
1

1
Digital Linear Systems

1.1
Introduction to Digital Phase Demodulation in Optical Metrology

In this chapter, we review the theory behind digital signals and their temporal
processing using linear time-invariant (LTI) systems. The analysis of digital LTI
systems is based on their impulse response h(t), their Z-transform H(z), their
frequency transfer function (FTF) H(𝜔), their harmonic response, and their stability
criteria. We then briefly discuss the equivalence between phase-shifting algorithms
(PSAs) and quadrature linear filters tuned at the temporal phase-sampling rate
of 𝜔0 radians per sample. Also, we analyze the aliasing phenomena produced by
high-order harmonic distortion of the continuous interferogram being sampled.

In this chapter, we also discuss regularized low-pass filtering and its application
to fringe-pattern denoising. Convolution spatial filters (such as the 3 × 3 averaging
filter) mix up valid fringe data inside the interferogram boundaries with outside
background where no fringe data is defined. This linear mixing of fringes and
background distorts the modulating phase near the interferogram boundaries. In
contrast, regularized linear filters optimally decouple the fringe data inside the
interferogram from the outside background.

Finally, we discuss the theory behind stochastic processes to analyze the response
of LTI systems to stochastic input signals X(t). We define and analyze their
probability density function (PDF), or fX (x), their ensemble average E{X}, and
their stationary autocorrelation function RX (𝜏). We then continue by defining the
power spectral density (PSD) SX (𝜔) for X(t). This result is then used to show that
the input PSD, SX (𝜔) of X(t), changes to |H(𝜔)|2SX (𝜔) when processed by an LTI
system whose FTF is given by H(𝜔).

1.1.1
Fringe Pattern Demodulation as an Ill-Posed Inverse Problem

A fringe pattern is defined as a sinusoidal signal where a continuous map, analogous
of the physical quantity being measured, is phase-modulated by an interferometer,
Moire system, and so on. An ideal stationary fringe pattern is usually modeled by

I(x, y) = a(x, y) + b(x, y) cos[𝜑(x, y)], (1.1)
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2 1 Digital Linear Systems

where {x, y} ∈ ℝ2; a(x, y) and b(x, y) are the background and local contrast func-
tions, respectively; and 𝜑(x, y) is the searched phase function.

In physics and mathematics, an inverse problem is a general framework that
is used to convert the observed measurements into information about a physical
object or system under study [1]. Clearly, Eq. (1.1) represents an inverse problem,
where the fringe pattern I(x, y) is our measurement and the searched information
is given by the phase 𝜑(x, y). An inverse problem is said to be well posed if
the mathematical model of a given physical phenomenon fulfills the following
conditions:

• A solution exists,
• The solution is unique, and
• The solution depends continuously on the data.

On analyzing Eq. (1.1), one can see that the phase function 𝜑(x, y) cannot be
directly estimated since it is screened by two other unknown functions, namely
a(x, y) and b(x, y). Additionally, 𝜑(x, y) can only be determined modulo 2π because
the sinusoidal fringe pattern I(x, y) depends periodically on the phase (2π phase
ambiguity); and its sign cannot be extracted from a single measurement without
a priori knowledge (sign ambiguity) because of the even character of the cosine
function [cos(𝜑) = cos(−𝜑)]. Finally, in all practical cases, some noise n(x, y) is
introduced in an additive and/or multiplicative manner, and the fringe pattern may
suffer from a number of distortions, degrading its quality and further screening
the phase information [2, 3].

It must be noted that, even if careful experimental setups could prevent
the screening of 𝜑(x, y) due to the unknown signals a(x, y), b(x, y), and
n(x, y), one would still have to deal with the sign ambiguity and the 2π
phase ambiguity. Because of these ambiguities, the solution for this inverse
problem is not unique; this is illustrated in Figure 1.1, where several
phases (from an infinite number of possibilities) produce exactly the same
sinusoidal signal.

In short, the phase demodulation of a fringe pattern, as the one modeled in
Eq. (1.1), can be viewed as an ill-posed inverse problem where some sort of
regularization process is required in order to obtain a proper phase estimation.
However, despite its intrinsic difficulties, it is rather easy to visualize a possible
solution for this inverse problem. First, let us rewrite Eq. (1.1) by means of the
complex representation of the cosine function

I(x, y) = a(x, y) + 1
2

b(x, y){exp[i𝜑(x, y)] + exp[−i𝜑(x, y)]}. (1.2)

Now, if somehow one is able to isolate one of the analytic signals in Eq. (1.2), say,
(1∕2)b(x, y) exp[i𝜑(x, y)], we have

tan �̂�(x, y) =
Im{(1∕2)b(x, y) exp[i𝜑(x, y)]}
Re{(1∕2)b(x, y) exp[i𝜑(x, y)]}

, (1.3)

where b(x, y) ≠ 0. Computing the arc-tangent of the above formula, one obtains a
wrapped estimation of the phase under study, that is, 𝜑(x, y) mod 2π. Thus, the
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Figure 1.1 Numerical simulation of several phases (a–c) producing exactly the same sinu-
soidal signal (d). For ease of observation, only a horizontal slice is shown.

final step of this fringe pattern demodulation process usually involves an additional
phase unwrapping process. Nevertheless, when working with good-quality data,
this last step is straightforward. Next, we will illustrate the easiest way to obtain
these analytic signals.

1.1.2
Adding a priori Information to the Fringe Pattern: Carriers

A fringe pattern obtained as the output of a measuring system may be modified
by the optoelectronic/mechanical hardware (sensors and actuators) and software
(virtual sensors and actuators) of the system [4]. With these modifications, one is
able to introduce known changes in the argument of the sinusoidal signal

I(x, y, t) = a(x, y) + b(x, y) cos[𝜑(x, y) + c(x, y, t)], (1.4)

where c(x, y, t) is a known function (typically a reference plane) and is called
the spatiotemporal carrier of the interferogram. By design, a carrier must be a
high-frequency signal in comparison with the searched phase 𝜑(x, y). That is‖‖𝛻c(x, y, t)‖‖ > ‖‖𝛻𝜑(x, y, t)‖‖max , (1.5)



4 1 Digital Linear Systems

where we define (locally) this nabla operator as

𝛻 =
(

∂
∂x

,
∂
∂y

,
∂
∂t

)
. (1.6)

For instance, for a stationary phase (which shows no explicit time dependence)
given by in 𝜑(x, y), and a spatial carrier c(x, y), the following condition must be
fulfilled:√( ∂c

∂x

)2
+
(
∂c
∂y

)2

>

√(
∂𝜑
∂x

)2

+
(
∂𝜑
∂y

)2

. (1.7)

The spatial and/or temporal carriers are of extreme importance in modern inter-
ferometry: first of all, their presence allows us to solve the sign ambiguity since in
general cos(𝜑 + c) ≠ cos(−𝜑 + c). They also allow us to isolate the analytic signal
(1∕2)b(x, y) exp[i𝜑(x, y)] which practically solves the phase demodulation process
(the proof of this last point will be postponed until we review some basic concepts
of Fourier analysis). Some typical examples of the carrier functions are as follows:

• linear temporal carrier [5, 6]

c1(t) = 𝜔0t; (1.8)

• tilted (spatial) carrier [7, 8]

c2(x, y) = u0x + v0y; (1.9)

• conic carrier [9]

c3(𝜌) = 𝜔0𝜌; 𝜌(x, y) =
√

x2 + y2; (1.10)

• 2 × 2 pixelated carrier [10–12]

exp[i c4(x, y)] = exp

[
i𝜔0

(
1 2
3 4

)]
∗∗

∞∑
m=0

∞∑
n=0

𝛿(x − 2m, y − 2n), (1.11)

where 𝜔0 = π∕2, and ∗∗ is the two-dimensional convolution operation;
• 3 × 3 pixelated carrier [13]

exp[i c5(x, y)] = exp
⎡⎢⎢⎣i𝜔0

⎛⎜⎜⎝
1 2 3
8 9 4
7 6 5

⎞⎟⎟⎠
⎤⎥⎥⎦ ∗∗

∞∑
m=0

∞∑
n=0

𝛿(x − 3m, y − 3n), (1.12)

where 𝜔0 = 2π∕9.

Since digital interferometry is a research area under continuous development, it
is impossible to list all useful spatiotemporal carriers; again, these are just some
commonly used examples. For illustrative purposes, in Figures 1.2–1.5 we show
how these carriers modify the fringe pattern.

The temporal linear carrier approach (shown in Figure 1.2) allows us to demod-
ulate closed-fringe interferograms [5, 6]. However, this method is not useful (in
principle) to study fast-varying phenomena since it requires a(x, y), b(x, y), and
𝜑(x, y) to remain stationary during the phase-step acquisition.
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(a) (b) (c)

Figure 1.2 Numerical simulation of a closed-fringe interferogram, phase-modulated with a
linear temporal carrier 𝜔0t. The piston-like phase step between successive samples is 𝜔0 =
2π∕3 rad.

(a) (b)

Figure 1.3 Simulation of a closed-fringe interferogram (previously shown in Figure 1.2a)
phase-modulated with a linear spatial carrier (a), producing an open-fringe interfero-
gram (b).

(a) (b)

Figure 1.4 (a) Circular pattern with binary
amplitude projected over an eye using
a Placido mire and (b) its spectrum as
obtained by the FFT2 algorithm. The larger

spectral flares in the spectrum are due to
the binary profile of the projected pattern,
and these lead to harmonic distortion.
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(a) (b)

Figure 1.5 Simulation of a closed-fringe interferogram (previously shown in Figure 1.2a)
phase-modulated with a four-step pixelated carrier (a), producing a 2D pixelated carrier
interferogram (b).

The spatial linear carrier approach (shown in Figure 1.3) allows us to demodulate
open fringe patterns from a single image, making this technique particularly useful
to study fast dynamic phenomena [7, 8].

The conic carrier (shown in Figure 1.4) has been used to measure the topography
irregularities of the human cornea since 1880 [14]. Traditionally, these irregularities
were analyzed by means of a sparse set of estimated slope points, integrated along
meridian lines to obtain the topography of the testing cornea [15]. However,
recently it has been proved that these patterns of periodic concentric rings can be
phase-demodulated by means of synchronous interferometric methods, providing
holographic phase estimation at every point of the region under study. A detailed
review of this topic is available in [9].

The 2D pixelated carrier (shown in Figure 1.5) was originally proposed as a spatial
technique for the simultaneous acquisition of four phase-shifted interferograms, to
be demodulated using a ‘‘temporal’’ PSA, but recently it has been shown that spatial
synchronous demodulation allows higher quality measurements [10–12]. The nine-
step pixelated carrier was proposed as a logical extension of this technique to allow
for the analysis of nonsinusoidal signals in fast dynamic phenomena [13]. We
choose to include only one illustrative example for both cases because the four-step
and nine-step pixelated carrier interferograms are visually indistinguishable.

Example: Synchronous Demodulation of Open Fringes
For illustrative purposes, let us assume a vertical open-fringe interferogram phase-
modulated by a linear spatial carrier in the x direction, given by

I(x, y) = a(x, y) + b(x, y) cos[𝜑(x, y) + u0x],
= a + (b∕2) exp[i(𝜑 + u0x)] + (b∕2) exp[−i(𝜑 + u0x)], (1.13)

where we have omitted the spatial dependency in a, b, and 𝜑 for simplicity.
Applying the spatial synchronous demodulation method, the so-called the Fourier
method [7, 8], first we multiply our input signal with a complex reference signal
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(a) (b) (c)

Figure 1.6 Several steps of the spatial
synchronous demodulation of an open-
fringe pattern interferogram. The input sig-
nal is shown in panel (a). Panel (b) shows

the real part of the synchronous product
exp(−iu0x)I(x, y). The estimated phase �̂�(x, y)
modulo 2π, as obtained from Eq. (1.16), is
shown in panel (c).

(which is a value stored in the digital computer) oscillating at the same frequency
as our lineal carrier:

f (x, y) = exp(−iu0x)I(x, y), (1.14)

= a exp(−iu0x) + (b∕2) exp(i𝜑) + (b∕2) exp[−i(𝜑 + 2u0x)].

In general, the spatial variations of the phase are small in comparison to the carrier
(Eq. 1.5), |𝛻𝜑|max ≪ u0, so the only low-frequency term in the above equation is the
analytic signal (b∕2) exp(i𝜑). Thus, applying a low-pass filter to Eq. (1.14), we have

LP{ f (x, y)} = (1∕2)b(x, y) exp[i𝜑(x, y)], (1.15)

where the low-pass filter LP{⋅} is preferentially applied in the Fourier domain for
more control in the filtering process. Taking the ratio between the imaginary and
real part of this complex-valued analytic signal, we have

tan �̂�(x, y) =
Im{(1∕2)b(x, y) exp[i𝜑(x, y)]}
Re{(1∕2)b(x, y) exp[i𝜑(x, y)]}

, (1.16)

where b(x, y) ≠ 0. Computing the arc-tangent of the above equation, the estimated
phase �̂�(x, y) is wrapped within the principal branch (−π, π]; so there is a 2π
phase ambiguity as illustrated in Figure 1.6. Usually, a priori knowledge of the
phenomenon indicates that �̂�(x, y) should be continuous so the final step in the
demodulation process is to apply a regularization condition that removes this
2π ambiguity.

