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1
The Mathematical Methods of Electrodynamics

1.1
Vector and Tensor Algebra

1.1.1
The Definition of a Tensor and Tensor Operations

In three-dimensional space, select a rectangular and rectilinear (Cartesian1)) system
of coordinates x1, x2, x3. Regard the space as Euclidean. This means that all axioms
of Euclidean geometry2) and their consequences considered in school courses on
mathematics are valid in it. For instance, the square of the distance between two
close points is given by the following expression:

dl2 D dx2
1 C dx2

2 C dx2
3 .

Along with the original system of coordinates, consider some other systems of
common origin yet rotated with respect to the original one (Figure 1.1).

Figure 1.1 The rotation of the Cartesian system of coordinates.

1) René Descartes (Renatus Cartesius)
(1596–1650) was a French philosopher
and mathematician, the founder of the
coordinates method. He introduced a large
number of mathematical concepts and
notations used even now.

2) Euclid (lived in the third century BC) was
an ancient Greek scientist, “the father of
geometry.” His mathematical treatise entitled
Elements is the best known. Euclid studied
various aspects of geometric optics.
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2 1 The Mathematical Methods of Electrodynamics

A scalar or invariant is a quantity that does not change when the system of coor-
dinates is rotated, that is, it is the same in either the original or the rotated system
of coordinates

S 0 D S D inv . (1.1)

For instance, dl2 D dl 02 D inv.
In three-dimensional space, a vector is the titality of three quantities Vα (α D

1, 2, 3) defined in all coordinate systems and transformed according to the follow-
ing rule:

V 0
α D aα�V� (1.2)

(summing of elements over the repeated symbol �, from 1 to 3 is assumed). Here
V� are the projections of the vector on an axis of the original system of coordinates,
V 0

α are the projections of the vector on an axis of the rotated system, and aα� are
the coefficients of the transformation, which are the cosines of the angles between
the � axis of the original system and the α axis of the rotated system. They may be
written through the single vectors (orts) of the coordinate axes:

aα� D e0
α � e� . (1.3)

In three-dimensional space, a tensor of rank 2 is a nine-component quantity Tα�

(each index varies independently assuming three values: 1, 2, 3) which is defined
in every system of coordinates and, when a coordinate system is rotated, is trans-
formed as the products of the components of the two vectors A αV� , in the follow-
ing way:

T 0
α� D aαμ a�ν Tμν . (1.4)

In three-dimensional space, a tensor of rank s is a 3s-component quantity Tλ...ν

that is transformed as the product of s components of vectors:

T 0
�...� D a�μ . . . a�σ Tμ...σ . (1.5)

Scalars and vectors may be regarded as tensors of rank 0 and 1, respectively.
Rotation matrixba has the following properties:

1. Orthogonality

aαμ a�μ D δα� , aαμ aαν D δμν , (1.6)

where

δα� D 1 if α D � and δα� D 0 if α ¤ � (1.7)

is Kronecker symbol3);

3) Leopold Kronecker (1823–1891) was a German mathematician, a specialist in algebra and theory
of numbers.
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1.1 Vector and Tensor Algebra 3

2. The determinant of a rotation matrix equals 1:

detba � jbaj D 1 . (1.8)

3. The product of two rotation matrices

bc Dbabg , cα� D aαμ gμ� (1.9)

describes the evolution of a system resulting from two consecutive rotations,
first with matrixbg and then with matrixba.4) In the general case, rotation matri-
ces are noncommutative, that is,

babg ¤bgba . (1.10)

As follows from property 1, a reverse matrix defined by the relation

ba�1ba Dbaba�1 Db1 or a�1
αμ aμ� D aαμ a�1

μ� D δα (1.11)

results from the original matrix when the latter is transposed, that is, its
columns are substituted for lines and vice versa:

ba�1 DbQa , a�1
α� D Qaα� D a�α . (1.12)

The reverse transformation (1.2) looks like this:

V� D a�1
�α V 0

α . (1.13)

All vectors are transformed identically according to rule (1.2) when a coordinate
system is rotated. But they may behave in one of two ways if a system of coordinates
is inverted, that is,

x 0
α D �xα . (1.14)

Here the transformation matrix is aα� D �δα�. Vectors whose components, just
like coordinates xa , change their signs during inversions are called polar (regu-
lar, real) vectors. Vectors whose components do not change sign as the result of
inversions of coordinate systems are called axial vectors or pseudovectors (an angu-
lar velocity, a cross-product of two polar vectors A � B, etc.) This definition also
includes tensors of arbitrary rank s: when the inversion of coordinates occurs, the
components of polar (regular) tensors acquire a factor of (�1)s and the components
of pseudotensors acquire a factor of (�1)sC1.

The sum of two tensors of the same rank produces a third tensor of the same
rank with components

Q α� D Tα� C Pα� . (1.15)

4) The family all rotation operations forms makes a group of three-dimensional rotations.
See Gel’fand et al. (1958).
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4 1 The Mathematical Methods of Electrodynamics

The direct products of the components of two tensors (without summing) constitute
a tensor whose rank equals the sum of the ranks of the factors, for instance,

Q α�λ D Tα�Vλ , (1.16)

where Q α�λ is a tensor of rank 3.
The contraction of a tensor means the formation of a new tensor whose compo-

nents are produced by the selection of components with two identical symbols and,
further, their summing. For instance, Q α�� D A α is a vector and Q α�α D B� is
another vector. Contraction decreases the rank of the tensor by 2, for instance,

S D Tαα D inv (1.17)

is a scalar.
When an equality between tensors is written, the rule of the same tensor dimen-

sionality must be observed: only tensors of the same rank may be equated. This
means that the number of free symbols (over which no summation is done) must
be the same in the first and second members of an equality. The number of pairs
of “mute” symbols (those over which summing is done) may be any on the right
and on the left.

Tensors may be symmetric (antisymmetric) with respect to a pair of indices α
and � if their components satisfy the conditions

Q α�μ D Q �αμ (Q α�μ D �Q �αμ) . (1.18)

Tensor components may be either real or complex numbers. In the latter case, the
concepts of Hermitian5) and anti-Hermitian tensors play an important role. The
definition of a Hermitian tensor is as follows:

T h
α� D T h�

�α , (1.19)

where the asterisk indicates complex conjugation. The definition of an anti-
Hermitian tensor is as follows:

T ah
α� D �T ah�

�α . (1.20)

In applications, invariant unit tensors δα� and eα�λ are very important. The for-
mer is a symmetric polar tensor whose components coincide with the Kronecker
symbol (1.7), whereas the latter is antisymmetric over any pair of indices, and its
components are determined by the following conditions:

(a) e123 D 1 , eα�λ D �e�αλ D �eαλ� D eλα� D e�λα D �eλ�α . (1.21)

5) Charles Hermite (1822–1901) was a French mathematician, the author of works on classical
analysis, algebra, and theory of numbers.
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1.1 Vector and Tensor Algebra 5

It is called the Levi-Civita tensor.6) Both tensors, transforming during rotations ac-
cording to rule (1.7), are peculiar in that their components have the same values in
all coordinate systems:

δ0
α� D δα� , e0

α�λ D eα�λ . (1.22)

Problems

1.1. Prove equality (1.8). What is the determinant of the transformation matrix if
rotation is accompanied by the inversion of the coordinate axes?

1.2. Prove the equalities δ0
α� D δα� and e0

αμν D eαμν for an arbitrary rotation of a
coordinate system.

1.3. Write down the rule of transformation for the components of a pseudoten-
sor of rank s that would be valid not just for the rotation but also for the mirror
reflections of the coordinate axes.

1.4. Represent an arbitrary tensor of rank 2 Tα� as the sum of a symmetric tensor
(Sα� D S�α) and an antisymmetric tensor (A α� D �A �α). Make sure that this
representation is unique.

1.5. Represent an arbitrary complex tensor of rank 2 Tα� as the sum of a Hermitian
tensor (S h

α� D S h�
�α ) and an anti-Hermitian tensor (Ah

α� D �Ah�
�α). Make sure that

this representation is unique.

1.6. Show that

1. the contraction of a symmetric tensor and an antisymmetric tensor equals zero:
Sα� A α� D 0.

2. the contraction of two Hermitian tensors or two anti-Hermitian tensors of
rank 2 is a real number.

3. the contraction of a Hermitian tensor and an anti-Hermitian tensor of rank 2
is a purely imaginary number.

1.7. Show that the symmetry of a tensor is a property that is invariant with respect
to rotations, that is, a tensor that is symmetric (antisymmetric) over a pair of indices
in a certain system of reference remains symmetric (antisymmetric) over these
indices in every system rotated with respect to the original one.

1.8. Using rules (1.2)–(1.6) of tensor transformation, show that

1. A α is a vector (pseudovector) if A α Bα D inv and Bα is a vector (pseudovector).
2. A α is a vector if A α D Tα� B� in any system of coordinates and Tα� is a tensor

of rank 2, and B� is a vector;
3. Tαα D inv, where Tα� is a tensor of rank 2.

6) Tullio Levi-Civita (1873–1941) was an Italian mathematician who contributed to the development
of tensor analysis.
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6 1 The Mathematical Methods of Electrodynamics

4. εα� is a tensor of rank 2 if A α and Bα are vectors and A α D εα� B� in all
systems of coordinates. What is εα� if A α is a vector and Bα is a pseudovector?
What is εα� if A α and Bα are both pseudovectors?

5. A α�λBα� is a vector if A α�λ and Bα� are tensors of ranks 3 and 2, respectively.
6. Tα� Pα� is a pseudoscalar if Tα� and Pα� are a tensor and a pseudotensor of

rank 2, respectively.

1.9. Show the rule of the transformation of an aggregate of volumetric integrals
Tα� D R

xα x�dV in the cases of rotation and mirror reflection (xα , x� are Carte-
sian coordinates).

1.10. Show that the components of an antisymmetric tensor of rank 2 A α� D
�A �α (either polar or axial) may be identified by the components of a certain vector
Cα (either axial or polar) because they are transformed in the same way in the case
of rotation or reflection. In this case, Cα is called the vector dual to tensor A α�.

1.11. Prove the following equalities:

[A � B]α D eα�λA � Bλ ,

[A � B] � C D eα�λ A α B� Cλ D
ˇ̌̌̌
ˇ̌A 1 A 2 A 3

B1 B2 B3

C1 C2 C3

ˇ̌̌̌
ˇ̌ . (1.23)

How are the vector, the dual vector, and the mixed products transformed in the
cases of rotation and reflection if all three vectors are polar?

1.12. Show that if the respective components of two vectors are proportional in a
certain system of coordinates, then they are also proportional in any other system
of coordinates. Vectors such as these are called parallel vectors.

1.13. The area of an elementary parallelogram constructed on the small vectors
dr and dr0 is represented by vector dS directed along a normal to the plane of the
parallelogram and, by the absolute value, is equal to its area. Write down dSα in
tensor notation.

1.14. Write down, in tensor notation, the volume dV of the elementary paral-
lelepiped constructed on the small vectors dr, dr 0, dr00. How is it transformed in
the cases of rotation and reflection?

1.15. Prove the identities

(A � B) � (C � D) � (A � C )(B � D) C (A � D)(B � C ) D 0 ,

(A � B) � (C � D) C (B � C) � (A � D) C (C � A) � (B � D) D 0 ,

A � (B � C ) C B � (C � A) C C � (A � B) D 0 ,

(A � B) � (C � D) � (A � [B � D])C C (A � [B � C ])D D 0 ,

(A � B) � (C � D) � (A � [C � D ])B C (B � [C � D])A D 0 . (1.24)
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1.1 Vector and Tensor Algebra 7

1.16. In a spherical system of coordinates, the two directions n and n0 are deter-
mined by the angles # , α and # 0, α0. Find the cosine of the angle θ between them.

1.17. In certain cases, it may be more convenient to consider the complex cyclic
components

A˙1 D �A x ˙ i A yp
2

, A 0 D A z , (1.25)

of the vector A instead of its Cartesian components. Express the scalar and vector
products of two vectors through their cyclic components. Also, express the cyclic
components of the radius vector through spherical functions.7)

1.18. Write down the matrixbg of the transformation of the components of a vector
in the case of the rotation of the Cartesian system of coordinates around the Ox3

axis by angle α.

1.19. Form the matrices of the transformation of basic orts when changing from
Cartesian to spherical coordinates and back and from Cartesian to cylindrical coor-
dinates and back.

1.20. Find the matrix bg of the transformation of the components of a vector in
the case of the rotation of the coordinate axes determined by the Euler angles8) α1,
θ , and α2 (Figure 1.2) by mutually multiplying matrices corresponding to rotation
around the Ox3 axis by angle α1, around the line of nodes O N by angle θ , and
around the O x 0

3 axis by angle α2.

Figure 1.2 The specification of the rotation of Cartesian axes by Euler angles α1, θ , α2.

1.21. Find the matrix bD(α1θ α2) used for transforming the cyclic components of
vector (1.25) when rotating the system of coordinates. The rotation is determined
by the Euler angles α1, θ , and α2 (Figure 1.2).

7) The definition of spherical functions is given in Section 1.3; see the answer to Problem 1.118�
8) Leonard Euler (1707–1783) was an outstanding mathematician, astronomer, and physicist who

astonished his contemporaries by his efficiency, and range of interests. He was born and studied
in Switzerland, but for most of his life worked at the Saint Petersburg Academy of Sciences. Pierre
Laplace called him the teacher of all mathematicians of the second half of the eighteenth century.
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8 1 The Mathematical Methods of Electrodynamics

1.22. Show that the matrix of an infinitesimal rotation of a coordinate system may
be written asba D 1 Cbε, wherebε is an antisymmetric matrix (εα� D �ε�α). Find
the geometric meaning of εα�.

1.23. Show that the representation of a small rotation by vector δ' used in the
solution of the previous problem is only possible in relation to quantities of the
first order of smallness. In the next order, the vector of the resulting rotation is not
equal to the sum of the vectors of individual rotations and the relevant matrices do
not commute.

1.1.2
The Principal Values and Invariants of a Symmetric Tensor of Rank 2

The selection of a system of coordinates wherein a certain tensor has the simplest
structure is of great practical importance. Consider the selection of such a system
for a symmetric tensor of rank 2.

If vector n satisfies the condition

Sα� n� D S nα , α, � D 1, 2, 3 , (1.26)

where S is a certain scalar, then the direction that is determined by vector n is called
the principal direction of the tensor, vector n is called the proper vector of the tensor,
and S is called its principal value.

Example 1.1

Reducing a real (Sα� D S�
α�) symmetric (Sα� D S�α) tensor of rank 2 to diagonal

form means finding such a system of axes wherein only the diagonal components
of the tensor are not equal to zero. Specify a way of calculation of the principal
values and the principal directions of such tensor.

Solution. Use the system of algebraic equations (1.26) to find the proper vectors
and principal values of the tensor in question. Normalize the proper vectors to 1:
n�

α nα D 1. The equations (1.26) and the properties of the tensor Sα� show us that
the proper values of S are real scalars: S D n�

α Sα� n� D S�. They follow from the
condition of equality to zero of the determinant of the system (1.26):

jSα� � S δα�j D 0 . (1.27)

This is a cubic algebraic equation whose solution, in relation to S, includes three
real roots: S (1), S (2), S (3). In the general case, they are different from each other,
although multiple roots (S (1) D S (2) ¤ S (3) or S (1) D S (2) D S (3)) are possible.
Here, the bracketed indices are not tensor symbols!

In the case of different roots, inserting the values found for S, one by one,
in the system in (1.26) results in two projections of each of the proper vectors
n(1)

α ¤ n(2)
α ¤ n(3)

α through the third one, which is determined by the condition
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1.1 Vector and Tensor Algebra 9

of normalization. All the proper vectors are real because the coefficients of (1.26)
are real. They are mutually perpendicular, which follows from the same system of
equations: (S (1) � S (2))(n(1) � n(2)) D 0. The same goes for the other two pairs. Re-
garding the proper vectors as the orts of the system of coordinates (they determine
the principal axes of the tensor), use (1.26) to find the form of the tensor in this
system of axes:

bS 0 D
0@S (1) 0 0

0 S (2) 0
0 0 S (3)

1A . (1.28)

In the case of two repeated roots, S (1) D S (2), the proper vectors n(1) and n(2)

are determined ambiguously, that is, any pair of mutually perpendicular directions
may be selected in the plane perpendicular to n(3). If all three roots are the same,
then any three mutually perpendicular directions may be regarded as the principal
axes.

Problems

1.24. Is it possible to reduce an arbitrary real tensor of rank 2 (Tα� ¤ T�α) to the
diagonal form by rotating its system of coordinates in physical three-dimensional
space? What about a Hermitian tensor of rank 2 (T h

α� D T h�
�α )?

1.25. Write down a real symmetric tensor of rank 2 Sα� in an arbitrary system
of coordinates through its principal values S (1), S (2), S (3) and the orts n(i)

α of the
principal axes.

1.26. Using the characteristic (1.27), compile the invariants relative to rotation
from the components of an arbitrary tensor of rank 2 Tα� .

1.27. Using the theorem for the expansion of the determinant in the elements of
a row or a column, find the components of the inverse tensor T �1

α� . Its definition
coincides with that of (1.11) for the inverse matrix. Indicate the condition of the
existence of an inverse tensor.

1.28. Prove the identities

eα�γ eα�γ D 6 ,

eα�γ eα�σ D 2δγ σ ,

eα�γ eανσ D δ�ν δγ σ � δ�σ δγ ν D
ˇ̌̌̌
δ�ν δγ ν

δ�σ δγ σ

ˇ̌̌̌
,

eα�γ eμνσ D δαμ δ�ν δγ σ C δαν δ�σ δγ μ C δασ δ�μ δγ ν

�δανδ�μ δγ σ � δαμ δ�σ δγ ν � δασ δ�ν δγ μ
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10 1 The Mathematical Methods of Electrodynamics

D
ˇ̌̌̌
ˇ̌δαμ δ�μ δγ μ

δαν δ�ν δγ ν

δασ δ�σ δγ σ

ˇ̌̌̌
ˇ̌ .

Using the third identity, prove the formula of vector algebra

A � [B � C ] D B(A � C ) � C (A � B) .

1.29. Write down the following in the invariant vector form:

1. eα�γ eασ� eγ νε e�ωε A � A σ Bν Cω ,
2. eα�γ e�σ� eγ νε e�ωε A σ A � B�Bα Cω Cν .

1.30. Prove the identity

Tα� A α B� � Tα� A � Bα D 2C � (A � B) ,

where Tα� is an arbitrary tensor of rank 2, A and B are vectors, and C is the vector
of the dual antisymmetric part of the tensor Tα� .

1.31. Present the product (A � (B � C))(A0 � (B0 � C 0)) as the sum of members that
contain only the scalar products of the vectors.

