1
Introduction

The so-called /1 Cold Dark Matter (A1CDM) model is currently the most wide-
ly accepted theory for the structure and evolution of the Universe. A combina-
tion of experimental data involving the power spectrum of the Cosmic Microwave
Background (CMB) radiation temperature fluctuations, the abundance and weak-
lensing mass measurements of galaxy clusters, the Type Ia supernovae magni-
tude-redshift relation and large scale structure observations has placed strong con-
straints on the free parameters of this cosmological model [1].

In the framework of 1CDM cosmology, the large scale structure of the Universe
is assumed to be homogeneous and isotropic — denoted as “cosmological princi-
ple” — on scales of the order of 100 Mpc. Therefore, the local inhomogeneities can
be treated as perturbations to the general homogeneity of the Universe, and it is
represented by the Friedmann—Robertson—-Walker metrics. The evolution with time
of this model universe is described by
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as obtained from the field equations of general relativity. Here, k denotes the spa-
tial curvature, dt the cosmic time separation, p the density of matter plus radiation.
R(t) is the so-called cosmic scale factor that describes the expansion (or contrac-
tion) of the Universe. It has the dimensions of a distance and is dependent on the
cosmic time ¢. The constant k is defined in a way that k = +1 for a positive spatial
curvature, k = 0 for a flat space and k = —1 for a negative curvature. The cosmic
time is defined by standard clocks comoving with the cosmic fluid. If one sets ¢ to
the same value for all clocks when a local property of the cosmic fluid, for example,
the average local density of matter, has attained a certain agreed value, by virtue of
the cosmological principle, the same value of that property (possibly different from
the one at the time of synchronization) has to be measured whenever clocks show
the same time.

Equation (1.1) includes the cosmological constant /. If A were to vary with t,
it represents a so-called “dark energy”. Current observations are consistent with /1
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being a constant.” The evolution of R(t) is controlled by p, the geometry k and A.
By defining the function H(t) as

H(t) = dR() 1 (1.3)
dt R(t)

one can rewrite Eq. (1.1) as

k2 8aGp(t) A
3

RE T3 (1.4)

The value of H(t) determined today is the Hubble constant Hy. Itis customary to
introduce the critical density p. = 3H(t)?/(8 G) and define the density parameter
Q, = p/pc, an equivalent for the cosmological constant 2,4 = A/(3H(t)?), and
the sum Q = Q, + Q. With these definitions, Eq. (1.4) becomes

(1— Q)H(t)*R(t)* = —kc? (1.5)
Q = 1 gives a flat space, 2 > 1 a positive curvature and 2 < 1 a negative
curvature.

At present, p appears to be dominated by matter, the contribution from photons
being negligible (2, = (4.800 + 0.014) x 107°). Q, is split into contributions
from baryonic (2p = 0.0456 £ 0.0016) and dark matter (2py = 0.227 + 0.014).
The presence of “cold” (with a negligible velocity dispersion) dark matter — called
“dark” because it does not interact electromagnetically with the other components
of the cosmic fluid — is well-established by observations of galaxy rotation curves,
the X-ray emission of the hot ionized gas in clusters of galaxies and gravitational
lensing surveys. As for its origin, various candidates predicted by extensions of the
Standard Model of particle physics have been proposed, but to date, the question
about the nature of dark matter is awaiting a definitive answer.

The dominant contribution to the present energy budget of the Universe is, how-
ever, given by A, thatis, Q4 = 0.7281'3'(‘,)1165. This implies that 2 4+ Q2 + Qpy = 1
and the space is flat.

As we go backwards in cosmic time, R(t) decreases and the radiation density
increases faster than the density of matter. Therefore, there must have been a mo-
ment in the cosmic history when the Universe was radiation dominated; the cos-
mic time t; of matter-radiation equality is of the order of 10° years. Going back
to even earlier cosmic times, it is clear that the Universe must have started from
a singular state with R = 0 and p = oo at t = 0. Present estimates of the matter
and A density coupled to the equations for the evolution of R(t) provide a value
of the Hubble constant Hy = 70.4"_"11_'2 km Mpc—!s7! and an age of the Universe
ty = 13.75 £ 0.11 Gyr.

Now, reversing the arrow of cosmic time, as the Universe expands and cools from
the initial singularity during the initial radiation dominated era, a small amount

1) An interesting comparison of various points of view on this issue can be found in [2].
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of some light elements (mainly D, *He, “He, 7Li) is produced when the tempera-
ture evolves from T ~ 10° K down to 3 x 10’ K. The amount of light nuclei pro-
duced depends on the baryon density and the expansion (i.e. cooling) rate. Calcu-
lations of cosmological nucleosynthesis — assuming three neutrino species with
mass much smaller than 1 MeV - provide, for the present estimate of the baryon
density, a primordial He mass fraction Yp = 0.2487 % 0.0002, and number abun-
dance ratios (D/H), = (2.52 # 0.17) x 1075, *He/H)p = (1.03 % 0.03) x 1075,
(Li/H)p = 5.1279721071° for D, *He and "Li, respectively [3, 4].

