
Moreover, this gauge is indeed invariant by any inertial frame change.

1.3.1.2 Changes of Reference Frame

The Maxwell equations are invariant in any change of reference frame, but the
fields are not. In the nonrelativistic case, going from a frame R to a frame R’ mov-
ing at a velocity V relative to R, the fields change as:

E=E+VxB (1.19)
B =B. (1.20)

In special relativity, one has to distinguish between the directions longitudinal and
transverse relative to the velocity V of the frame change (respectively subscripts 1
and t):

E =F
E| = y(E.+ V x B) (1.21)
B/ = B

B, =y (B;— VxE/c?) . (1.22)

1A
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In these relations, the constant ¢ (speed of light) appears explicitly, and also through
the relativistic Lorentz factor y = 1/,/1 — V?2/c2. It can be noted that the nonrela-
tivistic case (V < c¢) corresponds to taking y = 1 and neglecting V x E/c? relatively
to B;.

Like the original fields, their first integrals, the potentials @ and A are changed
by a frame change. In the nonrelativistic case, they become:

D' =D — AV (1.23)
N A (1.24)

In special relativity:

D' =y(P—AV) (1.25)
Al=y (AI— ®V/c?) (1.26)
A=A . (1.27)

Finally, in the same referential change, the source terms become, in the nonrel-
ativistic case:

o' =o0—jiv/e (1.28)
j'=j-0oV (1.29)

and in special relativity:

o' =y(o-jv/) (1.30)
il =v(ii—eV) (1.31)
Ji=1.- (1.32)

An important remark has to be made concerning Eqgs. (1.28) and (1.30). As usu-
al, the nonrelativistic case derives from the relativistic one by taking y = 1. But
it must be emphasized that the term j); V/c? exists in both relativistic and nonrela-
tivistic cases: this term cannot be neglected with respect to ¢ in general. Neither the
current nor the charge density remain invariant in an inertial referential change.
The change in charge density at zero order in V/c is actually consistent with the
change in electric field: its electrostatic part appears due to the appearance of the
electric charge.

These changes of reference frame are exact when V is a time invariant uniform
velocity. When V = V/(t) is variable, one has to associate, at every time t, a tangent
change of reference frame associated with the instantaneous value of V(t). In that
case, the local equations can be still used. This is the case in Egs. (1.19)—(1.22). (Be-
cause Vis a parameter of the Lorentz transform, it is considered local.) When the
derivatives (charge and current densities) or integrals (potentials) are considered,
the corresponding derivatives and integrals of V can introduce terms that do not
appear in the above formulas. This is illustrated in Section 1.3.1.4 where the case
of a rotating plasma is considered.
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1.3.1.3 Notion of “Magnetic Velocity”

The Maxwell equations involve the constant parameter ¢, which has the dimension
of speed. But there is actually another speed which derives directly from the fields
themselves:

vm = E x B/B%. (1.33)

This velocity can be called the “magnetic velocity” since, locally, the electric field is
zero in the frame moving at v,; this means that the electromagnetic field is purely
magnetic in this frame. This property gives to the velocity v,, a major importance
in plasma physics. In particular, in a quasi-homogeneous field, it is known that
the particles rotate with a negligible drift velocity in this frame. This means that
they follow, on average, the magnetic motion so defined. This is the origin of the
so-called ideal Ohm’s law used in MHD (see Chapter 3).

From the purely electromagnetic point of view, the magnetic velocity is also im-
portant for allowing, in certain circumstances, to define a “magnetic field line mo-
tion”. The magnetic field is indeed often represented by its field lines. They are by
definition tangent to B. In rectangular coordinates they are the solutions of

dx dy dz

= . (1.34)
B, B, B

They can always be defined at any time and any point (except at the null points,
that is points where B = 0, if any). The concept of “magnetic field line motion” is
meaningful in all cases when the lines are equipotential, that is when the compo-
nent E parallel to the magnetic field is zero all along of them. In these conditions
(and even in conditions slightly more general, see next section), one can prove that
the field lines “move at velocity v,,”. This means that if all points of a given line
are moved at velocity vy, they still are all on the same field line at any time later.
In the limits of validity of the condition E; = 0, it is, therefore, a usual — and quite
useful — concept to consider that the line at different times is the same, which just
moves. In this way, one gives an identity to the field lines, which can be viewed
as kinds of “rubbers” moving and deforming. This concept is particularly impor-
tant when studying low frequency fluctuations in a plasma (“MHD range”). This
property of “freezing” of the field lines in the velocity field vy, is purely electromag-
netic since no plasma parameter is involved, neither in the velocity definition nor
in the demonstration (Maxwell equations are sufficient). Nevertheless, the condi-
tion of validity E;; = 0 is actually imposed — or not — by the plasma. We will see
in Chapter 3 that this condition is actually verified in a plasma at sufficiently large
scales.

It can also be noted that the velocity vy, is collinear and close (within a factor of 2)
to the velocity of propagation Ve, of the electromagnetic energy Eep,. The relation
between vy, and V., is evident if the Poynting flux, which is defined as S = E x
B/ug is written as S = Ve Fem, With Eeyy = €0 E2/2 + B2 /2u,.

Proof that the field lines move at velocity vy when Ej = 0. Let 01 be a vector that
connects two points P; and P, located on the same field line and separated by an

13
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infinitesimal distance. Because d1is parallel to the magnetic field, C = dIxB = 0.
If this vector can be shown to be invariant in motion at velocity vy, this will prove
that 01 is always parallel to B, and, therefore, that P; and P, will remain on the
same field line. Noting D; = 9; + vy, - V, one has:

D,(C) = Dy(6l x B) = D,(6l) x B+ 6l x D,B .
The first term can be expressed thanks to the definition of D;:
Dy(0l) = vy (I + 0l) —vim(l) = O1- Vv, .
The second term can be expressed thanks to Faraday’s equation:
D,B=-VxE+v,-VB.
Using the definition of v, one can express the electric field E as:
E=E|—vmxB.

Replacing E by this expression and developing the curl of the cross product as
explained in Appendix A.1, a little algebra provides:

0l x DyB=—0lx (VX E|)—Bdolb-V(vy)xb (1.35)
D,(81)x B = Blb-V(vy) x b . (1.36)

The vector b is the unit vector of the field line. The sum of the two equations finally
provides the variation of C we were looking for:

D,(C) = =1 x (V x Ey) . (1.37)

We can, therefore, conclude that E| = 01is a sufficient condition to get the freezing-
in property of the field lines in the v, velocity field: if P; and P, move with the
magnetic field velocity vy, they remain on the same field line. The condition 61 x
(VX E|)) = 0, more general and slightly less restrictive, is rarely used because, if the
condition E|; = 0 is often satisfied at large scale in a plasma because of the electron
motion, there is no such physical justification for the more general condition.

1.3.1.4 Space Plasmas in Corotation with Their Planet/Star

The magnetized bodies in rotation, such as planets or stars, are ubiquitous in the
universe. Their magnetic field generally comes from an internal “dynamo” source,
but it can also be remnant fields in some occasions. These bodies are generally
embedded in plasmas of external origin and one is justified to ask whether these
plasmas will remain insensitive to the body rotation or if they will be drawn into
this rotation. As shown in Chapter 3, the plasma always follows, at large scale,
the “magnetic motion” v, of the field lines. Near the body surface, the magnetic
field is generally rigidly anchored to it; consequently, the plasma can be considered
in corotation with the magnetized body. Let us first see the consequences of the
corotation of a plasma with a magnetized body.
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The notion of corotation. Let £2 be the body rotation velocity. The corotating plas-
ma has a velocity V = £ x r. Because the magnetic field lines (close to the body)
follow the same motion, V is also the motion of the magnetic field lines defined in
Eq. (1.33). This sets the existence of the so-called corotation electric field,

E=-VxB=—(2xr)xB=B-rQ2—-B-Qr. (1.38)

This is the electric field that an observer would see in the inertial frame of reference
where the body velocity is null.

It is important to mention at this point that if corotation is generally assumed at
very close distance to the body, it is not granted at a larger distance. Even when the
plasma moves with the magnetic field line velocity v, this velocity can be different
from the corotation velocity £ X r, provided that the plasma has an appropriate
retroaction on the shape of the magnetic field lines. It is shown in Section 1.3.3.3
that even in vacuum, the shape of the magnetic field lines depend on the rotation
rate Q of the body; therefore, it is easy to understand that this happens too with a
plasma.

Terrestrial magnetosphere and ionosphere. Most of the Earth’s ionosphere is in
corotation. This means that the plasma in the ionosphere is exposed to the same
alternation of nights and days as the Earth’s surface. When the ionosphere is ex-
posed to sunlight, the UV increase the ionization rate, while it is zero at night. In
the range of altitudes above 400 km, the recombination rate of the ions is low in
comparison to the duration of the night, and the plasma density of this ionospheric
layer remains roughly constant. But in the range of 60-350 km, the recombination
rate is higher, and the ionospheric plasma content at these altitudes varies periodi-
cally with the same period as the Earth’s rotation with a minimum in the morning
hours.