Hint: Apply the theorem for the multiplication of determinants or use the pseu-
dotensor eα�γ .

1.32. Show that the only vector whose components are the same in all systems of
coordinates is a null vector, that any tensor of rank 3 whose components are the
same in all systems of coordinates is proportional to eα�γ , and that any tensor of
rank 4 whose components are the same in all systems of coordinates is proportional
to (δα�δμν C δαμ δ�ν C δαν δ�μ).

1.33. Regard n as a unit vector whose directions in space are equiprobable. Find
the mean values of its components and their products – nα , nα n� , nα n� nγ ,
nα n� nγ nν – using the transformational properties of the quantities sought.

1.34. Find the average values for all directions of the expressions (a �n)2, (a �n)(b �n),
(a � n)n, (a � n)2, (a � n) � (b � n), (a � n)(b � n)(c � n)(d � n), if n is a unt vector whose
all directions are equiprobable and a, b, c, d are constant vectors.

Hint: Use the results obtained in the previous problem.

1.35. Write down all possible invariants of polar vectors n, and n0 and pseudovec-
tor l .

1.36. What independent pseudoscalars may be made of two polar vectors n and n0
and one pseudovector l? What independent pseudoscalars may be made of three
polar vectors n1, n2, and n3?
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1.1 Vector and Tensor Algebra 11

1.1.3
Covariant and Contravariant Components

In physics, many problems require nonorthogonal and curvilinear systems of coor-
dinates be used so that the relations between the old and new coordinates are non-
linear and different from (1.2). The transition to new coordinates may not come
down to just the simple and obvious rotation of axes. One of the most important
areas where such a mathematical apparatus needs to be used is special and, espe-
cially, general relativity.

Closing this section, we will come up with the definition of tensors with re-
spect to overall transformations of coordinates and consider their basic proper-
ties in three-dimensional Euclidean space. This is appropriate because in three-
dimensional space the meaning of many concepts and relation is more obvious
and transparent than in four-dimensional space–time of the relativistic theory. We
will begin by immersing ourselves in these issues by considering a case that is half
way between Cartesian rectangular coordinates and common coordinates when the
coordinate axes of the reference frame are still rectilinear but become nonorthogo-
nal (oblique or affine coordinates).

Example 1.2

Three noncoplanar and nonorthogonal unit vectors e1, e2, and e3 are selected as the
basic vectors in a three-dimensional Euclidean space. Three systems of rectilinear
lines passing through every point of the space and parallel to the basic vectors
are the coordinate lines. Build a mutual basis e1, e2, e3 which, by definition, is
connected to the original basis by the following relations:

eα � e� D δα
� D

(
0 , α ¤ � I
1 , α D � .

(1.29)

Will the vectors of the mutual basis be unit vectors?
Expand an arbitrary vector A (including also the radius vector r) in vectors eα

and e� of the original and mutual bases. Show the geometric meaning of its com-
ponents in both cases (in the first case, they are called contravariant and are labeled
with upper indices, A1, A2, A3. In the second case, they are covariant, and are la-
beled with lower indices, A 1, A 2, A 3).

Solution. In accordance with (1.29), e1 must be perpendicular to e2 and e3. Look
for it in the form of e1 D k e2 � e3 and, from the condition of normalization e1 � e1 D
1, find

k D 1
V

D 1
e1 � (e2 � e3)

,
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12 1 The Mathematical Methods of Electrodynamics

where k�1 D V is the volume of the parallelepiped built on the vectors of the
original basis. V > 0 if the right-hand system of coordinates is selected. Therefore,

eα D e� � eγ

V
, (1.30)

where α, �, and γ form a cyclic permutation. Radius vector r and any other vectors
are expanded in basic vectors in the usual way:

r D x1e1 C x2e2 C x3e3 D x1e1 C x2e2 C x3e3 . (1.31)

Multiplying the first equality, in a scalar way, by eα , we find

xα D eα � r . (1.32)

Therefore, the geometric meaning of the covariant components is revealed by pro-
jecting the radius vector, in the usual way, by lowering perpendiculars from the end
of the vector onto the coordinate axes. When this has been done, the directions of
the contravariant basic vectors, by which the covariant components of the vector are
multiplied, do not coincide with the directions of the coordinate axes (Figure 1.3)
and have no unit lengths. For instance, if vector e3 is orthogonal to e1 and e2 and
the angle between the latter is φ, then je1j D je2j D 1/ sin φ and the length of
the hypotenuse O B D jx1e1j D x1/ sin φ > x1. However, the length of the leg
O C D x1. As follows from (1.31) and Figure 1.3, the contravariant components
result from projecting the vector onto the coordinate axes with segments parallel
to the axes. For them, a representation identical to (1.32) is valid:

x α D eα � r . (1.33)

Figure 1.3 The clarification of the geometric meaning of the covariant and contravariant compo-
nents of a vector.
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1.1 Vector and Tensor Algebra 13

Example 1.3

Determine the nine-component quantities:

gα� D eα � e� , gα� D eα � e� , (1.34)

where eα and e� are the basic vectors of the original and mutual nonorthogonal
bases, introduced in Example 1.2. The values gα� and gα� are called the covariant
and contravariant components of a metric tensor.

Prove the following relations that connect the covariant and contravariant com-
ponents of an arbitrary vector (the rules of rasing and lowering indices):

(i) A α D gα� A� I (ii) Aα D gα� A � I (iii) gα� g�γ D gγ
α � δγ

α .

(1.35)

Here, δγ
α is a Kronecker symbol.

Find the determinants of a covariant and a contravariant metric tensor and ex-
press them through the volumes V and V of parallelepipeds built on the vectors of
the original and mutual bases.

Solution. The expression below follows from expansion (1.31):

A D A � e� D A� e� .

Multiplying it, in a scalar way, by eα and using the definitions of mutual basis
(1.30) and metric tensor (1.34), we get the first expression in (1.35); multiplying
this expansion, in a scalar way, by eα , we get the second expression in (1.35); and
inserting the second expression in (1.35) in the first expression in (1.35), we get the
third expression in (1.35).

If we label g D jgα�j and use definition (1.34) and the formula from the first task
in Problem 1.29, we find the following:

g D
ˇ̌̌̌
ˇ̌e1 � e1 e1 � e2 e1 � e3

e2 � e1 e2 � e2 e2 � e3

e3 � e1 e3 � e2 e3 � e3

ˇ̌̌̌
ˇ̌

D
24 (e1 � e1)(e2 � e2)(e3 � e3) C (e2 � e1)(e3 � e2)(e1 � e3)

C(e3 � e1)(e1 � e2)(e2 � e3) � (e1 � e2)(e2 � e2)(e3 � e1)
�(e2 � e3)(e3 � e1)(e1 � e1) � (e3 � e3)(e1 � e2)(e2 � e1)

35
D eα�γ (e1)α(e2)�(e3)γ eμνσ(e1)μ(e2)ν(e3)σ

D [e1 � (e2 � e3)]2 D V 2 > 0 .

In the same way, we get jgα�j D V
2
. As follows from (1.35), jgα�jg D 1; therefore,

jgα�j D g�1 D V �2 > 0 and V D V �1.
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14 1 The Mathematical Methods of Electrodynamics

Problems

1.37. When we transition from one oblique rectilinear system of coordinates to
another, the basic vectors eα determining the directions of the coordinate axes are
transformed in accordance with the following law:

e0
α D a �

α e� , (1.36)

where a �
α is the transformation matrix.9)

1. Express its elements through the scalar products of the basic vectors of the
original and transformed systems.

2. Build the reverse transformation matrix.
3. Show that the same matrices define the transformations of the vectors of the

mutual basis.
4. Find the rules of the transformation of the covariant and contravariant compo-

nents of an arbitrary vector.
5. Find the rules of the transformation of the covariant and contravariant compo-

nents of a metric tensor.

1.38. Show the laws of the transformation of the vectors of the original and mutual
bases in the case of the mirror reflection of the system of coordinates.

1.39. Express the scalar product of two vectors in three different forms: through
the covariant and contravariant components and through both of them. Prove its
invariance with respect to the transformations (1.36) of the coordinate system. Ex-
press, in various forms, the square of the distance dl2 between two close points.

1.40. Write down the vector product of two vectors C D A � B in terms the covari-
ant and contravariant components of the factors.

1.41. Write down the cosine of the angle between vectors A and B in terms of their
covariant and contravariant components.

1.1.4
Tensors in Curvilinear and Nonorthogonal Systems of Coordinates

We will now consider arbitrary transformations in the case of a transition from a
Cartesian to a certain curvilinear and, generally speaking, nonorthogonal system
of coordinates or between curvilinear and nonorthogonal systems of coordinates
(Borisenko and Tarapov, 1966, Section 2.8). The connection between the coordi-
nates x α and x 0� (α, � D 1, 2, 3) of two coordinate systems described by certain
general form relations is

x α D f α(x 01, x 02, x 03) (1.37)

9) The transformation in question is not necessarily limited to the rotation of the oblique system as
a whole. It may change the angles between the axes and coordinates scales.
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1.1 Vector and Tensor Algebra 15

(we will now indicate coordinate numbers with upper indices). The linear homoge-
neous function f α(x 01, x 02, x 03) with constant coefficients corresponds to the affine
transformation (1.36). The rotation of the orthogonal rectilinear coordinate system
is determined by the orthogonal matrix of coefficients with a unit determinant.

So that (1.37) can be solved with respect to x 0� and the reverse transformation
x 0� D '�(x1, x2, x3) can be found, the functional determinant J must be different
from zero,

J D
ˇ̌̌̌
@x α

@x 0�

ˇ̌̌̌
¤ 0 , (1.38)

which hereafter will be presumed. The differentials of the coordinates are trans-
formed in accordance with

dx α D @x α

@x 0� dx 0� , (1.39)

where the coefficients of the transformation @x α/@x 0� , in the general case, become
the functions of the coordinates. The connection between the differentials remains
linear, as in the case of affine transformations, which, generally speaking, is not
the case for the connection between the coordinates themselves. Although (1.37)
describes the transition from the orthogonal Cartesian system of coordinates x α to
an arbitrary system q� (to make things clearer, we hereafter will label curvilinear
coordinates as q), we will write the square of the distance between close points with
the use of (1.39) as

dl2 D δα�dx αdx � D gμνdqμdqν , (1.40)

where the values

gμν(q) D @x α

@qμ

@x �

@qν
δα� , gμν D gνμ (1.41)

are called the covariant components of the metric tensor, and its contravariant compo-
nents gμν D gνμ are determined by the conditions

gαν gνμ D gμν gνα D δα
μ , (1.42)

which means that the tensors gμν and gμν are mutually inverse. Because the coef-
ficients of transformation (1.39) satisfy the relation

@x α

@q�

@q�

@x ν
D @x α

@x ν
D δα

ν , (1.43)

the contravariant components of the metric tensor may be written as10)

gα� D @qα

@x σ

@q�

@x�
δσ� . (1.44)

10) Tensors δμν , δμν , and δμ
ν correspond to the rectilinear Cartesian system of coordinates, their

contravariant and covariant components coincide with each other, and the location of the symbols
is indifferent.
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16 1 The Mathematical Methods of Electrodynamics

The latter relations, just like (1.41), may be regarded as the rule of the transforma-
tion of the metric tensor from Cartesian coordinates (δσ�) to arbitrary curvilinear
coordinates qα. It is easy to see that the same rule applies to the transformation of
the metric tensor from a curvilinear system qα to another curvilinear system q0� :

g0�σ D @q0�

@x μ

@q0σ

@x ν δμν D @q0�

@qα

@q0σ

@q� gα� , (1.45)

where gα� is defined in accordance with (1.44).
One can easily make sure that the relations written above mostly repeat the

formulas obtained when considering the oblique-angled (affine) system of coordi-
nates, being their generalizations, in a certain way. For instance, multiplying both
parts of (1.39) by the Cartesian orts e(D )

α and relabeling x 0� as q� , we get the increase
of the radius vector

dr D e(D )
α dx α D @x α

@q�
e(D )

α dq� D e�dq� .

This means that the basic vectors e� of the curvilinear system (not unit in the
general case) may be written as

e� D @x α

@q�
e(D )

α . (1.46)

The right-hand side of the latter equality includes Cartesian orthogonal unit vec-
tors. As follows from (1.46), the connection between the basic vectors of the curvi-
linear systems of coordinates q0μ and q� looks the same way as (1.46):

e0
� D @qα

@q0� eα . (1.47)

Further on, we will define the vectors of the mutual basis e� of the curvilinear
system. As follows from (1.46) and the conditions in (1.29),

eα � e� D @x μ

@q�
eα � eμ

(D ) D δα
� , (1.48)

which means that

eα D @qα

@x ν eν
(D ) (1.49)

(we use the equality of the lower and upper symbols for Cartesian vectors). Finally,
considering (1.41) and (1.44), we see that the relations in (1.34) remain valid for
curvilinear coordinates,

gα� D eα � e� , gα� D eα � e� , g�
α D eα � e� D δ�

α , (1.50)

as do the rules of raising and lowering indices (1.35).
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1.1 Vector and Tensor Algebra 17

We now will give a definition of tensor, as it relates to the general transformations
of coordinates.

A tensor of rank 2 in the three-dimensional space is a nine-component quantity
whose contravariant components are transformed as products of the differentials
of coordinates, that is, in accordance with the following:

T α� D @qα

@q0μ

@q�

@q0ν
T 0μν or T 0μν D @q0μ

@qα

@q0ν

@q�
T α� . (1.51)

This definition is directly generalized to include tensors of any rank. For instance,
scalar S is not transformed, whereas the covariant components of a tensor of rank 1
(vector) are transformed in accordance with

A α D @q0�

@qα
A � . (1.52)

The fundamental difference between the above definition of a tensor and the
previous ones (for the cases of rotation and affine transformation) is that now the
transformation coefficients depend on the locations. This means that the definition
of a tensor is of a local nature. For instance, the products of the components of
vectors located at different points qα ¤ p α , that is, Aα(q)B �(p ), do not form a
tensor.

Unlike Cartesian coordinates, the totality of arbitrary curvilinear coordinates qα ,
α D 1, 2, 3, does not form a vector because the coordinates do not comply with
rule of transformation (1.51). Most significantly, these peculiarities manifest them-
selves in differentiating and integrating tensor operations, which are considered in
Section 1.2.

The covariant components of a tensor of any rank are produced from the con-
travariant ones by the metric tensor as per (1.35). In the general case, the mixed
tensor depends on the place, first or second, occupied by the upper and lower sym-
bols, that is, Tα

� ¤ T �
α . The contraction operation, decreasing the rank of any

tensor by 2, is defined as summation over one upper and one lower indices, for
instance,

A α B α D A0
� B 0� D inv , Tα�

� D Cα (1.53)

– the covariant vector, and so on.

Problems

1.42. Express the components of a metric tensor through the components of the
orthogonal Cartesian orts e(D )

α D eα
(D ), α D 1, 2, 3 specified in a certain curvilinear

system of coordinates.

1.43. Show that the functional determinant (1.39) is expressed through the deter-
minant of a metric tensor g D jgμνj W J D p

g.

Hint: Following from equality (1.42), express the determinant g through the de-
terminants of the matrices found in the second member of the equality.
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18 1 The Mathematical Methods of Electrodynamics

1.44. Write down the square of the length of the vector A2 and the cosine of the
angle between two vectors in a arbitrary curvilinear system of coordinates.

1.45. Transform the antisymmetric unit tensor eα�γ in an curvilinear system of
coordinates.

1.46. The metric tensor gα� determining the square of the small element of length
in curvilinear nonorthogonal coordinates, in accordance with formulas (1.41), is
known. Three curvilinear coordinate lines may be drawn through each point of the
space, only one coordinate q1, q2, or q3 changing along each of these lines, whereas
the other two remain constant.

1. Find the connection between the element of length of a coordinate line and the
differential of the respective coordinate.

2. Indicate the three basic vectors tangent to the coordinate curves at the specified
point.

3. Find the cosines of the angles between the coordinate curves at that point.
4. Indicate the properties the metric tensor must have to make the curvilinear

system orthogonal.

1.47. Write down the covariant and contravariant components of a metric tensor
for a spherical and a cylindrical system of coordinates (see the drawing in the solu-
tion of Problem 1.18). Also, write down the vectors of the covariant and contravari-
ant bases, expressing them through the basic orts considered in Problem 1.18.

1.48. Show that the volume element in curvilinear coordinates has the following
form:

dV D p
gdq1dq2dq3 , (1.54)

where g is the determinant of a metric tensor. Find the volume element in spherical
and cylindrical coordinates.

Hint: The volume element sought is the volume of an oblique-angled
parallelepiped built on the elementary lengths dl1, dl2, and dl3 of the curvi-
linear coordinate axes. It may be found with the use of the results obtained in
Problems 1.40 and 1.46.

Recommended literature:
Borisenko and Tarapov (1966); Arfken (1970); Rashevskii (1953); Lee (1965); Math-
ews and Walker (1964). See also Ugarov (1997, Addendum I).

1.2
Vector and Tensor Calculus

Scalar or vector functions representing the distribution of various physical quan-
tities in three-dimensional space are sometimes called the fields of those quan-
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1.2 Vector and Tensor Calculus 19

tities. This is how one may speak of fields of temperatures T(x , y , z) or pres-
sures p (x , y , z) in the atmosphere, the fields of speeds in moving fluids or gas-
es u(x , y , z), the electromagnetic vector field, and so on. Derivatives and integrals
from such scalar and vector functions have certain common mathematical proper-
ties, which are very important for physical applications. One should become famil-
iar and comfortable with these properties in advance. Only then, may such areas of
physics as the theory of electromagnetic phenomena, the mechanics of fluids, gas-
es, and solid bodies, quantum physics, and quantum field theory be successfully
learned and fully understood.

1.2.1
Gradient and Directional Derivative. Vector Lines

We encounter the concept of the gradient of a scalar function in classical mechanics
when learning about the properties of potential forces. Let us say there is a differ-
entiable function U(x , y , z) whose partial derivatives are equal to the components
of the vector of the force F (x , y , z), which, in this case, is called a potential:

Fx D �@U
@x

, Fy D �@U
@y

, Fz D �@U
@z

, or F D �rU(x , y , z) ,

(1.55)

where

r D ex
@

@x
C e y

@

@y
C ez

@

@z
D eα

@

@xα
(1.56)

is Hamilton’s operator11) (nabla).

grad U(x , y , z) � rU(x , y , z) D ex
@U
@x

C ey
@U
@x

C ez
@U
@z

(1.57)

is called the gradient of the scalar function U(x , y , z). The necessary and sufficient
conditions for the representation of the vector as a scalar function come in the form
of equalities:

@Fx

@y
D @Fy

@x
,

@Fy

@z
D @Fz

@y
,

@Fz

@x
D @Fx

@z
. (1.58)

They follow from the equality of cross-derivatives, for example,

@2U
@x@y

D @2U
@y@x

.