When the temperature drops below the ionization energy of hydrogen (13.6 eV),
the ionization fraction, however, stays close to one due to the large number of pho-
tons over baryons (photons dominate by number, although matter dominates en-
ergetically and therefore gravitationally). The number of photons in the high en-
ergy tail of the black body spectrum is high enough to keep the matter fully ion-
ized. Eventually, the temperature and therefore the number density of sufficient-
ly energetic photons drops so low that recombination prevails. It is at this time,
~ 10> years after the singularity (i.e. when T ~ 4000K), that the first atoms
form. The resulting dearth of free electrons has the consequence of reducing the
efficiency of electron scattering, so that matter and radiation decouple. From this
moment on, the temperatures of radiation and matter become different and start to
evolve separately; radiation does not interact any longer with matter and can travel
undisturbed through space. The radiation temperature T, is reduced according to
T, o« R(t)™!, and the blackbody spectrum it had at decoupling is preserved. This
blackbody radiation, largely homogeneous and isotropic (because of the cosmolog-
ical principle) with a temperature T, of ~ 2.73 K is the theoretical counterpart of
the CMB.

If the Universe was perfectly isotropic and homogeneous, no structures would
have formed with time. However, in the case of inhomogeneities, regions denser
than the background tend to contract and get denser still, inducing a growth of the
initial perturbation. In 1970, Peebles, Yu, Sunyaev and Zel'dovich predicted that
these inhomogeneities had to be imprinted in the CMB as the tiny temperature
fluctuations that have been recently detected (they are of the order of AT/T =
107°). Fluctuations of the local density of baryonic matter would have behaved as
sound waves (with their fundamental mode plus overtones) in the cosmic fluid
before recombination, with the photons (to which baryons were tightly coupled
before recombination) providing the restoring force. At recombination, the pho-
tons started to travel for the first time unimpeded through space; photons released
from denser, hotter regions were more energetic than photons released from more
rarefied regions. This temperature differences were thus frozen into the CMB at re-
combination and are detected today. Most importantly, the amplitude and location
of the peaks in the power spectrum of these temperature fluctuations are closely
related to a number of cosmological parameters (for more details see, for example,
the discussion in [5]); in particular, the location of the first peak is mainly relat-
ed to the geometry of the tridimensional space, whereas the ratio of the heights
of the first to second peak is strongly dependent on Q5. Also, the values of the
Hubble constant and of the cosmological constant affect both location and ampli-
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tudes of the peaks, albeit with different sensitivities. Observations show that the
fluctuations are consistent with a Gaussian random field and the power spectrum
is close to scale invariant, that is, P(k) o k"s with ng = 0.963 £ 0.012 (ny = 1 for
a scale-invariant spectrum).

The widely accepted idea about their origin relates to the so-called inflationary
paradigm that can, in principle, explain why £ = 1 and solve the so-called hori-
zon problem, that is, why the CMB across the sky is to a very good approximation
isotropic, even though the size of the region causally connected at decoupling cor-
responds to about only one degree in the sky today.

The central idea envisages a period in the early Universe where a term /s orig-
inated by a hypothetical quantum scalar field analogous to the cosmological con-
stant dominates Eq. (1.4). This can be rewritten as

Ainf

H(t)* = 3 (1.9)

and its solution, assuming a constant Ay, is
R(t) = Rt;)eV nil? = Rie) (1.7)

if t is much larger than the cosmic time ¢t = ;¢ of the beginning of the A;,r dom-
inated epoch. Provided this exponential expansion (inflation) is long enough, 2
its driven towards one, irrespective of its initial value. Moreover, during inflation,
a very small patch of the Universe can grow to enormous dimensions, so that the
isotropy of the CMB temperature we see today, arose from a very small causally
connected region that underwent an inflationary growth. An expansion by a factor
of & 10*® solves both the flatness and horizon problem without invoking ad hoc
initial conditions. The quantum field that originated A;,¢ is expected to experience
quantum fluctuations that were stretched by the inflation to the scales we see im-
printed in the CMB. The general belief is that inflation occurred when the strong
force separated from the electroweak one, at about t = 107* s, and lasted until
about t = 10732 s.

