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General Concepts in Physics of Excited and lonized Gases

1.1
Ideal Plasma

1.1.1
Plasma as a State of Matter

The word “plasma” was introduced into science by the Czech physiologist J.E. Purk-
inje in the middle of the nineteenth century to denote the uniform blood fluid that
is released from particles and corpuscles. This term was suggested for a uniform
ionized gas of the positive column of a gas discharge by Langmuir [1-3] and now
this term denotes any system with electrons and ions where charged particles de-
termine the properties of this system. The most widespread form of plasma is an
ionized gas which consists of atoms or molecules with an admixture of charged
particles, electrons and ions. Such a plasma is the subject of this book.

To understand the conditions required for the existence of such a plasma under
equilibrium conditions, we compare it with an identical chemical system. Let us
consider, for example, atmospheric air consisting basically of nitrogen and oxygen
molecules. At high temperatures, along with the nitrogen and oxygen, nitrogen
oxides can be formed. The following chemical equilibrium is maintained in air:

N; + O; <> 2NO — 41.5 kcal/mol (1.1)

Here and below, the sign <> means that the process can proceed either in the
forward direction or in the reverse direction. According to the Le Chatelier prin-
ciple [4, 5], an increase in the temperature of the air leads to an increase in the
concentration of the NO molecules.

A similar situation exists in the case of formation of charged particles in a gas,
but this process requires a higher temperature. For example, the ionization equi-
librium for nitrogen molecules has the form

N, <> N;F + ¢ — 360 kcal /mol (1.2)

Thus, the chemical and ionization equilibria are analogous, but ionization of atoms
or molecules proceeds at higher temperatures than chemical transformations. To
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illustrate this, Table 1.1 contains examples of chemical and ionization equilibria.
This table gives the temperatures at which 0.1% of molecules are dissociated in
the case of a chemical (dissociation) equilibrium or 0.1% of atoms are ionized for
an ionization equilibrium at a gas pressure of 1atm. Thus, a weakly ionized gas,
which we shall call a plasma, has an analogy with a chemically active gas. Therefore,
although a plasma has characteristic properties, which we shall describe, it is not
really a new form or state of matter as is often stated. An ideal plasma is a form
of a gas, whereas a dense nonideal plasma (a plasma with strong coupling) is an
analogue of a condensed atomic system.

In most cases a plasma is a weakly ionized gas with a small degree of ionization.
Table 1.2 gives some examples of real plasmas and their parameters — the number
densities of electrons N, and of atoms N,, the temperature (or the average energy)
of electrons T, and the gas temperature T. In addition, some types of plasma sys-
tems are given in Figures 1.1 and 1.2. We note also that an equilibrium between
charged particles and atoms or molecules may be violated if the plasma is located
in an external field. In particular, electric energy is introduced in a gas discharge
plasma and it is transferred to electrons in a first stage, and then as a result of
collisions it is transferred from electrons to atoms or molecules. This form of in-
jection of energy may lead to a higher electron energy compared with the thermal
energy of atoms or molecules, and the plasma becomes a nonequilibrium plasma.
Figure 1.3 gives some examples of equilibrium and nonequilibrium plasmas.

Table 1.1 Temperatures corresponding to dissociation of 0.1% of molecules or ionization of
0.1% of atoms at a pressure of 1atm.

Chemical equilibrium T, K lonization equilibrium T, K
2C0, <> 2CO+0; 1550 H< HT +e¢ 7500
H, < 2H 1900 He <> Het +e¢ 12000
0, < 20 2050 Cs< Cst +e¢ 2500
N, < 2N 4500

ZHzo <> ZHZ + 02 1800

Table 1.2 Parameters of some plasmas. Ne and N are the number densities of electrons and
neutral atomic particles, respectively, and T, and T are their temperatures.

Type of plasma Ne, cm™3 N, cm™—3 Te, K T,K
Sun’s photosphere 1013 10V 6000 6000
E layer of ionosphere ~ 10° 1013 250 250
He-Ne laser 3x 10" 2x10%  3x10* 400

Ar laser 1013 1014 10° 103
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Figure 1.1 Characteristics of natural plasmas. MHD — magnetohydrodynamic.

It is seen that generation of an equilibrium plasma requires strong heating of a
gas. One can create a conducting gas by heating the charged particles only. This
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Figure 1.2 Characteristics of laboratory plasmas.
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Figure 1.3 Electron and gas temperatures of laboratory plasmas. The straight line corresponds
to an equilibrium plasma, whose electron and gas temperatures are equal.

takes place in gas discharges when an ionized gas is placed in an external electric
field. Moving in this field, electrons acquire energy from the field and transfer it
to the gas. As a result, the mean electron energy may exceed the thermal energy
of neutral particles of the gas, and they can produce the ionization which is nec-
essary for maintaining an electric current in the system. Thus, a gas discharge is
an example of a plasma which is maintained by an external electric field. If the
temperatures of electrons and neutral particles are identical, the plasma is called
an equilibrium plasma; in the opposite case, we have a nonequilibrium plasma.
Figure 1.3 gives some examples of equilibrium and nonequilibrium plasmas.
Thus, a plasma as a physical object has specific properties which characterize
it. Because of the presence of charged particles, various types of interaction with
external fields are possible and these lead to a special behavior of plasmas which is
absent in ordinary gaseous systems. Furthermore, there are a variety of means for
generation and application of plasmas, and these will be considered below.
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1.1.2
The History of the Study of Electricity

Let us review briefly the history of plasma physics that is connected with the de-
velopment of electrical techniques and electrical science [6]. One can date the start
of the history of electric phenomena in gases to 1705, when the English scientist
Francis Hauksbee made an electrostatic generator whose power allowed him to
study luminous electric discharges in gases. In 1734, Charles Francois de Cister-
nay Dufay (France) discovered that air conducts electricity near hot bodies. In 1745,
E.J. von Kleist (Germany) and P.V. Musschenbroek (Netherlands) constructed inde-
pendently a type of electric capacitor named the Leyden jar. This made possible the
study of electric breakdown in air. In 1752, the American scientist and statesman
Benjamin Franklin created a theory of lightning on the basis of some experiments.
He considered the lightning phenomenon as a flow of electricity through air that
corresponds to contemporary understanding of this phenomenon as passage of an
electric current through air.

The nineteenth century was a period in which electric processes and phenome-
na were studied intensely [7]. At that time the technique required to create a gas
discharge was worked out and this paved the way for the subsequent development
of the electrical sciences, including plasma physics. This included the creation of
new gas discharge devices together with the development of sources of electricity
and methods of electricity diagnostics. The sources of electricity were developed
simultaneously in the creation and improvement of batteries, where electric ener-
gy resulted from chemical energy, and dynamos for transformation of mechani-
cal energy into electric energy. In 1800, A. Volta (Italy) created a battery that was
the prototype of the modern battery. It consisted of electrochemical cells joined in
series, and each cell contained zinc and copper electrodes and an electrolyte be-
tween them, firstly H,SO,. Two types of ions, HT and SO2~, are formed in this
electrolyte, and protons capture electrons from the copper electrodes, forming bub-
bles of hydrogen (H;), whereas negatively charged sulfate ions react with the zinc
electrodes. This battery was improved many times and became a reliable source
of electricity, and the general concept of this device was conserved in all subse-
quent devices of this type [8]. In the same period, the fuel element was also created
(W.R. Grove, England, 1839). This generates electric energy as a result of the chem-
ical reaction of H, and O,.

On the path to the development of dynamos, J. Henry (USA) constructed an
electric motor in 1831 that worked from a battery, that is, electric energy was trans-
formed into mechanical energy, and M.H. Jacobi (Germany) showed that this dy-
namo could be used not only as a motor, but also as a generator of electricity, that
is, it converts mechanical power into electric power. In 1870, Z.T. Gramme (France)
constructed a magnetoelectric machine that was a prototype of contemporary gen-
erators of electricity in electric power plants. As a result of the creation and im-
provement of sources of electric energy, reliable equipment was made for various
applications in manufacturing and the economy.

5



6

1 General Concepts in Physics of Excited and lonized Gases

The creation and development of sources of electricity determined the devel-
opment of the gas discharge technique. The first type of discharge was an arc
discharge at atmospheric pressure. The subsequent development of the pumping
technique allowed the creation of burned gas discharges of various types. Crookes
tubes [9] were an important development, where on the basis of a mercury vacuum
pump the pressure of the remaining gas in a sealed-off tube may be decreased to
10~7 atm. The gas discharge technique allowed study of various processes involv-
ing electrons and ions in gases, including the cathode rays discovered by J. Plueck-
er (Germany) in 1851. Firstly, they were discovered from the sharp straightforward
boundary of fluorescence resulting from applying a high voltage to electrodes of
the tube with a low gas pressure. Later, it was proved that the gas was excited by
a beam of charged particles that came from the cathode and therefore they were
named cathode rays (Kathodenstrahlen) [10, 11]. In reality, cathode rays are electron
beams and they were used subsequently as a specific instrument which became
important in the new physics at the beginning of the twentieth century. For this
technique the creation of an inductive coil by Rumkopf in 1851 was important as
it provided a possibility to obtain high voltages in a simple way. All these develop-
ments allowed various forms of gas discharges to be obtained, including a glow
discharge, and allowed them to be used for various technical applications. Along
with gas discharges, this technique allowed beams of charged particles to be gen-
erated.

The analysis of some results obtained by using the new technique led to a new
understanding of the nature of ionized gases and related physical objects. The un-
derstanding of electricity carriers followed from the electrolysis laws of Michael
Faraday (England) in 1833-1834. The electrolysis laws give the ratio of the charge
of the carrier to its mass. Along with the establishment of the fundamental laws of
electrolysis, Faraday introduced new terms such as “ion” — the electricity carrier —
and “anode” (“way up” from Greek) and “cathode” (“way down” from Greek) for the
electrodes involved in electricity transfer. In continuation of these studies, Stoney
(England) suggested the term “electron” for the quantum of elementary charge and
estimated its value in 1874.

The development of electricity sources and gas discharges was a basis for the cre-
ation of the new science branches, such as spectroscopy, atomic physics, and nu-
clear physics, and also led to quantum mechanics, the atomic quantum theory, and
nuclear physics at the beginning of the twentieth century. In turn, this new physics
stimulated the subsequent gas discharge development [12, 13]. Finally, understand-
ing the gas discharge phenomenon as a self-consistent one due to the ionization
balance in a gas allowed Townsend to describe the passage of current through a
gas [14-16]. According to I. Langmuir, an ionized gas excited in a gas discharge is
characterized by different spatial regions, and the region adjacent to the walls was
named by him as a “sheath”, whereas a quasineutral ionized gas far from the walls
was called a “plasma” [1-3] by analogy with blood plasma. These terms are used
now [17, 18].
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1.1.3
Methods of Plasma Generation

There are various methods to create a plasma as a result of action on matter, and we
consider them briefly. A gas discharge plasma is the most widespread form of plas-
ma and can have a variety of characteristics. It can be either stationary or pulsed,
depending on the character of the external fields. An external electric field may
cause electric breakdown of gas, which then generates different forms of plasma
depending on the conditions of the process. In the first stage of breakdown, a uni-
form current of electrons and ions may arise. If the electric field is not uniform, an
ionization wave can propagate in the form of an electron-avalanche streamer. In the
next stage of the breakdown process, the electric current establishes a distribution
of charged particles in space. This is one form of gas discharge.

After the external electric field is switched off, the plasma decays as a result of
recombination processes of electrons with ions, and spatial diffusion of the plasma
occurs. This plasma is called an afterglow plasma, and is used to study recombina-
tion and diffusion processes involving ions and excited atoms. A convenient way
to generate plasma uses resonant radiation, that is, radiation whose wavelength
corresponds to the energy of an atomic transition in the atoms constituting the ex-
cited gas. As a result of the excitation of the gas, a high density of excited atoms
is attained, and collision of these atoms leads to formation of free electrons. Thus,
the atomic excitation in the gas leads to its ionization and to plasma generation.
This plasma is called a photoresonant plasma. The possibility of generating such
a plasma has improved with the development of laser techniques. In contrast to a
gas discharge plasma, a photoresonant plasma is formed as a result of excitations
of atoms and therefore there are specific requirements for its formation. In particu-
lar, the temperature of the excited atoms can be somewhat in excess of the electron
temperature. This plasma may be used for generation of multicharged ions, as a
source of acoustic waves, and so on.