So far, we have been using only Cartesian coordinates. A generalization to include
oblique nonorthogonal coordinates will be made in the closing part of this section
(also see Problem 1.50 and later).

11) William Rowan Hamilton (1805–1865) was an outstanding Irish mathematician and physicist. He
was engaged in mechanics and optics, and created the mathematical apparatus that, after many
decades, became the basis of quantum mechanics and quantum field theory.
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20 1 The Mathematical Methods of Electrodynamics

It is important to understand that a gradient is always directed toward increas-
ing U, along a normal to the surface of the constant value of the scalar field
U(x , y , z) D const. This follows from our obtaining, when differentiating the lat-
ter equality, dr � rU D 0. Since dr is here a tangent to the surface U D const, the
gradient is perpendicular to that surface.

Example 1.4

Show that the derivative of the scalar function, along the direction determined by
the unit vector l, is equal to the projection of the gradient onto that direction:

@U
@l

D gradl U � (l � r)U . (1.59)

Solution. Label the derivative, along the specified direction l, as @U/@l . When dis-
placed from the point with radius vector r to a distance s along the direction l , the
function will take the value of U(x C lx s, y C l y s, z C lz s). The derivative in the
specified direction is the derivative at distance s:

@U
@l

D @

@s
U(x C lx s, y C l y s, z C lz s)jsD0 D @U

@x
lx C @U

@y
ly C @U

@z
lz

D (l � r)U(r) .

Expression (1.58) also makes sense when applied to an arbitrary vector A(x , y , z):
the quantity (l � r)A(x , y , z) is a derivative of vector A in direction l. This follows
from the condition that the operator (l � r) must be applied to every projection of
A and will produce the required derivatives, whereas their combination must be
construed as a derivative of the whole vector in the specified direction.

A vivid conception of the structure of the vector field A is provided by vector
lines.12) These are lines tangents to which, at any point, indicate the direction of
vector A at that point. It is easy to write a system of equations in order to find the
vector lines of the specified field A(x , y , z). The condition of the small element
dl D (dx , dy , dz) being parallel to the vector line and vector A may be written as
A�dl D 0. Having written this vector equality in projections on the respective axes,
we get differential equations for two families of surfaces whose intersect lines are
exactly the vector lines sought.

For instance, using Cartesian coordinates, we will have

dx
A x (x , y , z)

D dy
A y (x , y , z)

D dz
A z(x , y , z)

. (1.60)

12) If A is a vector of a force, the lines are called force lines. Sometimes, the term “force lines” is
applied to any vector regardless of its physical meaning.
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1.2 Vector and Tensor Calculus 21

Figure 1.4 The independence of work done by a potential force from the shape of the path of a
material point.

The vector lines of any potential vector are perpendicular to the equipotential
surfaces U(x , y , z) D const. This follows from the properties of the gradient of a
scalar function.

The loop integral of the scalar product of a potential vector and the vector element
of the length of the loop has an important property:

BZ
A

F � ds D
BZ

A

(Fx dx C Fy dy C Fzdz) , (1.61)

where the vector ds has constituents dx , dy , and dz, that is, the differentials of
the coordinates are not independent and are just increments along the loop. Such
integrals express work done by the force F on a material point moving along a
specified trajectory from A to B and many other physical quantities. If the vector is
a potential vector, then

Fx dx C Fy dy C Fzdz D �@U
@x

dx � @U
@y

dy � @U
@z

dz D �dU (1.62)

is the complete differential of the function U(x , y , z). The computation of the inte-
gral gives us

BZ
A

F � ds D �
BZ

A

dU D UA � UB , (1.63)

where dU is the increase of the function along the small segment ds and
R B

A dU is
the full increase along the distance AB .

In this case, integration along the loop does not depend on the form of the curve,
and only depends on the start and end points of the integration (Figure 1.4).

Integrating along a closed loop (Figure 1.5), we get the following:

BZ
A

F � ds D UA � UB ,

AZ
B

F � ds D UB � UA ,

I
F � ds D

BZ
A

F � ds C
AZ

B

F � ds D 0 . (1.64)
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22 1 The Mathematical Methods of Electrodynamics

Figure 1.5 Diagram for the computation of the circulation of a vector along a closed loop.

Closed-loop integration over F � ds is called the circulation of vector F along the loop.
The circulation of a potential vector along any closed loop equals zero (however, an
arbitrary vector has no such property!).

It is important, however, to note that the condition of the representation of a
vector as (1.55) is necessary but not sufficient for equalities (1.63) and (1.64) to be
valid. It is also necessary for the potential function U(r) to be the unambiguous
function of a point. Otherwise, for instance, after the circulation of the loop and
return to point A, the potential U may take a different value, and equality (1.64)
will be no longer valid.

Problems

1.49. Show that when a Cartesian system of coordinates is rotated, Hamilton’s
operator (r) (1.56) is transformed in accordance with rule (1.2) of vector transfor-
mation.

1.50. Find the potential energy that corresponds to the force Fx (x , y ) D x C
y , Fy (x , y ) D x � y 2. Find the work R done by this force between points (0,0)
and (a, b).

1.51. Show that in cylindrical and spherical systems of coordinates , Hamilton’s
operator r is expressed, respectively, as

1. r D e�

@

@�
C e'

1
�

@

@'
C ez

@

@z
, (1.65)

2. r D e r
@

@r
C e#

1
r

@

@#
C e'

1
r sin #

@

@'
. (1.66)

For that purpose, consider the elementary lengths in the directions of the respec-
tive coordinate orts and use formula (1.59), which connects the gradient with the
directional derivative.

1.52. Use Cartesian spherical and cylindrical coordinates (see (1.56), (1.65), and
(1.66)) to find grad (l � r), (l � r)r , where r is a radius vector and l is a constant
vector.

1.53. Show that

grad f (r) D d f
dr

r
r

.
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1.2 Vector and Tensor Calculus 23

1.54. Write down a system of equations determining the vector lines in cylindrical
and spherical coordinates, respectively.

1.55. Find

grad
(p � r)

r3 , p D const .

1.56. Use spherical coordinates to draw a family of lines tangent to vector

E D 3(p � r)r
r5 � p

r3 , p D const .

1.57. Write down the cyclic components of a gradient in spherical coordinates.
Find the definition of the cyclic components in the situation in Problem 1.17.

1.2.2
Divergence and Curl. Integral Theorems

Now, we will consider the effect of the r operator on an arbitrary vector A. As is
known, two vectors may produce two types of products: a scalar

div A � r � A D @A x

@x
C @A y

@y
C @A z

@z
D @A α

@xα
(1.67)

and a vector

curl A � r � A D ex

�
@A z

@y
� @A y

@z

�
C ey

�
@A x

@z
� @A z

@x

�
C ez

�
@A y

@x
� @A x

@y

�
. (1.68)

Both of these quantities are extremely important for vector calculus and are called
the divergence (scalar!) and the curl (vector!). The left-hand-side members of the
equalities contain the respective lettering. The right-hand-side members contain
their explicit expressions in Cartesian coordinates only. For you to better realize their
mathematical and physical meanings, we give other definitions of these important
quantities, less formal and more obvious, if somewhat more complex. Yet the latter
disadvantage is also an advantage in that the definitions in questions, unlike (1.67)
and (1.68), do not depend on the selection of a system of coordinates. We will begin
with divergence.

Select point M where you would like to define the divergence of vector field A(r).
Surround that point with a closed smooth surface, enclosing a certain volume ΔV
and find at every point of the surface an outside normal n. We will call the product
ndS the vector element of the surface. The integral over the closed surface

H
S A �

dS produces the flux of the vector A through the surface S. Now, we will define
divergence in a way different from (1.67):

div A(r) D lim
ΔV!0

1
ΔV

I
S

A � dS . (1.69)
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24 1 The Mathematical Methods of Electrodynamics

It is presumed here that the volume ΔV shrinks into point M. The little circle on
the integral sign means a closed surface.

Example 1.5

Make sure that the definitions (1.67) and (1.69) are equivalent when Cartesian coor-
dinates are used. In order to do that, select volume ΔV D dV D dxdydz forming
a small rectangular parallelepiped with edges dx , dy , dz and find the boundary
(1.69).

Solution. Making use of the smallness of the ribs of the parallelepiped, write down
the approximate expression for the surface integral:I

S

A � dS � [A x (x C dx , Ny , Nz) � A x (x , Ny , Nz)]d y dz

C [A y ( Nx , y C d y , Nz) � A y ( Nx , y , Nz)]dx dz

C [A z( Nx , Ny , z C dz) � A z( Nx , Ny , z)]dx d y

�
�

@A x

@x
C @A y

@y
C @A z

@z

�
dV .

The mean value theorem was used when evaluating the integrals over the six
separate edges, the quantities Nx , Ny , and Nz being the values of the coordinates at
a certain point of a respective edge. Also considered was the fact that normals
are directed oppositely at the opposite edges and that when the volume shrinks
to point M, all the coordinates take the values they must have at that point. Using
the latter result, make sure that the definition of divergence (1.69), when Cartesian
coordinates are used, leads to formula (1.67).

This means that the divergence at a certain point is other than zero if there is
a nonzero vector flux through a closed surface surrounding the point in question.
Inside the surface, there must be a source of a vector field that creates the flux. This
is to say that divergence characterizes the density of field sources.

The above method of computing an integral over a small surface may be used to
obtain explicit expressions of divergence in the most often used systems of coordi-
nates, such as spherical, cylindrical, and so on. The shape of the volume should be
selected each time so that one of the coordinates remains constant on each of its
side surfaces.

Example 1.6

On the basis of the definition of divergence (1.67), produce a relation connecting
the integral from div A over a certain volume with vector flux A through the surface
bounding the volume in question.
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Solution. Select any finite volume V bounded by a smooth closed surface S. Divide
it into small cells ΔVi , each bounded by a respective surface ΔSi . The surfaces
bounding the cells adjacent to the outside surface S will partially coincide with S.
All other portions of the surfaces Si will be shared by pairs of adjacent cells. Making
use of the smallness of each cell, use relation (1.69), giving it an approximate form:

(div A)i ΔVi �
I
Si

A � dS i . (1.70)

Now sum the first and second members of the latter approximate equality over i
and pass to a limit, reducing the volume of each cell to zero and expanding the
number of cells to infinity. The first member of the equality will now become an
integral over the full volume V of divergence A:

R
V div AdV . In the second member

of the equality, the integrals over the inner portions of the surface will cancel each
other, the outer normals to each pair of adjacent cells being oppositely directed.
Only the integral over the outside surface S bounding the full volume V remains.
As a result, you will have an exact integral relation,Z

V

div AdV D
I
S

A � dS , (1.71)

called the Gauss–Ostrogradskii theorem13) (in Western literature, the name Ostro-
gradskii is omitted).

The Gauss–Ostrogradskii theorem is applicable to any tensor of rank s � 1, for
instance,Z

V

@Tα�μ

@xμ
dV D

I
S

Tα�μdSμ (1.72)

(for the proof, refer to Problem 1.70�).

The curl of a vector field allows a definition similar to that of divergence (1.69).
At point M, specify a unit vector n, that is, a direction. Make up a small flat area ΔS
containing a point M and perpendicular to n. Then define the direction of tracing
the loop l that bounds the area, coordinated with the direction n as per the right-
screw rule. The projection of the rotor onto direction n at point M is defined as
follows:

curln A D lim
ΔS!0

1
ΔS

I
l

A � dl , (1.73)

where the integral represents the circulation of the vector A along the closed loop l.

13) Carl Friedrich Gauss (1777–1855) was an outstanding German mathematician, astronomer, and
physicist. Mikhail Ostrogradskii (1801–1862) was a Russian mathematician known for his works
in mathematical physics, theoretical mechanics, and probability theory.
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Example 1.7

Make sure that the definitions of (1.68) and (1.73) are equivalent when Cartesian
coordinates are used. For that purpose, find the projections of the curl on Carte-
sian axes using (1.73) and by selecting a rectangular area with sides parallel to the
coordinate axes.

Solution. Direct n along the O z axis, select a rectangular area ΔS D dS D dxdy ,
and use, as in the previous integral calculation, the mean value theorem to get the
following:I

l

A � dl � [A y (x C dx , Ny , z) � A y (x , Ny , z)]dy

C [A x ( Nx , y , z) � A y ( Nx , y C dy , z)]dx

�
�

@A y

@x
� @A x

@y

�
dS .

After inserting this result into (1.73) and passing to a limit, we get the exact expres-
sion for curlz A in Cartesian coordinates, coinciding with (1.68). In the same way,
one may find other projections of the curl. The curl will be other than zero if the
lines of vector A curved, having either closed or spiral configurations.

Example 1.8

Using the definition of the curl (1.73), find the integral relation that connects the
circulation of any vector along a closed loop with the curl flux of that vector through
a nonclosed surface bounded by that loop.

Solution. Find an arbitrary three-dimensional nonclosed surface S bounded by
loop l and, at every point of the surface, find normal n. Divide the surface into
small portions ΔSi , each bounded by loop li. On the basis of (1.73), an approxi-
mate value may be written for every such area:

curln AΔSi �
I
l i

A � dl i . (1.74)

After summing the two members of the approximate equality over i and passing to
a limit of the infinitely small areas, we get the exact equality (Stokes theorem14)):Z

S

curl A � dS D
I
l

A � dl . (1.75)

14) George Gabriel Stokes (1819–1903) was an Irish physicist and mathematician.
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1.2 Vector and Tensor Calculus 27

An integral over the outer loop that bounds area S remains in the second member.
All integrals over inner loops are canceled. Stokes theorem connects the integral
over the curl flux through the surface with the circulation of the vector along the
loop that bounds that surface.

1.2.3
Solenoidal and Potential (Curl-less) Vectors

Let us say that vector field H (r), over the whole space, satisfies the condition

div H D 0 (1.76)

(in this case, vector H is called a solenoidal vector). This, for instance, is a property
of a magnetic field. It is possible to prove (we will, for now, abstain from doing that)
that condition (1.76) is necessary and sufficient for vector H to be represented as
the curl of another vector A(r):

H D curl A . (1.77)

Using the rules of vector differentiation, we can easily make sure that condition
(1.76) is satisfied whatever the value of A is:

div H D r � H D r � [r � A] D [r � r] � A D 0 .

As noted previously, a potential vector is a vector that may be represented as the
gradient of a certain scalar function:

E (r) D �grad U(r) � �rU(r) . (1.78)

The necessary and sufficient conditions of the potentiality of a vector are expressed
by equalities of the kind in (1.58), which, in their vector form, give the following:

curl E D 0 . (1.79)

Using the definition of the potential vector (1.78) and expressing the curl operation
through the r operator, we make sure that equality (1.79) is equally valid for any
U(r) functions that have second derivatives.

1.2.4
Differential Operations of Second Order

Differential operations of second order appear when the r operator is applied to
expressions of the kind rU , r � A, and r � A that already contain this operator.
Using the rules of vector algebra, we find that, in Cartesian coordinates, the Laplace
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operator15)

r � rU(r) D (r � r)U(r) D r2U(r) D ΔU(r) , (1.80)

Δ D r2, has the following form:

Δ D @2

@x2 C @2

@y 2 C @2

@z2 . (1.81)

This is a very important operator used in just about all problems when complex
physical phenomena have to be described in the language of mathematics.

Further,

rr � A � r(r � A) D grad div A . (1.82)

Even though such a combination of derivatives is hardly rare, no more compact
letter notation has been devised for it.

The last operation of this kind is called a double vortex. It is transformed with
the use of the following vector algebra formula (one should remember to place the
differentiable vector function to the right of any operators that may affect it):

curl curl A D r � (r � A) D r(r � A) � r2A D grad div A � ΔA . (1.83)

We see, therefore, that all the differential operations involving scalar and vector
functions are expressed through the r operator.

Problems

1.58. Show that div A (1.67) and the Laplace operator (1.81) are invariant with re-
spect to rotations of Cartesian systems of coordinates and that curl A (1.68) is trans-
formed as an antisymmetric tensor of rank 2 or as a vector that is dual to it.

1.59. Find r � r , r � r , r � [ω � r ], and r � [ω � r], where ω is a constant vector.

1.60. Find

H D curl
(m � r)

r3
, m D const .

Build vector lines for vector H (draw a picture).

1.61. Using the rules of vector algebra and calculus and without making projec-
tions onto the coordinate axes, prove the following important identities frequently
used in practical calculations:

grad ('ψ) D ' grad ψ C ψ grad ' , (1.84)

15) Pierre Simon Laplace (1749–1827) was a French astronomer, mathematician, and physicist who
actively expressed the ideas of mechanistic determinism; he was an atheist. His many scientific
achievements were outstanding. Laplace repeatedly changed his politics, remaining in favor in
republican France as well as in France under the rule of Napoleon Bonaparte and the restored
Bourbons.
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div (' A) D ' div A C A � grad ' , (1.85)

curl ('A) D ' curl A � A � grad ' , (1.86)

div (A � B) D B � curl A � A � curl B , (1.87)

curl (A � B) D A div B � B div A C (B � r)A � (A � r)B , (1.88)

grad (A � B) D A � curl B C B � curl A C (B � r)A C (A � r)B . (1.89)

Here, ' and ψ are the scalar and A, B vector functions of the coordinates.

1.62. Prove the following identities:

C � grad (A � B) D A � (C � r)B C B � (C � r)A , (1.90)

(C � r)(A � B) D A � (C � r)B � B � (C � A , (1.91)

(r � A)B D (A � r)B C B div A , (1.92)

(A � B) � curl C D B � (A � r)C � A � (B � r)C , (1.93)

(A � r) � B D (A � r)B C A � curl B � A div B , (1.94)

(r � A) � B D �A div B C (A � r)B C A � curl B C B � curl A . (1.95)

1.63. Find grad '(r), div '(r)r, curl '(r)r, and (l � r)'(r)r.

1.64. Find a function '(r) that satisfies the condition div '(r)r D 0.

1.65. Find the divergences and curls of the following vectors:

(a � r)b, (a � r)r , '(r)(a � r) , r � (a � r) ,

where a and b are constant vectors.

1.66. Find grad r � A(r), grad A(r) � B(r), div '(r)A(r), curl '(r)A(r), and (l �
r)'(r)A(r).

1.67. Prove that

(A � r)A D �A � curl A if A2 D const .

1.68. Transform the integral over volume
R

V (grad ' � curl A)dV into the integral
over the surface.

1.69. Express the integrals over the closed surface
H

S r(a � dS) and
H

S (a � r)dS in
terms of the volume bounded by that surface. Here a is a constant vector.