Above the ionosphere, in the range of latitudes ~ £60°, the plasma is trapped
along closed magnetic field lines. The plasma filling this region has escaped from
the ionosphere. Itis cold (T ~ 1eV) in comparison to the T ~ 10? — 10* eV plasma
found in the solar wind and other regions of the magnetosphere. It is in corotation
with Earth. As with the ionosphere (also in corotation), it is asymmetric relative
to local time. Its extension is typically 7 Rg on the evening side after having been
refilled with ionospheric plasma, and 4 Rg on the morning side (after spending a
night above a less dense and colder ionosphere). The plasma there is denser than
anywhere else in the magnetosphere. This zone of corotating plasma is the plas-
masphere. On the nightside of the Earth, the plasmasphere ends where the mag-
netotail begins. Compared to the magnetotail, the plasmasphere is a rather quiet
region. The auroras observed in the midnight sector are magnetically connected to
the magnetotail, therefore, at magnetic latitudes above those of the plasmasphere.

Other magnetospheres. Other magnetospheres contain a plasma in corotation.
Actually, most of the magnetosphere of Jupiter is in corotation. More precisely, it
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is subcorotating. This means that the main component of the plasma velocity is
Q' (r)x r, with Q'(r) close to but smaller than the angular velocity £ of the planet.
The plasma corotating with Jupiter contains the orbit of the closest Galilean satel-
lite, To, situated at a distance of six Jovian radii from Jupiter’s surface. The observa-
tions tend to show that Jupiter’'s main auroral oval corresponds to the interaction
of the (sub) corotating region with the noncorotating plasma.

From Eq. (1.1) and the Maxwell-Gauss equation, a charge density can be associ-
ated with the corotation electric field,

0=-2eB -2 —¢y(rx2)-VxB. (1.39)

(We notice that the first term would not appear with a direct application of
Eq. (1.28). This is because the charge density equation is not local, and the space
derivative of the velocity V, supposed null in Eq. (1.28), has been taken into ac-
count.) Considering the Maxwell-Ampere equation, and the fact that the partial
time derivative of E is orthogonal to r x £, for a magnetic field that is not associat-
ed with an electric current (for instance a dipole field, see Section 1.3.3.1), we find
the Goldreich—Julian density

0=—-26B- 2. (1.40)

For Jupiter, this corresponds to a particle density o/e ~ 1072 cm™ that is totally
negligible. That is not the case with pulsars: they have a fast rotation rate (with a
period of 15 or less) and a strong magnetic field (typically 108 T) and the Goldreich—
Julian charge density can correspond to an excess of 101° electrons or positrons/m?.
The pulsars illustrate the fact that a plasma in corotation around a highly magne-
tized fast rotating body is nonneutral.

There is an absolute limit to the size of a corotation region, called the light cylin-
der radius Ric = ¢/£. This is the distance at which the corotation velocity would
be the speed of light. For all the objects in the solar system, Ric is much larger
than their magnetosphere. In the case of pulsars, the light cylinder is well inside
the magnetosphere. In most models, it defines broadly the frontier between the
inner magnetosphere, with a mixture of corotation and poloidal motion, and the
wind, where the plasma motion is mostly radial.

1.3.2
Transverse and Longitudinal Electromagnetic Field

Usefully, the electric and magnetic fields can be considered, as any vector fields,
as the sum of an irrotational (or longitudinal) component, and of a solenoidal (or
transverse) component:

E=FE+E and B=B +B,. (1.41)
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These components are defined by:
V-E;=0,V-B;=0 (1.42)
VxE =0,VxB =0. (1.43)

The names “solenoidal” and “irrotational” are the most general ones. They are here
often replaced by “transverse” and “longitudinal” by reference to the simple case
of plane variations. These names are then defined with respect to the gradient (for
example, the wave vector for a plane wave). It must not be confused with their use
in the above section where “transverse” and “longitudinal” are defined with respect
to the relative velocity between two different reference frames.

The Faraday equation involves only the transverse fields; the divergence-free and
Gauss equations involve only the longitudinal ones. The Ampére equation can be
applied separately to the two components. The Darwin approximation (see Sec-
tion 1.3.10) is based on this decomposition of the electric field:

1
VxB=uJ + ;&Et (1.44)

1
ﬂ0]1+ gatElzo (145)

Many wave properties can be analyzed in terms of this longitudinal and transverse
decomposition.

133
Electromagnetic Fields in Vacuum

Plasma physics is a coupled system involving electromagnetic fields and charged
particles. To better understand how the charged particles rule the electromagnetic
field, it is worth recalling what are the properties of this field in the absence of
particles, that is, in vacuum. This corresponds to the absence of second members
of Maxwell equations: ¢ = 0 and J = 0.

1.3.3.1 Static Fields

Because of the absence of charge and current density, one has: V- E = 0 and
V x B = 0. For static fields, one has also: V- B = 0 and V x E = 0, which show
that electric and magnetic fields have the same properties. Then, both fields can be
treated as gradients of scalar fields E = —V® and B = V¥.

For astrophysical spherical bodies (planets, stars), it is often useful to approx-
imate at large distance the magnetic field as a dipole field. In spherical coordi-
nates, B derives from ¥ = M cos(0)/r?. Then B, = —2Mcos(0)r—3, By =
—Msin(0)r=3, B, = 0,and B = Mr—3[1 + 3sin*(0)]"/2. A magnetic field line
obeys the equation r = Ry sin?(6)/sin?(6p) where Ry is the body radius and 6,
determines a particular field line. The radius of curvature of the magnetic field
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lines is:

rocosA(1+3sin®A)¥2 @ cosA(l+ 3sin® 1)32

R, = =
<3 1 + sin® A 3cos? A 1+ sin? A

(1.46)

At the equator (A = 0), the curvature radius is a third of the distance to the dipole
center.

1.3.3.2 Waves
Time dependent electromagnetic fields are the solutions of vectorial d’Alembert
equations, directly deriving from Ampeére and by the Faraday’s laws.

1 1
V’E = gaftE, and V’B = gaftB : (1.47)

Looking for sinusoidal plane waves, these equations lead to w?/(k?c?) = 1, show-
ing that these perturbations propagate at the speed of light in any direction. Going
back to the original Ampeére and Faraday’s laws, it is easy checking that their am-
plitudes also have the following properties: Eg = ¢By, k- Eg = 0, k- By = 0
and Eo - By = 0. As all plane waves can be described as the sum of sinusoidal
functions (linear equations), all plane waves have these same properties. For each
particular sinusoidal solution, the amplitudes and the phases of E or B determine
the polarization.

1.3.3.3  Electromagnetic Wave of a Rotating Neutron Star, Pulsar Families
Magnetized planets and stars are generally considered as conducting bodies in ro-
tation. We have seen in Section 1.3.1.4 what happens when they are surrounded
by a corotating plasma. We now examine the situation when there is no plasma in
their environment, apart from a conducting plasma rotating with the body on its
surface. In this simpler case, it is possible to compute the magnetic field far from
the surface of the body.

The magnetic field near the surface is approximated as an inclined dipole making
an angle [ with the rotation axis. It turns with a frequency Q that is equal, or
closely related, to the spin frequency of the body. On the surface, the material is
a conductor that behaves like a corotating plasma (it can be a thin ionosphere for
planets, or a metal crust for pulsars). Therefore, there is a corotation electric field.
Because the body is not surrounded by a plasma, the electromagnetic field outside
is a solution of Eq. (1.47). The time derivative in Eq. (1.47) is caused by the rotation
with a frequency Q; it is:

,Q 2
3 (T) B— VB, (1.48)

The characteristic length Ry = ¢/ is called the light cylinder radius. It is the
distance, projected onto the equatorial plane, at which the corotation speed would
equal the speed of light.
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Figure 1.5 The azimuthal component of the
magnetic field associated with a rotating con-
ducting sphere with a dipole. The grey level
scale represents log || By [|. (The minimal value
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lution. (a) log || By || on a meridional plane
(relatively to the rotation axis). The vertical
axis z is the rotation axis. (b) log || By || on the
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The complete calculation of the solution is rather tedious but can be completed
fully analytically making use of spherical harmonics. At large distances r > Ry,
the result can be put under the simplified form:

3

(1.49)

B, = By sin I sin 6 sin &
cr
2R3
By = By———— sin I cos 6 cos &
2¢%r
Q2R3
By = —By———sin [ sin @
¢ 072c2r
E, =0
Q2R3
Egy :—BOL sin I sin @
2cr
woR*R3
Ey = —Bo‘ozi sin I cos 0 cos @ .
cr

This solution, displayed in Figure 1.5, is clearly not a plane wave. We have not-

ed R the radius where the boundary solutions are defined (close to the star’s sur-
face). The electromagnetic field at these boundary conditions has been supposed
to be a magnetic dipole B, inclined by an angle I over the rotation axis, associated
with the corotation electric field E = —(£2 x r) x B;. The continuity of the vertical
magnetic field component, and of the horizontal electric field components are the
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constraints put on the electromagnetic field in vacuum and on the body surface:
the vertical magnetic field is the same as for the dipole, the horizontal electric field
is the same as for the corotation electric field. The phase @ of the star rotation is
defined as:

D(r,p) = ¢ + k(r— R)/RL— Q1. (1.50)

From the above results, it can be checked that E and B vectors are perpendicular
and that the wave radiates energy away at the rate

2140

dE = Q*RCBZsin? I . (1.51)

o3
It is an important result because it shows that the rate of energy radiated, which
is an observable, depends very sharply on the rotation velocity. It can be used in
the physics of magnetized fast rotating bodies such as white dwarfs (with  ~
10~ s™1, for which the model was initially derived) and pulsars, with Q ~ 10'-
10*s7 L. It allows estimating the surface magnetic field By of these objects. Thanks
to pulsar timing over long lapses of time (with radio telescopes), it is possible to
measure both 2 and . For standard pulsars 2 ~ 65~ and  ~ —107* Q2
The energy loss (1/2)M; 2 Q (where M; is the momentum of inertia) associated
with this slowing down is mostly due to the electromagnetic radiation defined in
Eq. (1.51). Considering a radius R ~ 10km, a star mass M ~ 1-3 Mgy, one finds
for standard pulsars a value By ~ 108 T. This places the pulsars among the most
magnetized bodies in the universe. A new class of pulsars with a typical rotation
period of 10s and a large time derivative of the angular velocity are found to reach
By ~ 10 T. They are called magnetars. Oppositely, pulsars with fast rotations rates
(2 ~ 10%s7') have a lower Q; they are found to be less magnetized, By ~ 10°T.
Several pulsar families can be so defined, depending upon the different correla-
tions between rotation rates and surface magnetic field.