A laser plasma is created by laser irradiation of a surface and is described by some
parameters such as the laser power and the duration of the process. In particular, if
a short (nanosecond) laser pulse is focused onto a surface, material evaporates from
the surface in the form of a plasma. If the number density of electrons exceeds the
critical density (in the case of a neodymium laser, where the radiation wavelength
is 1.06 wm, this value is 10*! cm™3), the evolving plasma screens the radiation, and
subsequent laser radiation heats this plasma. As a result, the temperature of the
plasma reaches tens of electronvolts, and this plasma can be used as a source of
X-ray radiation or as the source of an X-ray laser. Laser pulses can be compressed
and shortened up to about 2 x 10~'*s. This makes possible the generation of a
plasma in very short times, and it permits the study of fast plasma processes.

If the laser power is relatively low, the evaporating material is a weakly ionized
vapor. Then, if the duration of the laser pulse is not too short (more than 107°s),
there is a critical laser power (10’—10% W/cm?) beyond which laser radiation is
absorbed by the plasma electrons, and laser breakdown of the plasma takes place.
For values of the laser power smaller than the critical value, laser irradiation of a
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surface is a method for generating beams of weakly ionized vapor. This vapor can
be used for formation and deposition of atomic clusters.

A widely used method of plasma generation is based on passage of electron
beams through a gas. Secondary electrons can be used further for certain pro-
cesses. For example, in excimer lasers, secondary electrons are accelerated by an
external electric field for generation of excited molecules with short lifetimes. The
electron beam as a source of ionization is convenient for excimer and chemical
lasers because the ionization process lasts such a short time.

A chemical method of plasma generation occurs in flames. The chemical energy
of reagents is expended on formation of radicals or excited particles, and chemion-
ization processes with participation of active particles generate charged particles.
Transformation of the chemical energy into the energy of ionized particles is not
efficient, so the degree of ionization in flames is low. Electrons in a hot gas or vapor
can be generated by small particles. Such a process takes place in the products of
combustion of solid fuels.

Introduction of small particles and clusters into a weakly ionized gas can change
its electric properties because these particle can absorb charged particles, that is,
electrons and positive ions or negative ions and positive ions recombine on these
particles by attachment to them. This process occurs in an aerosol plasma, that is,
an atmospheric plasma which contains aerosols. In contrast, in hot gases small
particles or clusters can generate electrons.

A plasma can be created under the action of fluxes of ions or neutrons when
they pass through a gas. Tonization near the Earth’s surface results from the decay
of radioactive elements which are found in the Earth’s crust. lonization processes
and formation of an ionized gas in the upper atmosphere of the Earth are caused
by UV radiation from the Sun. There are various methods of plasma generation
that lead to the formation of different types of plasmas. Some methods of plasma
generation and the types of plasmas resulting from them are given in Table 1.3.

Table 1.3 Methods of plasma generation.

Character of action

Matter

Type of plasma

Electric field

Electromagnetic wave

Resonant radiation

Excitation from chemical reactions
Laser

Injection of electrons or ions
Injection of nucleating vapor
Injection of dust particles
Tonization by hard radiation

Gas

Gas

Atomic vapor

Chemically active mixture
Surface or particles
Surface or ionized gas
Tonized gas

Tonized gas

Gas (air) with aerosols

Stationary gas discharge plasma
Alternative gas discharge plasma
Photoresonant plasma

Chemical (lame) plasma

Laser plasma

Beam plasma

Cluster plasma

Dusty plasma

Aerosol plasma
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1.1.4
Charged Particles in a Gas

We shall consider primarily a plasma whose properties are similar to those of a gas.
As in a gas, each particle of the plasma will follow a straight trajectory as a free par-
ticle most of the time. These free-particle intervals will occasionally be punctuated
by strong interactions with surrounding particles that will cause a change in energy
and the direction of motion. This situation occurs if the mean interaction potential
of the particle with its neighbors is small compared with the mean kinetic energy
of the particle. This is the customary description of the gaseous state of a system,
and a plasma that also satisfies this description is called an ideal plasma.

Let us formulate now a quantitative criterion for a plasma to be ideal. The
Coulomb interaction potential between two charged particles has the absolute val-
ue |U(R)| = €?/R, where e is the charge of an electron or a singly charged ion and
R is the distance between interacting particles. Thus, the interaction potential at
the mean distance between particles Ry ~ N 13 4g |U| ~ €2 Ne1 3 and because the
mean thermal energy of the particles is of the order of T (T is the plasma tempera-
ture expressed in energy units), the condition of the gaseousness of a plasma due
to interaction of charged particles is characterized by the smallness of the plasma
parameter y, which is

N.e®

T3

y = <1, (1.3)
If the gaseousness condition (1.3) is fulfilled for a plasma, this plasma is ideal. In
the following, we shall deal primarily with a plasma whose parameters satisfy (1.3).

We define a weakly ionized gas as a gas with a small concentration of charged
particles. Nevertheless, some properties of the weakly ionized gas are governed
by the charged particles. For example, the degree of ionization in power-discharge
molecular lasers is 1077—107". In these lasers, the energy is first transferred from
an external source of energy to electrons, and then it is transformed to the ener-
gy of laser radiation. As we shall see, a relatively small concentration of electrons
determines the operation of this system.

Some properties of a weakly ionized gas are determined by the interaction
between charged and neutral particles, whereas other properties are created by
charged particles only. Although the concentration of charged particles in a plasma
is small, the long-range Coulomb interaction between them may be more im-
portant than the short-range interaction between neutral particles. We consider
below the plasma properties that are associated with the presence of charged par-
ticles. The short-range interaction of neutral particles is not important for these
properties.

We now study the penetration of an external electric field into a plasma. Since
this field leads to a redistribution of the charged particles of a plasma, it creates an
internal electric field that opposes the external field. This has the effect of screening
the plasma from an external field. To analyze this effect, we consider the Poisson
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equation for an electric field in a plasma, which has the form
divE = —Ag = 4e(N; — N) . (1.4)

Here E = —Vy is the electric field strength, ¢ is the potential of the electric field,
N, and N; are the number densities of electrons and ions, respectively, and ions
are assumed to be singly charged. The effect of an electric field is to cause a re-
distribution of charged particles. According to the Boltzmann formula, the ion and
electron number densities are given by

N; = Noexp (—‘%‘p) . Ne= Noexp (%‘p) , (L5)

where Nj is the average number density of charged particles in a plasma and T'is
the plasma temperature. Substitution of (1.5) into the Poisson equation (1.4) gives

Ag = 81 Nye sinh (@%0) .

Assuming that egp < T, we can transform this equation to the form

Ap=2, (1.6)
d
where
T 172
_ 1.7
D (SnNeez) (1.7)

is the so-called Debye-Hiickel radius [19].

The solution of (1.6) describes an exponential decrease with distance from the
plasma boundary. For example, if an external electric field penetrates a flat bound-
ary of a uniform plasma, the solution of (1.6) has the form

X
E = Ejexp (—r—) , (1.8)
D

where x is the distance from the plasma boundary in the normal direction. If the
electron and ion temperatures are different, then (1.5) has the form

N; = Nyexp (—%) ,  Ne= Noexp (;_(p) s
1 e

and we will obtain the same results as above, except that the Debye-Hiickel radius
takes the more general form

5 1 1 —1/2
p = |:4.7'L'N06 (i + E)] . (19)

Now let us calculate the field from a test charge placed in a plasma. In this case
the equation for the potential due to the charge has the form

1 2
Ay = ;ﬁ(”ﬂ) -

)

UﬂNl <



1.1 Ideal Plasma

where r is the distance from the charge considered. If this charge is located in a
vacuum, the right-hand side of this equation is zero, and the solution has the form
¢ = q/r, where q is the charge. Requiring the solution of the above equation to
be coincident with this one at r — 0, we obtain for the potential of a test charged
particle in a plasma

S - r 1.10
g=rep|\ =) (1.10)
Hence, the interaction potential U of two charged particles with charges ¢; and g
is as follows:

U(r) = ql—rqz exp (—L) . (1.11)

p

Thus, the Debye—Hiickel radius is a typical distance at which fields in a plasma are
shielded by the charged particles. The field of a charged particle is eliminated on
this scale by fields of surrounding particles.

Now we shall check the validity of the condition ep <« T, which allowed us to
simplify the equation for the electric field strength. Because this condition must
work at distances of the order of rp, it has the form

e? ¢S No \ 2
—_—~ 1.
VDT ( T3 ) <

This condition according to criterion (1.3) characterizes an ideal plasma.

We can determine the number of charged particles that participate in shielding
the field of a test particle. This value is of the order of magnitude of the number of
charged particles located in a sphere of radius rp. The number of charged particles
is, to within a numerical factor,

3
> 1.

V%N() ~

N0€6

Figure 1.4 The distribution of the electric potential in a gap containing an ionized gas. 1 - the
Debye—Hiickel radius is large compared with the gap size; 2 — the Debye—Hiickel radius is small
compared with the gap size.
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Hence, this value is large for an ideal plasma.

Thus, the Debye-Hiickel radius is the fundamental parameter of an ideal
quasineutral plasma. It is the distance over which an ensemble of charged plasma
particles shields external electric fields or fields of individual plasma particles. Cor-
respondingly, the character of the distribution of external fields in a plasma differs
from that in a gas, as shown in Figure 1.4 for a gaseous or plasma gap.

1.1.5
Definition of a Plasma

Let us consider a gas-filled gap subjected to an external electric field. If the gas
does not contain charged particles, the field is uniform in the gap. In the presence
of charged particles in the gas, an external electric field is shielded near the edges
of the gap (see Figure 1.4) at distances of the order of the Debye—Hiickel radius.
Thus, the character of the distribution of an electric field inside the gas is different
in these two cases. Note that here we assume the plasma to be quasineutral up to
its boundaries, an assumption that can be violated in real cases. On the basis of
the above considerations, one can define a plasma as a weakly ionized gas whose
Debye-Hiickel radius is small compared with its size L, that is,

L>rp. (1.12)

For an electron temperature of T, ~ 1eV and a gap size of the order of 10cm
this criterion gives an electron number density N, >> 10* cm™3, which is a very
small value (see Figures 1.1 and 1.2). For example, the electron number density of
a glow discharge lies in the range 10’ —10'2 cm™3. Table 1.4 contains parameters of
some plasma types in terms of a typical number density N, and temperature T, of
electrons, and also important parameters of the plasma types under consideration,
parameters such as the Debye-Hiickel radius of the plasma rp and its typical size
L. These examples are a representative sampling of real plasmas.

Table 1.4 Parameters of some plasmas.

Type of plasma Ne,cm™3 Te, K p,cm L,cm
E layer of ionosphere ~ 10° 300 0.3 10°
He-Ne laser 10! 3 x 10* 3x107% 1
Mercury lamp 10 5 x 10* 3x107> 0.1
Sun’s chromosphere 5 x 108—5x10° 3 x10°-3x10° 0.01—0.1  10°
Lightning 10" 3% 10* 3%x107% 100
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1.1.6
Oscillations of Plasma Electrons

The Debye—Hiickel radius is the parameter that characterizes an ideal quasineutral
plasma. We can estimate a typical time for the response of a plasma to an external
field. For this purpose we study the behavior of a uniform infinite plasma if all the
plasma electrons are shifted at the initial time by a distance x, to the right starting
from a plane x = 0. This creates an electric field whose strength corresponds to
the Poisson equation (1.4):

dE

T = 4me(Ni— No) .
Assuming the electric field strength at x < 0 is zero, the Poisson equation gives an
electric field strength for x > x, of E = 4meNyxp, where N is the average number
density of charged particles in the plasma. The movement of all the electrons under
the influence of the electric field leads to a change in the position of the boundary.
The equation of motion for each of the electrons can be written as

d%(x + xo)

Me FTE = —¢E,

where m. is the electron mass and x is the distance of an electron from the bound-
ary. Because x is a random value, not dependent on the phenomenon being con-
sidered, one can assume this value to be independent of time. Thus, the equation
of motion of an electron is

dsz (,()2
dat? - p

where [2, 20-23]

2\ 12
w, = (4nNOE) (1.13)
is called the plasma frequency, or Langmuir frequency.