Hint: Multiply each integral by the arbitrary constant vector b and use the Gauss–
Ostrogradskii theorem
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1.70�. Transform the integrals over a closed surfaceI
n'dS,

I
(n � A)dS ,

I
(n � b)AdS ,

I
Tα�(r)n�dS

into integrals over the volume bounded by that surface. Here b is a constant vector
and n is the ort of the normal.

1.71. Using one of the identities proven in the previous problem, formulate the
Archimedean law by summing pressures applied to the elements of the surface of
a submerged body.

1.72�. Prove the identityZ
V

(A � curl curl B � B � curl curl A)dV D
I
S

(B � curl A � A � curl B) � dS .

(1.96)

1.73. Inside volume V, vector A satisfies the condition div A D 0 and at the bound-
ary of the volume (surface S) the condition A n D 0. Prove that

R
V AdV D 0.

1.74�. Prove that

divr

Z
V

A(r0)dV 0

jr � r 0j D 0 ,

where A(r) is the vector defined in the previous problem.

1.75. Prove the Green’s identities16)Z
V

('Δψ C r'rψ)dV D
I
S

'rψ � dS , (1.97)

Z
V

('Δψ � ψΔ')dV D
I
S

('rψ � ψr') � dS , (1.98)

where ' an ψ are scalar differentiable functions.

1.76. Transform the integral over the closed loop
H

l ud f into the integral over a
surface bounded by that loop.

1.77�. Prove the integral identitiesI
l

'dl D
Z
S

(n � grad ')dS , (1.99)

16) George Green (1793–1841) was an English mathematician and physicist who introduced the
concept of potential and contributed to the development of the theory of electrical and magnetic
phenomena.
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l

(dl � A) D
Z
S

((n � r) � A)dS , (1.100)

I
l

dl � A D
Z
S

(n � r) � AdS . (1.101)

Here n is the ort of the normal to the surface, ' and A are functions of the coordi-
nates, l is a closed loop, and S is a nonclosed surface bounded by that loop. These
identities may be regarded as special cases of the generalized Stokes theoremI

l

(. . . )dl D
Z
S

(n � r)(. . . )dS , (1.102)

where the symbol (. . . ) labels a tensor of any rank.

1.78. Show that if the scalar function ψ is a solution of the Helmholtz equation17)

4ψ C k2ψ D 0 and a is a certain constant vector, then the vector functions L D
rψ, M D r � (aψ), and N D r � M satisfy the Helmholtz vector equation
4A C k2A D 0.

1.2.5
Differentiating in Curvilinear Coordinates

Unlike in Cartesian rectangular coordinates, when we use curvilinear nonorthog-
onal coordinates qα(α D 1, 2, 3), x � (� D 1, 2, 3), the derivative over coordinates
from a tensor of rank s � 1 does not produce any tensor, which we will see lat-
er. This is due to the local nature of the definition of the tensor (1.51) applicable
to a certain point. In the meantime, a derivative is defined through the difference
of the values of two vectors at close but still different points. In order to define a
covariant derivative from a tensor of any rank, that is, such a differential operation
that increases the rank of a tensor by one, we will, for simplicity, consider a ten-
sor of rank 1 (vector) and expand it in basic vectors of the curvilinear system of
coordinates in question:

A D Aμ eμ D A μ eμ . (1.103)

Differentiate the equalities in (1.103) and form the covariant derivatives:

A μIα � eμ � @A
@qα D @A μ

@qα C A ν eμ � @eν

@qα , (1.104)

Aμ
Iα � eμ � @A

@qα D @Aμ

@qα C Aν eμ � @eν

@qα . (1.105)

17) Herman Ludwig Ferdinand Helmholtz (1821–1894) was a German physicist, mathematician,
physiologist, and psychologist.
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The first members of the equalities use the notation commonly accepted for co-
variant derivatives of covariant and contravariant vector components, respectively.
The sign of the identity is followed by their definitions. The second members in-
clude derivatives of the components of the vector and basic vectors. In curvilinear
systems of coordinates, unlike in Cartesian coordinates, derivatives of basic vectors
are not equal to zero.

Differentiating equality (1.48) over the coordinate, we find that

eμ � @eν

@qα D �eν � @eμ

@qα . (1.106)

Now, add the Christoffel symbols of the second kind to our consideration:18)

Γ ν
μα D eν � @eμ

@qα . (1.107)

They allow us to write covariant derivatives in a more compact form:

A μIα D @A μ

@qα � A ν Γ ν
μα , Aμ

Iα D @Aμ

@qα � Aν Γ μ
να . (1.108)

Christoffel symbols are not tensors since they do not satisfy the applicable rules of
transformation. They are symmetric as to the two lower symbols: Γ ν

μα D Γ ν
αμ . The

latter property follows from the representation of basic vectors (1.46):

@eμ

@qα
D @eα

@qμ
. (1.109)

The rules (1.108) of computing a covariant derivative of a tensor of rank 1 are
generalized, in an obvious way, to include tensor T of any rank. Besides the deriva-
tive over the coordinate from the tensor in question, one needs to add as many
terms with a plus sign as the tensor has upper symbols and as many terms with a
minus sign as the tensor has lower symbols.

Example 1.9

Express the Christoffel symbols (1.107) through the components of metric tensor
gμν .

Solution. The definition (1.107) of Christoffel symbols allows us to write the fol-
lowing relation:

eν Γ ν
μα D @eμ

@qα . (1.110)

It follows from the equality (eν )λ(eν )σ D δσ
λ , which follows from the representa-

tions of basic vectors (1.46) and (1.49).

18) Elwin Bruno Christoffel (1829–1900) was a German mathematician.
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If we use the relation,

eν Γν,μα D @eμ

@qα , (1.111)

Also consider Christoffel symbols of the first kind, Γν,μα

As follows from (1.110) and (1.111), Christoffel symbols of the first and second
kinds may be regarded as the coefficients of the expansion of the quantity @eμ/@qα

in vectors of covariant and contravariant bases.
Using (1.48), we find from (1.111) that

Γν,μα D eν � @eμ

@qα . (1.112)

Multiplying (1.110), in a scalar way, by eλ and (1.111) by eλ and using (1.50), we
find the connection between Christoffel symbols of the first and second kinds:

Γν,μα D gνλ Γ ν
μα , Γ ν

μα D gνλ Γν,μα . (1.113)

Then, sequentially using the symmetry of the two symbols separated by a comma
and relations (1.109), (1.112), and (1.113), find the following:

Γν,μα D 1
2

�
eν � @eμ

@qα C eν � @eα

@qμ

�

D 1
2

�
@gμν

@qα
C @gαν

@qμ
� eμ � @eν

@qα
� eα � @eν

@qμ

�

D 1
2

�
@gμν

@qα C @gαν

@qμ � @gαμ

@qν

�
, (1.114)

Γ ν
μα D 1

2
gνλ

�
@gμλ

@qα C @gαλ

@qμ � @gαμ

@qν

�
. (1.115)

Example 1.10

Find the rules of the transformation of Christoffel symbols of the first and second
kinds when they are transferred to another curvilinear coordinate system.

Solution. Do the sequential computations

Γ 0ν
μα D e0ν � @e0

μ

@q0α
D @q0ν

@q�
e� � @

@q0α

@qσ

@q0μ
eσ

D @q0ν

@q�

@qλ

@q0α

@qσ

@q0μ
e� � @eσ

@qλ
C @q0ν

@q�

@qλ

@q0α

@q0�

@qλ

@2qσ

@q0�@q0μ
e� � eσ
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D @q0ν

@q�

@qλ

@q0α

@qσ

@q0μ Γ �
λσ C @q0ν

@q�

@2q�

@q0α@q0μ , (1.116)

Γ 0
ν,μα D e0

ν � @e0
μ

@q0α D @q�

@q0ν e� � @

@q0α

@qσ

@q0μ eσ

D @q�

@q0ν

@qλ

@q0α

@qσ

@q0μ e� � @eσ

@qλ C @q�

@q0ν

@2qσ

@q0α@q0μ e� � eσ

D @q�

@q0ν

@qλ

@q0α

@qσ

@q0μ Γ�,λσ C @q�

@q0ν

@2q�

@q0α@q0μ g�σ . (1.117)

Only the first terms in the second members of the resulting expressions conform
to the rules of the transformation of tensors. The second terms violate the said
rules, which means that Christoffel symbols are not tensors.

Example 1.11

Prove that the covariant derivatives of the vectors A νIα and AνIα are transformed as
covariant and mixed tensors, respectively, of rank 2.

Solution. Using the definition of covariant derivative (1.104) and the rule of trans-
formation (1.116), sequentially find the following:

A0
μIα D @A0

μ

@q0α
� Γ 0ν

μα A0
ν

D @

@qλ

�
@qσ

@q0μ A σ

�
@qλ

@q0α

�
 

@q0ν

@q�

@qλ

@q0α

@qσ

@q0μ
Γ �

λσ C @q0ν

@q�

@2q�

@q0α@q0μ

!
@q�

@q0ν
A �

D @qσ

@q0μ

@qλ

@q0α

�
@A σ

@qλ � Γ �
λσ A �

�
D @qσ

@q0μ

@qλ

@q0α A σIλ . (1.118)

It has been proven that the quantity in question is transformed as a covariant ten-
sor of rank 2. When considering the second tensor, one must use the following
equality:

@q0ν

@q�

@2q�

@q0α@q0μ D @q�

@q0α

@qλ

@q0μ

@2q0ν

@q�@qλ . (1.119)

It follows from differentiating over the coordinate of an equality such as (1.43).
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Problems

1.79. Show that a derivative of a coordinate of the scalar (gradient) @S/@qμ D SIμ

is a covariant vector.

1.80. Show that a covariant curl coincides with a proper curl:

A μIν � A νIμ D @A μ

@qν � @A ν

@qμ .

1.81�. Show that the covariant divergence of a covariant vector (scalar) may be
written as

Aμ
Iμ D 1p

g
@

@qμ

�p
gAμ� . (1.120)

1.82. In curvilinear coordinates, write down the Laplace operator influencing a
scalar function.

1.83. Write down covariant divergence T μνIμ for any tensor of rank 2.

1.84. Do the same for the antisymmetric tensor Aμν D �Aνμ.

1.85. Prove the following relation for the covariant components of the antisymmet-
ric tensor A μν D �A νμ:

A μνIλ C A λμIν C A νλIμ D @A μν

@qλ C @A λμ

@qν C @A νλ

@qμ .

1.86. Find the covariant derivatives of the metric tensor gμνIλ and gνμIλ .

1.87. Prove the identity @gμν/@qλ D Γμ,νλ C Γν,μλ.

1.2.6
Orthogonal Curvilinear Coordinates

Orthogonal curvilinear coordinates in which gμν D 0 while μ ¤ ν (see Prob-
lem 1.46) are practically used very frequently. In those cases, the following notation
is used: gμν D h2

μ(q)δμν (no summing over μ is necessary). The element of length
is written as

dl2 D gμνdqμdqν D h2
1(dq1)2 C h2

2(dq2)2 C h2
3(dq3)2 , (1.121)

where, in accordance with (1.46), values hμ (Lamé coefficients)19) have the following
form:

hμ D
s�

@x
@qμ

�2

C
�

@y
@qμ

�2

C
�

@z
@qμ

�2

. (1.122)

19) Gabriel Lamé (1795–1870) was a French mathematician and engineer who conducted research in
mathematical physics and the theory of elasticity.
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Since
p

g D h1h2h3, the invariant volume element (1.54) assumes the following
form:

dV D h1h2h3dq1dq2dq3 . (1.123)

The characteristic peculiarity of an orthogonal basis is that the vectors of the orig-
inal and mutual bases have the same directions but different sizes and physical
dimensions (because the coordinates x α and q� may have different dimensions).
This is why the dimensions of different components of the same vector, expanded
in the vectors of those bases, may also be different, which creates a certain incon-
venience when physical problems are being solved. This is why the introduction
of an orthogonal basis of unit vectors eα�, eα� � e�� D δα� is useful (we will label
them with lower indices and an asterisk) and through which, in accordance with
(1.50), the covariant and contravariant bases will be expressed in the following way:

e� D h� e�� , e� D 1
h�

e�� . (1.124)

The expansion of an arbitrary vector A in orts e�� assumes the following form:

A D A 1�e1� C A 2�e2� C A 3�e3� , (1.125)

where the “physical” components of the vector A μ� now have the same dimension-
ality matching that of A, that is, the physical quantity in question, and are connect-
ed to its covariant and contravariant components by the following relations:

A �� D A μ

hμ
D Aμ hμ . (1.126)

Since the use of the basis e�� is convenient, hereafter we will use that basis every-
where, omitting the asterisk.

Using relations (1.120)–(1.126), and also (1.25), write down the principal opera-
tions of differentiation in orthogonal curvilinear coordinates:

grad S D 1
h1

@S
@q1

e1 C 1
h2

@S
@q2

e2 C 1
h3

@S
@q3

e3 I (1.127)

div A D 1
h1h2h3

�
@

@q1 (h2h3A 1) C @

@q2 (h1h3A 2) C @

@q3 (h1h2A 3)
�

I
(1.128)

ΔS D 1
h1h2h3

�
@

@q1

�
h2h3

h1

@S
@q1

�
C @

@q2

�
h1h3

h2

@S
@q2

�
C @

@q3

�
h1h2

h3

@S
@q3

��
I (1.129)
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curlA D 1
h2h3

�
@

@q2
(h3A 3) � @

@q3
(h2A 2)

�
e1

C 1
h1h3

�
@

@q3
(h1A 1) � @

@q1
(h3A 3)

�
e2

C 1
h1h2

�
@

@q1 (h2A 2) � @

@q2 (h1A 1)
�

e3 . (1.130)

Problems

1.88. From the common expressions (1.27)–(1.29), derive the basic differential op-
erations below in the (r, α, z) cylindrical coordinate system where x D r cos α,
y D r sin α, and z D z:

grad S D @S
@r

e r C 1
r

@S
@α

eα C @S
@z

ez I (1.131)

div A D 1
r

@

@r
(r A r) C 1

r
@A α

@α
C @A z

@z
I (1.132)

ΔS D 1
r

@

@r

�
r
@S
@r

�
C 1

r2

@2S
@α2 C @2 S

@z2 I (1.133)

curl A D
�

1
r

@A z

@α
� @A α

@z

�
e r C

�
@A r

@z
� @A z

@r

�
eα

C 1
r

�
@

@r
(r A α) � @A r

@α

�
ez . (1.134)

1.89. Do the same for the (r, #, α) spherical coordinate system where x D
r sin # cos α, y D r sin # sin α, and z D r cos # :

grad S D @S
@r

e r C 1
r

@S
@#

e# C 1
r sin #

@S
@α

eα I (1.135)

div A D 1
r2

@

@r
(r2A r) C 1

r sin #

@

@#
(A# sin #) C 1

r sin #

@A α

@α
I (1.136)

ΔS D 1
r2

@

@r

�
r2 @S

@r

�
C 1

r2 sin #

@

@#

�
sin #

@S
@#

�
C 1

r2 sin2 #

@2S
@α2 I (1.137)

curl A D 1
r sin #

�
@

@#
(A α sin #) � @A#

@α

�
e r

C
�

1
r sin #

@A r

@α
� 1

r
@

@r
(r A α)

�
e# C 1

r

�
@

@r
(r A# ) � @A r

@#

�
eα .

(1.138)
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1.90�. Use identity (1.83) to write the projections of the vector 4A onto the axes
of a cylindrical coordinate system.

1.91�. Do the same for a spherical coordinate system.

1.92. Find the general form solution of Laplace’s equation for a scalar function that
depends only on (i) r, (ii) α, and (iii) z (cylindrical coordinates).

1.93. Find the general form solution of Laplace’s equation for a scalar function that
depends only on (i) r, (ii) # , and (iii) α (spherical coordinates).

Note In Problems 1.94�–1.98�, examples of curvilinear orthogonal systems of
coordinates are considered. These systems are more complex than cylindrical and
spherical systems. For more information, see Arfken (1970) and Stratton (1948)

1.94�. The equation

x2

a2 C y 2

b2 C z2

c2 D 1 (a > b > c)

represents an ellipsoid with semiaxes a, b, and c. The equations

x2

a2 C �
C y 2

b2 C �
C z2

c2 C �
D 1 , � � �c2 ,

x2

a2 C η
C y 2

b2 C η
C z2

c2 C η
D 1 , �c2 � η � �b2 ,

x2

a2 C �
C y 2

b2 C �
C z2

c2 C �
D 1 , �b2 � � � �a2

represent an ellipsoid and one-sheet and two-sheet hyperboloids confocal with the
first ellipsoid, respectively. Each point of the space is crossed by a surface character-
ized by values � , η, and � . � , η, and � are called ellipsoidal coordinates of the point
x , y , z. Find the formulas of transformation of ellipsoidal to Cartesian coordinates.
Make sure that an ellipsoidal system of coordinates is orthogonal. Find the Lamé
coefficients and Laplace’s operator in ellipsoidal coordinates.

1.95�. When a D b > c, the ellipsoidal coordinate system (see the previous prob-
lem) degenerates to become a so-called flattened spheroidal coordinate system.
When this happens, the coordinate � becomes constant, equals �a2, and must
be replaced by another coordinate. To serve as such, an azimuthal angle α on the
surface x y is selected. The coordinates � and η are found from the following equa-
tions:

r2

a2 C �
C z2

c2 C �
D 1 , � � �c2 ,

r2

a2 C η
C z2

c2 C η
D 1 , �c2 � η � �a2 ,
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where r2 D x2 C y 2.
Surfaces � D const are flattened ellipsoids of rotation around the O z axis. Sur-

faces η D const are one-sheet hyperboloids of rotation confocal with them (Fig-
ure 1.6).

Figure 1.6 A flattened spheroidal system of coordinates.

Find the expressions for r and z in flattened spheroidal coordinates, the Lamé
coefficients, and Laplace’s operator in those coordinates.

1.96�. An extended spheroidal system of coordinates is derived from an ellipsoidal
one (Problem 1.94�) when a > b D c. When this happens, the coordinate η
becomes constant and must be replaced with an azimuthal angle α marked off
on the y z surface by the O y axis. The coordinates � and � are found from the
following equations:

x2

a2 C �
C r2

b2 C �
D 1 , � � �b2 ,

x2

a2 C �
C r2

b2 C �
D 1 , �b2 � � � �a2 ,

where r2 D y 2 C z2.
The surfaces of the constants � and η are extended ellipsoids and two-sheet

hyperboloids of rotation (Figure 1.7). Express the quantities x and r through � and
� . Find the Lamé coefficients and Laplace’s operator in the variables � , � , and α.