1.1.3
Classification of Phase Demodulation Methods in Digital Interferometry

To summarize our previous discussion, the main objective of fringe pattern
analysis is to estimate a usually continuous phase map 𝜑(x, y) from the input
intensity values I(x, y, t). This means solving an ill-posed inverse problem where
the signal of interest is masked by unknown functions, plus the sign ambiguity and
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the 2π phase ambiguity problems. The simplest way of action is to actively modify
the fringe pattern in order to provide additional information, that is, introducing
spatial or temporal carriers.

The inclusion of phase carriers not only solves the sign ambiguity problem but it
also provides spectral isolation between the unknown signals in the interferogram
(this will be discussed in detail in Chapters 2 and 4). On the other hand, the
2π phase ambiguity is intrinsic to fringe-pattern analysis, so some unwrapping
method is usually required as the last step of a phase-demodulation process
[16, 17]. Nevertheless, there are notable exceptions that estimate nearly directly the
absolute phase without 2π phase ambiguity, such as the temporal heterodyning
technique [18], as well as phase demodulation methods that directly estimate
the unwrapped phase, such as the linear phase-locked loop [19], temporal phase
unwrapping [20], hierarchical absolute phase measurement [21], and the regularized
phase tracking [22].

According to the above, a possible classification for the phase demodulation
methods in fringe pattern analysis is as follows: whether a phase carrier is
required; whether this carrier is a spatial and/or temporal one; and whether
the estimated phase is wrapped within a single branch (requiring an additional
unwrapping processing) or without 2π ambiguity. In Figure 1.7, we present a
schematic representation of this proposed classification for some commonly used

Spatial
carrier

Temporal
carrier

Without
carrier

Squeezing

Conic

Linear

Pixelated

Phase-shifting

Temporal phase
unwrapping

Regularized
phase

tracking

Unwrapping

Linear PLL

Multiple images

2-D Hilbert

a+bcos(φ+c)

φ(x,y)^

Single image

A0exp(iφ)

Figure 1.7 Schematic classification of some
commonly used phase estimation methods
in modern fringe pattern analysis. Here we
try to illustrate that the intermediate tar-
get in most methods is to isolate the ana-
lytic signal A0 exp[i𝜑(x, y)], from where one

can straightforwardly compute the wrapped
phase �̂�(x, y) modulo 2π. On the other hand,
some methods combine both the fringe
demodulation and the phase unwrapping
processes, obtaining directly the estimated
phase �̂�(x, y) without the 2π ambiguity.
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phase estimation methods. We want to stress that this scheme is illustrative and
by no means exhaustive.

In the following chapters, we will analyze several methods to estimate the analytic
signal (1∕2)b(x, y) exp[i𝜑(x, y)] highlighting their positive features and drawbacks.
However, in order to do this, first we need to review some basic mathematical tools.
For a beginner to this topic, this will serve as a quick reference guide for linear
systems theory. Advanced readers can skip the rest of this chapter and return to
it only in specific cases that we will refer to whenever we are unable to keep the
discussion self-contained in the following chapters.

1.2
Digital Sampling

Despite the fact that (analog) macroscopic phenomena are properly modeled as
continuous functions, nowadays virtually any processing required is done on digital
computers. Thus, typically one of the very first steps in fringe pattern analysis is
to perform some analog-to-digital (A/D) conversion, the so-called digital sampling
process. In this section, we analyze some mathematical functions commonly
used to model digital signals and systems. This will allow us to understand and
cope with many problematic phenomena (e.g., spectral overlap with high-order
distorting harmonics) that arise in fringe pattern analysis as consequence of the
digital sampling process.

It is noteworthy that we will use t for the independent variable when working with
unidimensional (1D) signals and systems; thus we will refer to continuous-time and
discrete-time functions. Nevertheless, this is just a convention and the following
theory also applies for 1D spatial processing.

1.2.1
Signal Classification

By definition, a signal is everything that contains information. Signals in engineer-
ing systems are typically classified in five different groups:

1) Continuous-time or discrete-time
2) Complex or real
3) Periodic or aperiodic
4) Energy or power
5) Deterministic or random.

Continuous-time and discrete-time signals. A signal is defined to be a continuous-
time signal if the domain of the function defining the signal contains intervals of
the real line f (t) where t ∈ ℝ. A signal is defined to be a discrete-time signal if the
domain of the signal is a countable subset of the real line { f (n)} or f [n], where
n ∈ ℤ.
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In most cases, discrete signals arise from uniform sampling of continuous-time
signals. However, these sampled signals can also be represented by continuous
functions (as we will see in Section 1.2.3). Thus, the following definitions and
conventions apply to both continuous and sampled signals:

Real and complex signals. In optics, we often work with complex (analytic) signals
of real arguments. In general, a complex signal is given by

f (t) = Re[ f (t)] + iIm[ f (t)], (1.17)

where i =
√
−1. Or, in polar form, the modulo of the signal is defined by

|f (t)| = √
f (t) f ∗(t) =

√
{Re[ f (t)]}2 + {Im[ f (t)]}2, (1.18)

and its phase (modulo 2π) is given by

angle [ f (t)] = arctan
Im{ f (t)}
Re{ f (t)}

. (1.19)

A word of caution: in modern programming languages, this operation is called
atan2(⋅) and it uses two arguments. Unlike the single argument arc-tangent
function, atan2(⋅) is able to retrieve the searched angle without sign ambiguity
within (0, 2π).

Periodic and aperiodic signals. A signal is said to be periodic if repeats itself in
time. The function f (t) represent a periodic signal when

f (t) = f (t + kT), ∀ k ∈ ℤ (1.20)

and the fundamental frequency of a periodic signal is given by 1∕T .

Energy and power of signals. The energy of a signal f (t) is a real and nonnegative
quantity given by

U{ f (t)} = ∫
∞

−∞
||f (t)||2 dt. (1.21)

If U{ f (t)} exceeds every bound, we say that f (t) is a signal of infinite energy. For
such cases, it is useful to calculate the power of the signal, which represents the
energy per unit time. It is defined by

• aperiodic signals

P{ f (t)} = lim
T→∞

1
2T ∫

T

−T

||f (t)||2 dt; (1.22)

• periodic signals

P{ f (t)} = 1
T ∫

t+T

t

||f (𝜏)||2 d𝜏. (1.23)
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Deterministic signal Random noise Observed signal

+ =

Figure 1.8 Signals observed in nature, which are usually composed by deterministic
signals distorted by some degree of random noise.

Deterministic and random signals. Most of the time, we deal with deterministic
signals distorted in some degree by random noise (Figure 1.8). The kind of noise
typically observed in fringe pattern analysis can be modeled as a well-known
stochastic process; however, the theory of stochastic processes is so vast that a
detailed review is beyond the scope of this book. In Section 1.9, we will briefly
review some basic aspects of this theory, but for now we will assume that we are
dealing with purely deterministic signals.

1.2.2
Commonly Used Functions

Dirac delta function. Also called the unit-impulse function, the Dirac delta is
(informally) a generalized function on the real number line that is zero everywhere
except at zero where its value tends to infinity. However, quite often is better to
define the Dirac delta function by its properties as

∫
∞

−∞
f (t)𝛿(t − t0)dt = f (t0), (1.24)

which is also constrained to satisfy the identity

∫
∞

−∞
𝛿(t) dt = 1. (1.25)

For convenience, some algebraic properties of the Dirac delta function are listed in
Table 1.1.

The Dirac delta function is graphically represented as a vertical line with an
arrow at the top. The height of the arrow is usually used to specify the value of
any multiplicative constant, which will give the area under the function; another
convention is to write the area next to the arrowhead (Figure 1.9).

Unit step function. Also called Heaviside’s step function, it may be defined by means
of the Dirac delta as

u(t) = ∫
t

−∞
𝛿 (𝜏) d𝜏 =

{
0 for t < 0,

1 for t > 0.
(1.26)



12 1 Digital Linear Systems

Table 1.1 Properties of the Dirac delta function.

Properties Observations

𝛿(t − t0) = 0 For all t ≠ t0
𝛿(−t) = 𝛿(t) Dirac delta is an even function
𝛿(at) = (1∕|a|)𝛿(t) Scaling property
∫ ∞
−∞ f (t)𝛿(t − t0)dt = f (t0) Definition as a measure
𝛿
(
g(x)

)
=
∑

i 𝛿(x − xi)∕|g′(xi)| Where xi are the roots of g(x)
f (t)𝛿(t − t0) = f (t0)𝛿(t − t0) Valid under the integration symbol
f (t) ∗ 𝛿(t − t0) = f (t − t0) Shifting property
𝛿(x, y, z,…) = 𝛿(x)𝛿(y)𝛿(z)… n-dimension generalization

t0 0

1

(a) (b)
t

a0

t0

Figure 1.9 (a) Usual representations of the impulse function 𝛿 (t) and (b) the shifted (and
escalated) impulse function a0𝛿

(
t − t0

)
.

Rectangle function. The rectangle function of unit height and base is defined by

II (t) =

{
0 if |t| > 1∕2,

1 if |t| < 1∕2.
(1.27)

This function can also be represented by means of the unit step function as

II (t) = u
(

t + 1
2

)
− u

(
t − 1

2

)
. (1.28)

The step function and the rectangle function are illustrated in Figure 1.10.

Dirac comb. The so-called Dirac comb is a periodic distribution of Dirac delta
functions that plays an important role in the sampling process:

III(t) =
∞∑

n=−∞
𝛿(t − n). (1.29)

This generalized function is illustrated in Figure 1.11.

t0

1 1

−0.5
(b)(a)

0 0.5 t

Figure 1.10 Unit step function (a) and rectangle function (b).
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t−3 −2 −1 0

1

1 2 3 ......

Figure 1.11 Dirac comb or sampling function, III(t).

1.2.3
Impulse Sampling

In order to process continuous-time analog signals in digital systems, an A/D
conversion is required. This process maps the analog signals into a set of discrete
values, both for time and space.

A uniformly sampled signal is the result of examining an analog signal at periodic
intervals. In this book, we will work exclusively with unit sampling because, in
general, it is unnecessary to know how much time elapses between successive
samples. Assuming that the temporal width of each sample approaches zero, these
samples can be represented as a sequence of impulse functions. For instance,
considering the unit sampling of a continuous-time analog signal f (t), we have

f (t)III(t) = { f (n)} =
∞∑

n=−∞
f (n)𝛿(t − n) (1.30)

where

f (n) = f (t)|t=n, n ∈ ℤ. (1.31)

As illustrated in Figure 1.12, this means that the sampled signal is composed of a
series of equally spaced impulse functions, whose weights represent the values of
the original signal at the sampling instants.

Because of the properties of Dirac’s delta, only the information observed at
the discrete times {t ∶ t = n, n ∈ ℤ} remains after the sampling process. For this
reason, the sampled signal f (t)III(t) is often reduced to a discrete sequence of data

{ f (n)} = { f (0), f (1), f (2),…}. (1.32)

In general, a sampled signal contains less information than its continuous-time
counterpart unless certain conditions are fulfilled during the sampling process.
These conditions are set by the Nyquist–Shannon sampling theorem discussed
next.

−3 −2 −1 0 1 2 3
(a) (b)

...... t −3 −2 −1 0 1 2 3 ...... t

Figure 1.12 Continuous-time analog signal (a) and its unit sampled counterpart (b).
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1.2.4
Nyquist–Shannon Sampling Theorem

The first part of the Nyquist–Shannon theorem states that a band-limited signal f (t)
that contains no frequencies higher than F0 hertz is completely determined by its
sample values if the sampling frequency 1∕Ts is greater than twice the bandwidth
of f (t), that is

1
Ts

> 2F0, (1.33)

where the sampling rate of 2F0 is called the Nyquist rate. Rewriting this condition
in terms of an angular bandwidth B,we have

B = 2πF0 <
π
Ts

, (1.34)

which under unit sampling (as typically assumed in fringe pattern analysis) is
reduced to

B < π. (1.35)

The second part of the Nyquist–Shannon sampling theorem states that the band-
limited continuous signal f (t) can be reconstructed from its discrete samples
{ f (n)} using the following interpolation formula:

f (t) =
∞∑

n=−∞
f (n) sinc(t − n), (1.36)

where sinc(t) = [sin(πt)]∕(πt). This means that under proper conditions an analog
signal and its digital sampling contain the same information.

From now on, unless explicitly indicated otherwise, we will assume
that all the discrete functions under study are sampled according to the
Nyquist criterion (Eqs. 1.33–1.35). The demonstration of both parts of
the Nyquist–Shannon sampling theorem is a consequence of the spectral
characteristics of the discrete signals, so we will return to this topic after
reviewing the Fourier transform in Section 1.5.1. With this, we end our short
review about digital sampling, and now we will proceed to the digital linear
systems theory.