The solution of the equation obtained predicts an oscillatory character for the
electron motion. Accordingly, 1/w), is a typical time for a plasma to respond to an
external signal. Note that the value rpw, = /2T/m, is the thermal electron veloc-
ity. From this it follows that a typical time for a plasma to respond to an external
signal is the time during which the electrons experience a displacement of the or-
der of the Debye—Hiickel radius. Thus, we have two fundamental parameters of an
ideal quasineutral plasma: the Debye—Hiickel radius rp, which is a shielding dis-
tance for fields in a plasma, and the plasma frequency w,, so w;! is a typical time
for the plasma to respond to external signals.

Thus, the Debye—Hiickel radius and the plasma frequency are two fundamental
parameters which reflect a long-range character of interaction of charged particles
in an ionized gas. These parameters do not depend on a short-range interaction

P
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of neutral particles in an ionized gas, and therefore the character of reacting to
external fields as well some plasma collective phenomena in ionized gases are de-
termined by charged particles only and are independent of the presence of atoms
or molecules in an ionized gas. As a result, collective phenomena in ionized gases
have a universal character and may be identical for various ionized gases if the gas
criterion holds true for neutral and charged particles.

1.1.7
Interaction of Charged Particles in an Ideal Plasma

We now calculate the average potential energy of a charged particle in an ideal
plasma and the distribution function for the interaction potential of charged parti-
cles. From the interaction potential (1.11) for two charged particles, we have for its
average value

U= 76¢ [NO exp (—%) — Ny exp (%)] dr.
0

We assume the charges of electrons and ions in a plasma to be ¢ and use (1.10)
for the electric potential ¢ from an individual plasma particle of charge +e, that is,

e r
=-exp|l——] .
¢ = p "

The above formula for the average interaction potential in an ideal plasma accounts
for pairwise interactions of all the charged particles in a volume that have a Boltz-
mann distribution. In the case of an ideal plasma, the principal contribution to the
integral occurs at small interactions ep < T, which gives

— 2N, 47 N 2
g = 2 /(e<p)24nr2dr S L R (1.14)
0

T 2T

where we used expression (1.7) for the Debye—Hiickel radius. Thus, the average
energy of a charged particle in an equilibrium plasma is

T= - —. (1.15)

To estimate fluctuations A U of the interaction potential for a charged particle
in a plasma, we assume this value to be determined by positions of other charged
particles in a sphere of the Debye—Hiickel radius centered on the test particle. The
mean number of charged particles in this region is n ~ Nor3 > 1, with fluctua-
tions of the order of \/n. Hence, the fluctuation of the interaction potential of the
test charged particle in a plasma is

2
e

AU~ Jn— ~ N,*ril> . (1.16)
D
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Since AU >» U, the distribution function for the interaction potentials yields

U = 0 and has the form

—U?
fIU)AU = 2rAU?*)~2 exp[zAUz] , (1.17)

where f(U)dU is the probability that the interaction potential lies in the interval
from Uto U + dU. The squared deviation of the distribution (1.17) is
o0

AU? = U2 =2 [ (eg)*Nodmrtdr = 4 Noe*rp = UT > (U)?,

o

where the factor 2 takes into account the presence of charged particles of the op-
posite sign, and Nj is the mean number density of charged particles of one sign.
Thus, we have for an ideal plasma

T« AUKT.

1.1.8
Microfields in an Ideal Plasma

The charged plasma particles, electrons and ions, create electric fields in a plasma
that act on atoms and molecules in a plasma. Although the average field at each
point is zero, at this time electric fields are of importance. Guided by the action
of these fields on atoms, for a corresponding time range one can average the fields
from electrons, that is, the action of electrons on atoms as a result of their collision.
Fields from ions at a given point are determined according to their spatial distri-
bution. We will determine below the distribution function P(E) for electric fields
at a given point for a given time for a random spatial distribution of ions, so by
definition P(E)dE is the probability that the electric field strength at a given point
ranges from Eto E + d E, and we use an isotropic form of the distribution over the
electric field strengths. We take into account the electric field strength from the ith
ion at a distance r; from it is
E = =

T
i

and the total electric field of all the ions is
E=) E.

Evidently, we include in this sum ions located at a distance r; < rp from a test
point, that is, we assume that the main contribution to this sum is from ions located
close to a test point. In addition, we take a random distribution of ions in space.

We first find the tail of the distribution function that corresponds to large fields.
The probability of the nearest ion being located in a distance range from rto r + dr
is

P(E)dE = 4xr*drN;,

15
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where N; is the number density of ions, and the electric field strength from an
individual ion is E = ¢/r2. From this we obtain

2me32N,dE e _
P(E)AE = ———p—, \[= <N, B (1.18)

From this one can estimate a typical value E of the electric field strength:
Eo~eN7. (1.19)

This value corresponds to the electric field strength at the mean distance between
ions.

We now determine the distribution function P(E) on the basis of the standard
method with the characteristic function F(g), that is,

F(g) = /exp(iEg)P(E)dE, (1.20)

where g is a three-dimensional variable. Correspondingly, the inverse transforma-
tion gives

P(E) = #/exp(—iEg)F(g)dg. (1.21)

Introducing the probability p (E;) of a given electric field strength created by the ith
ion, we have

P(E) = H/p(Ei)dEi.

Evidently, the probability p (E;) is identical for different ions, and the characteristic
function is

Fg =]]f@. fie= /eXP(iEig)P(Ei)dEi : (1.22)
Let nions (n > 1) be located in a large volume £, so
dl‘i
P(Et)dEt = E ;

and dr; is the volume element where the ith ion is located with the origin of the
frame of reference that is at a test point. For the partial characteristic function and
using p (E;)dE; = dr;/Q this gives

1 1
filg) = o) / exp(iE;g)dr; =1+ o) / [exp(iEig) - 1] dr; ,

and this gives

1
In fi(g) = 5 [ [explifi(rg) — 1] dr..
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From this, because of the identity of fi(g), we obtain
InF(g) = Zln filg) = nln fi(g) = Ni/ [exp(iEig) — 1] dr; ,

where N; = n/£ is the number density of ions. In accordance with (1.21), from
this we obtain for the distribution function P(E) for the electric field strengths in a
plasma

1
P(E) = W / exp %—iEg + Ni/ [exp(iE;g) — 1] dri} ag.

Since the electric field strength from an individual ion is E; = er;/ r?, we have

/ [exp(iEig) — 1] dr; = / |:exp (i&;sei - 1)] -2md cos O;rtdr; =

T

—47r(eg)3/2 7§2d§ (1 B sinE) _ _8.7T(eg)3/2 ,
0

£ 15

where & = eg/r?. Hence, the distribution function for electric field strengths takes
the form [24]

P(E) = / exp [‘—Sn(eg)mN +1Eg] %~ He),

15 273 E
E 4N\
=, E =2 — ) 1.2
z 5’ 0 ne( 5 ) (1.23)

As is seen, the typical electric field strength E, corresponds to that of (1.19), and
the Holtzmark function H(z) is given by

o0

H(z) = Jriz / X sin x exp |:— (2)3/2} dx . (1.24)

0

The Holtzmark function has the following expressions in the limiting cases

H(z) = L2, 2«1, H(z) = 15\/7 SR z»1 (1.25)
37 8 Vm

and the case of large electric field strengths z >> 1 corresponds to (1.18). The

Holtzmark function is represented in Figure 1.5, and its maximum corresponds

to a typical electric field strength Ep.x &~ 1.6 Ej that is created at average distances

between ions. The Holtzmark function may be constructed in a simple manner

from its limiting expressions as

hz) = ———————, zp=132. (1.26)

37 [1 n (%)9”} ’
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0.40 T T T T T

H(z). h(z)

Figure 1.5 The Holzmark function H(z) according to (1.24) (1) and its approxima-
tion (1.26) (2).

The approximation h(z) is compared with the Holtzmark function in Figure 1.5.

One can expand these results for a plasma containing multicharged ions. If the
ion charge is Z, it is necessary to change e to Ze, which for the typical electric
strength Ej in (1.23) gives

4N\
Eo=2aZe|—) =260ZeN. (1.27)
15 i

Note that microfields in a plasma may be created by both electrons and ions. In
this consideration we assume electrons to be distributed uniformly in space. This
means that the observation time 7 for the ion distribution exceeds significantly a
typical time of approximately r/v. for electron displacement at a distance r that
determines this part of the distribution function (v is a typical electron velocity).
For the maximum of the distribution function (r ~ Ni_l/ 3) this criterion gives

> mPTT PN (1.28)

where m, is the electron mass and T is a typical electron energy. Simultaneously,
the observation time is small compared with a typical time for establishment of a
uniform ion distribution, that is, for typical electric field strengths (E ~ Eo):

TN (1.29)

T < MI2T,
where M is the ion mass and T; is a typical electron energy. In particular, for a gas
discharge helium plasma with typical parameters N; ~ 102cm™3, T, ~ 1eV, and
T; = 400 K this formula gives 5 x 10715 > 7 > 107 1%s.

In addition, it is necessary to account for screening of the ion field in a plasma,
which requires us to change the electric field strength E in (1.23) to E exp(—r/p)
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in accordance with (1.8). But in this case only electrons partake in screening of ion
fields and hence the Debye—Hiickel radius is given by

Te
D= ,/——s
P 47t Ny e?

instead of (1.9). For an ideal plasma (1.3) this effect is weak for the maximum of
the distribution function E ~ Ej.

1.1.9
Beam Plasma

We considered above a quasineutral plasma as a widespread plasma type. In re-
ality, plasma boundaries (called plasma sheaths, or double layers) contain a non-
neutral plasma. Plasma properties in this region depend on processes that occur
there. If charged particles are generated by a metallic surface or charged particles
recombine on walls, an intermediate layer of nonneutral plasma arises between
the plasma and the surface. A nonneutral plasma also occurs if charged particles
are collected in certain regions or traps, and if they are transported through space
by the action of external fields in the form of beams. Thus, a nonneutral plasma
is a specific physical object [25, 26], so the primary characteristic of a nonneutral
plasma arises from the strong fields created by the particle charge, and that re-
stricts the plasma density. As an illustration, we shall consider a classic example of
a nonneutral plasma formed near a hot cathode.

We start from a simple estimation. Let a beam of electrons have number density
N, ~ 10 cm™3 (the minimum boundary of the electron number density for a
glow discharge) and beam radius py ~ 1 cm. Then from the Poisson equation (1.4)
we have the following estimation for the electric voltage ¢ between the beam center
and its boundary:

@ ~ 4meNpt ~ 20keV .

This shows the necessity of using specific electric optics to conserve this plasma.

One can generate an electron beam in a simple way by heating a metallic sur-
face in a vacuum; this will cause the surface to emit an electron flux as a result of
thermoemission. Using electric fields allows us to accelerate electrons and remove
them from the surface in the form of a beam. But the parameters of this beam can
be limited by internal electric fields that arise from electron charges. We can find
the properties of such a beam, created between two flat plates a distance L apart,
with an electric potential Uy between them.

The electron current density i is constant in the gap because electrons are not
produced nor do they recombine in the gap. This gives

i = eNe(x)ve(x) = const,

where x is the distance from the cathode, N is the electron number density, v. =
2e(x)/ me. is the electron velocity, and the electric potential is zero at the cathode
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surface, that is, ¢(0) = 0. An electron charge creates an electric field that slows
the electrons. We can analyze this relationship. The electric field strength E =
—dg/dx satisfies the Poisson equation

IE reNu(x) = —dmi [T
4E _ o) = —
dx ¢

2ep

Multiplication of this equation by E = —dg/dx provides an integrating factor that
makes a simple integration possible. We obtain

E? = E2 + 16 ";e(p , (1.30)
(4

where Ey = E(0).

We need to establish the boundary condition on the cathode. We consider the
regime where the current density of the beam is small compared with the electron
current density of thermoemission. This means that most of the emitted electrons
return to the metallic surface, and the external electric field does not significant-
ly alter the equilibrium between the emitted electrons and the surface. Then the
boundary condition on the cathode is the same as in the absence of the external
electric field, so E(0) = 0. Formula (1.30) leads to the distribution of the electric
potential in the gap, given by

T\ 23
=9 ',/—e o3
(x) (rm 26) x

This can be inverted to obtain the connection between the electron current density

and the parameters of the gap [27-30]:
302

2 L?
¢ b - (1.31)

i=—
97 \ 2m.

This dependence is known as the three-halves power law. This describes the be-
havior of a nonneutral plasma that is formed in the space between two plane elec-
trodes with different voltages. This voltage difference in this case is determined
by the charge that is created by charged atomic particles [29-31] and has a univer-
sal character; in particular, in a magnetron discharge [32, 33], where electrons are
magnetized and hence reproduction of a charge in a magnetron discharge results
from ion flux to the cathode with energy of hundreds of electronvolts that creates
secondary electrons. Along with this, metal atoms are sputtered, which determines
the applications of this gas discharge.