1.97�. Bispherical cooordinates � , η, and α are connected to Cartesian coordinates
by the following relations:

x D a sin η cos α
cosh � � cos η

, y D a sin η sin α
cosh � � cos η

, z D a sinh �
cosh � � cos η

,

where a is a constant parameter, �1 < � < 1, 0 < η < π, and 0 < α < 2π.
Show that the coordinate surfaces � D const are spheres,

x2 C y 2 C (z � a coth � )2 D
�

a
sinh �

�2

,
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Figure 1.7 An extended spheroidal system of coordinates.

the surfaces η D const are spindle-shaped surfaces of rotation around the O z axis,
whose equation is�q

x2 C y 2 � a cot η
�2

C z2 D
�

a
sin η

�2

,

and surfaces α D const are half-planes diverging from the O z axis (Figure 1.8).
Make sure that these coordinate surfaces are orthogonal with respect to each other.
Find the Lamé coefficients and Laplace’s operator.

Figure 1.8 A bispherical system of coordinates.

1.98�. The toroidal coordinates �, � , and α make up an orthogonal system and are
connected to Cartesian coordinates by the following relations:

x D a sinh � cos α
cosh � � cos �

, y D a sinh � sin α
cosh � � cos �

, z D a sin �
cosh � � cos �

,
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where a is a constant parameter, �1 < � < 1, �π < � < π, and 0 < α < π.
Show that � D ln(r1/r2) (see Figure 1.9, displaying the surfaces α D const and

α C π D const) and the quantity � is the angle between r1 and r2 (� > 0 if z > 0
and � < 0 if z < 0). What is the form of the coordinate surfaces � D const and
� D const? Find the Lamé coefficients.

Figure 1.9 A toroidal system of coordinates.

Suggested literature:
Borisenko and Tarapov (1966); Weinberg (1972); Arfken (1970); Mathews and Walk-
er (1964); Lee (1965); Rashevskii (1953); Morse and Feshbach (1953); Stratton
(1948); Madelung (1957)

1.3
The Special Functions of Mathematical Physics

1.3.1
Cylindrical Functions

Cylindrical functions are used when solving many specific problems. Of these, the
Bessel functions are the most commonly used. They may be obtained by expanding
a purposely selected exponent (generating function) in a power series over u:

exp
�

x
2

�
u � 1

u

�	
D

1X
nD�1

Jn(x )un . (1.139)

The coefficients Jn(x ) of this expansion are called Bessel functions20) of the first
kind and order n. The representation of a Bessel function as a power series may be

20) Friedrich Wilhelm Bessel (1784–1846) was a German astronomer, land surveyor, and
mathematician.
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obtained from the power series for exponents:

exp

 x u

2

�
exp



� x

2u

�
D

1X
rD0


 x
2

�r ur

r!

1X
sD0

(�1)s

 x

2

�s u�s

s!
. (1.140)

These expansions are valid for any (including complex) values of x and u, which is
due to the unboundedness of the radius of convergence of an exponent. Changing
to summing over n D r � s(�1 < n < 1), we get, from (1.140)

exp
�

x
2

�
u � 1

u

�	
D

1X
nD�1

1X
sD0

(�1)s

s!(n C s)!


 x
2

�nC2s
un

D
1X

nD�1
Jn(x )un , (1.141)

wherefrom it follows that

Jn(x ) D
1X

sD0

(�1)s

s!(n C s)!


 x
2

�nC2s
. (1.142)

The use of this representation for Jn(x ) is expedient when n � 0. When n < 0, the
following may be written instead of (1.142):

Jn(x ) D
1X

sDjnj

(�1)s

s!(n C s)!


 x
2

�nC2s D
1X

sD0

(�1)sCjnj

s!(jnj C s)!


 x
2

�jnjC2s
un . (1.143)

This is because when s C n < 0, (s C n)! ! 1. As a result, we get a simple depen-
dence between the Bessel functions of the whole positive and negative orders:

J�n(x ) D (�1)n Jn(x ) . (1.144)

Example 1.12

Obtain recurrent relations between Bessel functions of various orders by differen-
tiating equality (1.139) over u and over x, comparing the second and first members
of the equality.

Solution. Differentiating (1.139) over u, we get

x
2

�
1 C 1

u2

�
exp

�
x
2

�
u � 1

u

��
D x

2

�
1 C 1

u2

� 1X
nD�1

Jn(x )un

D
1X

nD�1
n Jn(x )un�1 .
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Equating the coefficients of un�1 in second and first members of the latter equality,
we find the following:

Jn�1(x ) C JnC1(x ) D 2n
x

Jn(x ) . (1.145)

Differentiating (1.139) over x, we get in the same way

Jn�1(x ) � JnC1(x ) D 2 J 0
n(x ) . (1.146)

These recurrent relations may be rewritten as follows, in other forms:

Jn˙1 D n
x

Jn(x ) � J 0(x ) I Jn�1 D ˙x�n d
dx

[x˙n Jn(x )] . (1.147)

Specifically,

J1(x ) D � J 0
0(x ) . (1.148)

Example 1.13

Obtain representations of the Bessel function as integrals from exponential and
trigonometric functions. For that purpose, use the substitution u D exp(i') in
expansion (1.139).

Solution. The substitution leads to the expansion

exp(i x sin ') D
1X

nD�1
Jn(x ) exp(i n') . (1.149)

Use the periodicity of the functions sin ' and exp(i n') and also the easily verifiable
equality

αC2πZ
α

exp(i(n � m)')d' D 2πδmn ,

where m is an integer and α is any real number. Multiplying both parts of (1.149) by
exp(�i m') and integrating over ', we get the representation of the Bessel function:

Jm(x ) D 1
2π

αC2πZ
α

exp(i x sin ' � i m')d'

D (�i)m

2π

αC2πZ
α

exp(i x cos ' � i m')d' . (1.150)
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Example 1.14

Presume that certain functions of Zν (x ), different, generally speaking, from Bessel
functions (1.142), satisfy the recurrent relations (1.145)–(1.148) when the value of
n D ν is arbitrary and complex. Produce a differential equation of the second order
whose solution is Zν (x ).

Solution. Differentiate the second equality (1.147) over x and add a term equaling
zero to it (replacing n ! ν, Jn ! Zν ):

Z 0
ν�1 D [x�ν (x ν Zν)0]0 C 1

x



Z 0

ν C ν
x

Zν � Zν�1

�
D Z 00

ν C ν C 1
x

Z 0
ν � 1

x
Zν�1 .

Once again, add a term equaling zero to the second member:

Z 0
ν�1 D Z 00

ν C ν C 1
x

Z 0
ν � 1

x
Zν�1 C n

x

h
Zν�1 � ν

x
Zν � Z 0

ν

i
D Z 00

ν C 1
x

Z 0
ν � n2

x2 Zν C ν � 1
x

Zν�1 .

Finally, from the second equality in (1.147), if we make the replacement n C 1 !
ν, Jn ! Zν , we find

Zν D ν � 1
x

Zν�1 � Z 0
ν�1 .

Excepting Z 0
ν�1 from the latter two equalities, we get the Bessel equation, satisfied

by the function Zν(x ):

Z 00
ν C 1

x
Z 0

ν C
�

1 � ν2

x2

�
Zν D 0 . (1.151)

This or a similar equation appears when solving many physical problems. Below,
we will briefly summarize the basic information concerning the solutions of this
equation. The generation of the necessary formulas is shown in special mathemat-
ical texts (Arfken, 1970; Nikiforov and Uvarov, 1988; Gradshtein and Ryzhik, 2007;
Lee, 1965; Mathews and Walker, 1964; Abramovitz and Stegun, 1965; Vilenkin,
1988).

A solution of (1.151), limited when Reν � 0, called a Bessel function of the first
order when x ! 0, may be represented as a power series, which is a generalization
of (1.142):

Jν(z) D

 z

2

�ν 1X
sD0

(�1)s

s!Γ (ν C s C 1)


 z
2

�2s
. (1.152)
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The independent variable is labeled z, because the series remains valid whatever
the values of ν and throughout the complex plane z, except for the slit along the
negative part of the real axis.

Another linearly independent solution, when ν ¤ n D 0, ˙1, . . ., may be J�ν(x ).
When n is an integer, there is a linear connection (1.144) between the two solutions
shown. This is why the Bessel function of the second kind (the same as Neumann’s
function21) or Weber’s function22)) is selected as the second solution:

Yν(z) D Jν(z) cos νπ � J�ν (z)
sin νπ

. (1.153)

This solution has a finite bound when ν ! n.
Also, Bessel functions of the third order, also called Hankel functions23), may be

selected as two linearly independent solutions:

H (1)
ν (z) D Jν(z) C i Yν(z) I H (2)

ν (z) D Jν(z) � i Yν(z) . (1.154)

All these functions are solutions of Bessel’s equation. The functions Yν and H (1,2)
ν

have singularities when z ! 0. All these solutions satisfy the recurrent relations
(1.145)–(1.147) (with the replacement of n ! ν, Jn ! Zν).

The asymptotic values are as follows: when z ! 0,

Jν(z) � z ν

2ν Γ (ν C 1)
, ν ¤ �1, �2, . . . , (1.155)

Y0(z) � �i H (1)
0 (z) � i H (2)

0 (z) � 2
π

ln z , (1.156)

Yν(z) � �i H (1)
ν (z) � i H (2)

ν (z) � � Γ (ν)
π


 z
2

��ν
, Reν > 0 , (1.157)

and when jzj ! 1 and ν is arbitrary,

Jν(z) �
r

2
πz

cos



z � νπ
2

� π
4

�
, j arg zj < π , (1.158)

Yν(z) �
r

2
πz

sin



z � νπ
2

� π
4

�
, j arg zj < π , (1.159)

H (1)
ν (z) �

r
2

πz
exp

h
i



z � νπ
2

� π
4

�i
, �π < arg z < 2π , (1.160)

H (2)
ν (z) �

r
2

πz
exp

h
�i



z � νπ
2

� π
4

�i
, �2π < arg z < π . (1.161)

21) Karl Gottfried Neumann (1832–1925) was a German mathematician.
22) Heinrich Weber (1842–1913) was a German mathematician.
23) Hermann Hankel (1839–1873) was a German mathematician and a historian of mathematics.



�

� Igor N. Toptygin: Foundations of Classical and Quantum Electrodynamics —
Chap. c01 — 2013/10/8 — page 46 — le-tex

�

�

�

�

�

�

46 1 The Mathematical Methods of Electrodynamics

Cylindrical functions of purely imaginary arguments are called modified Bessel
functions. The second of them is also called the Macdonald function.24) They are
described by the following relations:

Iν(z) D e�i πν/2 Jν (i z) , (1.162)

Kν(z) D π
2

e i π(νC1)/2H (1)
ν (i z) (1.163)

or

Iν(z) D

 z

2

�ν 1X
sD0

(z/2)2s

s!Γ (ν C s C 1)
, Kν(z) D π

2
I�ν(z) � Iν(z)

sin νπ
. (1.164)

These functions take real values when ν and z > 0 are real. Recurrent relation and
differentiation formulas are produced from (1.145)–(1.147), (1.162), and (1.163).
For instance,

I 0
0(z) D I1(z) , K 0

0(z) D �K1(z) . (1.165)

Modified Bessel functions satisfy the equation

W 00
ν C 1

z
W 0

ν �
�

1 C ν2

z2

�
Wν D 0 . (1.166)

The asymptotic values are as follows: when z ! 0,

Iν(z) � z ν

2ν Γ (ν C 1)
, ν ¤ �1, �2 . . . , (1.167)

K0(z) � � ln z , Kν(z) � 1
2

Γ (ν)

 z

2

��ν
, Reν > 0 , (1.168)

and when jzj ! 1,

Iν(z) � 1p
2πz

ez , j arg zj <
π
2

, (1.169)

Kν(z) �
r

π
2z

e�z , j arg zj <
3π
2

. (1.170)

The spherical functions of Bessel, Hankel, and Weber often appear when prob-
lems are solved in spherical coordinates. They are of half-integer order and are
described by the following equalities:

j l(x ) D
r

π
2x

JlC 1
2
(x ) I h(1,2)

l D
r

π
2x

H (1,2)
lC 1

2
(x ) I

y l(x ) D
r

π
2x

YlC 1
2
(x ) . (1.171)

24) Hector Munro Macdonald (1865–1935) was a Scottish physicist and mathematician.
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All these functions (their common symbol is zl (x )) satisfy the following equation:

z00
l C 2

x
z0

l C
�

1 � l(l C 1)
x2

�
zl D 0 .

When x is small,

j l(x ) � x l

1 � 3 � � � (2l C 1)
, h(1,2)

l � � x�l�1

1 � 3 � � � (2l � 1)
. (1.172)

When x is large,

j l(x ) � 1
x

cos
�

x � (l C 1)π
2

�
,

h(1,2)
l (x ) � 1

x
exp

�
˙
�

x � (l C 1)π
2

�	
. (1.173)

Problems

1.99. Compute the indefinite integralsR
x ν Zν�1(x )dx and

R
x�ν ZνC1(x )dx .

1.100. Compute the definite integralsR1
0 J1(x )dx ,

R1
0 J2(x )x�1dx , and

R1
0 Jn(x )x�ndx .

1.101. Prove the equality of the integralsR1
0 Jn(x )dx D R1

0 Jn(x )dx , n D 0, 1, . . .

1.102. Obtain the integral representation

J0(x ) D 2
π

1Z
0

cos uxp
1 � u2

du .

Hint: Perform the substitution u D sin '.

1.103� . Compute the integrals

π/2Z
0

J0(x cos ') cos 'd' D sin x
x

and

π/2Z
0

J1(x cos ')d' D 1 � cos x
x

.

Hint: You may use expansion in power series.

1.104. Produce the formulas

Jn(x ) D (�1)k x n
�

d
xdx

�k 

x k�n Jn�k(x )

�
D (�1)n x n

�
d

xdx

�n

J0(x ) .



�

� Igor N. Toptygin: Foundations of Classical and Quantum Electrodynamics —
Chap. c01 — 2013/10/8 — page 48 — le-tex

�

�

�

�

�

�

48 1 The Mathematical Methods of Electrodynamics

1.105. Produce recurrent relations for the modified Bessel functions:

Iν�1(z) � IνC1(z) D 2ν
z

Iν(z) I Iν�1(z) C IνC1(z) D 2I 0
ν(z) I (1.174)

Kν�1(z) � KνC1(z) D � 2ν
z

Kν (z) I
Kν�1(z) C KνC1(z) D �2K 0

ν (z) . (1.175)

1.106�. Show that

J0(jr1 � r2j) D
1X

nD�1
Jn(r1) Jn(r2) exp(i n#) ,

where # is the angle between vectors r1 and r2.

1.107�.

1. Write an equation satisfied by the function u(x ) D Jn(ax ).
2. Compute the integral (b ¤ a)

1Z
0

x Jn(ax ) Jn(bx )dx D a J 0
n(a) Jn(b) � b J 0

n(b) Jn(a)
b2 � a2

. (1.176)

3. a ¤ b are the roots of the equation Jn(x ) D 0, that is, Jn(a) D Jn(b) D 0. Show
that

1Z
0

x Jn(ax ) Jn(bx )dx D 0 and

1Z
0

x J2
n(ax )dx D 1

2
[ J 0

n(a)]2 . (1.177)

Note The first equality (1.177) expresses the property called the orthogonality of
Bessel functions weighted by x.

1.108�. Produce “summation theorems” for Bessel functions:

1X
kD�1

Jn�k (x ) Jk (y ) D Jn(x C y ) , n D 0, 1, 2, . . . I (1.178)

1X
kD�1

(�1)k Jn�k (x ) Jk (x ) D 0 , n D 1, 2, . . . I (1.179)

J0(x ) J0(y ) C 2
1X

kD1

(�1)k Jk (x ) Jk (y ) D J0(x C y ) , n D 1, 2, . . . I (1.180)

J2
0 (x ) C 2

1X
kD1

(�1)k J2
k (x ) D J0(2x ) . (1.181)
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1.3.2
Spherical Functions and Legendre Polynomials

Spherical functions and Legendre polynomials are widely used in many fields of
physics, especially in electrodynamics and quantum mechanics. The generating
function for Legendre polynomials25) Pl(cos #) is the reverse distance between two
points with radius vectors a and r , the angle between them equaling # :

1
jr � aj D 1p

r2 C a2 � 2ar cos #
D 1

r

1X
lD0


 a
r

�l
Pl (cos #) ,

a
r

< 1 .

(1.182)

Designating x D cos # and u D a/r and using binomial expansion, which, for the
negative exponents is conveniently written as

(1 � α)�q D
1X

nD0

Γ (n C q)
n!Γ (q)

αn , jαj < 1 ,

and the binomial expansion for αn D (2ux � u2)n , we get a double sum:

(1 � 2ux C u2)�1/2 D
1X

nD0

nX
kD0

Γ (n C 1/2)
Γ (1/2)k!(n � k)!

(�1)k (2x )n�k unCk .

Begin summing over k and n C k D l � 0, which will result in the rearrangement
of the terms of the series. In this case, this rearrangement is valid because the
infinite series is absolutely convergent, which will be shown below. As the result,
we have

(1 � 2ux C u2)�1/2 D
1X

lD0

lX
kD0

Γ (l � k C 1/2)
Γ (1/2)k!(l � 2k)!

(�1)k (2x )l�2k ul

D
1X

lD0

Pl (x )ul ,

where

Pl(x ) D
lX

kD0

Γ (l � k C 1/2)
Γ (1/2)k!(l � 2k)!

(�1)k (2x )l�2k

D
lX

kD0

(�1)k (2l � 2k)!
2l k!(l � k)!(l � 2k)!

x l�2k . (1.183)

In the latter two equalities, the sum over k is actually limited to the value of the
integer part of l/2 because the infinite factorial of the negative integer in the de-
nominator will eliminate all terms with l � 2k < 0.

25) Adrien-Marie Legendre (1752–1833) was a French mathematician.
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Example 1.15

Find the values of the polynomials Pl (1), Pl (�1), and Pl (0) by assigning particular
values to the angle # in (1.182) and using the binomial expansion.

Solution. If we assume that cos # D 1, we find, from (1.182), that

1
1 � u

D
1X
lD0

ul D
1X

lD0

Pl (1)ul

and, therefore, Pl (1) D 1 whatever the values of l, and P0 D 1 when 0 	 # 	 π.
Similarly, we get the following:

Pl (�1) D (�1)l , P2l (0) D (�1)l (2l � 1)!!
2l l !

, l � 1 I
P2lC1(0) D 0 , l � 0 . (1.184)

Example 1.16

Acquire limits of the values of Legendre polynomials jPl (cos #)j 	 1 by analyzing
the expansion of the generating function (1.182) in series over cos m# .