Of course, in reality, pulsars are not surrounded by vacuum. It was shown shortly
after the discovery of the first pulsars that the electric force parallel to the magnetic
field exceeds the gravitational forces by a factor 10°. Therefore, pulsars are expected
to host a magnetosphere filled with a plasma. Nevertheless, Eq. (1.51) is still used in
first approximation to estimate the surface magnetic field. In some particular cases,
the magnetic field has been estimated through other means, which confirmed the
orders of magnitudes given here.

1.3.3.4 The Plasma as a Dielectric/Diamagnetic/Conducting Medium

Dielectric media The Maxwell-Gauss equation V - (¢9E) = o describes how the
spatial variations of the electric field are determined by the charge density in the
medium. The electric field can actually be determined when this Maxwell equation
is coupled with the equations of the medium which model how the charge density
is determined by the electric field.

The charge density of the medium is in general a reaction to the electric field.
In standard dielectrics such as silica, this reaction is just a “polarization” of the
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medium, which means that each atom, initially neutral, is transformed in a small
electric dipole. This results in creating a density of electric dipole moment P called
“dielectric polarization density”. It can be shown that the corresponding charge
density is the divergence of this vector field:

0p=-V-P. (1.52)

If the polarization varies in time, it corresponds also to a “polarization current” j
given by:

j,=0P. (1.53)

If the medium involves other types of charges, for instance free charges, which
cannot be easily linked to the notion of electric dipole, this extra charge can be
noted Qe

Q= Qpt Qex - (1.54)

The further step is to assume that the polarization vector P depends on its cause,
the electric field E, through a simple relation:

P=y, -E. (1.55)
It is worth noting that this relation is just algebraic and not differential, meaning
that the medium polarization is supposed to depend on E linearly (if g, is constant)
or nonlinearly otherwise, but not on the variations of E.

When such a relation is satisfied, the medium is said to be “dielectric” and the
coefficient y, is called the dielectric “susceptibility”. In standard materials such
as silica, the dielectric susceptibility can indeed be defined and measured; it is a
known characteristic of the medium. It can, therefore, be used directly to model
the field inside the material when it is put in a given environment, for instance, to
study the role of a dielectric sheet inside a capacitor. When the polarization charge
is independent of the electric field direction, the dielectric susceptibility is scalar:
Xe = XeI (I being the identity tensor). Otherwise (anisotropic media), it is a full
tensor.

Whenever such a dielectric susceptibility can be defined, the Maxwell-Gauss can
be rewritten in the following form:

V(e E) = Qe - (1.56)

The tensor &€ = &o(I + y.) is called the dielectric “permittivity”, and the vector D =
& E is named “electric induction”. In many instances, the extra charge oy is zero.

Diamagnetic media Similar arguments can be used with respect to the magnetic
field and its sources, that is concerning the Maxwell-Ampére equation:

VxH=j+0(ekE). (1.57)
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Under this form, one can notice that the notation B/uy, used in Eq. (1.2) and ev-
erywhere else in this book, has been replaced by the notation H. Both notations
are of course strictly equivalent as long as the equation is kept under this initial
form, with the source term j on the RHS. Nevertheless, in the context of magnetic
media, we will see that the notation B is classically reserved to another use, includ-
ing a part of the current density, as the electric induction D includes a part of the
charge density. In this context, H is simply called the “magnetic field”, while B is
called “magnetic induction”.

In standard magnetic media such as ferrites, a part of the current density can be
attributed to a “magnetization” of the medium, which can be put under the form:

j.=VxM. (1.58)

The introduction of the magnetization density vector M is quite similar to the in-
troduction of the polarization vector P for the charge density. It corresponds to a
density of magnetic dipole moment, exactly as the first one corresponds to a densi-
ty of electric dipole moment. It can also be viewed as an ensemble of small electric
loops (sometimes called “Amperian currents”). In a plasma, it could be related to
the circular motion of the particle around the magnetic field.

The magnetization current, which corresponds to spatial variations of the mag-
netic dipole density, has to be added to the polarization current presented above,
which corresponds to time variation of the polarization vector. Other kinds of cur-
rents can be involved, in particular due to free charges when the medium is con-
ducting. The corresponding extra current density can be noted j,. When both
kinds of dipoles are present, the current density is:

J=JmtiptJe- (1.59)

It should be noted that the part j  (magnetization current), contrary to the two
other parts, does not correspond to any charge density since it has no divergence.
The next step consists once again in supposing a simple relation between M and
the magnetic field H.

M=y, -H. (1.60)

The tensor yx,, is called the magnetic susceptibility. In isotropic media, it is a scalar.

Its sign can be positive or negative, which shows that the reaction of the medium

can increase (paramagnetism) or decrease (diamagnetism) the magnetic field.
This allows rewriting the Maxwell-Ampere equation under the form:

VxH=j+0(D). (1.61)
Or equivalently:
Vx(u~'-B)=j.,+0d(e E). (1.62)

This second form is equivalent at the condition of taking the new definition of the
vector B (magnetic induction):

Blup=H+M=(I+y,) H. (1.63)
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The relation between B and H can, therefore, be written as B = g - H. The tensor
# = wo(I + x,,) is called the magnetic permeability. In standard materials such
as ferrites, the magnetic permeability is a known characteristic of the medium. It
allows, for instance, to determine the consequences of introducing a ferrite barrel
inside a solenoid.

Conducting media In materials such as metals, the conduction current density
can be related to the electric field via a relation of the form:

j=0-E. (1.64)

The tensor ¢ is called the conductivity tensor. It can be scalar or not depending
whether the medium is isotropic or not. In an isotropic metal, the conductivity is
just the inverse of the resistivity: ¢ = I/9.

It is to be noticed that, due to the charge continuity equation, the Maxwell-Gauss
equation can be put also under the form of a relation between j and E. There is
therefore a relation between the dielectric susceptibility y, and the conductivity o.
In the simplest case of no extra charge and a monochromatic wave (3, = —iw),
this relation takes the quite simple form: €y, = —0/iw.

1.3.3.5 Use of These Concepts in Plasmas

The equations relating ¢, j, E, and B in a plasma are demonstrated in this book.
They depend on the model used, which itself can depend on the time and space
scale range. However, whatever the model, these relations generally do not have
the above forms.

Let us show it by a simple example. The plasma models provide a set of differ-
ential equations. If one succeeds, for instance, in eliminating all variables but ¢
and E and their derivatives, one would actually find a relation between these vari-
ables. But this relation would be a differential equation, with derivatives of both
variables at different orders, with respect to time and to space. This is not reducible
to Egs. (1.54) and (1.55).

After the previous example, this should prevent use of the notions of dielec-
tric/diamagnetic/conducting medium for a plasma. No charge and no current can
be included in full generality on the LHS of the Maxwell equations, and all of them
must remain on the RHS as g and j, source terms. Nevertheless, all these con-
cepts can be used anyway, and often in a very efficient manner, in a particular
domain: the calculation of the linear plasma waves. When calculating monochro-
matic waves, with one @ and one k, all the derivatives can be expressed as functions
of these two parameters in an algebraic form and all the linear perturbations can
always be expressed as functions of a single one. This allows calculating a relevant
dielectric permittivity as well as a magnetic permeability or an electric conductivity
as functions of w and k.

A special mention must be made for the electric conductivity. In collisional and
nonmagnetized plasmas, the plasma relation between j and E has actually the
form (1.64). This is actually the only exception: as soon as a magnetic field is added,
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for instance, the simplest “Ohm’s law”, for a resistive medium, becomes:
E=—-uxB+7nj. (1.65)

This cannot be written under the form j = ¢ - E without solving the whole system
and expressing the variables u and B as functions of E. And the form is then
algebraic only for monochromatic waves in the linear limit. It can be noted also
that, in this case, the magnetic field introduces an anisotropy to the system, which
implies that the effective conductivity is not scalar.