1.1
Galaxy Formation

Starting from the /1CDM cosmological model, one of the main problems in mod-
ern astrophysics research is to understand how a galaxy forms and evolves [6, 7].
Here, we will just summarize the main concepts. The basic idea underpinning the
currently most accepted paradigm of galaxy formation is that cosmic structures
grow through the mechanism of gravitational instability starting from the pattern
of density fluctuations imprinted in the CMB. The dark matter component, having
no pressure, begins to collapse well before the baryonic matter, and the primordial
density fluctuations will grow. The early evolution of this dissipationless (no energy
can be lost through electromagnetic interactions) growth is described by the linear
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perturbation theory. Once the perturbations become non-linear, their evolution is
modelled using N-body simulations. The final result of the non-linear evolution of
a dark matter density fluctuation is the formation of a dark matter halo, an approx-
imately stable state supported by the random motions of the dark matter particles.
In standard /1CDM cosmology, the first haloes form from the smallest scale fluctu-
ations, and are followed by successive merging episodes that produce increasingly
more massive structures. The baryons are dragged along by the dark matter that
dominates gravity, and the haloes are therefore expected to accrete baryons, so that
the individual galaxies we see can be interpreted as the product of the evolution of
baryonic matter nested inside a much larger halo of CDM. The efficiency of the ac-
cretion process will depend on the depth of halo potential well, and on the pressure
of the baryons. Therefore, a complete description of the formation and evolution of
galaxies requires a detailed description of the evolution of the dissipative baryons,
that is, their accretion, heating, cooling, the associated star formation processes,
the chemical evolution, the effect of halo merging on the baryonic component.

Overall, at any given cosmic time, matter is distributed over structures spanning
many decades in mass, and growth is driven by merging between haloes of sim-
ilar mass, by accretion of much less massive haloes and diffuse material, and by
destruction by infall onto larger haloes (hence, the name of “hierarchical merg-
ing” scenario). A crucial point is that galaxy morphology may be a transient phe-
nomenon and that the different types of galaxies we observe nowadays (the Hubble
sequence) reflect the variety of accretion histories. As an example, this scenario en-
visages that baryons falling smoothly into the potential wells of dark matter haloes
produce disks, whereas spheroids (bulges of disk galaxies and isolated elliptical
galaxies) are the products of major (i.e. between haloes of similar mass) merger
events whereby disks are mixed violently on short timescales, and a burst of star
formation depletes substantially the gas content of the merging disks. Smooth ac-
cretion of intergalactic gas on spheroids appears then to be able to produce a typical
present-day disk galaxy, for example, a rotationally supported disk of gas and young
stars and a centrally concentrated bulge system of old stars.

One of the major difficulties in modelling from first principles how galaxies form
and evolve is related to the physics that drives the evolution of the baryonic compo-
nent, that is, gas cooling in dark matter haloes, star formation, chemical evolution
and feedback mechanisms that either remove cold gas from a disk or suppress
gas cooling. These processes, sometimes labelled “gastrophysics”, are still poorly
understood in a galactic context and prescriptions that contain free parameters are
employed. These parameters are fixed by demanding that models reproduce sets of
available observations, typically at low redshifts. A powerful way to provide strong
independent constraints on galaxy formation models in general, and on “gastro-
physics” in particular, is to determine star formation histories of stellar populations
in galaxies using methods from stellar evolution theory.

A wide range of techniques developed in the last decades make use of stellar evo-
lution models to estimate distances, ages, star formation and chemical evolution
histories of galaxies. It is these techniques, the related uncertainties and their fu-
ture developments that we are going to discuss in detail in the following chapters,
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beginning with their theoretical foundations grounded in stellar evolution theory.
We will, at the same time, discuss the use of these methods to determine the star
formation and chemical evolution histories of old, local stellar populations.

Although observations at high redshift are certainly a more direct way of looking
at the formation of galaxies, these objects are very faint and one can derive a more
limited amount of information compared to that obtained from nearby galaxies.
Stellar populations in the nearby Universe can be studied in much greater detail
and provide a view of galaxy formation and evolution that is complementary to that
obtained from high redshift data. Also, observations and analyses of the oldest local
stellar populations provide completely independent powerful tests and constraints
to the overall cosmological model.

We will use a somewhat arbitrary definition of the nearby Universe, one that of-
ten only includes those stellar systems resolvable into individual stars. Here, we
will also discuss methods for unresolved stellar populations, and their use to study
stellar populations at low redshifts corresponding to look-back times that are a neg-
ligible fraction of the age of the Universe.

Our definition of old stellar population comes from stellar evolution theory. We
denote as “old” all stellar systems harbouring objects with mass below ~ 2.0Mg),
that is, those stars that undergo electron degeneracy in their He-core at the end of
the main sequence (MS) phase, plus remnants of more massive objects. Observa-
tionally, the colour-magnitude-diagram (CMD) of these populations is character-
ized by the presence of a well-defined red giant branch (RGB) sequence. In terms
of ages, our definition of old populations implies values above & 1Gyr, that is,
these stars are the fossil record (fossil in the sense that their observables are the
result of the past star formation history) of the development of cosmic structures
over more than 90 % of cosmic evolution.

1.2
Decoding the Fossil Records: Photometric and Spectroscopic Diagnostics

The amount of evolutionary information we can gather from a stellar population
is encoded in the radiation emitted by its stars. A population that is resolved ob-
servationally into its individual constituents is denoted as “resolved”, while with an
“unresolved” stellar population, we denote a system from which we can only ob-
serve the integrated light, that is, the sum of the contribution of all its components.