Solution. Sequentially obtain the following from the generating function:

1 � 2u cos # C u2)�1/2 D (1 � uei# )�1/2(1 � uei#)�1/2

D
�

1 C 1
2

uei# C 3
8

u2e2 i# C � � �
	

�
�

1 C 1
2

ue�i# C 3
8

u2e�2 i# C � � �
	

D
1X
lD0

Pl (cos #)ul ,

where Pl(cos #) D Pl
kD0 ak cos k# . Coefficients ak are selected from the values in

braces and, importantly, they are all not negative: ak � 0. In this case, the sumP
ak cos k# is maximal when # D 0, which corresponds to Pl (1) D 1. Therefore,

jPl(cos #)j 	 1.
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The estimate we have made allows us to establish that the series (1.182),
when a/r < 1, is absolutely convergent, that is, what converges is the seriesP1

lD0 jPl (cos #)j(a/r)l . This follows from the established inequality and the fact
that the dominating series

P1
lD0(a/r)l is knowingly convergent when a/r < 1. It

represents the sum of the elements of a decreasing geometric progression.
Expansion (1.183) may yield a more compact representation of the Legendre

polynomials if the following transforms are done sequentially:

Pl(x ) D
lX

kD0

(�1)k (2l � 2k)!
2l k!(l � k)!(l � 2k)!

x l�2k

D
lX

kD0

(�1)k

2l k!(l � k)!

�
d

dx

�l

x2l�2k

D 1
2l l !

�
d

dx

�l lX
kD0

(�1)k l !
k!(l � k)!

x2l�2k D 1
2l l !

�
d

dx

�l

(x2 � 1)l .

(1.185)

The latter expression for Legendre polynomials is called the Rodrigues formula.26)

Example 1.17

Using the Rodrigues formula, produce recurrent relations between the Legendre
polynomials:

P 0
l (x ) D x P 0

l�1(x ) C l Pl�1(x ) I (1.186)

(1 � x2)P 00
l (x ) D 2(l C 1)P 0

lC1(x ) � 2(l C 2)x

� P 0
l (x ) � (l C 1)(l C 2)Pl (x ) . (1.187)

Using the said relations, obtain a differential equation of the second order satisfied
by Pl (x ).

Solution. Use the Leibniz formula27) to find the derivative of order n from the prod-
uct of the following functions:

( f g)(n) D
nX

kD0

n!
k!(n � k)!

f (n�k )g(k ) .

26) Benjamin Olinde Rodrigues (1794–1851) was a French mathematician and economist.
27) Gottfried Wilhelm Leibniz (1646–1716) was a German philosopher, jurist, and historian as well as

a mathematician, physicist, and inventor. He was one of the founders of classical mathematical
analysis.



�

� Igor N. Toptygin: Foundations of Classical and Quantum Electrodynamics —
Chap. c01 — 2013/10/8 — page 52 — le-tex

�

�

�

�

�

�

52 1 The Mathematical Methods of Electrodynamics

Compute

P 0
l (x ) D 1

2l l !

�
d

dx

�lC1

(x2 � 1)l D 2l
2l l !

�
d

dx

�l h
x (x2 � 1)l�1

i
D 2l

2l l !

"
x
�

d
dx

�l

(x2 � 1)l�1 C l
�

d
dx

�l�1

(x2 � 1)l�1

#
.

Expression (1.186) follows from this equality and the Rodrigues formula. Obtain
(1.187) using the following similar relation:�

d
dx

�lC2

(x2 � 1)lC1 D (x2 � 1)
�

d
dx

�lC2

(x2 � 1)l

C 2(l C 2)x
�

d
dx

�lC1

(x2 � 1)l

C (l C 1)(l C 2)
�

d
dx

�l

(x2 � 1)l .

Obviously, the two recurrent relations obtained produce the differential equation of
Legendre that has the following form:

(1 � x2)P 00
l (x ) � 2x P 0

l (x ) C l(l C 1)Pl (x ) D 0 . (1.188)

The second linearly independent solution of Legendre’s equation has singularities
when x D ˙1.

Example 1.18

The adjoint Legendre polynomials are described by the expression

P m
l (x ) D (1 � x2)m/2

�
d

dx

�m

Pl (x )

D (1 � x2)m/2

2l l !

�
d

dx

�lCm

(x2 � 1)l , �l 	 m 	 l . (1.189)

Obtain a differential equation satisfied by the adjoint Legendre polynomials.

Solution. When m > 0, differentiate the two parts of Legendre’s equation (1.188)
m times and get an equation of the form

(1 � x2)F 00 � 2(m C 1)x F 0 C (l � m)(l C m C 1)F D 0

for the function

F(x ) D
�

d
dx

�m

Pl (x ) D (1 � x2)�m/2P m
l (x ) .
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After inserting the derivatives in the equation obtained,

F 0(x ) D (1 � x2)�m/2
�

dP m
l

dx
C mx P m

l

1 � x2

�
,

F 00(x ) D (1 � x2)�m/2

�
"

d2P m
l

dx2 C 2mx
1 � x2

dP m
l

dx
C mP m

l

1 � x2 C m(m C 2)x2P m
l

(1 � x2)2

#
,

find the required equation:

(1 � x2)
d2P m

l

dx2 � 2x
dP m

l

dx
C
�

l(l C 1) � m2

1 � x2

�
P m

l D 0 . (1.190)

Since the equation is not sensitive to the sign of m, P�m
l (x ) and P m

l (x ) may differ
only in the factor independent of x (see Problem 1.116�).

Example 1.19

Use (1.190) to prove the orthogonality of the adjoint Legendre polynomials where
symbols m are the same and symbols l are different.

Solution. Write down (1.190) in the form

d
dx

(1 � x2)
dP m

l

dx
C
�

l(l C 1) � m2

1 � x2

�
P m

l D 0

and another similar equation for P m
l 0 . Further, multiply the first equation by P m

l 0 and
the second one by P m

l , deduct two equations term by term, and integrate over x.
This gives us

[l(l C 1) � l 0(l 0 C 1)]

1Z
�1

P m
l 0 (x )P m

l (x )dx D 0 ,

wherefrom we obtain the orthogonality of

1Z
�1

P m
l 0 (x )P m

l (x )dx D 0 , l 0 ¤ l . (1.191)
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Example 1.20

The spherical Legendre function Yl m(#, ') is described as follows:

Yl m(#, ') D Cl m P m
l (#)e i m' , (1.192)

where P m
l (#) is an adjoint Legendre polynomial, expressed through trigonomet-

ric functions and Cl m is the normalization factor. Find the law of transition of
this function when the coordinate system is inverted. Make sure that the Legen-
dre spherical functions are orthogonal as to their indices when integrated over the
whole spatial angle and write, in an explicit form, the condition of their normaliza-
tion per unit.

Solution. When the coordinate system is inverted (see Section 1.1), the polar
angles are transformed as per the rule # ! π � #, ' ! π C ', cos # !
� cos #, e i m' ! (�1)m ei m' . On the basis of the definition of P m

l (x ) (1.189) and
(1.191), find

Yl m(#, ') ! Yl m(π � #, π C ') D (�1)l Yl m(#, ') . (1.193)

Integrating over the whole spatial angle means that the boundaries of the angle
measurement are 0 	 # 	 π, 0 	 ' 	 2π. Integrating over ' ensures the orthogo-
nality of m-indexed spherical functions:

2πZ
0

e i(m�m0)'d' D 2πδmm0 .

Orthogonality over index l is ensured by the adjoint Legendre polynomials (see
Example 1.19). The condition of orthogonality and per-unit normalization is as fol-
lows:

πZ
0

sin #d#

2πZ
0

d'Y �
l 0m0 (#, ')Yl m(#, ') D δ l l 0 δmm0 . (1.194)

The normalization factor is found as per the following condition:

2πjCl mj2
1Z

�1

[P m
l (x )]2dx D 1 .

For the computation of the latter integral, see Problem 1.118� .

Here is a rather useful relation called the summation of spherical functions theorem.
Assume that it is probable, which it actually is. If θ is an angle between two vectors
(r, #, ') and (r 0, # 0, '), that is,

cos θ D cos # cos # 0 C sin # sin # 0 cos(' � '0) ,
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then

Pl (cos θ ) D 4π
2l C 1

lX
mD�l

Yl m(#, ')Yl m(# 0, '0) . (1.195)

The derivation of this expansion may be found in Arfken (1970). The method of
the theory of group representations is described in detail in Vilenkin (1988) and
Gel’fand et al. (1958). See also Abramovitz and Stegun (1965), Gradshtein and
Ryzhik (2007), Kolokolov et al. (2000), and Madelung (1957).

Problems

1.109. Show that when x D cos # , Legendre’s equation assumes the following
form:

1
sin #

d
d#

sin #
dPl

d#
C l(l C 1)Pl D 0 . (1.196)

1.110. Obtain the recurrent relations

(2l C 1)x Pl(x ) D (l C 1)PlC1(x ) C l Pl�1(x ) ,

(2l C 1)Pl(x ) D P 0
lC1(x ) � P 0

l�1(x ) ,

where l D 1, 2, . . .
For that purpose, you may use the Rodrigues formula and the method used in

Example 1.12 when considering Bessel functions.

1.111. Using the recurrent relations, find the first five Legendre polynomials.

1.112� . Using the Rodrigues formula, prove the orthogonality of Legendre polyno-
mials with various values of l and find the normalization integral:

1Z
�1

Pl (x )Pl 0 (x )dx D 2
2l C 1

δ l l 0 . (1.197)

Hint: Express the normalization integral through the Euler beta function.

1.113. Using the generating function for Legendre polynomials, obtain the expan-
sion

1 � u2

(1 � 2ux C u2)3/2
D

1X
lD0

(2l C 1)Pl (x )ul .

1.114. Using the results from Example 1.17, obtain the second Legendre polyno-
mial in the form P2 D P2

kD0 ak cos k# .
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1.115. Write down (1.190) for adjoint Legendre polynomials in spherical coordi-
nates.

1.116�. Using formula (1.189), show that

P�m
l (x ) D (�1)m (l � m)!

(l C m)!
P m

l (x ) . (1.198)

Hint: Apply the Leibniz formula to the product (x �1)l (x C1)l (see Example 1.17).

1.117. Write down, in explicit form, Legendre polynomials P m
l for l D 0, 1, 2, 3.

1.118�. Find the normalization coefficient Cl m introduced in Example 1.20. Write
down, in explicit form, Legendre’s spherical function.

1.119. Write down an equation satisfied by Legendre’s spherical function Yl m(#, ').

1.3.3
Dirac Delta Function

We encounter the concept of the Dirac delta function28) when trying to describe the
charge density �(r) of a point particle. If a particle with charge e is at the origin,
then, obviously, the function �(r) must have the following properties:

�(r) D 0 if r ¤ 0 . (1.199)

Yet when r ! 0, the density of �(r) must increase fast enough forZ
ΔV

�(r)dV D e , (1.200)

that is, for an integral over any volume ΔV , containing the point where the particle
in question is located, to have the final value that equals the charge e.

Having written �(r) D eδ(r), we get, from (1.199) and (1.200), the conditions
determining the three-dimensional delta function:

δ(r) D 0 , r ¤ 0 I δ(r) ! 1 , r ! 0 I (1.201)Z
ΔV

δ(r)dV D 1 . (1.202)

The one-dimensional delta function is described by similar relations:

δ(x ) D 0 , x ¤ 0 I δ(x ) ! 1 , x ! 0 I
Z
Δ

δ(x )dx D 1 , (1.203)

28) Paul Adrien Maurice Dirac (1902–1984) was an outstanding English theoretical physicist, a Nobel
Prize recipient, one of the founders of quantum mechanics, and the creator of the first quantum
field theory (quantum electrodynamics). He formulated the relativist quantum equation for
electrons and other leptons and introduced the concept of antiparticles (see Chapter 6).
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where Δ is the segment of the x axis that contains the point x D 0.
The delta function belongs to the class of singular generalized functions. It ac-

quires its exact meaning under an integral. Consider the integral of the product of
the delta function and any continuous and bounded function f (x ):

x2Z
x1

δ(x ) f (x )dx ,

where x1 < 0 and x2 > 0. Since δ(x ) D 0 when x ¤ 0, then only the small
neighborhood � of the point x D 0 where f (x ) is constant, equaling f (0), makes a
contribution to the integral:

x2Z
x1

δ(x ) f (x )dx D f (0) . (1.204)

Further, having replaced variable x with x �a in the argument of the delta function,
retracing the previous reasoning, we find the following:

x2Z
x1

δ(x � a) f (x )dx D f (a) , (1.205)

if the interval (x1, x2) contains the point x D a.
Equalities (1.203) and (1.204) show that δ(x ) is an even function of its argument:

δ(x ) D δ(�x ) . (1.206)

Using the latter property and inserting the variable jαjx D y , make sure that the
relation

x2Z
x1

δ(αx ) f (x )dx D 1
jαj f (0) (1.207)

is valid. Finally, consider the integral

x2Z
x1

δ(g(x )) f (x )dx ,

where a certain smooth function g(x ) is in the argument of the delta function. Only
points where g(x ) D 0, that is, the real roots of the function g(x ), contribute to the
integral. Having labeled them as ai, we may write

x2Z
x1

δ(g(x )) f (x )dx D
X

i

a i C�Z
ai��

δ(g(x )) f (x )dx ,
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where � is a small number. If f (x ) is continuous, then f (x ) in the segment [ai �
�, ai C �] may be replaced by f (ai ) and g(x ) approximated with the first member
of the expansion g(x ) D g0(ai )(x � ai ). As the result, using (1.207), we get

x2Z
x1

δ(g(x )) f (x )dx D
X

i

1
jg0(ai )j f (ai ) . (1.208)

This property of the delta function may be written as a symbolic equality:

δ(g(x )) D
X

i

1
jg0(ai )j δ(x � ai ) . (1.209)

If g0(ai ) D 0, that is, ai is a multiple root, relations (1.208) and (1.209) become
meaningless. Similarly, the product δ(x ) f (x ) is meaningless if the function f (x )
has a singularity when x D 0.

The derivative from the delta function may also be found. Its exact meaning is in
the formula

x2Z
x1

f (x )
@δ(x � a)

@x
dx D �@ f (a)

@a
, (1.210)

which is produced by integrating by parts. Derivatives of higher orders are found
in a similar way:

x2Z
x1

f (x )δ(n)(x � a)dx D (�1)n f (n)(a) . (1.211)

The function δ(x ) may be regarded as a derivative from the Heaviside step (or
staircase) function29) Θ (x ). This follows from the obvious relation

xZ
x1

δ(x )dx D Θ (x ) D

8̂̂<̂
:̂

1, x > 0 ,
1
2 , x D 0 ,

0, x < 0 ,

(1.212)

where the lower bound of integration x1 is any negative number. Differentiating
this equality, we get the following:

Θ 0(x ) D δ(x ) . (1.213)

In equality (1.212), when the bound of integration coincides with the point where
the argument of the delta function is reduced to zero, we use half of the value of

29) Oliver Heaviside (1850–1925) was an English physicist, engineer, and mathematician. He
developed the basics of operational and vector calculus in their present state. For instance,
Heaviside introduced the concept of ort, the name “nabla” for Hamilton’s operator (r), and
the in-bold notation for labeling vectors (Prokhorov, Yu.,V. (1988) Mathematical Encyclopaedic
Dictionary, Sovietskaya Enciklopediya).
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the smooth function f (x ) D 1, that is, we use the integration rule:

aZ
x1

f (x )δ(x � a)dx D 1
2

f (a) . (1.2050)

This rule agrees with property (1.206), which is the evenness of the delta func-
tion.

The three-dimensional delta function may be regarded as the product of three
one-dimensional delta functions:

δ(r � a) D δ(x � ax )δ(y � ay )δ(z � az ) . (1.214)

This is why all the above properties of one-dimensional delta functions are easily
generalized to include the case of three dimensions.

1.3.4
Certain Representations of the Delta Function

One may obtain a visual representation of the delta function and its derivatives by
looking at the diagram of a certain continuous function δ�(x�a), such as

R
Δ δ�(x�

a)dx D 1. The parameter � characterizes the width of the interval within which the
function in question is other than zero (Figure 1.10).

The delta function and its derivatives are defined as the limits

δ(x � a) D lim
�!0

δ�(x � a) ,
@δ(x � a)

@x
D lim

�!0

@δ�(x � a)
@x

,

and so on.
Many nonsingular functions depending on a parameter when it has certain lim-

iting values assume the properties of the delta function. The most often used such
representations of the delta function areas follows:

δ(x ) D 1
π

lim
�!0

�

�2 C x2
D 1

2π i
lim
�!0

�
1

x � i�
� 1

x C i�

�
I (1.215)

δ(x ) D 1
π

lim
K!1

�
sin K x

x

�
I (1.216)

Figure 1.10 The visualization of the delta function and its first deriva-
tive.
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δ(x ) D 1
π

lim
K!1

 
sin2 K x

K x2

!
I (1.217)

δ(x ) D lim
�!0

1p
π�

e�x2/� . (1.218)

Example (1.216) yields the following representations:

δ(x ) D 1
2π

lim
K!1

KZ
�K

ei k xdk D 1
π

lim
K!1

KZ
0

cos k xdk . (1.219)

They may be regarded as expansions of the delta function in a Fourier integral.30)

Sometimes, formulas (1.219) are written without the sign for passage to the limit
when integrating over infinite limits.

It is easy to make sure that any of the representations (1.215)–(1.219) agrees
with all the properties of (1.203)–(1.207) and the definition (1.210) of a derivative
from the delta function. When computing integrals with delta functions with the use of
representations such as ((1.215))–((1.219)), one should pass to the limit after integrating.
For instance, when using (1.216), we have

bZ
�a

δ(x ) f (x )dx D 1
π

lim
K!1

bKZ
�aK

f

 y

K

� sin y
y

dy D f (0) , (1.220)

and the limit (1.216) per se does not exist.

1.3.5
The Representation of the Delta Function through Loop Integrals in a Complex Plane

We will now use Cauchy’s31) integral formula:

1
2π i

Z
C

f (z)
z � a

dz D f (a) , (1.221)

where f (z) is a function without singularities either within the area bounded by the
closed loop C or on the loop itself, in the plane of the complex variable z, integration
over which is done counterclockwise. As follows from the comparison of (1.221)
with (1.205), the quantity

1
2π i

1
z � a

may be regarded as a representation of δ(z � a) if we agree to integrate over the
closed loop that surrounds point z D a, within which, just as on the loop itself,

30) For Fourier integrals, see Section 1.3.8.
31) Augustin-Louis Cauchy (1789–1857) was an outstanding French mathematician and physicist.