We consider one more example of transport of the flux of charged particles
through a vacuum: an electron beam of radius a that is fixed by a longitudinal
magnetic field inside a cylindrical metal tube of a radius pg [34]. According to the
Gauss theorem, the electric field strength E at a distance p from the beam center
outside the beam surface is

47N, 21
27p  peve
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where N, is the number of electrons per unit beam length, I is the electron cur-
rent, and v, is the electron velocity in the beam. On the basis of the equation

E = —dg/dx for the voltage difference between the beam and metal tube, this
gives
21 po
¢ =—In—,
eve 4

where we assume py 3> a and ignore the potential variation inside the electron
current. Hence, when the electron beam enters a space inside the tube through
a grid or when it intersects a surface with the electric potential of the walls, each
electron loses energy eg. Let the initial energy of electrons in the beam be E, so the
energy becomes E — eg after entry into the tube. This corresponds to the electron
velocity

2(E — eg)
me

Ve =

or to the electron current

€vy ¢/ (2¢/me)(E — eg)

T 2In(p/a)  2In(p/a)

From this we find the maximum current that is possible under given conditions,

1 2 E3/?

I = — _—
73\ 3me In(p/a)

(1.32)
which is called the Bursian current [35] and corresponds to the beam voltage with
respect to the walls:

_2F
Pmax = 37

The formula for the maximum electric current has the form of the three-halves
power law and may be written in the form
B3
Ip=lo—— , (1.33)
In(p/a)
and if the electron energy is expressed in electronvolts, we have [34] [, = 12.7 pA.
In this case of propagation of the electron beam through a vacuum, the electric
potential brakes the electron beam because of the noncompensated charge in the
electron beam [34, 36, 37|, which is similar to the previous case of electron ther-
moemission and propagation between plane electrodes. One can expect that neu-
tralization of the beam by introduction of the ion component in the beam region
will remove the current limit. Nevertheless, in the latter case of beam propagation
inside a cylindrical tube the limiting current is conserved, but its value increases
and is 3+/3 I3 [34, 37-39].
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1.2
Statistics of Atomic Particles in Excited and Weakly lonized Gases

1.2.1
Distribution Function of a System of Identical Particles

The subject of this book is a weakly ionized gas that consists of a large number
of atoms or molecules and a small admixture of electrons and ions. Each of its
components is a system of many weakly interacting identical particles, and our
first task is to represent the distribution of particles in these systems for various
parameters, and apply to a system of many identical particles the laws of statistical
physics. In this case we deal with the distribution function of free particles f(x)
over a parameter x, so for a macroscopic uniform system of particles f(x)dx isthe
number density of particles with the value of this parameter between x and x + dx.
Within the framework of statistical physics [40, 41], we expound the distribution
function for each parameter twofold using the ergodic theorem [42, 43]. In the first
case, we deal with an ensemble of a large number of particles, and the distribution
function determines the average number particles with a value of this parameter
in an indicated range. In the second case, one test particle is observed, and a given
parameter of this particle varies in time as a result of interaction of this particle
with other particles. Then the distribution function characterizes the relative time
when a given parameter is found in an indicated range.

We start from the energy distribution for weakly interacting particles in a closed
system. In an ensemble of a large number of particles, each of the particles is in
one of a set of states described by the quantum numbers i. The goal is to find the
average number of particles that are found in one of these states. For example, if
we have a gas of molecules, the problem is to find the molecular distribution of
its vibrational and rotational states. We shall consider problems of this type below.
Consider a closed system of N particles, so this number does not change with time,
as well as the total energy of particles. Denoting the number of particles in the ith
state by n;, we have the condition of conservation of the total number of particles
in the form

N=Y ni. (1.34)

Since the ensemble of particles is closed, that is, it does not exchange by energy
with other systems, we require conservation of the total energy E of the particles,
where

E=Y e, (1.35)

where ¢; is the energy of a particle in the ith state. In the course of evolution of
the system, an individual particle can change its state, but the average number of
particles in each state stays essentially the same. Such a state of a closed system is
called a state of thermodynamic equilibrium.
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Transitions of individual particles between states result from collisions with oth-
er particles. We denote by W(nq, ny, ..., n;...) the probability that n, particles are
found in the first state, n, particles are found in the second state, n; particles are
found in the ith state, and so on. We wish to calculate the number of possible re-
alizations of this distribution. First, we take the nq particles for the first state from
the total number of particles N. There are

N!

M= ——
NN = my)ng!

ways to do this. Next, we select n, particles corresponding to the second state from
the remaining N — n; particles. This can be done in C{’_ ~ways. Continuing this
operation, we find the probability distribution to be

W(ny, iz, ... 1i,...) = const - N!/l_[(ni!) , (1.36)

where const is a normalization constant. By this formula, Boltzmann introduced
the equipartition law [44—47], which is the basis of statistical mechanics. We note
the contradiction between the description of an ensemble of identical particles
within the framework of statistical mechanics and the dynamical description [48,
49]. The principle of detailed balance is valid in the dynamical description of this
ensemble, which means that reverse of time t+ — —t requires the development of
this particle ensemble in the inverse direction, that is, particles move strictly along
the same trajectories in the inverse direction. The equipartition law requires the
development of the ensemble to its equilibrium state. This contradiction will be
removed if the trajectories of particles are became slightly uncertain.

1.2.2
The Boltzmann Distribution

Let us determine the most probable number of particles #; that are to be found in
a state i assuming a large number #; > 1 of particles in each state and requiring
that the probability W as well as its logarithm have maxima at n; = %;. We then
introduce dn; = n; — n;, assume that n; > dn; > 1, and expand the value In W
over the interval dn; near the maximum of this value. Using the relation

1nn!:ln(l_[ m) %/dxlnx,
m=1 1

we have (d/dn)(In n!) ~ Inn.
On the basis of this relation, we obtain from (1.36)

In W(ny,ny,...,n;...) =In W(ny,na,...75,...)

=Y Inwidn; =Y dn?/2m;). (1.37)
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The condition that this quantity is maximal is

> Inwidn; =0. (1.38)

In addition to this equation, we take into account the relations following from (1.34)
and (1.35) which account for the conservation of the total number of particles and

their total energy:
> dni=0, (1.39)
> eidn; =0. (1.40)

Equations (1.38), (1.39), and (1.40) allow us to determine the average number
of particles in a given state. Multiplying (1.39) by —In C and (1.40) by 1/ T, where
C and T are characteristic parameters of this system, and summing the resulting
equations, we have

Z(lnﬁi—lnC—i—%)dni:O.

1

Because this equation is fulfilled for any dn;, one can require that the expression
in the parentheses is equal to zero. This leads to the following expression for the
most probable number of particles in a given state:

i, = Cexp (—%) . (1.41)

This formula is the Boltzmann distribution.

We now determine the physical nature of C and T'in (1.41) that follows from the
additional equations (1.34) and (1.35). From (1.34) we have C ), exp(—¢;/T) = N.
This means that the value C is the normalization constant. The energy parameter T
is the particle temperature and characterizes the average energy of a particle. Below
we express this parameter in energy units and hence we will not use the dimen-
sioned proportionality factor — the Boltzmann constant k = 1.38 x 107 erg/K —
as is often done. Thus, the Kelvin is the energy unit, equal to 1.38 x 10~ ® erg (see
Appendix B).

We can prove that at large 7; the probability of observing a significant deviation
from 7; is small. According to (1.37) and (1.38) the probability W near its maxima
is

W(ny, na...ni..) = W(ALTa,... T, ...) exp [—Z M} .
2n;

i

From this it follows that a significant shift of n; from its average value #; is |n; —
7| ~ 1/ (m;)"/%. Since 7; > 1, the relative shift of the number of particles in one
state is small (|n; — 7;|/7; ~ (7;)*/2. Thus, the observed number of particles in a
given state differs little from its average value.
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123
Statistical Weight of a State and Distributions of Particles in Gases

Above we used subscript i to refer to one particle state, whereas below we consider
a general case where i characterizes a set of degenerate states. We introduce the
statistical weight g; of a state that is a number of degenerate states i. For example,
a diatomic molecule in a rotational state with the rotational quantum number |
has the statistical weight g; = 2] + 1, equal to the number of momentum projec-
tions on the molecular axis. Including accounting for the statistical weight, formula
(1.41) takes the form

7y = ngexp(—é%) , (1.42)

where C is the normalization factor and the subscript j refers to a group of states.
In particular, this formula gives the relation between the number densities Ny and
N; of particles in the ground and excited states, respectively:

N8 exp (8
NJ_NOgoeXP( T)’ (1.43)

where ¢ is the excitation energy and gy and g; are the statistical weights of the
ground and excited states.

We now determine the statistical weight of states in a continuous spectrum. The
wave function of a free particle with momentum p, moving along the x-axis is
given by exp(ipyx/h) to within an arbitrary factor if the particle is moving in the
positive direction and by exp(—ipyx/h) if the particle is moving in the negative
direction. (The quantity # = 1.054 x 10~% ergs is the Planck constant h divided
by 27.) Suppose that the particle is in a potential well with infinitely high walls.
The particle can move freely in the region 0 < x < L and the wave function at the
walls goes to zero. To construct a wave function that corresponds to free motion
inside the well and goes to zero at the walls, we superpose the basic free-particle
solutions, so ¥ = Cyexp(ipxx/h) + C, exp(—ipyx/h). From the boundary condi-
tion 1 (0) = 0 it follows that ¢ = Csin(pyx/h), and from the second boundary
condition 1 (L) = 0 we obtain p, L/A = ;wn, where n is an integer. This procedure
thus yields the allowed quantum energies for a particle moving in a rectangular
well with infinitely high walls.

From this it follows that the number of states for a particle with momentum in
the range from p, to px + dpy is given by dn = Ldp,/(27h), where we take into
account the two directions of the particle momentum. For a spatial interval dx, the
number of particle states is

dpydx
dn = 2ah

Generalizing to the three-dimensional case, we obtain

dpydx dp,dy dp,dz dpdr
= = . 1.44
W= Dk amh 2 @an) (1.44)
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Here and below we use the notation dp = dp.dp,dp, and dr = dxdydz. The
quantity dpdr is called a differential element of the phase space, and the number of
states in (1.44) is the statistical weight of the continuous spectrum of states because
it is the number of states for an element of the phase space.

Let us consider now some cases of the Boltzmann distribution of particles. First
we analyze the distribution of diatomic molecules in vibrational and rotational
states. The excitation energy for the vth vibrational level of the molecule is giv-
en by hwwv if the molecule is modeled by a harmonic oscillator. Here Ao is the
energy difference between neighboring vibrational levels. On the basis of (1.42),
we have

h
N, = Noexp (— ‘;”) , (1.45)

where Ny is the number density of molecules in the ground vibrational state. Be-
cause the total number density of molecules is

N—iN =N iex (—hw”)— No
_U=0 v = OU=0 p T _[1—exp(—h—T‘”)]7

the number density of excited molecules is

exp(—hwv/T)

No = N[l —exp(—ho/T)]

(1.406)
The excitation energy of the rotational state with angular momentum ] is given
by BJ(J + 1), where B is the rotational constant of the molecule, and the statis-
tical weight of this state is 2] + 1. On the basis of the normalization condition
>y N,y = N, and assuming B < T (as is usually done), the number density of
molecules in a given vibrational-rotational state is
BJ(J + 1)}

B
N,j = N,(2] + 1)? exp |:——

7 (1.47)

As an example of the particle distribution in an external field, let us consid-
er the distribution of particles in the gravitational field. In this case (1.42) gives
N(x) ~ exp(— U/ T), where U is the potential energy of the particle in the external
field. For the gravitational field we have U = mgz, where m is the mass of the
molecule, g is the free-fall acceleration, and z is the altitude above the Earth’s sur-
face. Formula (1.42) takes the form of the barometric distribution, and then has the
form

N(z) = N(0) exp (—m—gh) =L, (1.48)
T mg
where N(z) is the number density of molecules at altitude z. For atmospheric air
near the Earth’s surface at room temperature we have | &~ 9km, that is, atmospher-
ic pressure falls noticeably at altitudes of a few kilometers.
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1.2.4
The Maxwell Distribution

We now consider the velocity distribution of free particles. This distribution is the
end result of energy-changing collisions of the particles. The Boltzmann formu-
la (1.42) provides the necessary information. In the one-dimensional case, the par-
ticle energy is muv?2 /2, and the statistical weight of this state is proportional to du,,
that is, to the number of particles n(v,) whose velocity is in the interval from v, to
vy + dvy. Formula (1.42) then yields

2

N(vy)dvy = Cexp (— n;;x) dv, ,

where C is the normalization factor. Correspondingly, in the three-dimensional
case we have

mu?
N(v)dv=C (— 5T ) av,

where the vector v has components vy, v, and v,, dv = dv,dv, dv,, and the kinetic

energy of the particle mv? /2 is the sum of the kinetic energies for all the directions
of motion. In particular, for the number density of particles N(v) we have, after
using the normalization condition,

m \3/2 mo?
N(v) = N (M—T) exp (— = ) , (1.49)

where N is the total number density of particles. When we introduce the function
¢(vyx) ~ N(vy), normalized such that

[ owadn =1, o) = (5o) e (— ";;3) , (1.50
then -
N(v) = No(vy)(vy)¢(vz) = N (2%)3/2 exp (— ";;2) . (151)

These particle velocity distributions are called Maxwell distributions [50-52]. The
average kinetic energy of particles following from (1.49) is

%MF =gmii %m_3+ Smel = Smul.
This is to be combined with the result
1= _ [ (melf2) exp[—me/2T)] o
7 M = [0, exp[—muv2/(2T)] dv,
d o0
= —mln / exp[—muv}/(2T)] dvy

— 00

d T
- _ /2y —
TS In(aT'?) = 5
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where the constant a does not depend on the temperature. Thus, the particle kinet-
ic energy per degree of freedom is T/2, and correspondingly the average particle
kinetic energy in the three-dimensional space is mv?/2 = 3T/2. These relations
can be used as the definition of the temperature.