1.3
Linear Time-Invariant (LTI) Systems

In this section, we review the basic theory of LTI systems commonly used in
modern fringe pattern analysis. For a much more complete study of this topic, we
recommend [23, 24].
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1.3.1
Definition and Properties

A system is a mathematical model of a physical process that relates the input (or
excitation) signal to the output (or response) signal.

Let I(⋅) and f (⋅) be, respectively, the input and output signals of a system.
Then the system is viewed as a transformation (or mapping) of I(⋅) into f (⋅). This
transformation is represented by the mathematical notation

𝐋{I(⋅)} = f (⋅), (1.37)

where 𝐋{⋅} is the operator representing some well-defined rule by which I(⋅) is
transformed into f (⋅). If the input and output are continuous-time signals I(t) and
f (t), respectively, then the system is called a continuous-time system (Figure 1.13a).
If the input and output are discrete-time signals or sequences {I(n)} and { f (n)},
respectively, then the system is called a discrete-time system (Figure 1.13b).

An operator 𝐋 (⋅) that satisfies the following condition is called a linear operator,
and the system represented by a linear operator is called a linear system: given that
𝐋
(
I1

)
= f1 and 𝐋

(
I2

)
= f2, then

𝐋
(
𝛼1I1 + 𝛼2I2

)
= 𝛼1f1 + 𝛼2f2, (1.38)

where 𝛼1 and 𝛼2 are arbitrary scalars. Equation (1.38) is known as the superposition
property.

A system is called time-invariant if a time shift in the input signal causes the
same time shift in the output signal. Thus, for continuous-time signals, the system
is time-invariant if

𝐋[I(t − t0)] = f (t − t0) (1.39)

for any real value of t0. If the system is linear and also time-invariant
(Eqs. 1.38–1.39), then it is called a linear time-invariant (LTI) system.

1.3.2
Impulse Response of LTI Systems

In signal processing, the impulse response function of a dynamic system is the
output obtained when the input signal is a unitary impulse function. The unitary
impulse can be modeled as a Dirac delta function for continuous-time systems.

h(t) = 𝐋{𝛿(t)}. (1.40)

Any LTI system is completely characterized by its impulse response; for any input
function, the output function can be calculated in terms of the input and the

System

L

I(t) f(t)

(a) (b)

System

L

{I(n)} {f(n)}

Figure 1.13 (a) Continuous-time and (b) discrete-time linear systems.
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impulse response. For instance, assuming the input I(t) as a sampled function

f (t) = 𝐋
{

I(t)
∞∑

n=−∞
𝛿(t − n)

}
= 𝐋

{ ∞∑
n=−∞

I(n)𝛿(t − n)

}
. (1.41)

Since the system is linear, we have

f (t) =
∞∑

n=−∞
I(n)𝐋 {𝛿(t − n)} . (1.42)

Applying the time-invariant condition, we have

h(t − n) = 𝐋{𝛿(t − n)}. (1.43)

Finally, substituting Eq. (1.43) in Eq. (1.42), we obtain

f (t) =
∞∑

n=−∞
I(n)h(t − n) = I(t) ∗ h(t). (1.44)

The result stated in Eq. (1.44) is valid even with continuous (nonsampled) signals
and the demonstration follows the same steps (Eqs. 1.42–1.44).

Example: Impulse Response of a Three-Step Averaging System
Consider the three-step averaging system illustrated in Figure 1.14 where the
output f (t) is given by the average value between the current input I(t) and the two
previous input values. That is

f (t) = (1∕3)[I(t) + I(t − 1) + I(t − 2)]. (1.45)

Applying the shifting property of Dirac’s delta (Table 1.1), it is straightforward to
see that

f (t) = I(t) ∗ (1∕3)[𝛿(t) + 𝛿(t − 1) + 𝛿(t − 2)] = I(t) ∗ h3(t),
h3(t) = (1∕3)[𝛿(t) + 𝛿(t − 1) + 𝛿(t − 2)]. (1.46)

This kind of averaging system is commonly used in signal processing (particularly
for noise rejection) and, as we will show in Section 1.5, it corresponds to a
normalized low-pass filter.

Example: Centered Three-Step Averaging System
In digital processing, it is very common to use an averaging mask for low-pass
filtering. For instance, the system illustrated in Figure 1.15 corresponds to the

I(t)

I(t−2)

I(t−1)

1/3

f(t)

T = −2

T = −1

+

Figure 1.14 Block diagram of a three-step averaging linear filter.
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I(x)

I(x+1)

I(x−1)

f(x)
1/3

T = −1

T = +1

Figure 1.15 Block diagram of a centered three-step averaging linear filter.

convolution of the input signal with a unidimensional averaging mask, with an
input response given by

h(x) = (1∕3)[𝛿(x − 1) + 𝛿(x) + 𝛿(x + 1)]. (1.47)

Clearly, this system is almost identical to the one described in Eq. (1.46), except
that this ‘‘centered’’ system is not causal: every pixel in the output is given by the
average with its neighboring pixels (both the previous and the next). Nevertheless,
this noncausality is not an issue since nowadays we can process in delayed time.
Similarly, for the linear systems theory is perfectly equivalent to work with centered
or noncentered impulse responses.

1.3.3
Stability Criterion: Bounded-Input Bounded-Output

The ‘‘bounded-input bounded-output’’ (BIBO) criterion is one of the most com-
monly used criteria in the study of linear systems. This criterion establishes that a
system is considered stable if for any bounded input

|I(⋅)| ≤ k1, (1.48)

the corresponding output is also bounded, that is

|f (⋅)| ≤ k2, (1.49)

where k1 and k2 are finite real constants.
Consider a discrete-time invariant linear system, where the output f (t) is given

by the convolution between the input signal I(t) and the system’s impulse response
h(t). Assuming BIBO stability, we have

|f (t)| = |||||
∞∑

n=−∞
I(n)h(t − n)

||||| ≤
∞∑

n=−∞
|I(n)||h(n)|, (1.50)

where we have applied the triangle inequality and the time-invariant property over
the impulse response. Substituting the bounded-input condition (Eq. 1.48) results
in

|f (t)| ≤ k1

∞∑
n=−∞

|h(n)|. (1.51)

And, since we are supposing that the output is also bounded, this means that
a discrete LTI system will be BIBO stable if and only if its impulse response is
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absolutely summable, that is

∞∑
n=−∞

|h(n)| < ∞. (1.52)

For any digital linear system, Eq. (1.52) is a necessary and sufficient condition for
system stability. Similarly, it can be proved that a continuous LTI system will be
BIBO stable if and only if its impulse response is absolute integrable [23], that is

∫
∞

−∞
|h(t)|dt < ∞. (1.53)

In practice, the analysis of linear systems almost always requires the application
of integral transforms. This means that, instead of the impulse response of a
linear system, one usually finds its integral transform, the so-called the transfer
function. Nevertheless, the BIBO stability criterion can also be easily evaluated in
such transformed space, as we will show in the following sections.

1.4
Z-Transform Analysis of Digital Linear Systems

The Z-transform is a useful tool in the analysis of discrete-time signals and
systems that may be defined as the discrete-time counterpart of the Laplace
transform. The Z-transform may be used to solve constant-coefficient difference
equations, to evaluate the response of a LTI system to a given input, and to design
linear filters.

In fringe pattern analysis, the pioneering works in the application of Z-transform
for the analysis of PSAs are due to Surrel [25–27] (although the connection between
both formalisms was not explicit in his publications).

1.4.1
Definition and Properties

The bilateral Laplace transform is defined by

{ f (t)} = ∫
∞

−∞
f (t) exp(−st)dt, (1.54)

where s ∈ ℂ, so exp(s) = exp(𝛼 + i𝜔) = r exp(i𝜔). Considering a sampled function
(as in Eq. 1.30) and taking its Laplace transform, we have

{ f (t)III(t)} = ∫
∞

−∞
f (t)

∞∑
n=−∞

𝛿(t − n) exp(−st)dt,

=
∞∑

n=−∞∫
∞

−∞
f (t)𝛿(t − n) exp(−st)dt,

=
∞∑

n=−∞
f (n) exp(−sn). (1.55)
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Making the change of variable z = exp(s), one finds the most commonly used
expression for the bilateral Z-transform of a discrete signal

{ f (t)} = { f (t)III(t)},

F(z) =
∞∑

n=−∞
f (n)z−n, (1.56)

where, once again, f (n) = f (t)|t=n and z = r exp(i𝜔). For cases where the function
f (t) is defined only for t ≥ 0 (for instance, in a causal system), the single-sided or
unilateral Z-transform is defined as

{ f (t)} = F(z) =
∞∑

n=0

f (n)z−n. (1.57)

Should be noted that the Z-transform is usually defined only for discrete sequences
{ f [n]}. However, we are explicitly extending its definition to describe the Laplace
transform of sampled functions.

1.4.2
Region of Convergence (ROC)

In general, the Z-transforms are infinite series, so convergence is a very important
aspect to take into consideration. The region of convergence (ROC) is defined as the
set of points in the complex plane for which a Z-transform summation converges.
That is

ROC =

{
z ∶

|||||
∞∑

n=−∞
f (n)z−n

||||| < ∞

}
. (1.58)

Using the triangle inequality, we can rewrite the above summation condition as|||||
∞∑

n=−∞
f (n)z−n

||||| ≤
∞∑

n=−∞

||f (n)z−n|| . (1.59)

Furthermore, using the polar form in the right-hand side of the inequality [24], we
have

∞∑
n=−∞

||f (n)z−n|| = −1∑
n=−∞

||f (n)r−n|| + ∞∑
n=0

||f (n)r−n|| ,
=

∞∑
n=1

||f (−n)rn|| + ∞∑
n=0

||f (n)r−n|| . (1.60)

If the first sum in Eq. (1.60) converges, there must exist some region where the
sequence { f (−n)rn} is absolutely summable; this region will be given by the points
in the complex plane inside a circle of some radius r1. On the other hand, if the
second sum converges, there must exist some region where the sequence { f (n)r−n}
is absolutely summable; this region will be given by the points in the complex
plane outside a circle of some radius r2. Therefore, the ROC for both summations
will be given by some annular region defined by r2 < r < r1. Following our chain
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of inequalities (Eqs. 1.58–1.60), we know that such annular region also guarantees
the convergence of |F(z)|. Thus, in general, the ROC for a given Z-transform can
be described in the form

ROC =
{

z ∶ |F(z)| < ∞
}
=
{

z ∶ r2 < |z| < r1

}
. (1.61)

Example: Z-Transform of a Finite-Duration Sequence
Consider a sequence of data { f (n)} where f (n) ≠ 0 only for a finite number of
values n1 < n < n2. So

F(z) =
n2∑

n=n1

f (n)z−n. (1.62)

Convergence of this expression simply requires that |f (n)| < ∞ for n1 < n < n2.
Then z may take on all values except z = ∞ if n1 < 0 and z = 0 if n2 > 0. Thus, we
conclude that the ROC of finite-duration sequence is at least 0 < |z| < ∞, and it
may include either z = 0 or z = ∞.

1.4.3
Poles and Zeros of a Z-Transform

Many signals or systems of interest have Z-transforms that are rational functions
of z. That is

F(z) = B(z)
A(z)

=
∑q

k=0
bkz−k∑p

k=0
akz−k

. (1.63)

Factoring the numerator and denominator polynomials, that is, A(z) and B(z), a
rational Z-transform may be expressed as follows:

F(z) = c0

∏q
k=1

(1 − 𝛽kz−1)∏p
k=1

(1 − 𝛼kz−1)
. (1.64)

The roots of the numerator polynomial 𝛽k are referred to as the zeros of F(z), and
the roots of the denominator polynomial 𝛼k are referred to as the poles of F(z).
The poles and zeros uniquely define the functional form of a rational Z-transform
to within a constant c0. Therefore, they provide a concise representation for F(z)
which is often represented pictorially in terms of a pole-zero plot in the Z-plane. In
a pole-zero plot, the location of the poles is indicated by crosses (×) and the location
the zeros by circles (◦), with the ROC indicated by shading the appropriate region
of the z-plane. The multiplicity of (m-order) poles or zeros is usually indicated by a
number close to the corresponding cross or circle (for m > 1).

Example: Z-Transform of an Exponential Function
Consider a discrete-time exponential function defined for t > 0 as f (t)III(t) =∑∞

n=0 an𝛿(t − n). Then, following our definition (Eq. 1.56), its Z-transform is
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Im(z)

Re(z)

ROC

a 1

Figure 1.16 Pole-zeros plot for Z-transform in Eq. (1.65) for a < 1.

given by

F(z) =
∞∑

n=−∞
f (n)z−n =

∞∑
n=0

(a∕z)n,

= 1
1 − (a∕z)

= z
z − a

, (1.65)

where the summation converges for |(a∕z)| < 1. Therefore, the ROC is exterior to
the circle defined by the points in the complex plane given by |z| = |a| as illustrated
in Figure 1.16. Note that, if |a| < 1, the unit circle is inside the ROC.