Unlike Laplace, Cauchy was a catholic and a royalist.
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there are no other singularities of the subintegral expression. For instance, the
loop C may be a circle of small radius.

In applications, one frequently encounters an integral over a proper axis:

x2Z
x1

f (x )
x � a

dx ,

where f (x ) has no singularities on the segment [x1, x2], whereas the limits x1, x2

may be infinite. Such an integral, when a is real, has no particular value because
the subintegral expression has a pole on the path of integration. Computing this
integral requires additional information, that is, the rule of circumventing the spe-
cial point must be indicated. Usually, the circumvention rule is established on the
basis of physical arguments:Z

CReCCr

f (x )
x � a

dx D
Z
Cr

f (x )
x � a

dx C
Z

CRe

f (x )
x � a

dx .

This means that the integral in the first member of the above relation, where in-
tegration is done over the whole loop, may be represented (see Figure 1.11) as the
sum of two integrals. In the first one of these, integration is done over either the
top or the bottom semicircle of a small radius Cr, whereas in the second one, it is
done over the remaining part of the loop running along the proper axis (this part
of the loop is labeled with the symbol CRe).

The integral over the semicircle of radius � ! 0 gives half of the remainder (with
a minus sign for the upper loop, as in Figure 1.11, because the pole is circumvented
clockwise):Z

Cr

f (x )
x � a

dx D �i π f (a) .

The computation of the integral over the proper axis, with the excepted main point,
is done so as to find its principal value:

x2Z
x1

f (x )
x � a

dx D lim
�!0

8̂<̂
:

a��Z
x1

f (x )
x � a

dx C
x2Z

aC�

f (x )
x � a

dx

9>=>; � P
x2Z

x1

f (x )
x � a

dx .

When we circumvent the pole along the lower semicircle, the sign of half-remainder
changes. As a result, we get the following rule of computing integrals (Sokhotskii

Figure 1.11 The contours of the rounding of poles in the plane of a
complex variable.
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formulas)32):

1
x � a

D �i πδ(x � a) C P 1
x � a

. (1.222)

The symbol P represents the principal value (the upper sign is for the upper loop
and the lower sign is for the lower one; see Figure 1.11).

Instead of deforming the path of integration, one may slightly displace the pole
away from the proper axis. This is done by adding a small imaginary part to the
number a: a ! a � i�, � ! 0. This kind of substitution will give the following
form to identity (1.222):

lim
�!0

1
x � a ˙ i�

D �i πδ(x � a) C P
x � a

. (1.223)

Both identities, (1.222) and (1.223), have a symbolic (operator) character and must
be understood in the way that the integration of their second and first members
with any continuous function gives the same result.

Having separated, in the first member of equality (1.223), the real part of the
complex expression from the imaginary one, we get the representation (1.215) for
δ(x � a) (with the substitution x ! x � a) and for the principal value

P
x � a

D lim
�!0

x � a
(x � a)2 C �2 . (1.224)

For the rigorous mathematical theory of generalized functions, please see Vladi-
mirov (2002). The applied aspects are described in Zel’dovich and Myshkis (1972).
See also Kolokolov et al. (2000).

Problems

1.120. Compute the integrals

3Z
�2

(x2 � x � 5)δ(�3x )dx ,

�3Z
�10

(x C 3)δ(x C 5)dx ,

5Z
0

(x C 5)δ(x C 5)dx ,

and

1Z
�1

exp(αx )δ(x2 C x � 2)dx , α D const .

1.121. Simplify the expressions (x�a)δ(x�a), f (x )δ(x�a), and (3x3�7x )δ(2x2�
6x � 4).

32) Julian Sokhotskii (1842–1927) was a Russian mathematician who contributed to the development
of the theory of functions of complex variables.
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1.122. Prove that representations (1.215), (1.217), and (1.218) describe the delta
function. For that purpose, compute the integrals of the form

R1
�1 f (x )δ(x )dx

from the continuous function f (x ), substituting the second member of the respec-
tive representation for δ(x ), and then make sure that, after proceeding to the limit,
the said integrals produce f (0).

1.123. Write the three-dimensional delta functions δ(r) and δ(r � a) in cylindrical
coordinates, where a D (a?, α0, az ) is a constant vector given by its cylindrical
coordinates.

1.124. Do the same in spherical coordinates a D (a, #0, α0).

1.125. Using the delta function, write down the first derivative from the discontin-
uous function:

f (x ) D

8̂̂<̂
:̂

x3 , if x < 1 ,

2 , if x D 1 ,

x2 C 2 , if x > 1 .

1.126. The function f (x ) has jump discontinuities (finite jumps) at points ai , i D
1, 2, . . . , n. Write down its first derivative through the delta function.

1.127. Find the rule for computing the integral from the product f (x )x n δ(m)(x ),
where f (x ) is the function differentiated (in the classical sense) when x D 0,
δ(m)(x ) is the mth derivative of the delta function, and n is a positive integer.

1.128. Show that the function G(jr � r0j) D 1/jr � r0j satisfies a Poisson equation
with a delta-like second member:

ΔG(jr � r0j) D �4πδ(r � r 0) . (1.225)

1.3.6
Expansion in Total Systems of Orthogonal and Normalized Functions. General
Considerations

Let us say there is a certain system of linearly independent functions '(x , λn) �
'n(x ), generally complex valued, defined over a certain interval [a, b] of a real vari-
able x and dependent on the real parameter λ that takes a discrete series of values:
λ1, λ2, . . .

Such systems of functions often appear when solving ordinary differential equa-
tions or equations in partial derivatives with appropriate boundary conditions, and
the number of functions in them is, usually, infinitely large: n D 0, 1, . . . Let us say
the functions have the following properties:

1. They are normalized to unity, that is,

bZ
a

j'n(x )j2dx D 1 . (1.226)
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2. They are mutually orthogonal, that is,Z
'�

m(x )'n(x )dx D 0 at m ¤ n . (1.227)

Here, the asterisk marks a complex conjugate. Such systems are called orthonor-
malized, and equalities (1.226) and (1.227) may be written similarly with the use of
the Kronecker delta symbol:

bZ
a

'�
m(x )'n(x )dx D δmn . (1.228)

Now, we will consider an arbitrary function f (x ) with integrable square. That
is, a function for which the integral

R b
a j f (x )j2dx is finite. In the case of the finite

interval [a, b], this condition will be satisfied by any piecewise continuous function
with a limited number of finite jumps within this interval. Now, we will find out
how possible the expansion of such a function is in a series over functions 'n(x ).
For that purpose, we will, firstly, approximate the function in question as a linear
superposition that includes n basic functions:

f (x ) D
nX

kD0

cn'k (x ) C Rn(x ) , (1.229)

where the remainder of the series is labeled Rn(x ). We will select the coefficients cn

of the superposition so as to ensure the smallest approximation error. Our measure
of error will be the quantity

Gn D
bZ

a

jRn(x )j2dx D
bZ

a

ˇ̌̌̌
ˇ f (x ) �

nX
kD0

cn'k (x )

ˇ̌̌̌
ˇ
2

dx . (1.230)

Opening the square of the module and using the condition of orthonormality
(1.228), we will have

Gn D
bZ

a

j f (x )j2dx �
nX

kD0

ck

bZ
a

f �(x )'k (x )dx

�
nX

kD0

c�
k

bZ
a

f (x )'�
k (x )dx C

nX
kD0

c�
k ck . (1.231)

The necessary condition of the minimum quantity Gn , regarded as the function of
coefficients ck, gives us

ck D
bZ

a

f (x )'�
k (x )dx , (1.232)
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and the expansion error assumes the form of

Gn D
bZ

a

j f (x )j2dx �
nX

kD0

jck j2 . (1.233)

Since Gn � 0 by definition, the inequality

nX
kD0

jck j2 	
bZ

a

j f (x )j2dx (1.234)

is valid whatever the value of n. If the equality

lim
n!1 Gn D 0 (1.235)

is valid for any function with integrable square at the limit, or in another form

bZ
a

j f (x )j2dx D
1X

kDo

jck j2 (1.236)

(Parseval’s identity)33), then the system of functions 'n(x ), n D 0, 1, . . . is called
complete or closed. These terms mean that no other functions linearly independent
of 'n(x ) and orthogonal to them exist: any function of the series in question is
expandable in a series:

f (x ) D
1X

kD0

ck'k (x ) , (1.237)

where expansion coefficients are given by formula (1.232). We note that the above
conditions ensure the convergence “on the average” of series (1.237), that is, the
reduction of integral (1.230) to zero. This means that the convergence of the series
on the function f (x ) in question may be disrupted at certain points whose number
is finite. If the system of functions 'n(x ) is orthonormalized but not complete,
then, instead of Parseval’s identity (1.236), Bessel’s inequality becomes valid:

1X
kD0

jck j2 	
bZ

a

j f (x )j2dx . (1.238)

Example 1.21

Show that a complete system of orthonormalized functions satisfies the following
relation:

1X
kD0

'�
k (x 0)'k (x ) D

1X
kD0

'k (x 0)'�
k (x ) D δ(x � x 0) , (1.239)

33) Marc-Antoine Parseval (1755–1836) was a French mathematician.
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which may be regarded as one more, different from (1.236), form of the condition
of completeness (closeness).

Solution. Having inserted the expansion coefficients from (1.232) into (1.237) and
changed the order of the operations of summation and integration, we will have

f (x ) D
bZ

a

dx 0 f (x 0)
1X

kD0

'�
k (x 0)'k (x ) D

bZ
a

K(x , x 0) f (x 0)dx 0 , (1.240)

where

K(x , x 0) D
1X

kD0

'�
k (x 0)'k (x ) . (1.241)

Since equality (1.240) must be valid for any function f (x ) of a large class, then the
nucleus K(x , x 0) of the integral transformation (11.15) must have the properties
of a delta function. Having computed the expansion coefficients δ(x � x 0) for the
system of functions 'k (x ) as per (1.232), we may make sure that this is the case34):

cn D
Z

δ(x � x 0)'�
n (x )dx D '�

n (x 0) .

Therefore, equality (1.239) is true and is the expansion of the delta function in
functions 'k (x ).

In certain physical problems, especially in quantum mechanics, a complete sys-
tem includes not just a discrete series of functions 'n(x ) but also functions '(x , λ)
dependent on the parameter λ, which assumes continuous values from a certain
interval, or just functions with a continuous parameter. In cases such as that, the
expansion of any function includes both the sum and the integral over the continu-
ous values of λ or just the integral, whereas the condition of completeness assumes
the following form:

δ(x � x 0) D
1X

kD0

'�
k (x 0)'k (x ) C

Z
'�(x 0, λ)'(x , λ)dλ . (1.242)

1.3.7
Fourier Series

The proof of the completeness of specific systems of functions is a nontrivial
mathematical problem whose solutions may be found in particular texts35) (see,

34) Here we leave the class of proper functions with integrable square and use generalized functions.
35) Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician who worked on problems

of mathematical physics, especially the theory of heat conduction.
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e.g., Sneddon, 1951; Arfken, 1970; Lee, 1965; Tolstov, 1976). The class of complete
orthonormalized systems includes the Legendre’s system of spherical functions
Yl m(#, '), l D 0, 1, . . . , m D �l, �l C 1, . . . , l � 1, l considered above. Any bounded
function “on the surface of a sphere” that is dependent on angles # and ' may be
expanded in such functions. When there is no dependence on ', complete systems
on a sphere are formed by Legendre polynomials Pl (cos #).

One of the most widely used and complete systems of functions, orthonormal-
ized over the interval [�π, Cπ], is the trigonometric system:

1p
2π

,
cos nτp

π
,

sin nτp
π

, n D 1, 2, . . . (1.243)

The orthonormality of this system of functions may be easily verified directly. The
expansion of a certain function in a series over trigonometric functions forms its
Fourier series. However, sometimes, a general expansion (1.237) over any complete
orthonormalized system of functions is also called a Fourier series (in a wider
sense).

Because the trigonometric functions (1.243) are periodic, a function being ex-
panded will be represented by the Fourier series, whatever the values of τ, only
if it is periodic and has the same period 2π, that is, f (τ) D f (τ C 2nπ), n D
˙1, ˙2, . . ., or if it is specified within the finite segment b � a D 2L > 0. In
the latter case, in (1.243), the variable τ to πx/L must be replaced and the refer-
ence point of the coordinate x shifted to the center of the interval [a, b], that is,
x 0 D x � a � L, �L 	 x 0 	 CL is introduced. The function in question, if a
Fourier series is set for it, will be expanded, in this case periodically, to the whole
proper O x axis. A nonperiodic function specified over an infinite interval will be
correctly represented by a Fourier series only at the final segment 2L. For it to be
represented over the whole O x axis, the Fourier integral (see below) must be used.

If a Fourier series represents a function that has jump discontinuities (finite
jumps), it will, at the point of a jump x D x0, converge on the half sum of the
values of the function located on both sides of the jump:

1X
kD0

cn'n(x0) D 1
2

[ f (x0 � 0) C f (x0 C 0)] . (1.244)

Example 1.22

Write down the Fourier expansion over interval [�L, CL], selecting, as a com-
plete system of functions,36) exponents with imaginary index exp(i nπx/L), n D
0, ˙1, . . .

36) The completeness of the system follows from that previously used. The functions sin nτ and
cos nτ are linearly expressed through exp(inτ). This is why the notation of the exponents signifies
another form of trigonometric series.
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Solution. Make sure that the components in question are mutually orthogonal
over the interval [�L, CL]:

LZ
�L

exp
�

i(m � n)πx
L

	
dx D 2Lδmn .

Write down the required expansion as

f (x ) D
1X

nD�1
Fn exp

�
i nπx

L

	
. (1.245)

In order to find the expansion coefficients Fn , multiply both members of (1.245)
by exp(i mπx/L) and integrate over the interval in question. Owing to the orthogo-
nality of the exponents, after integration in the sum over n, only one member with
n D m is left. This will allow you to find the coefficients of the Fourier series:

Fm D 1
2L

LZ
�L

f (x ) exp
�

i mπx
L

	
dx . (1.246)

As follows from (1.246), if f (x ) is a real function, then the Fourier coefficients
(1.246), being, in the general case, complex quantities, satisfy the condition F�n D
F�

n . This condition ensures the reality of the sum of the series (1.245).

The Fourier expansion, obviously, may be generalized to include the case of func-
tions that depend on several variables.

Problems

1.129. Expand the periodic function specified within the interval [�π, Cπ] in the
Fourier series under the conditions f (x ) D x for 0 	 x 	 π and f (�x ) D f (x ).

1.130. Do the same for the function under the conditions f (x ) D a at 0 	 x 	 π
and f (�x ) D � f (x ).

1.131. Expand the periodic function specified within the interval [�L, CL] in the
Fourier series under the conditions f (x ) D a when 0 	 x < L/2 and f (x ) D 0
when L/2 < x 	 L and f (�x ) D f (x ).

1.3.8
Fourier Integral

We will now consider a system of functions dependent on the real parameter λ,
which takes a continuous series of values:

'(x , λ) D 1p
2π

e i λx , �1 < λ < 1 . (1.247)
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These functions are determinate and bounded whatever the real values of the co-
ordinate x may be, that is, within the infinite interval �1 < x < 1. Using the
representation (1.219) of the delta function, we compute the integral

1Z
�1

'(x , λ)'�(x 0, λ)dλ D 1
2π

1Z
�1

dλe i λ(x�x 0) D δ(x � x 0) .

The resulting relation coincides with (1.242) (when there are no discrete values
of λ) and evidences the completeness of the system of functions '(x , λ). This is
why any function of a rather large class, defined over the whole proper O x axis,
may be expanded in functions '(x , λ):

f (x ) D
1Z

�1
F(λ)'(x , λ)dλ D 1p

2π

1Z
�1

F(λ)e i λxdλ . (1.248)

The function F(λ) is called the Fourier image of the original function f (x ) or its
Fourier amplitude. It may be found in the same way as the Fourier series coefficients
were found in Example 1.22: by multiplying both members of equality (1.248) by
'�(x , μ) and integrating over the coordinate x. Changing the order of integration,
we have

1Z
�1

f (x )'�(x , μ)dx D 1
2π

1Z
�1

dλF(λ)

1Z
�1

e i x (λ�μ)dx

D
1Z

�1
dλF(λ)δ(λ � μ) D F(μ) . (1.249)

This is the equality that allows us to find the Fourier amplitude of the specified
function f (x ).

The direct and inverted Fourier transforms are often written more easily in their
asymmetric form:

f (x ) D
1Z

�1
F(λ)e i λx dλ

2π
, F(λ) D

1Z
�1

f (x )e�i λxdx . (1.250)

The reality of the Fourier integral is ensured by the relation

F(�λ) D F�(λ) (1.251)

when λ and f (x ) are real.
Expansion in the Fourier integral is easily generalized for the case of several

dimensions. For instance, in three-dimensional space, the Fourier transform may
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be written as

f (r) D
Z

F(k)e i k�r d3k
(2π)3 , F(k) D

Z
f (r)e�i k�rd3r . (1.252)

In both integrals, integration is done over the whole space.

Example 1.23

Obtain the expansion in the Fourier integral for an infinite interval �1 < x < 1
by the way of passage to the limit L ! 1 in formulas (1.245) and (1.246).

Solution. When L ! 1, the adjacent members summed as per (1.245) are almost
equal. This is why summation may be replaced by integration over dn D (L/π)dλ
within �1, C1. By labeling limL!1 2LFn through F(λ), we get, from (1.245)
and (1.246), relation (1.250).

Besides the already mentioned sources, for more information about expansion
in systems of functions, series, and integrals, see Arfken (1970), Sneddon (1951),
Madelung (1957), and Tolstov (1976).

Problems

1.132. Express the Fourier image of the derivative f 0(x ) through the Fourier im-
age F(λ) of the function f (x ). It is presumed that the integral

R1
�1 j f (x )jdx is

convergent.

1.133. Do the same for the function f (ax ) exp(i bx ).

1.134. Find the Fourier image of the function f (x ) D (1 C x2)�1.

Hint: Regarding x as a complex variable, close the path of integration with an arc
of an infinite radius and use the residue theorem.

1.135. Find the Fourier image of the function exp(�α2x2).

1.136. Find the three-dimensional Fourier image of the function
f (r) D exp(�α2r2).

1.137�. Find the three-dimensional Fourier image of the function G(r) D r�1.

1.138�. Expand the plane wave exp(i k r cos θ ) in series over Legendre polynomi-
als Pl (cos θ ). Find the expansion coefficients, using the orthogonality of Legendre
polynomials.

1.139. Assume that the directions of the vectors k and r are specified in a spherical
coordinate system by the angles (θ , φ) and #, ', respectively. Expand the plane
wave exp(i k � r) in a series over spherical Legendre functions.