1.2.5
The Saha Distribution

We considered above the distributions of gas particles in bound or free states. Now
we analyze the specific distribution for plasma systems that contain both bound
and free electron states. We must examine the equilibrium between continuous
and discrete electron states. This equilibrium is maintained by the processes

A++e<—>A,

where ¢ is the electron, AT is the ion, and A is the atom. We consider a quasineutral
plasma in which the electron and ion number densities are the same.

Consider an ionized gas in a volume 2 and denote the average number of elec-
trons, ions, and atoms in this volume by n., n;, and n,, respectively (note that
ne = n; here). Relation (1.43) gives the ratio between the number density of free
and bound states of electrons as

ni_ gegi 1 ]+ p*/2me.
— = - ") dpdr.
Na g. (2wh)3 /exp( T par

Here g. = 2, g;, and g, are the statistical weights of electrons, ions, and atoms
corresponding to their electronic states, | is the atomic ionization potential, and p
is the free electron momentum, so | + p?/(2m.) is the energy for transition from
the ground state of the atom to a given state of a free electron. It is assumed that
atoms are found only in the ground state.

Integration of this expression over electron momenta yields

3/2
n_ges _1
= G e (o5) [or

Integrating over the volume, we take into account that transposition of the states
of any pair of electrons does not change the state of the electron system. Therefore
[ dr = Q/n.. Introducing the number densities of electrons N. = n./£2, ions
N; = n;/Q, and atoms N, = n,/Q, we deduce that

NeNi 8e8i meT 32 ]
—_— = -—=1. 1.52
N. @ (z:ﬁﬂ) P\ (1.52)

This result is called the Saha distribution [53].
One can write the Saha distribution in the form of the Boltzmann distribu-
tion (1.42) as

Ni gc ] gegi meT 32
No_ & g = BB , 153
N, g p( T) TN\ a2 (1.33)
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where g. is the effective statistical weight of the electron continuous spectrum. For
an ideal plasma, this statistical weight is rather large because the electron number
density N, is small compared with a typical atom number density. This leads to
the conclusion that a remarkable degree of ionization takes place at relatively small
temperatures, T < J. However, the probability of atomic excitation is very small at
these temperatures; that is, the number density of excited atoms is small. Hence,
at these temperatures, atoms are either in the ground state or ionized.

1.2.6
Dissociative Equilibrium in Molecular Gases

Equilibrium between atoms and molecules in a molecular gas is maintained by the
processes

X+Y < XY.

This equilibrium bears analogy to the equilibrium between discrete and continu-
ous atomic states corresponding to bound and free states of atoms. We can find
the relation between the equilibrium number densities of atoms and molecules
in this case by analogy with the Saha distribution. On the basis of (1.52), one can
express the relationship between the number densities of atoms and molecules in
the ground state as [41]

Nx Ny _ 8x8v uT 3/zex —2 (1.54)
Nxr(=0,J=0)  gxy \2ar2) “P\U"T)" '

where gx, gy, and gxy are the statistical weights of atoms and molecules with
respect to their electron states, u is the reduced mass of atoms X and Y, and D is
the dissociation energy of the molecule.

In contrast to the ionization equilibrium of atoms, in this case most molecules
are found in excited states. Using (1.46) and (1.47), which connect the number den-
sity of molecules in the ground state to their total number density, we can trans-
form (1.54) to the form

NxNY 8x8y ‘LtT 32 B hw D
= —|1—exp(-—= =), @55
NXY gxy (ZJThZ T xp T xp T ( )

where Nyy is the total molecular number density.

1.2.7
Laws of Blackbody Radiation

An ionized gas contains excited atoms or molecules that emit radiation, so it is
necessary to examine how the gas interacts with radiation. If the interaction of ra-
diation with a gas is strong, the distance that an individual photon travels before
being absorbed is relatively small. Then we deal with so-called equilibrium radia-
tion [54]. Radiation in a vessel whose walls are at a temperature T will be absorbed
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and emitted by the walls, and these processes establish the equilibrium between
the radiation and the walls of the vessel. This radiation is called blackbody radia-
tion.

To calculate the average number of photons in a particular state, we use the fact
that photons obey Bose—Einstein statistics. Therefore, the presence of a photon in a
given state does not depend on whether other photons with this energy are also in
this state. Then according to the Boltzmann formula (1.43), the relative probability
that n photons with energy 7w are found in a given state is exp(—hwn/ T). Thus,
the mean number of photons in this state is

Y nexp(~hon/T) 1
o = Y..exp(—hon/T) — [exp(ho/T)—1] "

This formula is called the Planck distribution [55].

We introduce the spectral radiation density U,, as the radiation energy per unit
time and volume in a unit frequency range. We shall show below how this quantity
can be determined. The radiation energy in the frequency interval from w to w +
dw is Q U,dw, where Q is the volume of a region where the radiation is located.
Alternatively, this quantity can be expressed as 2hwn,, 2 dk/(27)?, where the factor
2 accounts for the two polarizations of an electromagnetic wave, k is the photon
wave number, n,, is the number of photons in a single state, and 2 dk/(27)? is the
number of states in an element of the phase space. Using the dispersion relation
o = ck between the frequency w and wave vector k of the photon (c is light
velocity), the equivalence of these two aspects of the same quantity yields

(1.56)

hw’
Uw = mnw . (157)

When the Planck distribution (1.56) is inserted into (1.57), we obtain the Planck
radiation formula:
ho?

Vo = 723 [exp(hw/T) —1] (1.58)

In the limiting case iw < T, this result transforms to the Rayleigh—Jeans formu-
la [56, 57]:

T
Up=——, ho<T. (1.59)
%

This expression corresponds to the classical limit, and hence does not contain the
Planck constant. The opposite limit yields the Wien formula [58]:

c

haw? ho
w = mexp —T , hw > T. (160)

We shall now apply (1.58) to find the radiative flux emitted by a blackbody sur-
face. It may be defined as the flux of radiation coming from a hole in a cavity with
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perfectly absorbing walls when this cavity contains the blackbody radiation. The
blackbody surface emits an isotropic flux ¢ U,,, and hence the photon flux at a fre-
quency o outside the blackbody boundary is

, de U cy, hw?
w = —C w = = ’
J 4 4 4m2c? [exp(hw [ T) — 1]

(1.61)

where the element of solid angle is d® = dgd(cos 8) and we assumed that the
photon flux is directed perpendicular to the blackbody surface. From this we ob-
tain the Stefan-Boltzmann formula for the total radiative flux leaving the emitting
surface:

oo oo
Ji =/jwdw - :i/ Uydow = oT*, (1.62)
0 0

where the Stefan—Boltzmann constant o is given by

oo

1 1 2 W

o= — | — Xdx =" —567x10"2 .
PRSYSTE / e —1" T ocn m? K
0

One can evaluate the functional dependence of the radiation flux (1.62) in a sim-
ple way on the basis of the dimensional analysis. The result must depend on the
following parameters: T (the radiation temperature), # (the Planck constant), and ¢
(the light velocity). From these parameters one can compose only one combination
that has the dimension of a flux; itis J ~ T*4 ™3¢ 2, consistent with (1.62).

1.2.8
lonization Equilibrium in a Plasma with Particles

Plasma properties can be influenced by the presence in the plasma of small parti-
cles on a variety of size scales, including atomic and molecular clusters. We shall
refer to all such small particles as aerosols, and the plasma containing them as
an aerosol plasma, although the size of the particles can have an influence on the
plasma properties. One such plasma property is the ionization equilibrium. The
presence of small particles in a hot gas may alter the ionization equilibrium be-
cause the energy for an electron to bind to a surface is smaller than the ionization
potential of atoms constituting this surface. For example, the copper ionization po-
tential is 7.73 eV, whereas the copper work function, the energy for an electron to
bind to a copper surface, is 4.40 eV. The corresponding values are 7.58 and 4.3 eV
for silver, and 3.89 and 1.81eV for cesium. Thus, the presence of such particles
in a hot vapor alters the equilibrium density of charged particles. We assume in
the following that electrons in a hot gas or vapor result from small particles only.
Our goal is to determine the equilibrium charge of these particles and the number
density of electrons in a plasma.
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For simplicity, we assume all particles to be spherical and to have the same radius
ro. This radius is taken to be sufficiently large such that

62

> (1.63)
This criterion allows us to consider a particle as bulk matter, rather than needing to
describe its microscopic properties. The addition of a single electron to the aerosol
particle makes only a slight difference to the electric potential of the particle. We
use this property to write the relationship between the number densities of parti-
cles nz and nz4; that possess charges Z and Z + 1, respectively. By analogy with
the Saha distribution (1.52), we have

nzNe meT 312 WZ
— =12 —, 1.64
Nzt (z:ﬁﬂ) SP\"Tr (1.64)

where Wy is the electron binding energy for the particle with charge Z, N, is the
electron number density, and the factor 2 accounts for the electron statistical weight
(two spin projections). The electron binding energy of a charged particle Wz is the
sum of the electron binding energy for the neutral particle W, of a given material
and the potential energy of the charged particle. Using the electric potential for a
particle of charge Z + 1/2 (the average between Z and Z + 1), we have

62

1
W2=W0+(Z~|——)—.
2 To

Substituting this into (1.64) transforms it to the form

T 3/2 7z 1)\ .2
nzNezz(me ) eXp(_ﬁ_( et (165)

nz4+1 27h? T 1’0T

This relation gives the charge distribution of the particles. If the average charge
is large, this distribution is sharp. Specifically, introducing n,, the number density
of neutral particles, (1.65) leads to

Ze? 7 Z%e?
Ny = ny_1A —— ) = noA —
z Zm1AXp T'()T 0 xp 27’0T ’

where A = (2/N.) - [me T/(27h?)]*/* exp(— W,/ T). For charges that are close to the
average, this relationship is conveniently written in the form

(Z — Z)?
"z =NZEP\ T Az |

where AZ% = ryT/e? > 1 because of (1.63). The average charge of the particles
follows from the relation Ze?/(ryT) = In A, which gives

— T()T 2 meT 32 W()
Z=">h [E (2nh2) exp (_T) . (1.66)
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This result must be combined with the condition for plasma quasineutrality
N. = Zn ,

where n is the total number density of particles. Combining these equations to
remove the electron number density, we find the average charge of the particles to

be
2 (mTN\| W
11'1 pr— —
7n \ 2mh? T
1.2.9

Thermoemission of Electrons

— T’()T
227

(1.67)

For high temperatures or large particle size, Ze?/(ro T) becomes small. For exam-
ple, at rp = 10 um and T = 2000 K, the very large particle charge of Z = 1200
would be required to make this parameter become unity. If the parameter is small,
then it follows from (1.66) that

N.o=2 el 3/zex _ W 1.68
e=2(57 p ) (1.68)

This formula describes the equilibrium density of electrons above a flat surface
if the electric potential of the particle is small compared with a typical thermal
energy. Therefore, the conditions near the particle and far from it are identical.
Then the average particle charge is determined from the relation N, = Zn, where
the number densities of electrons and of particles are both known.