1.3.4
Plane Waves in a Plasma

In collisionless media, as in any material or in a vacuum, waves can propagate,
which means that any initial perturbation varying in space will evolve in time and
space in a specific manner. We summarize here the most general methods allowing
the calculation of the linear waves, their dispersion and their polarization. Some
properties are independent of the medium and can be directly derived from the
Maxwell equations: we will summarize only these ones in the present section. A
more complete description of the waves demands to specify the plasma parameters
and the scale range: some of the most important ones can be found in Chapter 5.
The method is based on three main steps:

1. Linearize the physical equation system around an equilibrium state. This does
not change the Maxwell equations themselves (which give the electromagnetic
fields variations as functions of the sources ¢ and j) since they are linear. But
it changes most of the plasma equations (which give the variations of ¢ and j
as functions of the fields), because they are generally not linear.

2. Transform this differential system into an algebraic one (usually via Fourier
transform)

3. Solve the algebraic system (eigenmodes and eigenvectors).

The first step relies on the fact that one deals with small amplitude fluctuations,
which justifies a perturbative approach where only the first order is retained. The
equilibrium state is most generally supposed to be a plain homogeneous and sta-
tionary state, where all fields and plasma parameters are constant.

The second step relies on the linearity of the above system: thanks to it, any solu-
tion is just a linear superposition of a basis of particular solutions. It is, therefore,
sufficient to calculate these different particular solutions, each of which is charac-
terized by a small number of free parameters. These parameters are typically the
pulsation w and the wave vector k when choosing monochromatic plane waves as
particular solutions, that is, using Fourier transform (which is the most common
method when the zero order state is homogeneous and stationary). The algebraic
system obtained in this way is homogeneous (that is, without the RHS) since one
studies the natural oscillations of the system, without forcing.

The third step then consists of solving the system as a function of w and k. Usu-
ally all the variables can be eliminated except one vector field, that we can call a
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“reference field”. The equation relating the three components of that field with @
and k as parameters is a system of linear equations. Since the system is homo-
geneous, its determinant must be zero to get nontrivial solutions. This provides a
relation between w and k, which is the dispersion equation. Each solution (w, k)
is called an eigenmode of the plasma and the corresponding eigenvector gives its
polarization, that is, generally speaking, the perturbations of all variables (including
the different components of the vectorial variables) as functions of only one.

In practice, the choice of the reference field requires attention. For high-
frequency waves, when the displacement current is dominant on the particle
current (E/B & Vphase/c ~ 1), the more convenient reference field is the elec-
tric field. It allows doing the calculation with any densities and recovering the
electromagnetic waves in vacuum as a limiting case of an evanescent plasma.

On the contrary, in the context of low frequency waves, that is, when the displace-
ment current can be neglected in front of the particle one (E/B & vphase/¢ < 1),
the choice of E as a reference field is no more convenient. Using a field that is neg-
ligible in some of the equations as a reference field carries the risk of an ill posed
problem. It is the case in particular for MHD waves. The most usual choice of ref-
erence field is then the plasma velocity field u. The choice of the magnetic field as a
reference variable could seem also possible but it is not so pertinent because it does
not allow to compute the electrostatic waves (which have no magnetic component).

It is worth noting that (i) even in the case of a stationary zero order state, the
Fourier transform vs. time, at step 2, can sometimes be usefully replaced by a
Laplace transform, which allows introducing the initial condition and investigating
more clearly the questions of causality (see Chapter 5); (ii) With nonplane waves,
step 2 cannot be systematically accomplished, and one remains with a set of both
algebraic and differential equations.

13.5
Electromagnetic Components of Plane Plasma Waves

In a plasma, collisionless or not, all waves involve fluctuations in both the electro-
magnetic fields and in the plasma variables. The fields are expressed as functions
of the plasma parameters by the Maxwell equations via the source terms ¢ and j.
Conversely, the plasma parameters depend on the fields via the particle trajecto-
ries: this provides a second part of the equation system, which we will call here
the plasma equations. The plasma equations are generally complex and highly de-
pendent on both the plasma parameters and the scale range of the phenomena
under study. It is studied in the different chapters of the book. On the contrary,
the Maxwell equations are quite general and some general wave properties can be
deduced from them.

When applying the two first steps of the general program above to the Maxwell
equations, one obtains:

k-Ey=—ioi/eo (1.66)
kx By + wEi/c* = —iugj, (1.67)
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kxEi—wB; =0 (1.68)
k-B;=0. (1.69)

The subscript 1 labels the first order fluctuations, and the notation E; must be
understood as a short one to represent the complex amplitude of the Fourier trans-
form, which should be written E 1o,k to be complete, and which is a function of w
and k. All functions of the Fourier basis are supposed to vary with time and space
as ¢'*r=®) This means that, for deriving the above equations from the original
differential ones, the derivatives with respect to time have been replaced by multi-
plications by —iw and the nablas by ik.

Some general properties can readily be drawn by distinguishing the longitudinal
and transverse components of the vectors with respect to k (subscripts 1 and t). The
above system can then be rewritten as:

By =0 (1.70)
kEy = —io1/eo (1.71)
wEn/c* = —iugju (1.72)
kx By — wEy/c® = —iugjy, (1.73)
kx Ey—oBy=0. (1.74)

Equation (1.70) is independent of all the others. It is just the direct consequence
of the divergence-free equation: waves have no magnetic field component of their
perturbation along k. Equations (1.71) and (1.72) relate the longitudinal compo-
nent of the electric field Ejj to 01 and jj. These two equations are equivalent if
the charge continuity equation is taken into account. Equations (1.72) and (1.74)
relate the transverse components of both fields to the transverse component of the
electric current. The last two sets of two equations are independent of each other
only if the plasma equations make j;; independent of Ey; and j,, independent of
Ey1. In terms of the conductivity tensor defined above (j = ¢ - E), this occurs when
o is a scalar. In these conditions, the electrostatic and electromagnetic waves are
independent and can be superposed linearly: the electrostatic waves can be calcu-
lated by ignoring the magnetic field and the electromagnetic ones by ignoring the
electrostatic component.

1.3.6
Some General Properties of Plane Wave Polarization and Dispersion

Keeping the current source term unknown, the magnetic field perturbation B; can
easily be eliminated between Egs. (1.67) and (1.68). This elimination provides:

[(@” = k*c*) 1+ kke?] - Ey = —ig%jl : (1.75)



1.3 Upstream of Plasma Physics: Electromagnetic Fields and Waves

Taking j, = 0, one readily recovers the vacuum solutions: two transverse waves
with w? — k?c? = 0 (the longitudinal solution @ = 0 cannot exist in vacuum
because of Eq. (1.71).

Beyond the vacuum case, very few results can be considered as really general.
To obtain the dispersion relations in plasmas, the complete system, Maxwell plus
plasma equations, has to be known. A way to get a step further without specifying
the plasma equations is to use the fact that, whatever they are, they can always be
noted in linear theory: j, = o Eq, using the ¢ “conductivity tensor” presented just
above. This tensor will have of course to be calculated in each specific situation to
obtain concretely the properties of the waves in a given situation.

Rewriting Eq. (1.75) with this notation, one obtains:

P;-E; =0 with Py= [(wz —k*c*) 1+ kkc® + igﬁa] . (1.76)
0
The dispersion relation, therefore, results, in general, from the nullity of the deter-
minant D(w, k) of a propagation matrix Pg which depends on the plasma equa-
tions through the tensor @. As already mentioned in Section 1.3.3.4, the conductiv-
ity is related to the dielectric susceptibility and permittivity and @ can be replaced
by its expression in any of these functions.
Let us consider a magnetic field locally aligned in the z direction; the equation
D(w, k) = 0 can be expanded in the following way, as a function of the relative
permittivity € = &/¢.

W€y, — kﬁc2 wexy wle,, + ki kjc?
2 2 2.2 2 _
W €yy w’eyy — k*c W€y, =0, (1.77)
ok, + ko kjc? w’esy e, — k% 2

where the wave vector k vector is included in the x, z plan, and k) and k| are re-
spectively its parallel and perpendicular projections relatively to the magnetic field
direction: k = (k| , 0, k)j). One can see on Eq. (1.77) how all the wave properties can
be derived from the permittivity tensor. This tensor will be expressed and analyzed
more explicitly in Chapter 5, when the role of the particle distribution is specified.

Even in simple cases, with simple plasma equations, a great diversity of waves
can appear. They are generally characterized by their frequency @ and their wave
vector k. The equation relating these two quantities is called the dispersion relation.
The ratio vy = w/k is the phase velocity. The ratio N = kc/w = c¢/vy is the
refraction index. For certain values of the parameters, N > 1, that is vy /c > 0.
This is called a resonance. When N « 1 thatis vy + 00, this is a cut-off. Examples
will be given hereafter.

1.3.7
Electrostatic Waves

It is worth noting that plasma waves can involve, contrary to the vacuum waves,
a longitudinal component E;;. This component can even, for some wave modes
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such as the famous “Langmuir wave”, be predominant. As soon as the transverse
component of the electric field is negligible, Eq. (1.74) shows that its magnetic
counterpart is also very small. It means that these modes are mainly caused by
the space charge density p;, while the electric current associated with the corre-
sponding charge displacement can be neglected. This is why these waves are called
“electrostatic waves”, although their frequency is not zero. In this case, the linear
dispersion equation is simply

€1 = €y — @ =0. (1.78)

iw

These modes depend only on the longitudinal component of the dielectric tensor.
The above dispersion relation can be derived directly from Eq. (1.76), or from the
consideration of the dominant longitudinal component in Eq. (1.71).