1.4.4
Inverse Z-Transform

The inverse Z-transform is formally defined by

{ f (n)} = −1{F(z)} = 1
i2π ∳C

F(z)zn−1dz, (1.66)

where C is a counterclockwise closed path encircling the origin and all of the
poles of F(z), and entirely within the ROC . However, in practice we rarely rely in
the contour integration method (Eq. 1.66) to find an inverse Z-transform. Instead,
we usually perform some algebraic manipulations (e.g., partial-fraction expansion)
to solve in function of well-known Z-transform pairs. In Tables 1.2 and 1.3, we
summarize some useful properties of the most commonly used Z-transform
pairs [28].

For illustrative purposes, next we demonstrate one of the properties presented
in Table 1.2.

Example: Z-Transform of the Time-Shifting Operator
Consider a discrete sequence given by the sampling of some analog Signal,
{ f (n)} = f (t)III(t) with n = {0, 1, 2,…}. Then, the sequence { f (n − k)} models the
sampled data with a temporal shifting of k samples. Taking its Z-transform, we
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Table 1.2 Some properties of the Z-transform.

Time domain Z-domain ROC

f (t) F(z) R
f1(t) F1(z) R1
f2(t) F2(z) R2
a1f1(t) + a2f2(t) a1F1(z) + a2F2(z) R1 ∩ R2
f (t − k) z−kF(z) R ∩ {0 < |z| < ∞}
zt

0 f (t) F(z∕z0) |z0|R
ei𝜔0tf (t) F(ei𝜔0 z) R
f (−t) F(1∕z) 1∕R
t f (t) −zF′(z) R
f1(t) ∗ f2(t) F1(z)F2(z) R1 ∩ R2

Table 1.3 Commonly used Z-transform pairs.

Time domain Z-domain ROC

𝛿(t) 1 All z
anu(t)III(t) z

a−z
|z| > |a|

tatu(t)III(t) az−1

(1−az−1)2 |z| > |a|
cos(𝜔0t)u(t)III(t) 1−cos(𝜔0)z−1

1−2 cos(𝜔0)z−1+z−2 |z| > |1|
sin(𝜔0t)u(t)III(t) sin(𝜔0)z−1

1−2 cos(𝜔0)z−1+z−2 |z| > |1|

have

{
f (t − k)

}
=

∞∑
n=−∞

f (n − k)z−n. (1.67)

Introducing a shifted change of the variable, that is, j = n − k, results in

{
f (t − k)

}
= z−k

∞∑
j=−∞

f (j)z−j = z−kF(z), (1.68)

and the ROC of z−kF(z) is the same as that of F(z) except for z = 0 if k > 0, or
z = ∞ if k < 0.

1.4.5
Transfer Function of an LTI System in the Z-Domain

As stated in Section 1.3, any LTI system can be fully described in the temporal
domain as (Eq. 1.44)

f (t) = I(t) ∗ h(t), (1.69)
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where I(t), f (t), and h(t) represent the input, output, and the impulse response
of the system, respectively. Taking the Z-transform of the above equation and
applying the convolution property (Table 1.2), we have

F(z) = I(z)H(z). (1.70)

Now, since Eq. (1.70) is an algebraic one, it is possible to solve for the ratio F(z)∕I(z)
to find the so-called transfer function of the LTI, H(z):

F(z)
I(z)

= H(z). (1.71)

And, since, by definition, the transfer function H(z) is the Z-transform of the
impulse response function of the system h(t), we have

H(z) = F(z)
I(z)

=
∞∑

n=−∞
h(n)z−n. (1.72)

A we see from Eqs. (1.71) and (1.72), the transfer function H(z) will be in general a
rational Z-transform. Thus, the correspondent ROC will be defined by the location
of its poles (Eqs. 1.63 and 1.64). To further illustration of this point, we present
some illustrative examples at the end of this section, together with the multitude
of linear filters that we will analyze in the rest of the book.

1.4.6
Stability Evaluation by Means of the Z-Transform

As discussed in Section 1.3.3, a discrete-time linear system is said to be BIBO stable
if its impulse response function h(t) is absolutely summable. That is (Eq. 1.52)

∞∑
n=−∞

|h(n)| < ∞. (1.73)

From Eqs. (1.72) and (1.73), it is straightforward to see that the BIBO stability
criterion is equivalent to requiring the transfer function F(z) to be absolutely
summable in the unit circle of the Z-domain:{ ∞∑

n=−∞
|h(n)| = ∞∑

n=−∞
|h(n)z−n|z∈U

}
< ∞, (1.74)

where the unit circle is defined by

U(z) = {z ∶ |z| = 1}. (1.75)

In other words, a linear system will be BIBO stable if and only if the ROC of its
transfer function include the unit circle. Furthermore, following the ROC definition
(Eq. 1.58) one may prove that a causal system will be BIBO stable if and only if all
the poles of its transfer function are located inside the unit disc defined by

U(z) = {z ∶ |z| < 1}. (1.76)
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Figure 1.17 Block diagram of a second-order recursive filter.
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Figure 1.18 Pole-zeros plot for the second-order recursive filter discussed in Eq. (1.77)
with 𝜂 = 0.1, 1, 10. Note that, for 𝜂 ≫ 1, each pole approaches asymptotically −1∕2 and 1,
respectively.

Example: Stability Evaluation of a Recursive Digital Filter
Consider the following difference equation that describes the second-order recur-
sive filter illustrated in Figure 1.17:

f (t) = I(t) − 𝜂[2f (t) − f (t − 1) − f (t − 2)]. (1.77)

Taking the Z-transform of the above equation and applying the time-shifting
property from Table 1.2, it is straightforward to find that

H(z) = F(z)
I(z)

= 1
1 + 𝜂(2 − z−1 − z−2)

= z2

(1 + 2𝜂)z2 − 𝜂z − 𝜂
. (1.78)

As illustrated in Figure 1.18, applying the quadratic formula in the right-side
denominator, we find that both poles of H(z) are located inside the unit disc U(z)
for 0 < 𝜂 < ∞. Thus, since the unit circle is part of the ROC of H(z), this filter is
said to be BIBO stable.

1.5
Fourier Analysis of Digital LTI Systems

In this section, we apply Fourier transformation to analyze signals and systems.
The Fourier transform allows us convert the mathematical representation of a
signal in time into a that of the signal in frequency, known as its frequency spectrum.
As in most textbooks, the term Fourier transform will refer to both the transform
operation and to the complex-valued function it produces [29].
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Table 1.4 Fourier transforms for some common mathematical
operations.

Operation Time function f (t) Transform F(𝜔)

Linearity af1(t) + bf2(t) aF1(𝜔) + bF2(𝜔)
Reversal f (−t) F(−𝜔)
Symmetry F(t) f (−𝜔)
Scaling f (at) (1∕|a|)F(𝜔∕a)
Time delay f (t−t0) F(𝜔) exp(−i𝜔t0)
Time differentiation f (n)(t) (i𝜔)nF(𝜔)
Frequency translation f (t) exp[i𝜔0t] F(𝜔 − 𝜔0)
Convolution f (t) ∗ h(t) F(𝜔)H(𝜔)
Multiplication f (t)h(t) F(𝜔) ∗ H(𝜔)
Energy ∫ ∞

−∞ |f (t)|2dt ∫ ∞
−∞ |F(𝜔)|2d𝜔

1.5.1
Definition and Properties of the Fourier Transform

There are several conventions for defining the Fourier transform of an integrable
function. For a continuous-time signal, we will adopt the following convention to
define the direct Fourier transform and its inverse:

{ f (t)} = F(𝜔) = ∫
∞

−∞
f (t) exp(−i𝜔t)dt, (1.79)

−1{F(𝜔)} = 1
2π ∫

∞

−∞
F(𝜔) exp(i𝜔t)d𝜔. (1.80)

The conditions for the existence of the Fourier transform (Eq. 1.79) and its
inverse (Eq. 1.80) represent a very broad topic, so we will not discuss them here.
Nevertheless, it is important to highlight that, if f (t) is absolutely integrable, that is

∫
∞

−∞
||f (t)|| dt < ∞, (1.81)

this is a sufficient condition for the existence of { f (t)}. For convenience, in
Table 1.4 we summarize other useful properties of the Fourier transform, and in
Table 1.5 some commonly used Fourier transform pairs.

1.5.2
Discrete-Time Fourier Transform (DTFT)

When working with sampled signals, Eq. (1.79) may be reduced to the so-called
discrete-time Fourier transform (DTFT), that is
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Table 1.5 Commonly used Fourier transform pairs.

Time function f (t) Transform F(𝜔)

1 𝛿(𝜔)
exp(i𝜔0t) 𝛿(𝜔 − 𝜔0)
cos(𝜔0t) (1∕2)[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)]
sin(𝜔0t) (1∕2i)[𝛿(𝜔 − 𝜔0) − 𝛿(𝜔 + 𝜔0)]
exp(−πt2) exp(−π𝜔2)
II(t) = rect(t) sinc(𝜔) = sin(π𝜔)∕π𝜔
𝛿(t − t0) exp(−i𝜔t0)∑∞

n=−∞ 𝛿(t − n)
∑∞

n=−∞ 𝛿 (𝜔 − 2πn)

{ f (t)III(t)} = 
{ ∞∑

n=−∞
f (n)𝛿(t − n)

}
,

=
∞∑

n=−∞∫
∞

−∞
f (n)𝛿(t − n) exp(−i𝜔t)dt,

F(𝜔) =
∞∑

n=−∞
f (n) exp(−i𝜔n). (1.82)

Note that, according to the above equation, the Fourier spectrum of a sampled
signal (or a discrete sequence) is periodic and continuous in the frequency domain.
Also note that the analysis equation (Eq. 1.82) converges if the discrete sequence
{ f (n)} is absolutely summable. That is

∞∑
n=−∞

|f (n)| < ∞, (1.83)

is a sufficient condition for the existence of the DTFT.

1.5.3
Relation Between the DTFT and the Z-Transform

As hinted before, the DTFT can be considered a particular case of the Z-transform.
To illustrate this, let us reintroduce the change of variable z = r exp(i𝜔) in the
Z-transform formula, as

F(z) =
∞∑

n=−∞
f (n)[r exp(i𝜔)]−n (1.84)

=
∞∑

n=−∞
[ f (n)r−n] exp(−i𝜔n) = { f (n)r−n}.

This means that the Z-transform can be seen as the DTFT of an exponentially
weighted sequence. Likewise, the DTFT of can be seen as the Z-transform evaluated
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Z-transform

DTFT

f(t)∑nδ(t−n) z = exp(iω)

F(ω)

F(z)

Figure 1.19 Relation between the DTFT and the Z-transform.

in the unit circle U(z) = {z ∶ |z| = 1}. That is

F(z)|z∈U =
∞∑

n=−∞
f (n) exp(i𝜔) = F(𝜔), (1.85)

assuming, of course, that U(z) is part of the ROC of F(z). These relations are
schematically illustrated in Figure 1.19.

1.5.4
Spectral Interpretation of the Sampling Theorem

As discussed in Section 1.2.4, the Nyquist–Shannon sampling theorem is com-
posed of two parts. According to the first part, a band-limited signal f (t) is
completely determined by its sampled values if the sampling frequency (1∕Ts) is
greater than twice the bandwidth of f (t) (Eq. 1.33):

1
Ts

> 2F0. (1.86)

Or, in terms of the angular bandwidth under unit sampling (Eq. 1.35):

B < π. (1.87)

This is the so-called Nyquist criterion. The validity of the first part this theorem can
conceptually tested as follows: consider a band-limited analog signal f (t) such that

{ f (t)} = F(𝜔) = 0 for |𝜔| > B. (1.88)

Assuming unit sampling is obtained, the discrete sequence of data { f (n)} with a
DTFT given by

{ f (t)III(t)} = F(𝜔) ∗
∞∑

n=−∞
𝛿(𝜔 − 2πn) =

∞∑
n=−∞

F(𝜔 − 2πn). (1.89)

That is, the spectrum of a sampled function is given by copies of the spectrum of the
continuous function, shifted by multiples of 2π and combined by addition. Thus,
since such spectral copies will not overlap if Eqs. (1.86) and (1.87) are fulfilled, one
can reconstruct F(𝜔) from the DTFT by applying a brick-wall low-pass filter

II (𝜔∕2π){ f (t)III(t)} = II (𝜔∕2π)
∞∑

n=−∞
F(𝜔 − 2πn) = F(𝜔). (1.90)
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This ideal filtering is translated to the temporal domain as

f (t) = sin(πt)
πt

∗
∞∑

n=−∞
f (n)𝛿(t − n) =

∞∑
n=−∞

f (n) sinc(t − n), (1.91)

which is precisely the interpolation formula presented in Eq. (1.36); this is the
second part of the Nyquist–Shannon sampling theorem.

On the other hand, if the Nyquist criterion is not fulfilled, which is called
sub-Nyquist sampling, the spectral replicas overlap, producing spectral distortion
and making the isolation of the spectrum of the analog signal impossible. This is
illustrated in Figure 1.20.