Equation (1.68) allows us to obtain a simple expression for the electron current
from the surface of a hot cathode. In the case of equilibrium between electrons
and a hot surface, the electron current from the surface is equal to the current
toward it. Assuming unit probability for electron attachment to the surface upon
their contact, we obtain that the electron current density i toward the surface is
equal to the electron current density from the surface:

m o T\ N2 emeT? Wo 1.69
= = —— &X _—— . .
27 M T 4m2p3 P T (1.69)

This result is known as the Richardson-Dushman formula [61-65] describing the
electron current density for electron emission by a hot surface. This type of emis-
sion is called thermoemission of electrons. For the analysis of gas discharge prob-
lems, it is convenient to rewrite the Richardson-Dushman formula (1.69) for the
thermoemission current density in the form

w
i = ART?exp (_T) , (1.70)

wherein the Richardson parameter Ag, according to (1.69), has the value [66]
60 A/(cm? K?). Table 1.5 contains the parameters in (1.69) for real metals. In this
table, W is the metal work function, T, is the metal boiling point, and i, is the
current density at the boiling point.
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Table 1.5 Parameters in (1.70) for electron thermoemission from metals [59, 60], AR is ex-
pressed in square meters per square centimeter per square Kelvin.

Material AR W,eV  Material Apg W,eV  Material Ap W, eV
Ba 60 211 Fea 26 4.5 Pt 33 5.32
Be 300 3.75 Fey 1.5 4.21 Si 8 3.6
Cs 160 1.81 Mo 55 4.15 Ta 120 4.25
C 15 45 Ni 30 4.61 Th 70  3.38
Cr 120 3.90 Nb 120 4.19 Ti 60  3.86
Co 41 441 Os 1100 5.93 U 60  3.27
Cu 120  4.57 Pa 60 4.9 W 60  4.54
Hf 22 3.60 Pd 60 4.99 Y 100  3.27
Ir 120 5.27 Re 720 4.7 Zr 330 4.2
1.2.70

The Treanor Effect

A weakly ionized gas can be regarded as a system of weakly interacting atomic par-
ticles. This system can be divided into subsystems, and in the first approximation
each subsystem can be considered as an independent closed system. The next ap-
proximation, taking into account a weak interaction between subsystems, makes it
possible to establish connections among subsystem parameters. There are a variety
of ways in which this decomposition can be done, with the selection depending on
the nature of the problem. Often it is convenient to divide an ionized gas into atom-
ic and electronic subsystems. Energy exchange in electron—atom collisions is slight
owing to the large difference in their masses, so equilibrium within the atomic
and electronic subsystems is established separately. If a weakly ionized gas is locat-
ed in an external electric or electromagnetic field, which acts on electrons mostly,
the electron and atom temperatures may be different. This means that both atoms
and electrons can be characterized by Maxwell distributions for their translational
energies, but with different mean energies.

Another example of weakly interacting subsystems that we shall consider below
relates to a molecular gas in which exchanges of vibrational energy between col-
liding molecules have a resonant character. This is a more effective process than
collisions of molecules with transitions of the vibrational energy to excitations of
rotational and translational degrees of freedom. If vibrational and translational de-
grees of freedom are excited or are cooled in a different way, then different vibra-
tional and translational temperatures will exist in such a molecular gas. This situ-
ation occurs in gas discharge molecular lasers, where vibrational degrees of free-
dom are excited selectively, and also in gas dynamical lasers, where a rapid cooling
of translational degrees of freedom occurs as a result of gas expansion. The same
effect occurs in shock waves and as a result of gas expansion after a nozzle. There
is thus a wide variety of situations where a molecular gas is characterized by dif-
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ferent vibrational and translational temperatures. However, the resonant character
of exchange of vibrational excitation takes place only for weakly excited molecules.
At moderate excitations, the resonant character is lost because of molecular anhar-
monicity. This leads to a particular type of distribution of molecular states that we
shall now analyze.

We consider a nonequilibrium gas consisting of diatomic molecules where the
translational temperature T differs from the vibrational temperature T,. The equi-
librium between vibrational states is maintained by resonant exchange of vibra-
tional excitations in collisions of molecules, as expressed by

M(v1) + M(n) < M(v)) + M(v)) , (1.71)
where the quantities in the parentheses are vibrational quantum numbers. Assum-
ing molecules to be harmonic oscillators, we obtain from this the condition

111+112=111/+112/.

The excitation energy of a vibrational level is

E, = ho(v 4+ 1/2) — hox.(v + 1/2)*,

where o is the harmonic oscillator frequency and x. is the anharmonicity parame-
ter. The second term of this expression is related to the establishment of equilibri-
um in the case being considered, where translational and vibrational temperatures
are different. Specifically, the equilibrium condition leads to the relation

N(v1) N(vp)k (1)1, vy — vy, vz/) = N(v))N(v))k(v], vy — v1,v) ,

where N(v) is the number density of molecules in a given vibrational state and
k(vi, v, — v, vy) is the rate constant for a given transition. Because these tran-
sitions are governed by the translational temperature, the equilibrium condition
gives

k (v1, v, = vf,v5) = k (v], v > v, ) exp(AE/T),

where AE = AE(v) + AE(v) — AE(v]) — AE(v,) is the difference of the energies
for a given transition, where AE(v) = —hwxe(v + 1/2)%. From this, one finds the
number density of excited molecules to be [67, 68]

(1.72)

7 hwxe 1
N(v):Noexp[— ov  hoxo( + )}’

T, T

where Nj is the number density of molecules in the ground vibrational state. This
formula is often called the Treanor distribution.

Formula (1.72) gives a nonmonotonic population of vibrational levels as a func-
tion of the vibrational quantum number. Assuming the minimum of this function
to correspond to large vibrational numbers, we have for the position of the mini-
mum

1 T

- 1, 1.73
% T, > (1.73)

Umin =
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Table 1.6 Parameter 1/(2x.) in (1.73).

Molecule H, OH CO N, NO O,

1/(2x) 18 22 8 8 68 66

and the minimum number density of excited molecules is given by

h.0 Umin
2T, '

Table 1.6 contains the values of the first factor in (1.73) for some molecules. The

N(Umin) = Noexp (—

effect considered is remarkable at v ~ 10 in terms of the distinction between vi-
brational and translational temperatures.

Thus, the special feature of the Treanor effect is that at high vibrational excita-
tions, collisions of molecules with transfer of vibrational excitation energy to trans-
lational energy become effective. This causes a mixing of vibrational and transla-
tional subsystems, and invalidates the Boltzmann distribution for excited states as
a function of vibrational temperature. Note that the model employed is not valid
for very large excitations because of the vibrational relaxation processes.

1.2.11
Normal Distribution

A commonly encountered case in plasma physics as well as in other types of
physics is one in which a variable changes by small increments, each change oc-
curring randomly, and the distribution of the variable after many steps is studied.
Examples of this are the diffusive motion of a particle, or the energy distribution
of electrons in a gas. This energy distribution as it occurs in a plasma results from
elastic collisions of electrons with atoms, with each collision between an electron
and an atom leading to an energy exchange between them that is small because of
the large difference in their masses. Thus, in a general statement of this problem,
we seek the probability that some variable z has a given value after n > 1 steps, if
the distribution for each step is random and its parameters are given.

Let the function f(z, n) be the probability that the variable has a given value
after n steps, with ¢(zy)dz; the probability that after the kth step the change of the
variable lies in the interval between z; and zj + dz;. Since the functions f(z) and
¢(z) are probabilities, they are normalized by the condition

o0 o0
/ flz,n)dz = / p(z)dz =1.
—0o0 —0o0

By definition of the above functions we have

flz,n) = / dzy--- / dznnw(zk), Z=sz. (1.74)
o AN k=1 k=1
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We introduce the Fourier transforms

oo

G(p) = [ fle)exp(—ipz)dz, g(p) = / o(z) exp(—ipz)dz,  (L75)

—0o0

which can be inverted to give

@) =5 [ Criewipadp, oo =5 [ swieipa)p.

Equation (1.75) yields

g(0) = / p2)dz =1, g(0)=—i / 2p(2)dz = —iz, g'(0)= -2,
B B (1.76)

where z}, and z_% are the mean shift and the mean square shift of the variable after
one step. From (1.74) and (1.76) it follows that

[eo]

G(p) = [ exp (—ip 3 zk) [1e(z00dz = g"(p) .
e k=1 / k=1

and hence
T 17
f@) =5 [ g'rewtipaip = 5= [ epiing+ipz)dp.
—oco —oco

Since n > 1, the integral converges at small p. Expanding In g in a power series
of p, we have

Ing=1In(1-iZp - z2p*2) = —iZip - 2p*/2 + E) P12,

which gives
oo
1 ; = 2.2
flz) = b exp [lp(nzk—z)—nzkp /2] dp
—OoQ

(z —2)
mexp[— Az ] (1.77)

In this expression, Z = nZj is the mean shift of the variable for n steps, z? = nz?,

and A2 = z? — (Z)? is the root-mean-square deviation of this value. Formula (1.77)
is called the normal distribution, or the Gaussian distribution. It is valid if the
principal contribution to the integral in (1.76) comes from small values of p, that

is, if Zrp <« 1and z7p? < 1. Because this integral is determined by a range
nztp? ~ 1, the Gaussian distribution is valid for a large number of steps n > 1.
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13
Rarefied and Dense Plasmas

1.3.1
Criteria for an Ideal Plasma

Many varieties of plasmas are known, with most of them composed of weakly in-
teracting particles (see Figures 1.1-1.3). These plasma systems are analogues of
gaseous systems of neutral particles. When they experience weak interactions, the
system of charged particles is an ideal plasma, with the criterion for plasma ideality
expressed by (1.3) between plasma parameters. The small parameter of the theory,
the plasma parameter, has the form [69]

_ Nee®
V - Tg ’

(1.78)

and the condition to have an ideal plasma is y <« 1. Specific values for y can be
estimated on the basis of fundamental physical considerations.

The first criterion for an ideal plasma refers to the condition that the mean in-
teraction energy of a plasma particle with its neighbors must be small compared
with its kinetic energy 3 T/2. (We assume in the following that electrons and other
plasma particles have the same temperature.) The electric potential arising from a
charged plasma particle is given by (1.10), and close to the nucleus it is

o=1_9 s«m,
r 18))
where g is the particle charge, r is the distance from this particle, and rp is the
Debye—Hiickel radius. The first term in this expression is the particle potential
in a vacuum, and the second term is the electric potential that is created by the
neighboring plasma particles. This means that the average interaction energy of a
particle of charge e with other plasma particles is e?/rp, and the criterion for an
ideal plasma (e%/rp < 3T/2) leads to the value

9
— = 0.09. 1.79
A vy (1.79)
A second criterion follows from the condition that many charged particles are
located in the sphere of radius rp, that is, 47773 N /3 > 1. This gives the value

1

v K gz = 0.003. (1.80)
Criteria (1.79) and (1.80) both contain identical combinations of parameters, but
yield different numerical values. Criterion (1.79) is preferred, because it encom-
passes a larger region in which the ratio of the potential energy of a particle to its
kinetic energy can be a small parameter, and thus is useful for expansion of plasma
parameters. Nevertheless, Figures 1.1 and 1.2 display criteria (1.79) and (1.80) as
boundaries between an ideal plasma and a dense plasma.
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The quantity selected to characterize a plasma may not be y, but may instead
may be some function of y. Often one uses the coupling constant I” of the plasma,
introduced as the ratio of the Coulomb interaction potential of a charged particle
with its nearest neighbors to the thermal energy,

2 4 1/3
r= e:r = (%) , (1.81)
w

where ry = (47 N./3) /3 is the Wigner—Seitz radius. A dense plasma is one with
I' > 1, and is called a strongly coupled plasma. The condition for the plasma to be
ideal is I' « 1, which implies that

3
L -—=02. 1.82
v 47 ( )
We can express plasma properties as a function of the plasma coupling constant
I". The ratio of the average interaction energy of a charged plasma particle with
other particles to its mean kinetic energy has the form

e 2 _4 o _(rny”r
w37 3V T T

The number of electrons in a sphere of radius rp is

_ 4mr Ne 1 1 0.07

N = = frd = —,
D 3 68ty  (6I)? T~

and the criterion Np 3> 1 of an ideal plasma gives I" < 0.2.