13.8
Wave Packets and Group Velocity

With a single plane wave (of real frequency and wave vector), there is no propaga-
tion of any form of information, because the wave is present everywhere with the
same intensity. In real life, waves do not fill the entire space. Instead of a monochro-
matic plane wave, let us rather consider packets of plane waves, belonging to a
common branch of solutions of the dispersion equation D(w, k) = 0. They are
supposed to be linearly superposed, with their wave vectors spread in a finite in-
terval. When this interval is small, one speaks of quasi-monochromatic waves. The
amplitude of wave packets are represented, for any field A in the form

A(r, t) = /A(k)ei“‘"—w”dk ) (1.79)

The phase of each wave is defined as ¢ = k - r — wt. The wave packet has a maxi-
mum at a point r where all contributions are in phase, that is, where these phases
reach a common value ¢ which is independent of k. For a quasi-monochromatic
wave packet, where a Taylor expansion can be used, the phase is:

¢ =¢o+dk-Vi(k-r—wt) = po+ dk-(r— Vi(w)t). (1.80)

This shows the point r where the wave packet has its maximum amplitude given
by r = Vi (w)t. This point moves at a velocity called the group velocity and defined
by:

ve=Vio. (1.81)

In a 1D problem, it can be simply written: v, = dw/dk.

1.3.9
Propagation of Plane Waves in a Weakly Inhomogeneous Medium

The propagation of waves in an inhomogeneous medium is a complex topic that
involves many possible phenomena: wavelength and frequency modifications, par-
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tial transmissions, absorption and reflection, loss of planarity, mode conversion (a
wave pass from one branch of the dispersion equation solutions to another), and so
on. Quite often, in an inhomogeneous medium, the hypothesis of planarity does
not hold. Nevertheless, an asymptotic theory called the BGK theory after Bernstein,
Green, and Kruskal, describes the propagation of planar waves when the gradient
scales in the plasma are much larger than the wavelength.” The BGK theory pro-
vides a set of equations providing the wavelength, the frequency, the phase velocity,
and the group velocity evolutions. It is also possible to do ray tracing.

In a stratified medium, where the propagation index N depends on z only, a ray
with an initial vertical angle ¢ in the x, z plane evolves along the path described
as

; sin ¢od &
x =+ (1.82)
/

V N2(&) —sin? ¢ '

1.3.9.1 An Example of Wave Propagation with a Cut-off Frequency

Anticipating Chapter 5, we can investigate the propagation of a wave with a propa-
gation index given by N2(z) = 1—w2/w? = 1— an, where n = n(z) is the plasma
density, which is a function of the altitude. This relation is indeed the propagation
of an electromagnetic wave in a plasma (ordinary radio wave). We consider the case
of the lower ionosphere where the plasma density n(z) increases with altitude. For
simplification, we have a linear dependence. Then N%(z) = 1 — az, where a~ ! is
the altitude at which the wave frequency equals the cut-off frequency of its branch
of the dispersion relation. Equation (1.82) becomes x = +(cv/b — z —c~/b), where
b = (1—sin® ¢o)/a and ¢ = sin ¢o/+/a. The rays have a parabolic shape, with a re-
flection below the altitude where N(z) becomes null. More generally, in the vicinity
of an altitude where N%(z) cancels, the expansion N%(z) ~ 1 — az is valid, and the
above solution is quite general in the zone near the altitude of the cut-off. This fact
is illustrated in Figure 1.6a that provides a numerical example of Eq. (1.82). We can
conclude that a cut-off at a certain altitude corresponds to a reflection of the waves
below the altitude where their frequency is the cut-off frequency.

1.3.9.2 Examples of Wave Propagation with a Resonance Frequency

We represent a resonance at the altitude z, by a function of the shape N? =
a(z — zo)~! where a is an arbitrary constant. This relation does not correspond
to a particular plasma dispersion function; it is simply chosen to illustrate the ef-
fect of a resonance. For z close to zp, the function to integrate is equivalent to
sin ¢o(zo — §)"?a~'/2, and its primitive is proportional to (zo — &)!+2/2, There-
fore, in this vicinity, z ~ zo — cx!/(+2). The ray approaches the altitude z, for a
finite value of x, and has a vertical slope. Beyond this point, there is no propaga-
tion; therefore, the wave is absorbed at the resonance altitude. This is illustrated on
the right-hand side of Figure 1.6 by a numerical solution of Eq. (1.82) for the case

1) This theory could be developed in the frame of the multiscale expansion introduced in Appendix A
and used in Section 1.4.
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Figure 1.6 Ray tracing in a stratified medium We can see that the waves are reflected be-

for various initial angles. (a) The dispersion low this altitude. (b) The dispersion index
index N(z) = +/1— z has a cut-off at the N(z) = 1/+/z — 1 has a resonance at the
altitude z = 1 marked by the horizontal line. altitude z = 1 marked by the horizontal line.

I = 1. We can see that the waves do not propagate beyond the altitude where the
resonance is reached.

1.3.10
Useful Approximations of the Maxwell Equations in Plasma Physics

1.3.10.1 The Approximation of a Null Displacement Current Used in Classical MHD
On many occasions, we have defined a conductivity o tensor. For dimensional anal-
ysis, one can reduce it to a scalar field o and | = o E. This is analogous to the intro-
duction of an impedance Z defined by Z I = U where Iis the current circulating in
a portion of plasma submitted to a potential drop U. Then, for dimensional anal-
ysis, ZI = Z]JS = U = EL where L is the length of the plasma portion and
S = I? the area of surface perpendicular to it. Then, ] = E/(ZL), and we can
write the Ampére equation
vxp=22E 1y 1.83
X = — - .
ZLe ¢ (1.83)
where Zy = cug = 376.7... Q is the impedance of free space. In terms of plane
waves analysis, it is more simply written
Z() 1 w) E

ka:k(—~|— —.
c

z 1.84
Z ck (1.84)

For the comparison of orders of magnitude we make abstraction of the geometrical
operators (see Section 3.3), and

Z() v E
B=|—+4+-)—. 1.85
(Z+c)c (1.85)

where v/c = w/(kc) represents the typical velocity of the phenomenons under
consideration (the phase velocity in the case of plane waves). Similarly, the Faraday
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equation is

E v
— =B- (1.86)
c c
and the Gauss equations is
kE=2 (1.87)
€0

Concerning the Maxwell equations, the approximation made in MHD is the fol-
lowing: large spatial scales, low velocities relative to the speed of light, and a high
plasma conductivity. The magnetic field amplitude is generally finite. In terms of
the above equations, a small parameter € is introduced and allows us to write

v Z a
k = koe and = pe and 70 =—, (1.88)

where a, 3, ko are finite, as well as B. Then from Eq. (1.85),

a E

B=(Z+pe)=. (1.89)
€ c

As a result, the uoJ term in the Ampere equation associated with ae dominates

the displacement current, which is associated with fSe. Therefore, in that context,

the displacement current is neglected, and the Ampeére equation reduces to

VxB=uJ. (1.90)

Moreover, as the magnetic field is finite, E/(cB) = J€ where 0 has a finite value;
therefore, E is of order one in €. Of course, this does not imply that the electric
field is null. But in the MHD equation, when one part of the electromagnetic field
has to be eliminated from a set of equations, it is better to keep the magnetic field,
because it is of a larger order of magnitude than the (normalized by c) electric field
E/c (see Section 5.1).

Is the charge conservation Eq. (1.5) relevant to this MHD approximation? The
charge conservation is derived from the divergence of the Ampeére equation, com-
bined with the Gauss equation. In the present case, the divergence of the Ampere
equation is reduced to V - J = 0. (This term is of order ¢, while those associat-
ed with the displacement current is of order €3.) Therefore, the charge continuity
equation is not relevant. Because there is no charge conservation, and because the
use of the current density is unavoidable, it is not recommended to consider the
charge density. Consistently, the Gauss equation, in the form of Eq. (1.87) shows
that the charge density time derivative is of order €2, and should not be retained.
Nevertheless, the Maxwell equations are completed, in MHD by a Ohm’s law that
generally provides a value for the electric field. Taking its divergence does not nec-
essarily lead to a null charge density, but the charge density should be of order 2 or
more.
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1.3.10.2 The Approximation of a Null Displacement Current Used with

a Multicomponent Plasma

The MHD approximation is made for large spatial scales. When one is also inter-
ested in smaller spatial scales, the above set of approximations can be replaced by
the following:

Zy a 1%
=2_= d - = , 1.91
— =7 and - Be (1.91)

where a, [ are finite, as well as B and k. Then Eq. (1.89) is still valid. Therefore,
the displacement current is still negligible in the Ampére equation, and Eq. (1.90)
still applies. Then, when B is finite, E/c is still of order €. But the Gauss equation
implies now that p is of the same order as E (when it was one order less in the MHD
approximation). Then, one has to take p explicitly into account, as well as the Gauss
equation, because they both involve fields of order €. Because of Eq. (1.90), the
charge continuity equation implies that p = 0. Therefore, in this approximation,
Eq. (1.90) is explicitly completed by

p=0. (1.92)

This is quasi-neutrality. This equation is especially important, because it allows
us to set a relation between the densities of the different species. For instance, in
the case of a plasma with a single ion species, the electron and the ion densities
are related through the relation n; = n.. This is not the case in MHD where the
plasma is considered as a single fluid.