To summarize, the spectrum of a sampled signal comprises multiple copies
of the spectrum of the analog signal, shifted by multiples of 2π and combined
by addition. Assuming the sampling process fulfilled the Nyquist criterion, this
enables us to fully recover the analog signal from its sampled counterpart by
applying a brick-wall low-pass filter in the Fourier domain (or, alternatively, an
extrapolation in the temporal domain). However, if the Nyquist criterion is not
fulfilled (sub-Nyquist sampling), the spectral replicas overlap with each other
producing distortion.

... ...

...

...

F(ω)

−B

−B

−B

B

B

B

∑nF(ω-2 n), B<

∑nF(ω−2 n), B>

−3

(a)

(b)

(c)

−2 − 0 2 3

−3 −2 − 0 2 3

...−3 −2 − 0 2 3

ω

ω

ω

Figure 1.20 Hypothetical spectra of a band-limited analog signal (a) and its discrete coun-
terpart fulfilling the Nyquist criterion (b) and under sub-Nyquist sampling (c).
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1.5.5
Aliasing: Sub-Nyquist Sampling

Aliasing refers to an effect that causes different signals to become indistinguishable
under sub-Nyquist sampling. That is, if two continuous signals produce the same
set of data when sampled (at least one of them without fulfilling the Nyquist
criterion), we say that such signals are aliases of each other.

Actual signals have finite duration and their frequency content, as defined by the
Fourier transform, has no upper bound [24]. Thus, the Nyquist criterion cannot be
strictly fulfilled in real-life applications and some negligible amount of aliasing is
always to be expected.

Aliasing in sinusoidal signals. To illustrate the aliasing effect, consider the following
analog sinusoidal Signals:

f1(t) = cos(𝜔1t),
f2(t) = cos(𝜔2t), (1.92)

given in the Fourier domain as

F1(𝜔) = (1∕2)[𝛿(𝜔 + 𝜔1) + 𝛿(𝜔 − 𝜔1)],
F2(𝜔) = (1∕2)[𝛿(𝜔 + 𝜔2) + 𝛿(𝜔 − 𝜔2)]. (1.93)

If the following equation holds for their angular frequency, that is

𝜔2 = 𝜔1 + 2π, (1.94)

the unit sampling of both continuous signals will produce the same set of data.
This is illustrated in Figure 1.21 (with 𝜔1 = 2π∕3 purely for illustrative purposes).

Furthermore, calculating the DTFT for f2(t) we have

{ f2(t)III(t)} =
∞∑

n=−∞
cos[(𝜔1 + 2π)n] exp(−i𝜔n)

=
∞∑

n=−∞
cos(𝜔1n) exp(−i𝜔n) = { f1(t)III(t)}. (1.95)

Thus, even when both sinusoidal signals are completely different in the continuous
domain, their sampling produces exactly the same set of data and therefore the
same DTFT. This is illustrated in Figure 1.22.

0
−1

−0.5

0

0.5

1

1 2 3 4 5 6

Figure 1.21 Two different continuous sinusoidal signals that fit the same set of samples
as an illustration of the aliasing effect.
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Figure 1.22 Continuous sinusoidal signals
presented in Fig. 1.21 having different spec-
tra but, since the Nyquist criterion is not ful-
filled in (b), their DTFT is exactly the same.

Recall that the DTFT has a 2π periodicity, so
in the right-side plot we have shown only the
principal branch.

From Fourier analysis we know that the set of sinusoidal functions form an
orthonormal base for square-integrable functions in the domain (−π, π]. Thus,
because of the 2π periodicity of the DTFT, we can think both sinusoidal functions
of our example as discrete components resulting from the sampling of some
general continuous signal. Considering the above, we can extend this result to
a more general interpretation of the aliasing effect which should help us to
understand many problematic phenomena in fringe pattern analysis (such as
high-order harmonic distortion, wrapped phase inconsistencies, etc.).

During the sampling process of any continuous signal, the energy of those
spectral components with angular frequency {𝜔 ∶ |𝜔| > π} will be distributed
to its alias on the principal branch (−π, π].

Anti-alias f iltering. In many areas of signal processing, it is common to apply an
continuous low-pass filter prior to the sampling process, restricting the bandwidth
of the continuous signal under study to more or less satisfy the Nyquist criterion
(as illustrated in Figure 1.23). These are called anti-alias filters.

Aliasing can be either spatial or temporal. However, nowadays one is able to
acquire a two-dimensional set of data with millions of samples from a single frame,
which usually allow us to neglect the influence of spatial aliasing and to apply some
anti-aliasing filtering whenever required. On the other hand, for many techniques of

0
0

1

0

1

0

1
I(u) I(u)H(u)H(u)

u 0 u 0 u

× =

Figure 1.23 Fourier domain representation of anti-alias filtering to remove those compo-
nents that do not fulfill the Nyquist criterion (as defined in Eq. 1.87).
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fringe patter analysis, particularly in phase-shifting interferometry, we are usually
restricted to work with a few temporal samples so temporal anti-aliasing filtering
may not be feasible.

1.5.6
Frequency Transfer Function (FTF) of an LTI System

Now, let us apply the mathematical concepts briefly reviewed earlier to the analysis
of linear systems. As discussed in Section 1.3, a time-invariant linear system is
completely characterized by its impulse response function h(t). That is, for every
input I(t), the corresponding output f (t) is given by

f (t) = I(t) ∗ h(t). (1.96)

Taking the Fourier transform of Eq. (1.96), we have

F(𝜔) = I(𝜔)H(𝜔). (1.97)

The Fourier transform of the impulse response function h(t), that is, the spectrum
H(𝜔), is called the FTF (frequency transfer function) and in general it can be
evaluated as the ratio

H(𝜔) = F(𝜔)
I(𝜔)

, (1.98)

where I(𝜔) ≠ 0. As with any Fourier transform, the FTF is in general a complex-
valued function

H(𝜔) = Hr(𝜔) + i Hi(𝜔), (1.99)

where, by definition

Hi(𝜔) = Im{H(𝜔)}, (1.100)

Hr(𝜔) = Re{H(𝜔)}. (1.101)

Another representation for any complex-valued FTF can be made in terms of its
amplitude and phase, as

H(𝜔) = |H(𝜔)| exp{i angle[H(𝜔)]}, (1.102)

where

|H(𝜔)| = √
[Hi(𝜔)]2 + [Hr(𝜔)]2 (1.103)

and the phase(mod2π) is given by

angle[H(𝜔)] = tan−1

[
Hi(𝜔)
Hr(𝜔)

]
. (1.104)

In some instances – particularly when plotting – one may prefer to work only
with real functions. Of course, Eqs. (1.100) and (1.101) and Eqs. (1.103) and (1.104)
represent real functions but in general it is more useful to describe an FTF by
means of its amplitude and phase:
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I(t) f(t)
1/3

z−1 + z−2

Figure 1.24 Block diagram of a three-step averaging linear filter.

• The amplitude of the FTF is time-invariant:

 {
h(t + t0)

}
= H(𝜔) exp(−i𝜔t0),||H(𝜔) exp(−i𝜔t0)|| = |H(𝜔)| ||exp(−i𝜔t0)|| = |H(𝜔)| . (1.105)

• By plotting |H(𝜔)|, one can easily find the real zeros of H(𝜔), that is, those
frequencies at which the system present null response:||H(𝜔0)|| = 0 ⇔ Re{H(𝜔0)} = Im{H(𝜔0)} = 0. (1.106)

Example: FTF for a Three-Step Averaging System
Consider the three-step averaging system illustrated in Figure 1.24 (previously
discussed in Eq. (1.46) and replicated here for convenience) where the output f (t)
is given by the average value between the current input I(t) and the two previous
input values. The impulse response of this filter is given by

h(t) = (1∕3)[𝛿(t) + 𝛿(t − 1) + 𝛿(t − 2)]. (1.107)

By definition, the FTF of this filter is given by the Fourier transform of its impulse
response. That is

 {
h(t)

}
= (1∕3) {[𝛿(t) + 𝛿(t − 1) + 𝛿(t − 2)]} ,

H(𝜔) = (1∕3)
[
1 + exp(−i𝜔) + exp(−i2𝜔)

]
. (1.108)

From Eq. (1.108), calculating the amplitude and phase of the FTF results in

|H(𝜔)| = (1∕3) [3 + 4 cos(𝜔) + 2 cos(2𝜔)]1∕2
,

angle[H(𝜔)] = tan−1

[
sin(𝜔) + sin(2𝜔)

1 + cos(𝜔) + cos(2𝜔)

]
(1.109)

which are graphically presented in Figure 1.25. Note that, as predicted in Eq. (1.82),
the FTF of this system has a 2π periodicity, so we only need to plot the principal
branch (−π, π).

As can be seen from Figure 1.25, this three-step averaging system represents
a symmetrical low-pass filter with its maximum (within the principal branch) at
𝜔 = 0 and null frequency response at 𝜔 = ±(2π∕3).

A note about linear and semilog plots for the FTF: In some areas of signal processing,
it is common to present the spectral plots using a logarithmic scale in the vertical
axis and linear scale in the horizontal one; this is called a semilog plot. However, in
fringe pattern analysis we are more interested in the study of the stop-band region
than the pass-band region, and the stop-band region behavior goes out of range
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Figure 1.25 (a) Absolute value and (b) phase of the frequency transfer function of the
three-step averaging system discussed in Eq. (1.108).
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Figure 1.26 (a) Linear plot and (b) semilog plot for the FTF of the five-step band-pass fil-
tering system discussed in Eq. (1.110).

in a semilog plot since log(x) diverges for x = 0. To illustrate this, consider the
following five-step band-pass filter with an impulse response function given by

h(t) = (1∕8)[𝛿(t) − 2i𝛿(t − 1) − 2𝛿(t − 2) + 2i𝛿(t − 3) + 𝛿(t − 4)]. (1.110)

Taking its DTFT and factorizing the result, we find the following FTF:

H(𝜔) = (1∕8)
[
1 − ei𝜔

][
1 − e−i(𝜔−π∕2)]2[

1 − ei(𝜔−π)]. (1.111)

The linear and semilog plots for |H(𝜔)| are presented in Figure 1.26.
As can be seen from Figure 1.26, both the pass-band and stop-band regions are

clearly represented in the linear plot of |H(𝜔)|, while the stop-band region is out
of the chart in the semilog plot. For this reason, we prefer to work exclusively with
linear plots of |H(𝜔)| for the filters that we study.

1.5.7
Stability Evaluation in the Fourier Domain

In Section 1.3.3, we showed that an LTI discrete system is said to be BIBO stable
if its impulse response is absolutely summable (Eq. 1.52, replicated here for
convenience):

∞∑
n=−∞

|h(n)| < ∞. (1.112)

As shown in Section 1.4.6, the above equation is fulfilled if and only if the unit
circle of the Z-domain is part of the ROC of the transfer function. Furthermore
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(according to Eq. 1.85), the transfer function an LTI system evaluated in the unit
circle U(z) is equal to its FTF. That is

H(z)|z∈U =
∞∑

n=−∞
h(n) exp(i𝜔) = H(𝜔). (1.113)

Thus, since | exp(i𝜔)| = 1, this means that an LTI system will be BIBO stable if and
only if its FTF H(𝜔) is absolutely summable (finite) within the interval 𝜔 ∈ (−π, π),
that is

|H(𝜔)| ≤ { ∞∑
n=−∞

||h(n) exp(i𝜔)|| = ∞∑
n=−∞

|h(n)|} < ∞. (1.114)

To summarize, an LTI system is said to be BIBO stable if any of the following
(equivalent) conditions is fulfilled:

• Its impulse response {h(n)} is absolutely summable;
• Its FTF H(𝜔) = {h(n)} is absolutely summable;
• The unit circle of the Z-domain U(z) is part of the ROC of its transfer function

H(z) = {h(n)}.

1.6
Convolution-Based One-Dimensional (1D) Linear Filters

In signal processing, a finite impulse response (FIR) filter is a linear system
whose impulse response is of finite duration, because it settles to zero in finite
time. In contrast, infinite impulse response (IIR) filters may continue to respond
indefinitely because of some internal feedback. In this section we present the
Z-transform and FTF analysis of one-dimensional (1D) FIR and IIR filters, which
allows us to analyze the filter’s stability along with its spectral frequency behavior.

1.6.1
One-Dimensional Finite Impulse Response (FIR) Filters

For an FIR filter, the output is a weighted sum of the current value and a finite
number of previous values of the input (Figure 1.27). This operation is described
by the following equation:

f (t) = b0I(t) + b1I(t − 1) + · · · + bNI(t − N) (1.115)

=
N∑

n=0

bnI(t − n) = I(t)
N∑

n=0

bn𝛿(t − n), (1.116)

where N is the filter order, I(t) is the input signal, f (t) is the output signal, and bn

are the filter coefficients that make up the impulse response. Then, the impulse
response for an FIR filter is given by

h(t) =
N∑

k=0

bn𝛿(t − n) (1.117)
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I(t) f(t)

n
N

= 1 bn z
−n

Figure 1.27 General diagram for a finite impulse response (FIR) filter.