Note that the plasma under consideration consists of electrons and ions with a
single charge. For a plasma with multicharged ions, the ideality criterion (1.5) is
violated at low ion density. In particular, for interaction between ions after chang-
ing in criterion (1.5) e to Ze, where Z is the ion charge, we obtain the plasma
parameter (1.78) in the form

Z0%eN;
V="

In particular, for a dusty plasma with typical parameters [70] Z = 10°, the number
density of particles N, = 10* cm™3, and T = 400 K we have for the plasma param-
eter y ~ 10°, that is, in this example one can consider the plasma to have strong
coupling.

1.3.2
Conditions for Ideal Equilibrium Plasmas

We expect a plasma to fail to be an ideal plasma as the plasma density increases,
but if a plasma is prepared from a gas and ionization equilibrium is supported
between electrons and atoms, this plasma is ideal. Below we convince ourselves
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of this with a simple example. For this goal we take a weakly ionized gas at a low
temperature and find the dependence of the plasma parameter y defined by (1.78)
on the plasma density when there is equilibrium between charged and neutral
plasma particles (ionization equilibrium). From the Saha distribution (1.52) for the
electron number density N, and the atom number density N, in a quasineutral
plasma, we obtain the relation

N2 me To \ 2 J
~=s(5m) e (1)

where g = gegi/ga., where g, g, and g, are the statistical weights of electrons,

ions, and atoms, respectively, T, is the electron temperature, and | is the atomic
ionization potential. We take the total number density of nuclei, N = N+ N,(Ne =
N;), as a parameter, and determine the dependence y (N).

Let us write the Saha distribution in the form

3
2 Y Te c ]
= N—-—"—"F-|) ——- — )
7= (v ) e (o
where C = gm/*e'2/[#3(271)*2]. Concentrating our attention on plasmas with the

maximum departure from ideal plasma conditions, we choose the plasma temper-
ature at a given N such that y is maximal. The condition dy /d T, = 0 leads to the

expressions
_ 3T =3T2) (meT\ " ]
N=s (] —9T./2)? (Znhz) P (_i) ’ (1.83)
] — 9Te/2
Ne:N(]—3T/2) ’ (1.84)

The maximum values of y are located at T, < 2]/9, and, in the limit of large N, the
temperature approaches 2 J/9. In this limit the degree of plasma ionization goes to
zero as N increases, and the plasma parameter y increases with the increase of N.
On the basis of the above equations, we analyze the limiting case where there is ba-
sic violation of the conditions for an ideal plasma. We take into account that (1.83)
and (1.84) are valid for an ideal plasma. The maximum values of y at a given large
Nlead to the expressions for the temperature T, and the degree of ionization N,/ N:

(Te - TO)Z _ 4_g Me TO 3 3_9/2 (1 85)
T2 oN \ 2772 ’ '

N. 3(Te — To)

Ne 3(L—To) 1.86

N 2 To ( )

where Tj is defined as To = 2]/9. It is evident that the plasma parameter behaves
asy ~ (N ag)l/z in the limit of large N, and the coupling constant of the plasma
is estimated to be I ~ (N ag)l/G, where ay is the Bohr radius. In particular, in the
limit of large N, these expressions for a hydrogen plasma become

Ne 51x107° 12

_ 3 _ 3,1/6
N ey 7T 3.7(Nad)”™, I =25(Na})'le, (1.87)
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with validity constrained by Naj <« 1. From this, it follows for the hydrogen plas-
ma that I” = 1 at Na} = 0.004.

One can conclude from these results that the degree of plasma ionization de-
creases with an increase of the plasma density. This means that departure from
the ideal nature of the plasma is accompanied by an increase in the number den-
sity of neutral particles. Thus, interactions involving neutral atomic particles are
of importance for the properties of a strongly coupled plasma. One can consider
the above results from another standpoint. We have an equilibrium plasma that
is characterized by the electron temperature T, and the electron number density
N., and the relation between these parameters is determined by the Saha relation
(1.52). In addition to this, one can obtain a given electron temperature T, from the
energy balance because the specific energy of a plasma is (3T, + J) N, where we
assume identical temperatures of electrons and ions. From this it is seen that one
can obtain an equilibrium plasma with different values of the plasma parameter y
depending on the plasma energy.

133
Instability of Two-Component Strongly Coupled Plasmas

From the above analysis it follows that a plasma prepared from a gas is ideal if ion-
ization equilibrium between electrons and atoms is supported and external fields
are absent. However, a dense plasma without neutral particles can be created for a
short time under nonequilibrium conditions. For example, let us ionize an atom-
ic gas by laser radiation as a result of atom photoionization if the photon energy
is close to the atomic ionization potential. For example, if an atomic gas at room
temperature under a pressure of 6 Torr is ionized fully such that the electron tem-
perature of a forming plasma is 1000 K, the plasma parameter (1.78) for this plasma
y = 1. Our goal is to estimate the lifetime of such a plasma and compare it with
actual times for plasma generation.

Under these conditions the energy (3T, + J)N. related to unit volume of this
plasma will be conserved in the course of plasma evolution, but the number den-
sity of electrons will be decreased as a result of electron—ion recombination, and
released energy will go into electron heating. This leads to a decrease of the plasma
parameter (1.78), that is, this plasma becomes ideal. In evaluating the rate of this
process, we take into account the conservation of the specific energy (3 Tc + J) Ne of
this plasma, and assuming the thermal energy of electrons to be small compared
with the atomic ionization potential | (T. < J), we obtain from this the following
connection between the rates of change of the electron temperature and number
density in the course of plasma relaxation:

dTe _iallnNe

dt 3 dt
This leads to the following equation for evolution of the plasma parameter (1.78):
dy J dln N,

T T. dt (1.88)
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We now analyze the character of plasma relaxation to ionization equilibrium in
the first stage when the gas is fully ionized, and one can ignore ionization of atoms.
Then relaxation results from recombination of electrons and ions according to the
scheme

2e+ AT s e+ A* s e+ A, (1.89)

and the balance equation for the electron number density is

d N
dt

=—KN’N;, (1.90)

where for a quasineutral plasma the number densities of electrons and ions are
identical N. = Nj, and K is the recombination coefficient for the three body pro-
cess (1.89). Subsequently, we analyze this process in detail, but now we find the
rate constant K from the dimension considerations, according to which it has di-
mensions centimeters to the sixth power per second and includes the parameters
e?, me, and T, (T. < J). Then the recombination coefficient is

aelO
K= —r— (1.91)

Te9/z m;/z ’

where the numerical coefficient a ~ 1.
Taking a = 1, we obtain the balance equation (1.88) in the form

L oS SN B LA S Sy L (1.92)
dt T. °© e2 /e T’ JV T’ '

As is seen, although a typical relaxation time 7 exceeds the atomic time, the dif-
ference between these times is not great. For example, for a hydrogen plasma and
T. = 1000K, 7 is about 10~ s, whereas the minimum time for plasma genera-
tion is approximately 10~ '*s for short-pulse lasers, and the minimum time of a
laser pulse exceeds a typical ionization relaxation time for this plasma. This means
that it is impossible to create a strongly coupled plasma of low temperature in a
two-component plasma consisting of electrons and ions only. Hence, the neutral
component of a plasma or external fields are of importance to support a plasma
with strong coupling, in contrast to an ideal plasma, where many of its properties
(such as plasma oscillations and interaction with electromagnetic waves) are inde-
pendent of its neutral components. Thus, the word “plasma” in its general sense
meaning a system of charged particles is not appropriate for a dense plasma of low
temperature, whereas it is a suitable description for ideal plasmas that are weakly
ionized gases at low temperature.

1.3.4
Special Features of Strongly Coupled Plasmas

The above analysis of a strongly coupled plasma makes it possible to identify the
distinguishing features of such an object. We first present a contrast to a weakly
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coupled plasma. When we apply the term “plasma” to a weakly ionized gas, we con-
centrate on properties that are determined by charged particles. These properties
of an ideal plasma do not depend on the presence of neutral particles even though
the density of neutral particles is greatly in excess of the density of charged parti-
cles. For example, the presence of neutral atoms in the Earth’s ionosphere has no
effect on the character of the propagation of electromagnetic waves through it. This
explicitly plasma property is qualitatively distinct from such ionosphere properties
as thermal capacity and thermal conductivity that are determined by the neutral
component only. We can thus use the term “plasma” as a universal description of
a wide variety of systems of weakly ionized gases whose electric or electromagnetic
properties are determined by charged particles only. This allows us to analyze in
a general way the properties of systems that may be very diverse in terms of the
properties arising from their neutral components.

The explanation for this situation is to be found in the character of the interac-
tions in a weakly ionized gas. There is a short-range interaction between neutral
particles — atoms or molecules — and a long-range Coulomb interaction between
charged particles. These interactions produce effects that can be treated indepen-
dently in a gaseous system. Therefore, if a particular property of this system is
determined by a long-range interaction between charged particles, one can ignore
the short-range interactions in this system, That is, the presence of neutral particles
does not affect these properties of the system. It follows from the nature of this de-
duction that such a conclusion can be valid only for systems with weak interactions
among the constituents; that is, it can apply only to gaseous systems. On the other
hand, a strongly coupled plasma is a system with strong interactions among the
particles, and these strong interactions make it impossible to divide interactions
into independent short-range and long-range types. Therefore, the term “strongly
coupled plasma” cannot be employed as a generic description for a wide variety of
systems as can be done in the case of an ideal plasma.

We can illustrate this conclusion with some examples of strongly coupled plas-
mas. Consider a metallic plasma. Taking a metal of a singly-valent element, we
assume that all the valence electrons contribute to the conductivity, and that the
metallic ions form the metal lattice. Then the electron number density is N, =
p/m, where p is the density of the metal and m is the atomic mass. For example, in
the case of copper, we have N, = 8.4 x 10?2 cm™3 corresponding to room tempera-
ture, along with the parameters y = 1.5x 107 and I" = 400. Assuming this plasma
to be classical, we find that it is a strongly coupled plasma. The other example of
a nonideal plasma is an electrolyte, which is a solution with positive and negative
ions. The high density of molecules in the solution makes it a strongly coupled
plasma. These examples refer to stationary strongly coupled plasmas. The strong
action of an intense, short pulse of energy on matter can generate a nonstationary
strongly coupled plasma. Plasmas of this type can result from a strong explosion
that compresses matter. Another example of this type is the plasma associated with
laser fusion, where a target is irradiated by short laser pulses directed onto the tar-
get simultaneously from different directions. The energy transferred to the target
causes extreme heating and compression, with a dense plasma created as a result.
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These examples illustrate the above conclusion for a strongly coupled plasma:
namely, that its properties are determined by interactions involving both neutral
and charged particles. Different physical objects of this type do not have general
properties determined only by the charged particles. Therefore, when one describes
a system as a “strongly coupled plasma”, the immediate implication is that it is not
one of a general class with identical properties as in the case of an ideal plasma.

1.3.5
Quantum Plasmas

We can treat a dense, low-temperature plasma of metals as a degenerate Fermi
gas. Because of the low temperature and high density, the system has quantum
properties. Let us consider the limit when T = 0, and take into consideration the
Pauli principle, according to which two electrons cannot be in the same state. With
the positive charge distributed uniformly over the plasma volume, this plasma is
a degenerate electron gas. At zero temperature the plasma electrons have distinct
momenta p in the interval 0 < p < pg. The Fermi momentum pg is found from
the relation

/ dpdr
n=2[——=,
(27h)?
where n is the total number of plasma electrons, the factor 2 accounts for the two
possible directions of the electron spin, and dp and dr are elements of the elec-
tron momentum and the plasma volume. Introducing the electron number densi-
ty Ne = n/ [ dr, we have pr = (37°h*N)'/? for the Fermi momentum, and the
Fermi energy is

2 277 \2/3%2

37° Ne)°h
ep = PE_ BTN (1.93)
2me 2me

The parameters of a classical plasma satisfy the relation e < T or r N2> aq.
We define a quantum plasma to be a charged particle system characterized by the
small parameter

= (1.94)
exactly opposite to the condition for a classical plasma. The Fermi energy is a funda-
mental parameter of a degenerate electron gas, and it is the parameter that is used
for the analysis of a quantum plasma. We introduce the parameter characterizing
the ideal nature of a quantum plasma by analogy with the plasma parameter (1.3)
as the ratio of the Coulomb interaction energy of electrons to the Fermi energy, or

_fry 2P 0.337

£ = = = ,
EF 3na0Nel/3 aoNel/3

(1.95)

where ry is the Wigner—Seitz radius and ay is the Bohr radius. The ideal degener-
ate electron gas has a high density compared with the characteristic atomic density,
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or Nead > 1, that (1.95) is equivalent to £ < 1. This means that the greater the
electron number density, the more the properties of a degenerate electron gas de-
termine the properties of a quantum plasma. In contrast, the role of the Coulomb
interaction between charged particles of the plasma decreases with increase of the
electron number density.