In the case of resolved populations, one can obtain high-resolution spectra — res-
olution of the order of ~ 0.1 A, most often in the visible wavelength range — of
individual stars, that allow the determination of photospheric abundances of sev-
eral chemical elements using model atmosphere calculations. These abundances
provide constraints on the initial chemical composition of the star. Photometric ob-
servations through broadband filters (i.e. Johnson—Cousins, Sloan, WFC3, 2MASS)
with passbands of order ~ 10° A, typically spanning the wavelength range from
near-ultraviolet (near-UV) to near-infrared (near-IR), are used to produce CMDs.
These diagrams are the main tool to constrain ages, star formation and chemical
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evolution histories — this latter in conjunction with estimates from spectroscopy,
if/when available — of resolved stellar populations. Intermediate band photometric
filters (i.e. Stromgren, DDO, Walraven) with passbands of order ~ 10> A have been
devised to derive indices that are particularly sensitive to some specific stellar prop-
erty, like surface gravity or metallicity (e.g. the indices ¢; and m4 in the Strémgren
system). Narrow band systems — passbands of order ~ 10 A — also exist (i.e. Oke,
Wing). For example, individual bands in the Wing systems are sensitive to CaH,
CN, TiO or VO.?

As for unresolved stellar populations, integrated photometry typically in broad-
band photometric systems provides colour—colour diagrams or — when measure-
ments in several bands are available — a very low-resolution spectral energy distri-
bution (SED) that can be used to constrain ages and metal content of the parent
populations. Integrated spectra with resolution of ~ 1-10 A can be used to infer
ages and, in principle, detailed individual abundances of several chemical species.

Figure 1.1 displays some examples of photometric and spectroscopic data for
resolved and unresolved populations.
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Figure 1.1 (a) A CMD of the Galactic trum of the star HD9562 [12]. (d) Integrat-
globular cluster 47Tuc [10]. (b) Integrated ed spectrum of the dwarf elliptical galaxy
UBVRIJHK magnitudes of the elliptical M32 [13]. The fluxes are normalized to the

galaxy NGC584 [11]. (c) Portion of the spec- observed flux at 4000 A.

2) For an exhaustive review of standard photometric systems and their properties, see [9].
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13
Decoding the Fossil Record: the Tools

Observed CMDs of resolved populations, SED, colour—colour diagrams, integrat-
ed spectra of unresolved populations can be interpreted in terms of evolutionary
properties of the parent stars by applying results from stellar evolution theory.

1.3.1
Theoretical Stellar Models, Tracks, Isochrones

The solution of the equations of stellar structure provides a stellar evolution model,
that is, the run of physical and chemical quantities from the centre to the photo-
sphere of a star of given initial mass and initial chemical composition, and their
evolution with time. It is common practice in stellar astrophysics to specify the ini-
tial chemical composition of stellar models by means of the symbols X, Y and Z.
They denote the mass fractions of hydrogen, helium and all other elements heavier
than helium (called metals, hence Z is also called the metallicity of the star) respec-
tively; these three parameters are related through the normalization X+Y+Z = 1.
For the metals, the distribution of the individual fractional abundances has to be
specified.

This is a convenient choice from the theoretical point of view, though it is not
directly related to what is determined from stellar spectroscopy. The helium abun-
dance, for example, cannot be determined for all stars since low-mass objects are
generally too cool to show helium spectral lines, and the metal abundances are usu-
ally determined differentially with respect to the Sun. The traditional metal abun-
dance indicator is the quantity [Fe/H] = log [ N(Fe)/N(H)], —log[N(Fe)/N(H)],
that is, the difference of the logarithm of the Fe/H number abundance ratios ob-
served in the atmosphere of the target star and in the solar one. If one assumes that
the solar heavy element distribution is universal, the conversion from Z to [Fe/H]
is given by

[Fe/H] = log Z —log Z (1.8)
X), X)o

If one relaxes the assumption of a universal scaled-solar heavy element distribu-
tion, the correspondence between [Fe/H] and X, Y, Z obviously changes because
the ratio between the iron abundance and Z is different than in the Sun. In this
case, one can still use Eq. (1.8), provided that the left-hand side denotes the ratio of
the “total” abundance of metals to hydrogen

zZ z
[M/H] = log (?) —log (Y)Q (1.9)

A basic working tool in stellar evolution studies is the Hertzsprung—Russell dia-
gram (HRD), a plot of a star bolometric luminosity versus its effective tempera-
ture — both outcomes of stellar evolution calculations — that will be widely used in
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Figure 1.2 Theoretical HRD for the evolution of the Sun. All major evolutionary phases are
labelled (see text for details).

the next chapters. The evolution of a stellar model in the HRD is denoted as the
“stellar track”.