I(t) f(t)
1/3

z−1 + z−2

Figure 1.28 Diagram of a three-step averaging system.

and its Z-transform yields the transfer function of the FIR filter:

H(z) = Z{h(t)} =
∞∑

n=−∞
h(n)z−n =

N∑
n=0

bnz−n. (1.118)

The impulse response of an Nth-order discrete-time FIR filter lasts for N + 1
samples (where bn ≠ 0), and then settles to zero. This means that all FIR filters are
BIBO stable since their ROCs include at least {z ∶ 0 < |z| < ∞}.

Example: A Three-Step Averaging Filter
Consider the three-step averaging system presented in Figure 1.28, where the
output signal f (t) is given by

f (t) = 1
3
[I(t) + I(t − 1) + I(t − 2)], (1.119)

or in terms of its (finite) impulse response

f (t) = I(t) ∗ h3(t),

h3(t) =
2∑

n=0

(1∕3)𝛿(t − n). (1.120)

Thus the Z-transfer function for this FIR filter, H(z) = F(z)∕I(z), is

H(z) = {h3(t)} = 1
3
(1 + z−1 + z−2) = 1

3z2
(1 + z + z2). (1.121)

As illustrated in Figure 1.29a, this ROC (given by 0 < |z| ≤ ∞) includes the unit
circle so this system is said to be BIBO stable (as expected). Furthermore, its FTF,
H(z = ei𝜔), exists and it is given by

H(𝜔) = (1∕3)[1 + exp(−i𝜔) + exp(−i2𝜔), (1.122)

which corresponds to a low-pass filter as illustrated in Figure 1.29b.

Example: A Three-Step Band-Pass (Quadrature) Filter
Consider the three-step averaging system described in Eq. (1.120). According to
the so-called frequency translation property of the Fourier transform (Table 1.4),
one can ‘‘displace’’ the spectral response of this linear filter by multiplying its
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Figure 1.29 (a) Pole-zero plot for the three-step averaging filter discussed in this example
and (b) the absolute value of its FTF.

I(t) f(t)
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eiω0z−1 + ei2ω0z−2

Figure 1.30 Diagram of a three-step band-pass (quadrature) system.

impulse response by a complex sinusoidal signal, thus making it a band-pass filter
(Figure 1.30):

h(t) = exp(i𝜔0t)
2∑

n=0

(1∕3)𝛿(t − n),

H(𝜔) = (1∕3)
{

1 + exp[−i(𝜔 − 𝜔0)] + exp[−i2(𝜔 − 𝜔0)]
}
. (1.123)

The corresponding pole-zero plot and the FTF plot are presented in Figure 1.31,
with 𝜔0 = 2π∕3 for illustrative purposes.

From the panel (b), it should be noted that with the proper selection of 𝜔0 this
FTF fulfills the so-called quadrature conditions [30], given by

H(𝜔0) ≠ 0, H(0) = H(−𝜔0) = 0, (1.124)

so we can also say that this is a quadrature filter. This kind of filters play an
extremely important role in the analysis of fringe patterns (as we will show in
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0.5

1

(a) (b)

Im(z)

1

−π −2π/3 2π/3 π0

Figure 1.31 (a) Pole-zero plot for the frequency-displaced three-step averaging filter dis-
cussed in this example and (b) the absolute value of its FTF.
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Figure 1.32 General diagram for an infinite impulse response (IIR) filter.

Chapter 2). For now, it is enough to note that for some cases they may be obtained
by multiplying the impulse response of a low-pass filter with a complex sinusoidal
function.

1.6.2
One-Dimensional Infinite Impulse Response (IIR) Filters

For IIR, filters the output at a given time is given by a weighted sum of the
current and a finite number of previous values of both the input and the output, as
illustrated in Figure 1.32. IIR filters are often described and implemented in terms
of a difference equation

f (t) = 1
a0

{
b0I(t) + b1I(t − 1) + · · · + bPI(t − P)

−a1f (t − 1) − a2f (t − 2) − · · · − aQ f (t − Q)
}

(1.125)

with P and Q being the feed-forward and the feedback filter order, respectively. A
condensed form of this difference equation is given by

Q∑
n=0

anf (t − n) =
P∑

m=0

bmI(t − m), (1.126)

where an and bm are, respectively, the feedback and feed-forward filter coefficients.
To find the transfer function of this filter, first we take the Z-transform of each side
of the above equation, where we use the time-shift property to obtain

Q∑
n=0

anz−nF(z) =
P∑

m=0

bmz−mI(z). (1.127)

Solving for the transfer function results in

H(z) = F(z)
I(z)

=
∑P

m=0 bmz−m∑Q
n=0 anz−n

. (1.128)

In most IIR filter designs, a0 = 1 so the transfer function is often expressed as

H(z) =
∑P

m=0 bmz−m

1 +
∑Q

n=1 anz−n
. (1.129)

Clearly, the transfer function of an IIR filter has poles. So, in order to determine
whether an IIR filter is BIBO stable, we have to locate these poles and find whether
the unit circle U(z) is part of its ROC.
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Figure 1.33 Diagram of a first-order recursive linear filter.

Example: A First-Order Recursive Low-Pass Filter
The first-order recursive linear filter illustrated in Figure 1.33 can be described by
the following recursive equation:

f (t) = 𝜂f (t − 1) + I(t). (1.130)

Taking the Z-transform of the above equation, we have

F(z) = 𝜂z−1F(z) + I(z). (1.131)

And solving for the transfer function, H(z) = F(z)∕I(z), results in

H(z) = 1
1 − 𝜂z−1

= z
z − 𝜂

. (1.132)

As illustrated in Figure 1.34a, the transfer function H(z) contains a simple zero at
z = 0 and a simple pole at z = 𝜂. So the ROC will contain the unit circle (producing
a stable system) if and only if 𝜂 < 1. Furthermore, its FTF, H(z = ei𝜔), exists and it
is given by

H(𝜔) = 1
1 − 𝜂 exp(−i𝜔)

, (1.133)

which corresponds to a low-pass filter as illustrated in Figure 1.34b.

Example: A First-Order Recursive Band-Pass Filter
By changing 𝜂 ⇒ 𝜂 exp(i𝜔0) in our previous example (Figure 1.35), it is straightfor-
ward to see that the transfer function is now given by

H(z) = z
z − 𝜂 exp(i𝜔0)

, (1.134)

while the corresponding FTF is given by
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Figure 1.34 (a) ROC for the first-order recursive filter discussed in this example and (b) its
FTF. Here 𝜂 = 0.95 for illustrative purposes.
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Figure 1.35 Diagram of a quadrature first-order recursive band-pass filter.
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Figure 1.36 (a) ROC for the first-order recursive filter discussed in this example and (b) its
FTF.

H(𝜔) = 1
1 − 𝜂 exp[−i(𝜔 − 𝜔0)]

. (1.135)

As illustrated in Figure 1.36, this recursive system remains stable for 𝜂 < 1 and
represents a narrow band-pass filter centered around 𝜔0.

1.7
Convolution-Based two-dimensional (2D) Linear Filters

The input data in fringe pattern analysis are typically described at every given time
by discrete arrays that depend on two independent variables (x and y). Generally
speaking, fringe patterns mostly contain a low-frequency signal along with a
high-frequency degrading noise (multiplicative or additive). Therefore, low-pass
filtering of a fringe pattern may remove a substantial amount of noise, making the
demodulation process more reliable.

In this section, we discuss the generalization for two-dimensional (2D) FIR
and IIR filters. This analysis should allow us to understand higher dimensional
generalizations, especially when considering linearly independent variables (e.g.,
spatiotemporal digital filters). Luckily, most properties previously discussed in our
review of the 1D linear filter theory can be directly generalized to 2D linear filters.

1.7.1
Two-Dimensional (2D) Fourier and Z-Transforms

As in the 1D case, the analysis of 2D linear filters is usually carried out entirely in
the frequency domain. Thus, we need to define at least the ‘‘direct’’ formula for the
2D Fourier transform and 2D Z-transform, that is
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{ f (x, y)} = F(u, v) = ∫ ∫ℝ2

f (x, y) exp
[
−i(ux + vy)

]
dxdy, (1.136)

{ f (x, y)} = F(zx, zy) =
∞∑

n=−∞

∞∑
m=−∞

f (n,m)z−n
x z−m

y . (1.137)

Similarly, the 2D DTFT can be found by evaluating the 2D Z-transform in
zx = exp(iu) and zy = exp(iv). That is,

{ f (n,m)} = F(u, v) =
∞∑

n=−∞

∞∑
m=−∞

f (n,m) exp[−i(nu + mv)], (1.138)

where, as before, f (n,m) = f (x, y)||(x, y)=(n,m). Once again, nowadays virtually any
processing required is done on digital systems, so in the practice the formulas in
Eqs. (1.137–1.138) are the ones we actually implement.

1.7.2
Stability Analysis of 2D Linear Filters

The general form for a 2D digital linear filter of input I(x, y) and output f (x, y) is
given by

N∕2∑
n=−N∕2

M∕2∑
m=−M∕2

an,m f (x − n, y − m) =
N∕2∑

n=−N∕2

M∕2∑
m=−M∕2

bn,mI(x − n, y − m). (1.139)

Taking its Z-transform and solving for the transfer function results in

H(zx, zy) =
F(zx, zy)
I(zx, zy)

=

∑N∕2
n=−N∕2

∑M∕2
m=−M∕2 bn,mz−n

x z−m
y∑N∕2

n=−N∕2

∑M∕2
m=−M∕2 an,mz−n

x z−m
y

. (1.140)

The ROC consists of the 2D set of points (zx, zy) for which H(zx, zy) is absolutely
summable, which in turn translates into finding the location of its poles and zeros.
A two-dimensional linear system is BIBO stable if its transfer function H(zx, zy)
has no singularities within the unit bidisc, defined by the set

U
2
= {(z−1

x , z−1
y ) ∶ |||z−1

x
||| ≤ 1, |||z−1

y
||| ≤ 1}. (1.141)

According to Shank’s theorem [31], by expressing the transfer function as the
(causal) rational function

H(zx, zy) =
N(z−1

x , z−1
y )

D(z−1
x , z−1

y )
=
∑N

j=0

∑M
k=0 bjkz−j

x z−k
y∑M

j=0

∑M
k=0 ajkz−j

x z−k
y

; a00 = 1 (1.142)

the corresponding 2D linear system will be BIBO stable if N(z−1
x , z−1

y ) and

D(z−1
x , z−1

y ) have no common factor, and if

D(z−1
x , z−1

y ) ≠ 0, for (z−1
x , z−1

y ) ∈ U
2
. (1.143)

However, since the zeros of polynomials of two complex variables are not isolated
points, in general there will be an infinite number of singularities and verifying the



1.7 Convolution-Based two-dimensional (2D) Linear Filters 41

previous condition may be rather difficult and cumbersome. A more convenient
approach for our purposes can be stated as follows (Strintzis’ theorem [31]): a 2D
digital filter is BIBO stable if and only if the following conditions are fulfilled:

• D(1, z−1
y ) ≠ 0, for |z−1

y | ≤ 1,

• D(z−1
x , 1) ≠ 0, for |z−1

x | ≤ 1,
• D(z−1

x , z−1
y ) ≠ 0, for (z−1

x , z−1
y ) ∈ U2.

Here, the unit bicircle U2 is given by

U2 =
{(

z−1
x , z−1

y

)
∶ |z−1

x | = 1, |z−1
x | = 1

}
. (1.144)

The first and second conditions translate as locating the poles of 1D digital
filters, whereas the third condition means that the FTF must remain bounded:|H(u, v)| < ∞. Thus, the stability of 2D filters can be assessed by means of DTFT
plots and the 1D filters’ theory previously analyzed.

Example: A 3 × 3 Averaging Convolution Filter
The convolution averaging window is by far the most used low-pass filter in fringe
analysis. Convolution with an averaging window represents a 2D FIR filter, so we
know from our previous analysis that it is always BIBO stable. The discrete impulse
response of the convolution averaging window is typically represented by a matrix.
For instance, consider the 3 × 3 averaging filter, given by

h(x, y) = 1
9

⎛⎜⎜⎝
1 1 1
1 1 1
1 1 1

⎞⎟⎟⎠ . (1.145)

The application of this particular filter can be expressed in functional form as

f (x, y) = I(x, y) ∗ h(x, y) = I(x, y) ∗
1∑

m=−1

1∑
n=−1

1
9
𝛿(x − n, y − m),

= 1
9

1∑
m=−1

1∑
n=−1

I(x − m, y − n). (1.146)

The 2D frequency response of this 3 × 3 convolution matrix is given by

H(u, v) = (1∕9)
[
1 + 2 cos u + 2 cos v + 2 cos

√
2(u + v)

+2 cos
√

2(u − v)
]
. (1.147)

Clearly, this 2D FTF is bounded for all (u, v) ∈ ℝ2, as expected.
Small-size convolution filters may be used several times to decrease the band-

pass frequency; this also changes the spectral shape of the filter. In general, the
FTF of a sequence of identical low-pass filters will approach a Gaussian-shaped
response, as can be seen in Figure 1.37.