The two approximations presented in this section are not compatible with elec-
tromagnetic waves in vacuum (because of the large conductivity assumption) and
not with the electrostatic ones where p is finite and explicitly taken into account.

1.3.10.3 The Electrostatic Approximation
The electrostatic approximation supposes a large plasma impedance and small ve-
locities. Then

ZO v

— =qae and — = fe, 1.93

- L= (1.93)
where «, f3, ko are finite, as well as E. The approximation on Zy/Z consists of ne-
glecting the current density. We can see that B is of order €. To order zero, the
Ampeére equation is reduced to V x B = 0. As V- B = 0, the solution is a uniform
magnetic field, that cannot vary as a function of time.” The Maxwell equations re-
duce to

VXE=0 and V-E=ple; B=Bg, (1.94)

2) The Faraday equation shows that for a uniform magnetic field that depends on time, V X E is
uniform, and, therefore, the electric field diverges at infinity. Indeed, let us consider a sphere V
of radius R. For finite values of 9, B, the integral [, V X EdV = [, n x EdS varies as R®, the
sphere surface varies as R%; consequently, E diverges as R, involving an infinite amount of electric
energy. In order to avoid this divergence, d; B = 0 is necessary.
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where By is constant and uniform. The electrostatic approximation can also be
used locally. In that case, there exist solutions where the curl and the divergence
of B = 0 are null and B is not uniform. For instance, this is the case of a mag-
netic dipole, when the center of the dipole is out of the domain of validity of the
approximation. In that case, for a bounded system,

VXE=-90,B and V-E=pleg; VxB=0 and V-B=0. (1.95)

The electrostatic approximation does not allow for the propagation of any electro-
magnetic wave, only purely electric waves can be considered. The continuity of the
electric charge cannot be deduced any more from these reduced equations. Nev-
ertheless, when used, this equation shows that V - J can be finite, but it has no
consequence because the current density does not appear in the above equations.

The electrostatic approximation has various domains of application. It is widely
used in the theory of auroral acceleration. The BGK theory is generally developed
in this frame, as well as the theory of electrostatic double layers (see Chapter 6). It
is also possible to establish a theory of electrostatic waves.

The propagation of electromagnetic waves into vacuum is not possible, and this
is good news for those making numerical simulations who are interested only in
low frequency waves: they won’t have to bother with the computer time and mem-
ory requirements associated with a proper numerical computation of light waves.

1.3.10.4 The Darwin Approximation
The Darwin approximation, mainly used in numerical simulation, is designed to
eliminate the light waves that do not interfere with the plasma, because they raise
strong constraints on the time step: cAt < Ax. But it is also designed to retain
the physics of the waves that interact with the plasma as much as possible. In
particular, it must retain the electrostatic waves and the continuity of the charge
density.

The Darwin approximation proceeds in two steps. First, the electric field is cut
in a longitudinal (or solenoidal) component Ej, and a transverse component Ej,
defined by

E=FE+E and V-E,=0 and VxE =0. (1.96)
Then, one can notice that the Faraday equation involves only the transverse elec-

tric field, and the Gauss equation involves only the longitudinal field. The Ampere
equation is applied separately to the two components:

1
V% B= o]+ =0 E (1.97)

1
ﬂ0]1+ EatElzo (198)

The second stage in the Darwin approximation consists of neglecting the displace-
ment current only in Eq. (1.97). Thus, it is no longer possible to have light waves.
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The divergence of the second equation and the Gauss equation provides the equa-
tion of continuity of the charge density. In summary:

E=E +E, (1.99)
VxE =0 and V-E =p/e (1.100)
V-E,=0 and VxE =-0,B, (1.101)
VX B=u],. (1.102)

In which order can one solve these equations? The longitudinal electric field
can be deduced directly from the charge density. From the current density,
one can know only the curl of the magnetic field. It is better to combine the
Egs. (1.101), (1.102), and the null divergence of the (transverse) magnetic field.
There remains only a Laplacian equation,

VZE, = 10, ], - (1.103)

But usually, one cannot separate a priori the longitudinal and the transverse com-
ponents. Therefore, an Ampére equation where this separation is not explicitly
done is used:

1
V2E, = uopd, J — ;8%]51 : (1.104)

Then, as Ej obtained as the solution of the Gauss equation is known, the only
unknown is on the left-hand side of the equation, and it can be solved by inversion
of the Laplacian.

This approximation indeed allows the charge conservation and eliminates light
waves. Many electrostatic and electromagnetic waves interacting with the plasma
are possible, but not all of them. To be convinced of this limitation, we can derive
the dispersion equation of linear waves in the Fourier space. The solution is

2

w* €
kx(kxE ——-E=0. 1.105
x(kx E) + o (1.105)
with
L 1.106
e=¢|—=+i—|. .
O\ k2 weg ( )
Without the Darwin approximation, we would have
. O
€ =€ (I + l—) . (1.107)
[OX )

The two systems give the same solutions for electrostatic waves (as k and E are
parallel). In vacuum (¢ = 0), we can see that the transverse waves (with k L
E) have necessarily a null amplitude. This is consistent with the purpose of this
approximation. But for long length waves (therefore, interacting with the plasma)
with orthogonal k and E, the solution can be greatly affected by this approximation.
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1.4
Upstream of Plasma Physics: The Motion of Charged Particles

The motion of the particles in a fluid is determined by integration of the motion
equation in the collective electromagnetic and gravitational fields over a time peri-
od that is inversely proportional to the collision frequency. The global motion of the
fluid is derived from the particle motion. In a collisional medium, these equations
have to be solved over the short time between two collisions, and each collision
gives a set of random new initial conditions. When the collision rate is high, this
can be treated by a statistical approach. When there is no collision, the particles fol-
low a deterministic trajectory during the whole duration of the phenomenon under
study. The initial distribution of positions and motion can be described statistical-
ly, but the determination of its evolution is deterministic and requires that we can
compute trajectories over long periods of time.

In a collisionless plasma, the full dynamics of the particle is taken into account
when the Lorentz force equations of motion are solved,

dr=v and dyv= %[E(r) +vx B(r)]. (1.108)

It is possible to add to the electric field the addition of other potential forces, for
instance, gravitational. But practically, the typical velocities in an astrophysical plas-
ma around a planet or a star exceed by far the gravitational escape velocity. This is
why the gravitation forces are often neglected.

1.4.1
The Motion of the Guiding Center

Nevertheless, a full description of the particles’ trajectories is not necessary. Quite
often, as for a particle into a wave, or in a slowly varying magnetic field, the particle
has a rapid and periodic motion, added to a slow variation of the characteristics of
the periodic motion, and a drift motion. We are interested by the general charac-
teristics of the motion, without knowing the phase of its fast component. The slow
component of the velocity is called the guiding center motion.

In many textbooks, the different components of the guiding center velocity are
introduced separately as consequences of particular features of the electromagnetic
field. Unfortunately, in this way, we are never sure whether we include all the terms,
nor whether one was counted twice. This is why we present here a global theory of
the guiding center.

A global, theory of the guiding center was published in 1963 in a reference
textbook [2]. The so-called rigorous demonstration in that book requires previous
knowledge of asymptotic expansion methods (this chapter is then preceded by a
not-so-rigorous demonstration for physicists), and the book is no longer available.
This is why it is worth presenting here an extensive derivation of the guiding cen-
ter theory. We base our development on the multitimescales method. No previ-
ous knowledge of the theory of asymptotic developments is required. The general
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method is described in Appendix A.2 and it is applied in Appendix A.2.3 to the
guiding center motion.

1.4.1.1  Principles of the Guiding Center Motion

The multiscale expansion method is based on a small parameter € that relates the
space and time derivatives of the electromagnetic field. If the electromagnetic field
is uniform and constant, ¢ = 0, and the velocity is the sum of a constant drift
E x B/B? and a rapid circular motion of frequency w. = qB/m (the gyrofrequen-
cy) in the plane that is perpendicular to B. Therefore, the high frequency of the
system (noted wg in Appendix A) is @.. Then, € is considered as a small parameter

provided that

Vi
Pl(VB)Ll = —=|(VB)L| < B, (1.109)
C

that is, formally equivalent to
mv, |(VB)1| < qB*. (1.110)

The characteristic fast time scale is T. = 2n/w,, during which the particle must
see only a weak variation of the electromagnetic field

21 21
Vs (w—) [(VB)| « B and (w—) |0;B] < B . (1.111)

The parallel electric field E| is generally not the cause of a fast periodic motion.
Therefore, it must induce a weak acceleration in comparison to those induced by
the magnetic field

(a/m)Ey < |vx B| ~ po? . (L112)
The velocity equation (Lorentz force) is
div =ce(r,t1,...)+vxDb(rt,...), (1.113)

where we note e = qE/m and b = qB/m. We accept a contribution of order 0 of
the magnetic field and the perpendicular electric field.
A development (detailed in the Appendix A) is made of the electromagnetic field

e(r,t1,...)=¢e (R t1,...)+€(ro-V)el +ees + ... (1.114)
b(r,t1,...) =b(R, t1,...)+ (ro- V)b + ... (1.115)

where the gradients are computed at the position R of the guiding center, and not
of the particle.