Figure 1.2 displays the complete theoretical HRD, from birth to the final evolu-
tionary stage, for the Sun. All main evolutionary stages of low-mass stars discussed
in the next chapters are covered in this diagram. The starting point of the evolu-
tion shown in Figure 1.2 is the pre-main sequence (PMS) phase, where the star
is convective and evolves vertically in the HRD along its so-called Hayashi track
driven by gravitational contraction according to the virial theorem, until a radiative
core forms and eventually H-burning ignites in the central regions. At this stage,
the evolution slows down, while H is converted into He in the core, during what is
denoted as the main sequence (MS) phase. It is the longest evolutionary phase and
as a consequence, the number of H-burning stars which can be observed in a giv-
en population is much larger than the number of stars in any other phase. When
the central H is exhausted, the H-burning shifts to a narrow shell around the pure
He-core left over by the central H-burning, and the subgiant branch phase (SGB)
starts. During the SGB evolution, the He-core undergoes electron degeneracy, the
external layers expand and the photosphere gets cooler, until the model — by now
with a very deep convective envelope — reaches its red giant branch (RGB) location,
an approximately vertical sequence in the HRD. During SGB and RGB evolution,
the He-core grows steadily in mass due to fresh He deposited by the outward mov-
ing (in terms of mass layers) H-burning shell, and correspondingly, the surface
luminosity increases. Along the RGB, mass loss processes are also efficient, and
reduce the mass of the convective envelope.
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When the electron degenerate core reaches a mass of about 0.47 M, He-burning
ignites in the core (He flash), the electron degeneracy is lifted and the star be-
gins a phase of quiescent central He-burning (labelled as He-burn in Figure 1.2) at
a much lower luminosity compared to the end termination of the RGB. The pre-
cise value of T is determined by the amount of mass left in the envelope, Teg
getting higher with decreasing envelope mass (more efficient RGB mass loss). In
metal-poor systems like Galactic globular clusters (GCs), the central He-burning
stage appears as an extended, more or less horizontal sequence in the CMD at vis-
ible wavelengths, and it’s called the Horizontal Branch (HB). During this central
He-burning phase, the H-burning shell is still active, and when He is exhausted
in the core, shell burning provides the energy necessary to maintain hydrostatic
equilibrium.

The model now has a C and O core left over by the central He-burning that be-
comes electron degenerate, marking the beginning of the asymptotic giant branch
(AGB) phase. During the AGB evolution, H and He shell burning are never active
at the same time, instead they take turns at producing the nuclear energy nec-
essary to maintain hydrostatic equilibrium through a series of so-called thermal
pulses (TPs). The AGB sequence practically overlaps with the RGB in the HRD,
and the evolution is towards increasing luminosity because of the mass increase
of the CO-core due to the He-burning shell. Mass loss is again very effective in re-
ducing the envelope mass. When the envelope mass (reduced by both the growth
of the CO-core and mass loss from the photosphere) is reduced to &~ 0.01M@, the
model starts its post AGB (PAGB) phase, moving towards higher T.s at constant
luminosity, fixed by the value of the CO-core mass, equal to about 0.54 M@, with
some residual shell burning.

The PAGB phase terminates when the model reaches its white dwarf (WD) cool-
ing sequence. From this point on, the evolution is towards lower surface lumi-
nosities (and Teg), the energy radiated being the free energy of the non-degenerate
ions, while hydrostatic equilibrium is maintained by the pressure of the degenerate
electrons.

Stellar tracks of different masses and chemical compositions can be combined
to predict the HRD of stars harboured by stellar populations with a generic star
formation and chemical evolution history. The most elementary stellar population,
usually denoted as simple stellar population (SSP), is made of objects born at the
same time in a burst of star formation activity of negligible duration, with the same
initial chemical composition. Any population with an arbitrarily complex evolution-
ary history can be reduced to a linear combination of several SSPs.

The theoretical HRD of a SSP is called isochrone. Consider a set of evolutionary
tracks of stars with the same initial chemical composition and various initial mass-
es; different points along an individual track correspond to different values of the
time #, and the same initial mass. An isochrone of age t is the line in the HRD
that connects the points belonging to the various tracks (one point per track) where
ty = t. This means that when we move along an isochrone, time is constant.
However, the value of the initial mass of the star at each point is changing, that
is, increasing towards more advanced evolutionary stages. A generic point along
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Figure 1.3 Isochrones for 5 and 13 Gyr and (thin-dashed lines). We display in order of in-
solar initial chemical composition (thick solid  creasing luminosities along the MS, tracks
lines) overimposed on a set of stellar tracks for 0.6, 0.8, 0.9, 1.0, 1.1, 1.2 and 1.4Mg.

for the same initial chemical composition

an isochrone of age t is therefore determined by three quantities: bolometric lu-
minosity, effective temperature and value of the evolving mass. From these three
parameters, one can easily derive additional quantities like the radius and surface
gravity. It is also straightforward to associate to each point along an isochrone the
expected surface chemical abundances — taken from the underlying grid of stellar
evolution models — to be compared with spectroscopic measurements.