To summarize, all convolution-based 2D linear filters have an FIR. For examples
of 2D IIR filters, see Section 1.8.2.
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Figure 1.37 (a–d) Frequency transfer function of a 3 × 3 averaging window convoluted
with itself n times. Note how the frequency response tends to a Gaussian as the number
of convolutions increase.

1.8
Regularized Spatial Linear Filtering Techniques

Convolution-based linear filtering is the most basic operation in digital signal pro-
cessing but is not always the best option in fringe pattern analysis: interferometric
signals are bounded by spatial, temporal, or spatiotemporal pupils (diaphragms,
finite sequences of sampled data, etc.), and right at the edge of these bounding
pupils, convolution filters mix up well-defined interferometric data with invalid
background outside the pupils where no fringe data is available or defined.

The edge distortion may be so significant that some people shrink the interfero-
gram’s area during spatial filtering to avoid those unreliable pixels near the edge.
While this approach may be practical and easy to implement, it implies discarding
valid data. In this section, we will show that classical regularization techniques
are viable alternatives for convolution linear filtering, which allow us to cope with
bounding pupils reducing the phase distortion near the edges.

1.8.1
Classical Regularization for Low-Pass Filtering

The prototypical example for classical regularization is the low-pass filtering process
of a noisy signal. According to Marroquin et al. [32], it may be stated as follows: given
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the observations I(⋅), find a smooth function f (⋅) defined on a two-dimensional
field L, which may be modeled by

I(x, y) = f (x, y) + n(x, y), ∀(x, y) ∈ S (1.148)

where n(⋅) is a high-frequency noise field (e.g., a white Gaussian noise), and S is
the subset of L where observations have a good signal-to-noise ratio.

The low-pass filtering process may be seen as an optimizing inverse problem, in
which one strikes a compromise between obtaining a smooth filtered field f (x, y)
and keeping a good fidelity to the observed data I(x, y). In the continuous domain,
it can be stated as the minimization of the following energy functional:

U
[

f (x, y)
]
= ∫ ∫(x,y)∈S

{[
f (x, y) − I(x, y)

]2

+ 𝜂

[
∂f (x, y)
∂x

]2

+ 𝜂

[
∂f (x, y)

∂y

]2
}

dxdy. (1.149)

On the right-hand side of the above equation, the first term measures the fidelity
between the smoothed field f (x, y) and the observed data I(x, y) in a least-squares
sense. The second term (the regularizer) penalizes the departure from smoothness
of the filtered field f (x, y) by restricting the solution within the space of continuous
functions up to the first derivative (the C1 functional space); this is known as a
first-order membrane regularizer because it corresponds to the mechanical energy of
a 2D membrane, f (x, y), attached by linear springs to the observations I(x, y). The
parameter 𝜂 measures the stiffness of the membrane model; a high stiffness value
will lead to a smoother filtered field (this will be demonstrated in the following
subsection).

Another widely used energy functional is constructed using a second-order or
metallic thin-plate regularizer, which restricts the filtered field f (x, y) within the
C2 functional space (i.e., the space of continuous functions up to the second
derivative). In the continuous domain, this energy functional may be stated
as

U
[

f (x, y)
]
= ∫ ∫(x,y)∈S

{[
f (x, y) − I(x, y)

]2 + 𝜂

[
∂2f (x, y)
∂x2

]2

+ 𝜂

[
∂2f (x, y)

∂y2

]2

+ 𝜂

[
∂2f (x, y)
∂x∂y

]2
}

dxdy. (1.150)

Similar to the first-order regularizer, this energy functional corresponds to a metallic
thin plate f (x, y) attached by linear springs to the observations I(x, y), where the
parameter 𝜂 indicates the stiffness of these linear springs. The difference between
both optimizing systems is schematically illustrated in Figure 1.38 (showing just a
horizontal slice for ease of observation).

In the discrete version of the energy functionals shown before (the ones actually
used on a digital computer), the functions f (x, y) and I(x, y) are now defined on
the nodes of a regular lattice L and the integrals become sums over the domain of
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Figure 1.38 Diagram of the estimated fields obtained with (a) first-order membrane and
(b) second-order metallic thin-plate regularizers.

interest, that is,

U
[

f (x, y)
]
=

∑
(x,y)∈S

{[
f (x, y) − I(x, y)

]2 + 𝜂R
[

f (x, y)
]}

(1.151)

where S is the subset of L where observations are available. The discrete version of
the first-order regularizer R1

[
f (x, y)

]
may be approximated by

R1

[
f (x, y)

]
=
[

f (x, y) − f (x − 1, y)
]2 +

[
f (x, y) − f (x, y − 1)

]2
(1.152)

and the second-order regularizer R2

[
f (x, y)

]
may be approximated by

R2

[
f (x, y)

]
=
[

f (x + 1, y) − 2f (x, y) − f (x − 1, y)
]2

+
[

f (x, y + 1) − 2f (x, y) − f (x, y − 1)
]2

+
[
[ f (x + 1, y + 1) − f (x − 1, y − 1)

+ f (x − 1, y + 1) − f (x + 1, y − 1)
]2
. (1.153)

A simple way to optimize the discrete energy functionals stated in this section is
by gradient descent

f 0(x, y) = I(x, y),

f k+1(x, y) = f k(x, y) − 𝜇
∂U

[
f (x, y)

]
∂f (x, y)

, (1.154)

where k is the iteration number and 𝜇 ≪ 1 is the step size of the gradient
search. However, gradient descent is a slow procedure, especially for high-order
regularizers, so one may need to implement more complex but faster approaches
(conjugate gradient method, Newton’s method, etc.).

Up to this point, we have only established the groundwork of regularized low-pass
filtering. Now we will see a practical way of implementing it in a digital computer
using an irregularly shaped domain S. Let us define an indicator function m(x, y)
in the lattice L having N × M nodes:

m(x, y) =

{
1 ∀(x, y) ∈ S,

0 otherwise.
(1.155)



1.8 Regularized Spatial Linear Filtering Techniques 45

Using this indicator field, the filtering problem with a first-order regularizer may
be rewritten as

U
[

f (x, y)
]
=

N−1∑
x=0

M−1∑
y=0

{[
f (x, y) − I(x, y)

]2
m(x, y) + 𝜂R

[
f (x, y)

]}
, (1.156)

where

R
[

f (x, y)
]
=
[

f (x, y) − f (x − 1, y)
]2

m(x, y)m(x − 1, y)

+
[

f (x, y) − f (x, y − 1)
]2

m(x, y)m(x, y − 1). (1.157)

Then the derivative may be found as

∂U
[

f (x, y)
]

∂f (x, y)
=
[

f (x, y) − I(x, y)
]2

m(x, y) + 𝜂
[

f (x, y) − f (x − 1, y)
]

m(x, y)m(x − 1, y)

+ 𝜂
[

f (x + 1, y) − f (x, y)
]

m(x, y)m(x + 1, y)
+ 𝜂

[
f (x, y) − f (x, y − 1)

]
m(x, y)m(x, y − 1)

+ 𝜂
[

f (x, y) − f (x, y + 1)
]

m(x, y)m(x, y + 1). (1.158)

Note that only the difference terms lying completely within the region of valid fringe
data marked by m(x, y) survive. In other words, the indicator field m(x, y) is the
function that actually decouples valid fringe data from its surrounding background.
A numerical comparison of this regularizing low-pass filtering approach versus
traditional convolution-based low-pass filtering is shown in Figure 1.39.

(a) Original data (b) Averaging filtered (c) Regularizing filtered

Figure 1.39 Qualitative comparison of
convolution-based low-pass filtering versus
the proposed regularizing low-pass filtering.
In panel (a), we have a noisy fringe pattern
bounded by two circular pupils. In panel
(b), we have the smoothed field as obtained
with convolution based low-pass filtering.

Note the distortion near the inner and outer
boundaries due to the mixing with the sur-
rounding background. In panel (c), we have
the estimated field obtained with first-order
regularizing low-pass filtering. Here, the
fringe data was properly decoupled from the
background.
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Extrapolation and/or interpolation. Classical regularization techniques also allow
us to extrapolate and/or interpolate data in a well-defined way, simply by defining
two different indicator functions: one for the region with valid data, m1(x, y); and
other for the region where the estimated field f (x, y) will be extrapolated and/or
interpolated, m2(x, y). For instance, using the first-order regularizer, we have

U
[

f (x, y)
]
=

N−1∑
x=0

M−1∑
y=0

{[
f (x, y) − I(x, y)

]2
m1(x, y)

+ 𝜂
[

f (x, y) − f (x − 1, y)
]2

m2(x, y)m2(x − 1, y)

+ 𝜂
[

f (x, y) − f (x, y − 1)
]2

m2(x, y)m2(x, y − 1)
}
. (1.159)

It is important to remark that m2(x, y) must be a superset of m1(x, y); in other
words, m2(x, y) = 1 for at least all the regions where m1(x, y) = 1.

As before, the first term in the above equation measures the fidelity between
the input data I(x, y) and the estimated field f (x, y) in the least-squares sense;
this is done only in the region with valid data, where m1(x, y) = 1. The remaining
terms restrict the estimated field f (x, y) within the C1 functional space for all
the points where m2(x, y) = 1; this includes certain regions where the input data
is undefined. The extrapolation and/or interpolation takes place because of the
regularizing restrictions: for this first-order (rubber membrane) regularizer, f (x, y)
for {(x, y) ∶ m1(x, y) = 0,m2(x, y) = 1} is estimated enforcing the continuity of this
2D field with f (x ± 1, y ± 1) for {(x, y) ∶ m1(x, y) = 1,m2(x, y) = 1}. Similarly, if we
apply a second-order (metallic thin-plate) regularizer, f (x, y) would be estimated by
preserving the curvature of the 2D field. Finally, if we set a very low value for the
stiffness parameter 𝜂 ≪ 1, we may extrapolate and/or interpolate the input data
without any noticeable low-pass filtering.

1.8.2
Spectral Response of 2D Regularized Low-Pass Filters

From the above discussion, we know that the 2D field f (x, y) that minimizes the
energy functionals seen in the previous section smooths out the input data I(x, y).
But in order to have a quantitative idea of the amount of smoothing, we need
to find the frequency response of these regularizing low-pass filters [32–34]. For
the first-order regularizer (from Eqs. 1.151 and 1.152), considering an infinite 2D
lattice and setting the gradient to zero, we have

f (x, y) − I(x, y) + 𝜂
[
−f (x − 1, y) + 2f (x, y) − f (x − 1, y)

]
+𝜂

[
−f (x, y − 1) + 2f (x, y) − f (x, y − 1)

]
= 0. (1.160)

Taking its Z-transform and solving for the transfer function results in

H1(zx, zy) =
F(zx, zy)
I(zx, zy)

= 1
1 + 𝜂(4 − z−1

x − zx − z−1
y − zy)

, (1.161)
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Figure 1.40 Frequency transfer function |H(u, v)| for (a) the first-order regularizer and (b)
the second-order regularizer. In both cases, 𝜂 = 5.

with an ROC given by

ROC = {(zx, zy) ∶ |zx| < ∞, |zy| < ∞}, for 𝜂 > 0. (1.162)

Since the ROC clearly includes the biunit circle (Eq. 1.144), this 2D IIR filter is
found to be BIBO stable and its FTF is obtained by substituting zx = exp(iu), and
zy = exp(iv):

H1(u, v) =
F(u, v)
I(u, v)

= 1
1 + 2𝜂(2 − cos u − cos v)

. (1.163)

Similarly, for the second-order regularizer (from Eqs. 1.151 and 1.153), we obtain
the following FTF:

H2(u, v) =
1

1 + 2𝜂[8 − 6(cos u + cos v) + cos 2u + cos 2v + 2 cos u cos v]
. (1.164)

As illustrated in Figures 1.40 and 1.41, these FTFs behave somewhat like 2D
Lorentzian functions, where the bandwidth of these low-pass filters is controlled
by the parameter 𝜂.

To summarize, regularization filters may be considered to be a more robust
approach than convolution filters in the following sense:

• They prevent the mixing of valid fringe data with the background signal (with this,
the distorting effect at the boundary is minimized). This is especially important
when dealing with irregular-shaped regions and finite samples sequences;

• They tolerate missing observations because of the capacity of these filters to
extrapolate and/or interpolate over regions of missing data with a well-defined
behavior. This behavior is controlled by the order of the regularization term.

Furthermore, one may obtain many different types of filters by modifying the
potentials in the cost function (as will be shown in Chapter 4). For instance,
if I(x, y) represents an interferogram phase-modulated with a generalized carrier
c(x, y), one may low-pass filter the synchronous product I(x, y) exp[ic(x, y)] following
the classical regularized approach discussed in this section to produce a regularized
quadrature band-pass filter [32–35].
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Figure 1.41 Horizontal slice (along the axis v = 0) of the frequency transfer function|H(u, v)| for the first-order regularizer (a) and the second-order regularizer (b), using several
values for the parameter 𝜂.