The velocity equation is then written at orders €° and €! in the context of the
multiscale expansion. This procedure is detailed in Appendix A.2.3. To lowest order,
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the slow component of the solution is the well known cross field drift velocity, also
found in ideal MHD theory,

ExB

U = + Ujob, (1.116)

with Uy still undetermined at this stage. The fast part at order zero describes a
linear oscillator, whose solution is

Uoy = +U_ocos(wct + )
Ugy = —u_gsin(wct + )
Uo, = 0. (1.117)

The slow part of Eq. (A25) is the basis of the derivation of the slow motion at first
order of the guiding center velocity.

1.4.1.2 The Perpendicular Velocity of the Guiding Center
It is found that, in terms of ordinary time and space variables,

Uil =Uy+el;

_E><B+mbXdE><B
T B2 qB ‘B2

+ Uydib + %VB] . (1.118)

The first term is the cross field drift E x B/B?, occurring as soon as the electric
and the magnetic fields have components orthogonal to each other. All the con-
tributions to the slow perpendicular drift are the product of gb/m B and a vector
that is homogeneous to an acceleration, the effect of a force. We can develop the
derivatives appearing in the force terms in order to prove a few effects

b E ExB
e R

qB B?
E B B

Mb %q——'—thLX +ELth( )}

qB B?

+ U||dtb~|— VBi|

u
ZVB} . (1.119)

mb
g < {U||o[8tb+ Upyb- Vb + U, 0-Vb] +
The force d, E| x B/B? is associated with the polarization drift velocity, that in
virtue of the double cross product takes the simple form

B
qﬂBbX(thLXE)Z%thL. (1.120)

The polarization drifts, because its proportionality to the mass is mainly affected
by ions and is often neglected for electrons, and as a result, it is a cause of electric
current density in a plasma.

The development of U||0dt b in Eq. (1.119) is associated to the velocities

q— Ujob x 8:b + — .5 Uuob x (b-Vb) + q— Ujob x (Up, - Vb) .  (1.121)
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The second of these terms is called the curvature drift because it appears when the
magnetic field lines have a finite curvature. It is generally the most important term
of this group. All these terms are charge and mass dependent, they are potentially
the cause of an electric current density.

The last term comes form the mirror force —uVB/m connected to the gradient
of the modulus of the magnetic field. When the magnetic field increases, this force
is repulsive, which is why it is called a magnetic mirror force, as if photons are
reflected by a mirror. This term gives an indication about the tendency of plasmas
to go preferentially in the regions of a weak magnetic field.

Apart from the curvature drift, the polarization drift, and the mirror force, we
can see other terms. They appear in [2], but they are seldom mentioned in many
other textbooks, whose approach of the guiding center motion, if pedagogic, is less
scrupulous.

1.4.1.3  The Parallel Velocity of the Guiding Center
The equation of the parallel motion is

q u Ex B db
d;Ujp(t)= —Ey——VyB— ——— - —. 1.122
+Ujjo(%) ot el | TR, ( )
The first term is the parallel electric field. It is not specific to the guiding center
theory. The term derived from the perpendicular magnetic gradient (the gradient
of B in the direction perpendicular to B) in the equation of the perpendicular ve-

locity

iBh X VB (1.123)
q

reappears in the equation of the parallel velocity Eq. (1.122).

The last term, connected to the partial time derivative of b, is seen in [2] but is
not visible in many other textbooks. The Egs. (1.122) and (1.118) provide a fairly
classical representation of the guiding center motion.

1.4.1.4 The Guiding Center Equation That Does Not Separate the Perpendicular and
Parallel Components

From Egs. (1.116) and (A61), it is possible to derive an equation of the global guid-
ing center slow velocity U = U, + € Uy, without separating the parallel and the
perpendicular component, at order 1.

d,U=LE+UxB)-Lvs, (1.124)
m m

where the electromagnetic field E, B is defined at the position R of the guiding cen-
ter, and not at the instantaneous position r of the particle velocity. This equation
determines the evolution of the slow component of the velocity. Equation (1.124)
is seldom used in analytical calculations, but it can be very useful in numerical

computations [3]. It is interesting when solved in a way that allows us to get rid of
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the fast varying part (coming from the U x B term). This can be done with an im-
plicit numerical algorithm that combines a low-pass filtering with the computation
of U x B.

1.4.2
Adiabatic Invariants

1.4.2.1 First Adiabatic Invariant and Magnetic Trapping

In the slowly varying electromagnetic field of a magnetized medium, the shortest
time scale concerning the particle motion is the gyrofrequency w.. An adiabatic
invariant, defined in Appendix A.2, can be associated with the gyromotion of the
particle. As only the motion defined by p | is periodic, only this one must be re-
tained in the definition of the first adiabatic invariant. Let T = 2n/w. = 2nim/qB
Dbe the period of the fast motion,

T T T
2 2
Z:/pdq:/mvj_dr:/mm_dm_dt: ﬂva. (1.125)
q
0 0

2B
0

Practically, the retained definition of the first invariant is the magnetic moment
u = mv? 2B (see also Eq. (A60)).

If the particle evolves in a purely magnetic field, the total kinetic energy vﬁ +vi
as well as u is conserved. Then the pitch angle a, related to the above quantities
through the equation sina = v|/ve, depends directly on the amplitude of the
local magnetic field:

sin® a sin® a
= constant = .

(1.126)
0

Here, By and a are reference values. They often correspond to the region where
the magnetic field value By is minimal, thus defining the minimal value o, of the
pitch angle. In a magnetosphere, the value By is generally found at the magnetic
equator, and «y is the equatorial pitch angle.

When a particle moves along a magnetic field line towards a region of increasing
magnetic field, the pitch angle tends to increase too, until it reaches the value /2.
Then the particle can not go any further, otherwise sin a would be larger than one.
Equation (1.122) clearly states that at this stage, the particle bounces back into the
region of lower magnetic field. Then, the first adiabatic invariant tells us that the
tendency of the particles is to be trapped in the region of a low amplitude magnetic
field, unless their initial pitch angle is small enough. This process is called the
mirror effect. Particles bouncing back because of the increase of the magnetic field
are said to be mirrored. The others are untrapped, or passing particles.

The particles with sin @y < (Bo/Bmax)'/? are not reflected. In the vicinity of a
planet, B, corresponds to the topside ionosphere. Below, the plasma becomes
collisional, and the particles are captured through binary interactions in the iono-
sphere. The capture process, when the particle has enough energy can be a source
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of visible light, UV, and X-rays. The particles at the origin of the polar auroras, on
the Earth and on other magnetized planets, are untrapped particles. They are said
to be in the loss cone of the velocity distribution function.

For mirrored particles, whose position along the magnetic field line is defined by
their curvilinear abscissa s, the bouncing period 7}, between the two mirror points
my and m, is

szfﬁzsz. (1.127)
vi(s) v 1 — B(s)/Bmax

my

The regions of closed field lines contain a trapped plasma. The fact that they con-
tain particles of high energy (a few MeV) was one of the first discoveries about
the magnetosphere, made in 1958 with the space probe Explorer I and was very
advertised. These regions of trapped plasma are called the Van Allen belts, or ra-
diation belts. The plasma of low energies (below a few keV) is also trapped and
can remain for weeks. The trapped plasma region has a torus shape, centered, in
the case of Earth, at a distance of about 5 Rg (where Rg = 6400 km is the Earth’s
radius). This region is inside the plasmasphere mentioned in Section 1.3.1.4. At
close distance to the magnetized planets, and not too close to the poles, we have
seen that the magnetic field lines are closed on both sides, and that B can be ap-
proximated as a dipole (see Section 1.3.3.1). For a dipole, the field lines of equa-
tion r = Rpcos?(A)/cos?(Ag) reach the body surface (radius Rg) at the latitude
Ap = arccos L™Y/2 where L = ro/Ry is the McIllwain parameter, ro being the equa-
torial distance of the magnetic field line. In the dipole field approximation as well
as other models, L is used to characterize a field line. For a dipole field, the pitch
angle can be expressed as a function of the magnetic latitude 1

cos® 1
V1 +3sin? 1

Knowing that at the mirror points of latitude A, sin® 1,, = 1 this equation gives
the possibility of computing the latitude of the mirror points. The latitude of the
mirror points is independent of L and, therefore, it is independent of the magnetic
field line. The boundary I of the loss cone is defined by 1,, > A., that can be
expressed as sin® ag; = (4L° — 3L%)(—1/2). The bounce period is

sin® a(l) = sin® a . (1.128)

A-m
41y [ cos A(1 + 3sin® 1)1/2 41,
Tb = — dl ~ .
v cos a(d) v
0

(1.129)

The typical bounce period is ~ 1s for 1 keV electrons and ~ 1 min for ions trapped
around the Earth. The motion of these particles comprises the cross fields drift that
coincide with the corotation velocity (provided that the electric field is caused only
by corotation). The sum of their gradient and curvature drifts is

2
voe = (1 + cos® a) (1.130)
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Figure 1.7 Isocontour of the current density west direction. The Earth is surrounded by the
magnitude | j| o [V x BJ in the inner magne-  ring current clearly visible on the figure. This
tosphere. The magnetic field is computed with  current is associated with a particle drift in
the model [1]. On the left side of the figure is the azimuthal direction. (Courtesy: P. Robert,
the current sheet layer, extended in the east— LPP/CNRS)

where the variables B, R, a depend on the latitude 4 and R. is the curvature radius
of the magnetic field line R, = ||d?r/ds?|| = (ro/3) cos A(1 4 3sin® 1)(3/2)/(2 —
cos? 1). Then, averaged over a bounce period, this corresponds to an azimuthal
drift

A
4 f di ds mv2r,
/— (1.131)

(0} = ) cosadi (3/2) qBLR}

0
where By, is the surface magnetic field on the equator of the body, and Ry, the body
radius. Since average drift is charge dependent, it is at the origin of an azimuthal
electric current that turns completely around the body in the regions of closed
magnetic field lines (that is, at low altitude and low latitudes). This current is called
the ring current, visible in Figure 1.7.