If mass loss processes are included in the individual stellar tracks — as we have
briefly seen before, mass loss is very efficient during the RGB and AGB evolution
of low-mass stars — the situation is only slightly more complicated because along
each track the total mass is changing with time. The procedure to compute the
isochrones is the same, that is, one connects the points of equal age along tracks
with various initial masses. However, the value of the mass evolving at a given point
along the isochrone is now smaller than the initial mass of the parent track.

Figure 1.3 shows, as an example, two isochrones for ages equal to 5 and 13 Gyr,
respectively, and the solar initial chemical composition, that cover the evolutionary
phases from the MS to the He flash. Notice the large mass range spanned by the
MS phase, whereas the SGB and RGB stages (this is true for all post-MS phases
but the final WD stage) are populated by objects with almost the same mass, equal
to the value at the termination of the MS (the so-called turn off point — TO). This
is a consequence of their much shorter evolutionary timescales, compared to MS
lifetimes.
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Figure 1.4 Isochrones for 2, 4, 6, 8, 10 and 12 Gyr (solid lines) overimposed on a set of WD
cooling tracks with masses between 0.54 and 1.0M@ (dashed lines).

Representative isochrones for the final WD stages are shown in Figure 1.4. Along
a WD isochrone, it is the sum of the WD cooling age plus the progenitor age at the
end of the TP phase that stays constant. Obviously, a fundamental ingredient to
calculate WD isochrones is the relationship between the mass of the progenitor on
the MS (initial mass) and its final WD mass (initial-final mass relation — IFMR — see
Chapter 6 for details). Due to the fast cooling times at high T.g, the bright section
of a WD isochrone of fixed age is populated by objects with approximately the same
mass, corresponding approximately to the final WD mass of stars that have just left
the TP phase. One can also notice that all isochrones in Figure 1.4 share the same
location at bright luminosities because empirical and theoretical IFMRs predict
essentially the same WD mass (~ 0.55M@) for all low-mass stars. At the bottom
end of the sequence, one recovers the progeny of more massive intermediate-mass
stars that have left the TP phase earlier. This explains the sudden increase of T
(lower radii) since the more massive progenitors produce WDs of increasing mass,
and hence lower radius.

Once a generic isochrone of a given age and initial chemical composition is com-
puted, it can be transferred to an observational CMD, that is, the plot of a star mag-
nitude in a given photometric band versus a colour index. To predict magnitudes in
a generic photometric system, one needs to assign a spectrum to each point along
the isochrone, making use of model atmosphere calculations.

A model atmosphere describes the physical and chemical structure of a stellar
atmosphere and the transfer of radiation from the photosphere into interstellar
space. Itis defined (atleast in the plane-parallel approximation) by three quantities:
the value of Tef, the surface gravity g and the photospheric chemical composition.
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Interpolation among a suitable grid of spectra obtained from model atmosphere
calculations provides spectra to assign to each point along the isochrone.

From a given spectrum, it is straightforward to compute bolometric corrections
BCh to a generic filter A from the following equation:”

Tl F;S; dA
BCa = Mpo,0 — 2510g|:4n(10pc) ML }4—2 5o (fj,l 290 )_ 0
)

7 £0s; da "
(1.10)

Here, Mo, is the bolometric magnitude of the Sun, F; is the model spectrum
(i.e. from model atmosphere calculations), S, is the response function of the pho-
tometric filter (a measure of the efficiency of photon detection within the filter
wavelength range) that covers the wavelength range between 1; and 15, f7 de-
notes the reference spectrum that produces a known apparent magnitude m$_ (for
example, the spectrum of Vega, or a spectrum of constant flux density per unit
frequency for the ABmag system. In both cases, the apparent magnitude m$ is
usually set to zero). From BCj,, one can then obtain the magnitude M, from

Mj = My — BC, (1.11)

where My = My, — 2.510g(L/Le). The value of L is known, and once the
bolometric magnitude of the Sun is fixed (e.g. Myo,o = 4.74 [14]), what is left in
order to convert Tesr and the bolometric luminosity L into magnitudes is the choice
of f7 and mY, the so-called “zero points” of the photometric system.

The very popular Johnson-Cousins and the Hubble Space Telescope HST/
WFPC2 VEGAmag systems, for example, make use of the star Vega to fix the
zero points, assuming that the apparent V magnitude of Vega and all its colour
indices are equal to zero. The Sloan system instead uses a zero point flux 0 =
3.63110" X ergs™ ! cm ™2 Hz ! that gives m${ = 0 at all frequencies (see [15] for
details about zero points of several photometric systems). Figure 1.5 displays the
response function of a few widely used filters;? a theoretical low-resolution spec-
trum of Vega is overimposed, for the sake of comparison.