1.9
Stochastic Processes

In this section we present a brief review of the theory of stochastic processes. This
will allow us to consider more realistic models of our signals under study in the
following chapters; it will also establish the basis for a better assessment of many
algorithms commonly used in fringe pattern analysis. For a thorough review of
this topic, we recommend the books by Artés-Rodrı́guez et al. [23], B. P. Lathi [36],
and Papoulis and Unnikrishna Pillai [37].

1.9.1
Definitions and Basic Concepts

A stochastic process is an indexed collection of random variables where the index
is conventionally associated with the time [36]; basically, it is a process in which the
outcome at any given time instance is given by a random variable.

A continuous random variable X can be characterized by its PDF (probablity
density function), given by a nonnegative function fX that describes the relative
likelihood for X to take on a given value, and its statistical averages, given by

E{g(X)} = ∫
∞

−∞
g(x) fX (x)dx. (1.165)

Note that in this section x represents all possible values that can take the random
variable X ; it does not mean spatial dependency. Some statistical averages of special
interest are the mean (or expected value) 𝜇X , and the variance 𝜎2, given by

𝜇X = E{X}, (1.166)

𝜎2 = E{X2} − E2{X}. (1.167)
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Figure 1.42 Computer-simulated realization of a white stochastic process with normal
distribution.

The most commonly observed PDF is the Gaussian one, given by

fX (x) =
1

𝜎
√

2π
exp

[
−
(x − 𝜇X )2

2𝜎2

]
, (1.168)

where the mean matches with the parameter 𝜇X and its variance is given by 𝜎2.
The Gaussian distribution is a valid model for many random processes observed in
nature; particularly, it is a good model for the electronic noise [23]. In Figure 1.42,
we present a numerical simulation of a very large sequence of random values and
their (normalized) frequency distribution. As can be seen, this sequence of random
values clearly follows a Gaussian distribution.

The abundance of the Gaussian distribution in nature may be explained as a
consequence of the central limit theorem [36]. In its simple form, this theorem
states that, given a set of independent random variables {X1, X2, … ,XN} with
mean 𝜇 and variance 𝜎 > 0, then the sequence of random variables

Yn =
Σn

k=1
(Xk − 𝜇)

𝜎
√

n
(1.169)

converges in distribution to a normal random variable (i.e., Gaussian with 𝜇Y = 0,
𝜎2

Y = 1).

Sum of two random processes. The PDF of the sum of two independent random
variables X and Y is obtained as the convolution of their PDFs [37], that is

fX+Y (x) = ∫
∞

−∞
fX (x) fY (x − y)dy = fX (x) ∗ fY (x). (1.170)

Ensemble averages for a stochastic process. For a continuous-time process, we say
that the variable X(t) describes a stochastic process if X(t) is a random variable for
all t ∈ ℝ [23]. It should be noted that, for a time-dependent process (where X(t) can
take continuous or discrete values), its ensemble averages are also time dependent,
that is

E{g[X(t)]} = ∫
∞

−∞
g(x) fX (x, t)dx. (1.171)
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To characterize a stochastic process, it is insufficient to characterize each of its
random variables; one also needs to characterize their statistical dependence, that
is, their ensemble averages. In digital signal processing, we are interested in those
process that can be characterized by their mean and autocorrelation functions.

The mean of a stochastic process X(t) is defined by

𝜇X (t) = E{X(t)} = ∫
∞

−∞
xfX (x, t)dx. (1.172)

And the autocorrelation function, which gives a description of how rapidly the
random process X(t) is changing with time, is defined by

RX (t1, t2) = E{X(t1)X∗(t2)}. (1.173)

Stationary random processes. A stochastic process is said to be stationary if
its statistical properties do not change with time. However, all processes are
nonstationary since they must begin at some finite time and must terminate at
some finite time (just like a purely sinusoidal signal does not exist in real life).
A stochastic process is said to be wide-sense (or weakly) stationary if its mean
value and autocorrelation functions are independent of a finite shift in the time
origin [36], that is, if

E{X(t)} = E{X(t + 𝜏)}, (1.174)

RX (t1, t2) = RX (t1 + 𝜏, t2 + 𝜏). (1.175)

For such processes, where the mean is constant and the autocorrelation depends
only in the time difference, the autocorrelation is simply denoted as

RX (𝜏) = RX (t + 𝜏, t). (1.176)

White process. A particular case of stationary stochastic processes is that in which
the autocorrelation of the samples at two different instants is zero. This way, a
stochastic stationary process X(t) is said to be white if its autocorrelation function
takes the form

RX (𝜏) = c0𝛿(𝜏) (1.177)

with c0 being a constant. The most common type of noise in in digital commu-
nications is the thermal noise [23] with power density c0 = 𝜂∕2, which can be
characterized as a white stochastic process with normal distribution [37].

Deterministic process. A deterministic signal may be considered a degenerated
stochastic process in which its realizations always take the same values. For
instance, consider a process X(t) that takes with unitary probability the value

X(t) = g(t), ∀ t ∈ ℝ. (1.178)

This process has a PDF given by

fX (x, t) = 𝛿
[
x − g(t)

]
, (1.179)
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from where it is straightforward to calculate its ensemble mean and autocorrelation
function as [37]

𝜇(t) = g(t),
RX (t1, t2) = g(t1)g(t2). (1.180)

1.9.2
Ergodic Stochastic Processes

A stochastic process is said to be ergodic if its ensemble averages are equal to the
(long-enough) temporal averages of any sample function [37], that is, if

lim
T→∞

1
2T ∫

T

−T
g[X(t)]dt = ∫

∞

−∞
g(x) fX (x, t)dx = E

{
g[X(t)]

}
. (1.181)

Particularly, a stochastic process X(t) is said to be ergodic in its mean if

lim
T→∞

1
2T ∫

T

−T
X(t)dt = 𝜇X , (1.182)

and is said to be ergodic in its autocorrelation function if

lim
T→∞

1
2T ∫

T

−T
X(t + 𝜏)X∗(t)dt = RX (𝜏). (1.183)

The ergodicity notion is extremely important since in practice we do not have
infinitely many sample functions available to compute ensemble averages. But if
the process is known to be ergodic, then we only need long-enough realizations.
As illustrated in Figure 1.43, ergodicity of a stochastic process is an even more
restrictive property than the stationary property (which, as we mentioned before,
is already difficult to prove analytically). Luckily for us, the stochastic processes
observed in fringe pattern analysis (usually additive distorting noise) are found to
be stationary and ergodic.

Stochastic processes

Wide-sense stationary

Stationary

Ergodic

Figure 1.43 Venn diagram of the stochastic processes classification.
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1.9.3
LTI System Response to Stochastic Signals

For an LTI system with impulse response function given by h(t), the output Y(t)
for a random input signal X(t) is given by Artés-Rodrı́guez et al. [23]

Y(t) = h(t) ∗ X(t). (1.184)

The linearity property of the convolution operation allows us to easily calculate
some ensemble averages of the output signal Y(t). For instance, the expectation
value 𝜇Y (t) = E{Y(t)} is given by

E{Y(t)} = E{h(t) ∗ X(t)}
= h(t) ∗ E{X(t)} = h(t) ∗ 𝜇X (t), (1.185)

where the property E{h(t)} = h(t) was applied since h(t) represents a deterministic
signal. The autocorrelation of the output signal Y(t) can also be determined from
the autocorrelation function of the input X(t) and the system input response h(t).
In general, RY (t1, t2) is given by Artés-Rodrı́guez et al. [23]

RY (t1, t2) = [h(t1) ∗ RX (t1, t2)] ∗ h∗(t2), (1.186)

where h∗(t) stands for the complex conjugate of h(t). Assuming that the input
signal X(t) represents a stochastic process, Eq. (1.186) is reduced to [23]

RY (𝜏) = RX (𝜏) ∗ [h(𝜏) ∗ h∗(−𝜏)]. (1.187)

These equations show that the ensemble averages of the output depend exclusively
on the input response function of the linear system and the ensemble averages of
the input.

1.9.4
Power Spectral Density (PSD) of a Stochastic Signal

To translate stochastic processes to the Fourier domain, there are at least two
major difficulties: a (stationary) stochastic process is not absolutely integrable, so
strictly speaking its Fourier transform does not exist; and, although the spectral
representation of a truncated realization does exist, in general it varies between
successive samples [36].

When working with (stationary) stochastic processes, we actually deal with gated
realizations since it is impossible to observe any processes for infinite periods of
time. Considering a stochastic process X(t), we can define its gated realization by

XT (t) = X(t)II(t∕T) =

{
X(t) for |t| ≤ T∕2,

0 for |t| > T∕2
(1.188)

where T is the observation period. Now, since XT (t) is absolutely integrable, we can
calculate its Fourier transform as

XT (𝜔) = ∫
T∕2

−T∕2
x(t) exp(−i𝜔t)dt, (1.189)
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Figure 1.44 Power spectral density of a computer-simulated 1024-sample realization of a
white stochastic process (a) and the ideally expected result (b) for reference.

which it is also a stochastic process. Assuming this process to be ergodic, we can
compute the ensemble average of the PSDs of all the sample functions to obtain
its PSD, given by

SX (𝜔) = lim
T→∞

E
{ 1

T
|XT (𝜔)|2} = ∫

∞

−∞
RX (𝜏) exp(−i𝜔𝜏)d𝜏. (1.190)

PSD of white noise. Applying the relations stated in Eq. (1.190) for a white noise
stochastic process N(t) with autocorrelation function given by RN(t) = (N0∕2)𝛿(t),
its PSD is straightforward to find:

SN(𝜔) = 
{

N0

2
𝛿(t)

}
=

N0

2
. (1.191)

That is, the white noise has a uniform PSD as illustrated in Figure 1.44. This
result is very important for our purposes because the most commonly observed
corrupting noise in fringe pattern analysis is modeled by a white stochastic process,
namely the additive white Gaussian noise (AWGN).

PSD of a linear system output. The other case of major interest in fringe pattern
analysis (and digital signal processing in general) is to find the PSD of a stochastic
process at the output of a linear filter [37].

From Eq. (1.187), by applying the convolution property, we have

{RY (𝜏)} = {RX (𝜏)}[H(𝜔)H∗(𝜔)], (1.192)

and by applying Eq. (1.190) results in

SY (𝜔) = SX (𝜔) |H(𝜔)|2 . (1.193)

That is, the PSD of the output is given by the PSD of the input times the square
of the filter’s FTF. For instance, in Figure 1.45 we show the PSD for the white
noise (previously shown in Figure 1.44) after being filtered by the well-known
three-step averaging filter. With this ends our brief review on the theory of
stochastic processes.
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Figure 1.45 Power spectral density of a computer-simulated 1024-sample realization for a
white stochastic process after being filtered with a three-step averaging system (a) and the
ideally expected result (b) for reference.

1.10
Summary and Conclusions

In this chapter, we reviewed the main theoretical results in digital linear systems
theory that are used in the rest of the book. In particular we discussed the following:

• We showed that the general problem of phase estimation from a single interfero-
gram image is, in general, an ill-posed inverse problem. That is because infinitely
many estimated phases may be compatible with the observed interferogram data
(Figure 1.1).

• We introduced the field of digital phase demodulation process through some
motivational examples (Figures 1.2–1.6).

• We gave a general schematic classification of the various strategies that one may
follow to actively modify the interferogram by introducing high frequency spatial
and/or temporal carriers, as also an overview of the main techniques used to
demodulate the measured phase in optical metrology (Figure 1.7).

• We then introduced the main signal classification schemes used in this book,
including continuous and discrete, complex and real, and deterministic and
random signals, among others. Then we introduced the main space sets of
functions used in the mathematical theory of digital signal processing, such
as the Dirac delta function and its wide use in digital signal processing. We
continued by introducing the concepts of the spectra and other characteristics
and limitations of the sampling process of a continuous signal.

• We then proceeded to study digital LTI systems along with their impulse response
functions. Afterward, some standard stability criteria applied to LTI systems were
discussed, such as the ROC and BIBO criteria.

• We discussed the DTFT and the Z-transform of sampled temporal signals and
LTI systems, highlighting their intrinsic relationship (z = exp(i𝜔)). These results
were generalized to two dimensions (2D) signals and LTI systems.

• The regularizing linear filtering paradigm was then introduced along with
their spectral response. Two standard linear regularizers were introduced: the
membrane and the thin-plate ones. Also we discussed how these regularized
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filters decouple in an optimal way the interferometric data just inside the
interferogram fringes from the undefined data outside it.

• Finally, in Section 1.9, the basic theory of stochastic process was reviewed and
applied to the analysis of noise in LTI systems. In this section, we also discussed
the concepts of stationarity and ergodicity of stochastic processes. We also
introduced the autocorrelation of a stochastic process and its Fourier transform,
which is the PSD of the stochastic process.