1.4.2.2 Second Adiabatic Invariant

When a particle is trapped between two mirror points, its guiding center bounces
between the mirror points with the period t},. This is the highest frequency in-
volved in the motion of the guiding center (not of the particle). Therefore, an adia-
batic invariant can be associated with this periodic motion, as far as the variation of
the magnetic field is slow relative to the period t},. Following the same procedure
as for the first adiabatic invariant, we select the component of the impulsion that
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has the periodic motion. This time, this is the parallel component. The associat-
ed generalized coordinate is the curvilinear abscissa along the magnetic field line.
Therefore, the second adiabatic invariant, noted J, is

= / pyds (1.132)

where my and m, are the abscissas of the mirror points. As we have seen, the
typical period for a 1 keV particle in the Earth’s radiation belt is about 1 sec. Even
during sudden events, such as the magnetic field reconfigurations associated with
substorms, the typical time of evolution of B is on the order of minutes. Therefore,
J can be considered an electron adiabatic invariant. For the ions, the bouncing
period is on the order of a minute, and | is not necessary an adiabatic invariant for
them. But it can still be an adiabatic invariant for ions of much higher energy (a
few MeV for the high-energy component of the radiation belts).

1.4.2.3 Third Adiabatic Invariant and the Magnetic Storms

The azimuthal drift of the guiding centers given explicitly in Eq. (1.131) also in-
duces a periodic motion, which can be associated with a third adiabatic invariant.
It can be shown that this third invariant is the magnetic flux enclosed by the guid-
ing center during its azimuthal motion,

@ = /A-dl. (1.133)

In the inner magnetosphere of the Earth, for the particles in the range 1-100keV,
the period associated with the azimuthal motion is typically hours, while the vari-
ations of the magnetospheric magnetic field are generally faster. The flux @ is an
adiabatic invariant only for the high-energy particles (a few MeV) of the radiation
belts.

1.4.3
The Motion of a Particle in a Wave

In most theories of wave collisionless plasma interaction, the motion of charged
particles in the wave electromagnetic field must be evaluated. A complete theory of
particles in a wave would involve the simultaneous appearance of various concepts.
Here, in simplified contexts, we show a few of the most important effects connected
with the motion of a particle in a wave.

We start with particles propagating much slower than the wave phase velocity,
dealing with the effect of the modulation of the wave amplitude. This effect, as
the guiding center theory, is developed in the mathematical context of the multi-
timescale asymptotic expansion.

Then the notion of wave trapping is presented. It appears with quasi-monochro-
matic waves, even in unmagnetized plasmas, and is important for particles with a
velocity of the same order of magnitude as the phase velocity.
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1.4.3.1 The Nonresonant Particle in a Modulated Sinusoidal Electromagnetic Field
In this section, the concept of a guiding center is left out. The multiscale expansion
method is used in a different context, more related to microphysics: the behavior
of a particle into the electromagnetic field of a wave. Here, the wave is supposed
to have a phase velocity larger than the particle velocity, but its envelope is not
uniform. The wave frequency, considered the high frequency, is w, and we consider
that the magnetic field has no uniform component. The electric field is

E(r,t) = Eo(r,t)cos(wt — k- 1) (1.134)

Eo(r, t) varies slowly according to space and time, and the wave envelope propa-
gates slowly. In terms of multiscale expansion, it is straightforwardly written

E(r,t) = Eo(r1, t,...)cos(wty — k1 - 11) . (1.135)

An example of such a waveform, taken in the solar wind, is shown in Figure 1.8.
The Maxwell-Ampere equation can be solved, giving a magnetic field

B(T, t) = Bﬁ‘o(rl, b, .. ) COS((DtO — kl . T]) + BS,O(rl, t,.. ) Sil’l(wto — k1 . Tl)
(1.136)

where
k1 X Eo Vi x Eo
€E—— €E— .

BC,O =
w

and B,y =— (1.137)

Then, the equation of motion involving the Lorentz force is written up to the first
order. The zero order equation is solved explicitly,

w = 1 E, sing and ry=— Eycos ¢ . (1.138)
ma

mw?
We have introduced here the notation ¢ = wty — kq - r1. The first order equation
is averaged, and one finds

2 2

[Eo - V1Eo + (V1 x Eo) x Eo] = — 4

at Uy = —
! m2w

ViEy. (1139
2mlw 1o ( )
Going back to the ordinary variables, the following equation gives the equation of
slow motion,

q2

dU=— VE;. (1.140)

2mlw

AVx (Vols)

Figure 1.8 Electric potential (in Volts) of a typical wave form observed in the solar wind.
From [4], see also Figure 6.31. This signal can be interpreted as a sinusoid of high frequency
T = 2n/w modulated by a slowly varying envelope Eg(t) represented here by the grey line.
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It says that the particle is submitted to a force acting on the long run that derives
from the modulation of the wave envelope, that pushes the particles in the regions
of lower wave energy. This is called the ponderomotive force.

1.4.3.2 The Particle in a Sinusoidal Electrostatic Wave Field

We consider the simple case of an electrostatic wave, and we compute the motion
in the reference frame of the wave (the one that moves at the wave phase velocity).
The equation of motion is

d?x(1) = %EO sin(kx (7)) . (1.141)

where E, is the wave electric field amplitude, and k is the wave vector. For small
wave amplitude Ej, the amplitude of the motion is small too. It is a harmonic
oscillation, called bounce motion, of frequency

12
wp = (qu") . (1.142)

m

In the following development, we do not suppose small oscillation, but the har-
monic bounce frequency wy is used to parametrize the system.
The equation of motion has a first integral
m ,  qE
5 (dex(7))” + - cos[kx ()] = W . (1.143)
This is the particle energy. This integral is used to characterize the particle trajecto-
ries. Two cases must be considered separately, whether eEy < kW or eEy > kW.
In the first case, the particle can keep a nonnull velocity whatever its position.
Therefore, the particle motion, if perturbed by the wave, keeps a constant direc-
tion. The particles with an energy W larger than eE,/k are, therefore, untrapped
by the wave. The other particles, with eE, > kW, can move through a portion
of space limited by || kx| < arccos (k W/e E), they are trapped by the wave. In the
limit W ~ 0, the trapped particle velocities oscillate with the frequency wg. For
larger energies, the bounce frequency is derived through the use of Jacobi elliptical
functions.
The motion of untrapped particles is based on Eq. (1.143) and on the new vari-
ables £ = kx/2, w = kW/eE,. For untrapped particles, w > 1. In terms of &
and w, the first invariant equation becomes

(d:&(1))* = a®(1 — Bsin® &) (1.144)
where a? = eEok(1 + w)/2m = wi(l + w)/2and B = 2/(1 + w) < 1. It can be
integrated,

kx(1)/2

at= [ e F(kx(/2.8)- FkxO)/2.8).  (1145)

kx£/2 \J1—pBsin? &
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The integral is the elliptic integral of the first kind (usually met in physics textbooks
when dealing with the oscillations of the pendulum). It reciprocal is the Jacobi
amplitude am = F~1(t, ), and

kx(t) = 2am(at + F(kx(0)/2, B)) . (1.146)

For trapped particles, a new variable { is defined by sin{ = fsin&. It is valid
for a limited domain of values of &, compatible with the fact that the particles are
trapped and that the values of || || are bounded. Then, Eq. (1.144) becomes

(d:2(7)* = a? (1 - % sin’ g) . (1.147)
Its solution is
at = F (arcsin (B sinkx(t)), %) —F (arcsin (B sin kx(0)), %) . (1.148)

We can see that the trapped particles have a nonharmonic motion, and their fre-
quency depends on their amplitude 3. As we have seen, for a vanishing amplitude,
the frequency is wg. For larger amplitudes, the frequency is lower. Consequently,
the phases characterizing each individual motion mix, hindering coherent collec-
tive behavior of the trapped particles. This point, which goes beyond the motion of
isolated particles, is discussed more extensively in Section 6.3.2.