The transformation from theoretical luminosity and Tes to observed magnitudes
and colour indices has been described assuming up to now that F at the stellar
surface is obtained from the appropriate theoretical model atmospheres. It is, how-
ever, known that current theoretical model atmospheres suffer from at least two
main shortcomings:

e Broad-band colours of stars with solar chemical compositions appear to be rea-
sonably reproduced, but many spectral lines predicted by the models are not

3) The terms in the two integrals are formally these two types of integrations is usually very
correct if the calibration of the photometric small.
system is based on energy-amplifier devices; 4) A complete database of photometric filters
they need to be multiplied by A when the can be found at http://ulisse.pd.astro.it/
calibration is based on photon-counting Astro/ADPS/ (accessed 22 January 2013).

devices like CCDs. The difference between
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Figure 1.5 Response functions of the uvby Strémgren photometric filters (a), Johnson—
Cousins UBVRI and 2MASS J H K (b). Overimposed is a theoretical spectrum of the star Vega
(dashed line) [16].

observed in the Sun, and also the relative strength of several lines is not well-
reproduced. This affects intermediate- and narrow-band filters in which individ-
ual metal lines can significantly affect the bolometric corrections.

e In convective model atmospheres, the energy transport is usually treated with
the mixing length theory (see next chapter); this approximation introduces an
uncertainty in the predicted spectra, and hence bolometric corrections and
colour indices. Recent two- and tridimensional hydrodynamical simulations
of stellar model atmospheres are addressing this issue, but they have not pro-
duced yet libraries of stellar spectra that cover all the relevant evolutionary
phases, mass ranges and chemical compositions.

These shortcomings cause an uncertainty of possibly a few hundredths of a mag-
nitude on the BC, values. An alternative solution is to use empirical spectra of
a sample of nearby stars with independently determined T.g, gravities and chemi-
cal composition. A problem with this approach is that stars for which empirical Tegr
values can be determined are local objects that cover a fairly narrow combined
range of chemical compositions, masses and evolutionary phases (reflecting the
local population of the Galactic disk) and would not allow a complete modelling of
different stellar populations.



1.3 Decoding the Fossil Record: the Tools

1.3.2
Luminosity Functions, Synthetic CMDs

The CMD of an isochrone only provides a morphological counterpart to the ob-
served CMDs of resolved stellar populations, for it does not give any information
about the number of objects expected along the different branches of the obser-
vational diagrams. As we will see in the next chapters, just using isochrones is
enough to constrain ages and initial chemical compositions of resolved SSPs. How-
ever, additional information coming from star counts must be accounted for when
trying to disentangle the star formation and chemical evolution history of more
complex stellar populations.

Given that each point along an isochrone corresponds to a specific evolutionary
stage of a model of initial mass M, assuming a stellar initial mass function (IMF)
that provides the number of stars d N born with mass between M and M + dM,
will also provide the number of objects populating a generic interval between two
consecutive points along the isochrone. For an IMF of the standard form dN =
CM~*dM, the normalization constant C can be fixed by specifying either the total
mass (M) or the total number (N;) of stars born when the SSP formed. When x #
2, the value of the constant C is given by

M;

C=Q2-%)——5—
M2 — M}

(1.12)
where x is the exponent of the IMF, M,, and M; are, respectively, the upper and
lower mass limits of the stellar entire mass spectrum, for example, ~ 0.1 and ~
100Mg. If x = 2,
M;
C=——"1__ (1.13)
In(M, /M)

This normalization guarantees that the total mass of stars formed stays constant,
independent of the value of x, but the initial number of stars formed changes with
changing value of the slope of the IMF. In the case N; instead of M, is given, the
previous relationships have to be rewritten as

N
C=(l-x)——— (1.14)
Ml=* — M}~
if x # 1and
N
C=—1— (1.15)
In(M,/M))
if x = 1.

One way to compare observed star number counts with theory is to use lumi-
nosity functions (LFs). One can make use of two types of LFs. The differential LF,
for example, the run of the observed star number counts N(M/) in the magnitude
range between M/ and M XH, as a function of M}, or the cumulative LF, that is,

15
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Figure 1.6 Differential (a,c) and cumulative (b,d) LFs for the isochrones displayed in Figure 1.3,
computed with a Salpeter IMF and a total population of 10° stars.

the run of the number of stars N(Ma > M}) (or N(Ma < M})) with magnitude
Mj larger than M/ (or lower than M), as a function of M}, itself.

Figure 1.6 displays both the differential and cumulative LF for the two isochrones
displayed in Figure 1.3. The normalization constant has been chosen in order to
have 10° objects along each isochrone. The exponent is x = —2.35, the so-called
Salpeter IMF [17].