We can apply the model of a degenerate electron gas to describe the behavior
of electrons in metals. Table 1.7 lists parameters of real metallic plasmas at room
temperature. It can be seen that # is small at room temperature, meaning that the
metallic plasma has the character of a quantum plasma. But the Coulomb inter-
action involving electrons and ions of metals is comparable to the exchange inter-
action potential of electrons, determined by the Pauli principle. Thus, a metallic
plasma is a quantum plasma in which the potential of the Coulomb interaction
of charged particles and the exchange interaction potential of the electrons have
the same order of magnitude. As is seen, in all the cases of a metallic plasma
according to the data in Table 1.7 the Coulomb interaction between the nearest
electrons exceeds the exchange interaction between electrons, but these values are
comparable.

Positive ions of real metals form a crystalline lattice at low temperatures. An
important role in these crystals is played by the non-Coulomb interaction of free
electrons with ions and bound electrons. Consider a simplified problem where elec-
trons and ions of the metal participate only in the Coulomb interactions between
them. The ions of this system form a crystalline lattice, and the energy per coupled
pair of charged particles (one electron and ion) is

3p}

£ = —ke?N." (1.96)
10m,

where the first term is the mean electron kinetic energy, the second term is the
mean energy of the Coulomb interaction between charged particles, and « depends
on the lattice type. Here we take into account the redistribution of charged particles
resulting from their interaction that leads to the attractive character of the mean
interaction energy.

Accounting for pp ~ Ne " and optimizing (1.96) for the specific plasma energy,
we find that the optimal parameters for the plasma are

13 Skt

thNe - 35/3 = 0.174« ’ Emin = _‘CJOK2 ’ (197)

Table 1.7 Parameters of metallic plasmas at room temperature.

Metal Li Na Mg Al K Cu Ag GCs Au Hg

Ne,102cm™> 46 25 86 18 1.3 84 59 08 59 85

7,103 55 82 36 22 13 3.7 46 17 4.6 3.6
I3 1.8 22 14 1.1 27 14 16 3.1 1.6 14
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where g9 = 2.5/(3°2n*)(m.e*/h?) = 2.4eV. This manipulation shows that the
system may have a stable configuration of bound ions and electrons (i.e., €min < 0).
The stable distribution of charged particles corresponds to § = 1.9/k. The system
so described is called a Wigner crystal. It can be seen that a Wigner crystal, like real
metals, is characterized by an electron number density of the order of the typical
atom number density a;*. Note that the above results are based on simple models
which do not account for details of interaction in metals, and hence the results have
a qualitative character.

1.3.6
Ideal Electron-Gas and lon-Gas Systems

The gaseous state condition for a weakly ionized gas relates not only to the inter-
actions among charged particles or among neutral particles as separate groups but
also to interactions between charged and neutral particles. The interaction between
neutral atomic particles has a short-range character, whereas the interaction of a
charged particle with neutral particles may be long range and is stronger than the
interaction between neutral particles. Therefore, one can expect a violation of the
condition for the gaseous state to occur in the interaction of one charged particle
with surrounding particles in a dense gas. That is, in a system of atoms and a single
charged particle, where the interaction of the atoms satisfies the gaseous state cri-
terion, the interaction of the charged particle with the atoms does not have gaseous
character, that is, the charged particle interacts with many atoms simultaneously.
We now consider this phenomenon in detail.

We begin by examining the behavior of electrons in a dense gas. The gaseous
character of the interaction between electrons and atoms implies the condition

A= (No)y '>7, (1.98)

where 4 is the mean free path of an electron in the gas, o is the cross section for
electron—atom scattering, N is the number density of atoms, and 7 is the mean dis-
tance between atoms. We take 7 to be the Wigner—Seitz radius, so 7 = (47 N/3)~1/3.
The electron-atom cross section is represented by 0 = 4z L2, where L is the scat-
tering length for slow electrons scattered by atoms.

We can write the condition (1.98) as

N < Ng, (1.99)

where N, = (4ﬂL3ﬁ)_1. Table 1.8 lists values of N, and the critical pressure
Per = Ne T for electron interaction at T = 300 K. It is seen that the gaseous state
condition for interaction of electrons with atoms can be violated in a dense gas.

The other gaseous state conditions for the electron—atom interaction in a dense
gas require that positions of neighboring atoms should not influence electron—
atom scattering. These relationships give

L>7, prh<l. (1.100)



1.3 Rarefied and Dense Plasmas | 47

Table 1.8 Critical parameters for interaction of electrons and ions with a gas.

Gas, vapor He Ar Kr Xe Cs
N&,102'em™ 200 90 7 1 0.03
pe., atm 8000 3000 300 50 1
Ni, 10?2t cm™3 6.3 2.8 26 20 0.12

cr’

The first condition in (1.100) gives N < 3+/3 N, so it is less restrictive than con-
dition (1.99). The second condition in (1.100) has the form

N < Ny(T), (1.101)

where

33

Ni(T) = —47r(2meT)3/2 .

This is independent of the identity of the gas. At a temperature T = 300 K, we have
N; = 2 x 102 cm™3, corresponding to a gas pressure of 700 atm.

For a gas consisting of atoms plus ions arising from those atoms, we have the
gaseous state condition No3/?2 « 1, where ¢ is the cross section of the resonant
charge exchange process, and 7 is the mean distance between particles. The charge
exchange cross section is relatively large, and therefore the gaseous state condition
for ions is violated at relatively small densities of the gas. Table 1.8 lists values of
gas densities N, = (7/2)1/207%/% at which the criterion to have a gaseous state for
interaction of ions and atoms is violated at a gas temperature of 1000 K.

We conclude that electron—atom or ion—atom interactions in a weakly ionized gas
can be nonpairwise even when the interaction between neutral particles satisfies
the gaseous state condition. Then charged particles interact simultaneously with
several neutral particles, and the gaseous character of the interaction is lost.

1.3.7
Decrease of the Atomic lonization Potential in Plasmas

A dense plasma alters the states of its constituent atoms, and thereby can change
the atomic spectrum [71-73]. In particular, spectra of metallic plasmas differ sig-
nificantly from spectra of isolated metal atoms. The greater the plasma density, the
more drastic is the change in atomic parameters, including the ionization poten-
tial. Below we estimate the decrease of the atomic ionization potential as a function
of the plasma density.

We can consider an atom as an isolated object starting from the principal quan-
tum number n, for which the atomic size r,, is small compared to the average dis-
tance between ions as Ni_l/ } Since the average size of an excited atom is r, ~ aon?
(@ is the Bohr radius), the ionization potential for this quantum number and for
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charge Z of the Coulomb center is ], ~ Z%e?/(aon?). From this we have for the
decrease A | in the atomic ionization potential in a plasma [74]

AJ=J.~ ZN" (1.102)

In particular, according to calculations by the method of molecular dynamics, this
value is

AJ =32ZN,". (1.103)

One can consider the ionization potential decrease for atoms in a plasma to be a
result of the action of plasma microfields. Indeed, let us consider an excited elec-
tron located in the field of the Coulomb center with charge Z and an external elec-
tric field of strength E. Then the interaction potential U between an electron and
the Coulomb center in the direction x of the electric field is (see Figure 1.6)

Ze?
U=—-————¢Ex,
x

where the origin of the frame of reference is taken as the Coulomb center. The
maximum of this interaction potential Upay gives the decrease of the ionization
potential:

AJ = —Upax = 2VeE - Ze?.

In particular, if we use a typical electric field strength in a plasma in accordance
with (1.26), Ey = 2.6Ze Niz/ ® we obtain for the decrease in the ionization potential
AJ =3.2Z¢ N, in accordance with (1.103).

Thus, the presence of microfields in a plasma may lead to the disappearance of
excited atom states in a plasma. The disappearance of spectral lines was observed
for the first time by Lanchos [75, 76] in 1930, and this effect means that the radia-

tive lifetime for an observed atomic transition becomes equal to the time for the

“houndary of tunnel tr

tunnel transitiony,__

Figure 1.6 The potential energy in the plane of the electric field for an electron located in the
field of a Coulomb center and electric field.



1.3 Rarefied and Dense Plasmas | 49

Table 1.9 Boundary values of the ion number density (Ni),, for disappearance of levels with
principal quantum number n in a hydrogen-like plasma.

n 2 3 4 6 10

(N)p,cm™for Z=1 40x10®° 35x10° 63x10"® 55x107 2.6x10'°
(Ni)p,cm™ 3 for Z =4 2.6x102 23x10" 40x10® 35x10° 1.6x10'%

tunneling transition of the bound electron in the potential in Figure 1.6. We now
consider a stronger action of the electric field when the decay time for an excited
atomic level becomes equal to the orbital period for the excited electron. Then the
boundary number density of ions (Nj), for the disappearance of atomic levels with
principal quantum number » follows from the relation

Z%e?
2agn?

:A]

and is given by

3

N, = No No = 2.6 x 10 cm™ . (1.104)

P
Table 1.9 contains certain values of the boundary ion number densities for a
hydrogen-like plasma. Note that the number density of electrons N, for a plasma
with multicharged ions of charge Z is connected to the ion number density by the
relation N. = ZN;. The values in Table 1.9 characterize the transition from an
ideal plasma to a nonideal plasma or a plasma with strong coupling.

1.3.8
Spectrum of Atoms in a Plasma

The above analysis shows that one can divide states of electrons in the field of a
Coulomb center in a plasma into three parts, bound electron states, free electron
states, and localized electron states. Bound electron states correspond to discrete
levels of an excited atom (ion) as it has in a vacuum. The energy ¢, of a state with
principal quantum number # is given by

Z2e?

2a9n?

Ey =

Since the statistical weight of states with principal quantum number n is 2n?, the
density of states p(¢) for discrete states is
_dg  4n*ay  Z%€

PEV=3e = 202 = gt TA)
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According to (1.103) at the boundary binding energy of a bound electron ¢, = A J
the density of electron states is

1

pl—éep) ~ —————= .
(o) 10a9e?N/"?

For free electrons we use (1.53) for the statistical weight of free states with respect
to bound ones. Using the Maxwell distribution function (1.49) for free electrons
with the electron temperature T, we have for the density of free electron states

3/2
_ 8eSi Me 1/2 ( € )
€)= e exp|l =) . 1.105

pe(€) Ne  V2nihs P T ( )
Evidently, this formula, as well as the Maxwell distribution (1.49) for free electrons,
holds true if the electron energy exceeds remarkably the energy of interaction with
plasma ions. Taking the quantity A | given by (1.103) as the average potential ener-
gy for an electron, we define the boundary energy of free electrons as

ee=A]=—¢p.

Assuming e < T, we obtain for the density of electron states in a hydrogen
plasma (Z = 1)
3/2
pole) = &8 AN
¢ Ne ﬁﬂ2h3

Taking g. = 2, gi = 1, we obtain

(e 0.26
ole) ¥ ———
c NAS/Gag/zeo

’

1

where ¢ is the atomic energy ey = e2/ag = me*/h>.
We now define an ideal plasma that is characterized by gas properties such that
p(ec) > p(—eyp), that s,

ple) 2.6

p(=¢&b) Nis/Gag/zeo

If we define an ideal plasma such that in an energy range of localized electrons
the density of electron states decreases monotonically as the electron energy de-
creases, we obtain the criterion for an ideal plasma independently of the electron
temperature

Niag < 300, (1.106)

that is, the ion density exceeds the atomic density (Ny = 6.76 x 10** cm™3). This
criterion shows that as long as the ion (electron) number density of a plasma is
small compared with the atomic one Ny, the transferring range of energies between
free and bound electron states, where electrons are bound simultaneously with
many ions, is not important.
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