Finally, a synthetic CMD combines both isochrone and the predicted star counts
(for a given IMF). Synthetic CMDs can be easily calculated by iterating the fol-
lowing procedure. For a fixed age and initial chemical composition of a SSP (the
generalization to complex star formation histories is straightforward), the starting
point is to randomly draw a value of the mass M for the synthetic star according
to a specified IMF. With this value of M, one interpolates along the appropriate
isochrone to determine the magnitude and colour of this synthetic object. Inclu-
sion of photometric errors and unresolved binaries is also straightforward. The
magnitude and colour obtained from the isochrone interpolation are modified by
adding a value of the photometric error, drawn from a Gaussian (for example) ran-
dom distribution with o specified by the data reduction process. A given number
of unresolved (non-interacting) binaries or blends of single stars can be included
in a similar fashion. To these selected stars (whose mass is denoted as My,), it is as-
signed a companion (with the same age and metallicity of M;) whose mass Mcomp
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is drawn according to
Meomp = [ran (1 — qc) + qc] My, (1.16)

where g, is the minimum value of the ratio Mcomp/ My, to be chosen. The vari-
able ran is a random number with a flat probability distribution between zero and
one, so that the previous relationship provides values of Mcomp With a uniform
distribution between M, and g.M,,. The magnitude of the composite object is
evaluated by summing up the fluxes of the components; in a generic band A, the
magnitude of an unresolved binary is given by M (bin) = —2.5log(107%4Ma(l) 4
107 04Ma2)) where My (1) and Ma(2) are the magnitudes of the two system compo-
nents My, and Meomp.

It is important to notice that one can also determine theoretical LFs from syn-
thetic CMDs simply by counting the synthetic objects in the appropriate magnitude
bins. The main conceptual difference with the “analytical” integration of the IMF
along an isochrone described before is that this latter procedure is strictly valid only
when the number of stars is formally infinite. The analytical computation implies
that all points along an isochrone are smoothly populated by a number of stars that
can be equal to just a fraction of unity in case of fast evolutionary phases. How-
ever, in real stellar populations (or in synthetic CMDs), the number of objects in
a given magnitude bin is either zero or a multiple of unity. When the number of
stars harboured by the observed population is not large enough to smoothly sample
all evolutionary phases, statistical fluctuations of star counts at a given magnitude
will arise, and their extent can be easily evaluated using extensive synthetic CMD
simulations.

1.3.3
Stellar Population Synthesis Models

In the case of unresolved stellar systems, photometric and spectroscopic observa-
tions can only provide integrated magnitudes, colours and spectra that include the
contribution of all the stars belonging to the population. Theoretical predictions
of integrated properties of stellar populations are often called “stellar population
synthesis” models.

The theoretical counterpart of integrated magnitudes and spectra of SSPs is con-
ceptually easy to determine. Consider a generic CMD of an isochrones of fixed
age and initial chemical composition. The integrated magnitude in the photomet-
ric band A can be written as the sum of the energy fluxes within the appropriate
wavelength range, that is,

My
My(t) = / 107 %4MaMD b (M) d M (1.17)
M
where @ (M)dM is the IMF, M; is the mass of the lowest mass star in the SSP,

M, is the mass of the highest mass star still “alive” in the SSP (remnants’ contri-
bution is negligible), M, (M, t) is the magnitude of a star of mass M evolving along
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the isochrone of age t. Integrated colours follow directly from the same equation
applied to two different photometric bands.

Equation (1.17) says that the integrated magnitude is the sum of the individual
fluxes (in the appropriate wavelength range) of the stars belonging to the SSP; the
IMF gives the number of stars formed with a given mass M, and in the assumption
of a universal IMF, the effect of age and chemical composition is included in the
term 10 %4Ma(M?) _ for the energy output of a star of mass M and its wavelength
distribution depend on both age t and initial chemical composition —and in M.

As for the calculation of theoretical integrated spectra, it is easy to realize that the
monochromatic integrated flux F; received from an unresolved SSP can be written
as

Fy (1) = / (M, )@ (M)dM (1.18)

where f;(M,t) is the monochromatic flux emitted by a star of mass M evolving
along the isochrone.” From the integrated F;, one can obviously determine the
integrated magnitude in the generic photometric band A. In fact, if F" is the total
integrated flux obtained by adding up the individual fluxes at the stellar surfaces,
the generic integrated absolute magnitude M, will be equal to

22 mint
My = —2.5log (M) ml (1.19)
ol fRSidd
As in the case of the computation of LFs, this analytical formalism to determine
integrated magnitudes and fluxes is strictly valid only when the number of stars
is formally infinite. When the different evolutionary phases are not smoothly sam-
pled, it is possible to make use of synthetic CMDs to easily determine the statistical
fluctuations of the integrated properties. One simply needs to add the monochro-
matic fluxes — or the fluxes within a given photometric passband — assigned to each
of the synthetic stars.

5) Itisimportant to notice that, for example, in the case of theoretical stellar spectra (that give energy
per unit area), the fluxes f; (M, t) need to be rescaled appropriately by accounting for the radii
of the models, and eventually to a distance of 10 pc if a prediction of the “absolute” flux scale is
needed.