Hint: Use the summation theorem for spherical functions.
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1.140� . Prove the identity

1q
r2
? C z2

D
1Z
0

e�kjzj J0(k r?)dk ,

where r? and z are cylindrical coordinates.

1.4
Answers and Solutions

1.1 As follows from (1.6), which is the result of definition (1.3), jbaj2 D 1 whatever
the angles of rotation are, that is, jbaj D ˙1. However, when the angle of rotation
equals zero (identical transformation), jbaj D 1. Since the elements of the rotation
matrix are continuous functions of angles, the last value is preserved for all values
of the rotation angles. When the axes are inverted, jbgj D �1. The product of the
matrices babg D bgba, for which jbabgj D jbajjbgj D �1, corresponds to the rotation
accompanied by the reflection of the axes. Transformations with determinant C1
are called proper and transformations with determinant �1 are called nonproper.

1.3

P 0
α����� D jbajaαμ a�ν � � � a�σ Pμν���σ . (1.253)

Here jbaj is the determinant of the transformation matrix. When the three axes are
inverted, the transformation matrix aα� D �δα�, and that is why jbaj D �1 and
P 0

α����� D (�1)sC1Pα����� , in keeping with the definition of a pseudotensor of rank s.
Formula (1.5) correctly describes transformations of a polar tensor during rotations
and reflections but does not describe reflections of a pseudotensor (even though it
correctly describes its rotations).

The rule of the transformation of the asymmetric tensor of rank 3 eα�γ that
describes rotations and reflections must also contain the determinant jbaj. In the
absence of the determinant, the components of the tensor would change their sign
during reflections.

1.4

Tα� D 1
2

(Tα� C T�α) C 1
2

(Tα� � T�α) . (1.254)

1.5

Tα� D T h
α� C T ah

α� , where T h
α� D 1

2
(Tα� C T �

�α) ,

T ah
α� D 1

2
(Tα� � T �

�α) . (1.255)
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1.9 Tα� form a polar tensor of rank 2.

1.10

Cα D 1
2

eα�γ A �γ , (1.256)

that is, C1 D A 23 D �A 32, C2 D A 31 D �A 13, and C3 D A 12 D �A 21.

1.11 [A � B ] is a pseudovector or a polar antisymmetric tensor of rank 2 dual to
it: A � Bγ � A γ B� .[A � B ] � C is a polar vector and [A � B ] � C is a pseudoscalar.

1.13

dSα D eα�γdx�dx 0
γ D 1

2
eα�γdS�γ , (1.257)

where dS�γ D dx�dx 0
γ � dxγ dx 0

� is the projection of the area of the parallelogram
onto the coordinate plane x� xγ .

1.14

dV D [dr � dr0] � dr00 D eα�γdxαdx 0
�dx 00

γ . (1.258)

The element of volume is a pseudoscalar. When dr D e1dx1, dr0 D e2dx2, and
dr00 D e3dx3, we get the usual expression for an element of volume in Cartesian
coordinates: dV D dx1dx2dx3.

1.16

cos θ D cos # cos # 0 C sin # sin # 0 cos(α � α0) . (1.259)

1.17 (A � B)0 D i(A�1BC1 � AC1B�1), (A � B)˙1 D ˙(A 0B˙1 � A˙1B0),
A � B D PC1

μD�1(�1)μ A�μ Bμ , rμ D r(4π/3)1/2(�1)μ Y1μ(#, α).

1.18

bg D
0@ cos α sin α 0

� sin α cos α 0
0 0 1

1A . (1.260)

1.19 When changing from Cartesian unit vectors to spherical ones (see Fig-
ure 1.12a), we have e0

μ D aμ� e� , where e� (� D 1, 2, 3) are Cartesian and
e0

μ (μ D r, #, α) are spherical unit vectors.

ba D
0@sin # cos α sin # sin α cos #

cos # sin α cos # cos α � sin #

� sin α cos α 0

1A ,

ba�1 D
0@sin # cos α cos # cos α � sin α

sin # sin α cos # sin α cos α
cos # � sin # 0

1A .
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Figure 1.12 Changing from Cartesian to spherical orts (a), and changing from Cartesian to
cylindrical orts (b).

When changing from Cartesian unit vectors to cylindrical ones er , eα , ez (see
Figure 1.12b), we have

ba D
0@ cos α sin α 0

� sin α cos α 0
0 0 1

1A , ba�1 D
0@cos α � sin α 0

sin α cos α 0
0 0 1

1A .

1.20 Using the results obtained in the previous problem, we get

bg(α1θ α2) Dbg(α2)bg(θ )bg(α1) D�
cos α1 cos α2 �cos θ sin α1 sin α2I sin α1 cos α2Ccos θ cos α1 sin α2I sin θ sin α2�cos α1 sin α2 �cos θ sin α1 cos α2I �sin α1 sin α2Ccos θ cos α1 cos α2I sin θ cos α2

sin α1 sin θ �sin θ cos α1 cos θ

�
.

(1.261)

1.21

bD(α1θ α2) D 
(1/2)(1 C cos θ )ei(α1 Cα2)I �(i/

p
2) sin θ eiα2 I �(1/2)(1 � cos θ )ei(α2 �α1)

�(i/
p

2) sin θ eiα1 I cos θ I �(i/
p

2) sin θ e�iα1

�(1/2)(1 � cos θ )ei(α1 �α2 )I �(i/
p

2) sin θ e�iα2 I (1/2)(1 C cos θ )e�i(α1 Cα2 )

!
.

1.22 The zero angle rotation matrix equals 1 (identical transformation) and when
rotation is by a small angle, jεα�j 
 1. To prove the antisymmetry ofbε, we will use
the invariance of r2 D δα� xα x� relative to the rotation. Since x 0

α D xα C εα� x� ,
we have r 02 D r2 C 2εα� xα x� to small quantities of the first order. As follows from
the invariance of r2, εα� xα x� D 0 when xα are arbitrary, which is possible only
when εα� D �ε�α.
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Now, we introduce a vector with components δ'α D (1/2)eα�γ ε�γ . Then, r 0 D
r C δ' � r , which shows that δ' is the vector of an infinitely small rotation whose
direction indicates the axis of rotation and its size indicates the angle of rotation.

1.23 If rotations are specified by small vectors δ'1 and δ'2, then, after the second
rotation,

r 00 D r 0 C δ'2 � r 0 D r C (δ'1 C δ'2) � r C δ'2 � (δ'1 � r) .

The vector of the resulting rotation δ' D δ'1 C δ'2 may be introduced only if the
last member of the second order is disregarded.

In the general case, the noncommutative character of the rotation matrices is
shown by expression (1.261): the completion of rotation in the sequence α2, θ , α1,
inverse with respect to the matrix it is written for (1.261) corresponds to the sub-
stitution α1 ! α2. In this event, the form of the matrix will change if θ ¤ 0. The
case of θ D 0 is in keeping with rotation by angles α1 and α2 around the same
Ox3 axis and such rotations are commutative.

1.24 Any tensor of rank 2 may be written as Tα� D Sα� C A α�, whereas any
Hermitian tensor may be written as T h

α� D Sα� C i A α�, where Sα� and A α�

are symmetric and antisymmetric real tensors. The antisymmetric tensor A α� is
equivalent to a vector (see Problem 1.10) which will not be reduced to zero by any
rotations. This is why only the real symmetric part of the any tensor of rank 2 may
be diagonalized.

1.25

Sα� D S (1)n(1)
α n(1)

� C S (2)n(2)
α n(2)

� C S (3)n(3)
α n(3)

� . (1.262)

1.26 Computing a determinant (1.27) while keeping in mind that the principal
values of tensor S (i) may be invariant only if such are the coefficients of an algebraic
cubic equation, we find three invariants:

I1 D S11 C S22 C S33 D S (1) C S (2) C S (3), (1.263)

I2 D D11 C D22 C D33 D S (1)S (2) C S (1)S (3) C S (2)S (3), (1.264)

I3 D D D S (1)S (2)S (3) , (1.265)

where D D jbS j is the determinant of the tensor and Dα� are the algebraic cofactors
of the determinant. Expressions in the second members of the equalities follow
from Viète’s theorem37) about the connection between the coefficients of a cubic
equation with its roots. The result is valid for any tensor of rank 2.

37) François Viète (1540–1603) was an French mathematician, and a lawyer by trade.
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1.27 The row and column expansions of the determinant D D jbT j are written,
respectively, as

Tα� Dγ � D D δαγ , Dγ α Tγ � D D δα� ,

where Dγ α D (�1)αCγ Δγ α is an algebraic cofactor, and Δγ α is the minor deter-
minant D, that is, the determinant remaining after the elimination in it of the γ
row and the α column. In accordance with the results obtained in the previous
problem, since D is invariant and since δα� is a tensor, then the algebraic cofactors
Dγ α also form a tensor. Relations

T �1
α� D D�α

D
(1.266)

form a tensor inverse to bT . To make the inverse tensor possible, it is necessary and
sufficient that D D jbT j ¤ 0.

1.29

1. A2(B � C ) C (A � B)(A � C ) .
2. [(A � B) � C ] � [(A0 � B0) � C 0].

1.31

(A � A0)(B � B 0)(C � C 0) C (A � B 0)(B � C 0)(C � A0)
C (B � A0)(C � B0)(A � C 0) � (A � C 0)(C � A0)(B � B0)
� (A � B0)(B � A0)(C � C 0) � (B � C 0)(C � B0)(A � A0) .

1.32 Now, we will present our proof for a vector and tensor of rank 2.

1. In accordance with the situation in the problem, at any rotation A0
α D A α ,

that is, A0
x D A x , A0

y D A y , and A0
z D A z . Rotating the coordinate system

around the O z axis by angle π, we get A0
x D �A x , A0

y D �A y , and A0
z D A z .

These equalities are compatible with the previous ones only if A x D A y D 0.
Performing rotation around the O x axis by angle π, we will similarly prove that
A z D 0, that is, vector A D 0.

2. Any tensor of rank 2 may be represented as the sum of a symmetric tensor
and an antisymmetric tensor: Tα� D Sα� C A α�. An antisymmetric tensor is
equivalent to a certain pseudovector and, in accordance with what was proven
above, its components do not depend on the reference frame only if they are
equal to zero. So we will consider a symmetric tensor Sα�.

We will select a coordinate system where the symmetric tensor has a diagonal form
S (α)δα�. If S (α) are not equal to each another, then the components of the tensor
depend on the selection of the axis, that is, what digit (1, 2, or 3) denotes the selected
one. Only when S (1 D S (2) D S (3) D S do the components of the tensor S δα� not
depend on the selection of the axis.
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1.33

nα D 0 , nα n� D 1
3

δα�, nα n� nγ D 0 ,

nα n� nγ nμ D 1
15

(δα� δγ ν C δαγ δ�ν C δαν δ�γ ) .

1.34

a2

3
,

a � b
3

,
a
3

,
2a2

3
,

2a � b
3

,
(a � b)(c � d) C (a � c)(b � d) C (a � d)(b � c)

15
.

1.35 n2, n02, l2, n � n0, (n � n0) � l, (n � l)2, (n0 � l)2, (n � l)(n0 � l) .

1.36 n � l, n0 � l, n1 � (n2 � n3) .

1.37

1. a �
α D e0

α � e� .

2. If e� D (ba�1) α
� , then (ba�1) α

� D e0α � e� D aα
� ¤ a �

α ; in accordance with the

definition of the inverse matrix a �
α aγ

� D δγ
α , a α

� a�
γ D δα

γ D δγ
α .

3. e0α D aα
� e� , eα D a α

� e0� .

4. A0
� D a α

� A α , A0� D a�
α Aα I A α D a�

α A0
� , Aα D a α

� A0� .

5. g0
α� D a γ

α a μ
� gγ μ , g0α� D aα

γ a�
μ gγ μ , gα� D aγ

α aμ
� g0

γ μ ,

gα� D a α
γ a �

μ g0γ μ .

The formulas in answer 4 are generalized directly for the cases of the transfor-
mation of covariant, contravariant, and mixed components of tensors of any rank.

1.38 When the systems of coordinates are inverted, the components of the vectors
of both bases change their signs: e0

α D �eα , e0α D �eα , α D 1, 2, 3.

1.39

A � B D gα� A α B� D gα� Aα B � D Aα Bα D A α B α D inv . (1.267)

dl2 D dr � dr D gα�dxαdx� D gα�dx αdx � D dx αdxα D inv . (1.268)

Note: In all cases when covariant and contravariant components do not coincide,
the operation of tensor contraction must be done as a summation assumed over
one upper and one lower index. Any tensor summed over two upper and two lower
symbols is not a tensor of any rank.
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1.40

Cα D p
g(A� B γ � Aγ B �) , C α D (1/

p
g)(A � Bγ � A γ B�) , (1.269)

where g D jbgj and numbers α, �, γ form a circular permutation 1, 2, 3.
The formulas shown may be regarded as the generalization of expression (1.23)

for the case of an oblique basis. Having written (1.269) in the form of

Cα D Eα�γ A� B γ , C α D E α�γ A � Bγ , (1.270)

we find a representation for an antisymmetric tensor of rank 3 in the oblique basis:

Eα�γ D p
geα�γ , E α�γ D 1p

g
eα�γ , (1.271)

where eα�γ and eα�γ , related to the orthogonal basis, are similar and determined
by conditions (1.21). It is easy to verify that E α�γ is produced from Eα�γ (and vice
versa) in accordance with the rule of upping and lowering indices as per (1.35).

1.41 cos θ D A α B α

(A � A� Bγ B γ )1/2 .

1.42 gμν D



eα
(D )

�
μ



e(D )

α

�
ν
, gμν D



eα

(D )

�μ 

e(D )

α

�ν
, gμ

ν D



eα
(D )

�μ 

e(D )

α

�
ν

D δμ
ν .

1.44

A2 D gα� Aα A� D Aα A α I cos θ D A α B α�
A2B2�1/2 ,

in complete analogy with the result obtained in Problem 1.41 for an affine system.

1.45 In accordance with the common rules (1.51), we have

E μνλ D @qμ

@x α

@qν

@x �

@qλ

@x γ eα�γ ,

wherefrom the antisymmetry of E μνλ over any pair of symbols follows. This allows
us to write E α�γ D S eα�γ , where S is a certain scalar. To define it, we consider a
special case and get

E 123 D @q1

@x α

@q2

@x �

@q3

@x γ eα�γ D
ˇ̌̌̌
@qλ

@x α

ˇ̌̌̌
D J�1 D g�1/2 ,

where (1.39) and (1.53) are used. Therefore, S D g�1/2, and so we have obtained,
in another way, the second formula (1.271).

1.46

1. dl(1) D p
g11dq1, dl(2) D p

g22dq2, dl(3) D p
g33dq3.
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2. The covariant basis (1.46) is such a vector.
3. Using the result obtained in Problem 1.44, we find

cos #12 D g12p
g11g22

, cos #13 D g13p
g11g33

, cos #23 D g23p
g22g33

.

4. For the curvilinear coordinate system to be orthogonal, it is necessary and suf-
ficient that the equalities g12 D g23 D g13 D 0 be valid in every point of space.

1.47 For a spherical system gr r D 1, g## D r2, gαα D r2 sin2 # , gr# D gr α D
g# α D 0; gr r D 1, g## D r�2, gαα D r�2 sin�2 # , gr# D gr α D g# α D 0;
e r D e r D e r�, e# D r2e# D r e r , eα D r2 sin2 # eα D r sin # eα�.

For a cylindrical system gr r D gz z D 1, gαα D r2, gr α D gr z D gαz D 0; gr r D
gz z D 1, gαα D r�2, gr α D gr z D gαz D 0; e r D e r D e r�, eα D r2eα D r eα�,
ez D ez D ez�.

The asterisks mark basic unit orts introduced in Problem 1.18. Covariant and
contravariant basic vectors have different dimensions and are different in length.
Their lengths are, generally speaking, not unity.

1.50 R D a2

2 C ab � b3

3 .

1.52 l, l .

1.54

dr
A r

D r dα
A α

D dz
A z

,
dr
A r

D r d#

A#

D r sin #dα
A α

.

1.55 Because the gradient contains the first derivatives over the coordinates, the
following notation may be used:

grad
(p � r)

r3
D grad (p � r)

r3
C (p � r)grad

1
r3

.

Using the results obtained in Problems (1.52) and (1.53), we finally get the follow-
ing:

grad
(p � r)

r3
D � 3(p � r)r

r5
C p

r3
.

1.56 Direct the polar axis along the vector p and project the vector E onto the orts
of spherical coordinates:

Er D 2p cos #

r3 , E# D p sin #

r3 , E' D 0 .

In spherical coordinates, vector lines are found with the following system of equa-
tions:

dr
Er

D rd#

E#

D r sin #d'

E'

.
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The reduction of the E' component to zero means that the differential d' D 0,
that is, ' D const must also become zero and, therefore, all the vector lines lie
within the planes passing through the vector p . Inserting the nonzero projections
of H into the only remaining equation and eliminating common factors, we get
a first-order differential equation with separable variables: dr/r D 2 cot #d# . The
termwise integration of the first and second members gives ln r � ln r0 D 2 ln sin #

or r(#) D r0 sin2 # , where r0 is the constant of integration that has the meaning of
the distance between the vector line and the origin in the plane perpendicular to
the vector p .

1.57

r˙1 D � 1p
2

e˙i α
�

sin #
@

@r
C cos #

r
@

@#
˙ i

r sin #

@

@α

�
,

r0 D cos #
@

@r
� sin #

r
@

@#
.

1.59 3, 0, 0, 2ω.

1.60

H D 3(m � r)r
r5 � m

r3 .

1.63 '0 r
r , 3' C r'0, 0, l' C r(l � r) '0

r .

1.64 '(r) D const
r3 .

1.65 (a � b), a � b; 4(a � r), a � r ; 0, (2' C r'0)a � r(a � r) '0
r ; �2(a � r), 3(r � a).

1.66 A C (r � A0) r
r , (A0 � B C A � B 0) r

r , '0
r (r � A) C '

r (r � A0), '0
r (r � A) C '

r (r � A0),
l�r
r ('0A C 'A0).

1.68 Z
V

(grad ' � curl A)dV D
I
S

(A � grad ') � dS D
I
S

' curl A � dS .

1.69 aV , aV .

1.70� Use the method of the scalar multiplication of a constant vector by each of
the integrals in question to find the following relations:I

S

n'dS D
Z
V

grad ' dV I (1.272)
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S

(n � A)dS D
Z
V

curl A dV I (1.273)

I
S

(n � b)AdS D
Z
V

(b � r)A dV I (1.274)

I
S

Tα� n�dS D
Z
V

@Tα�

@x�
dV . (1.275)

All these relations may be regarded as generalizations of the Gauss–
Ostrogradskii theorem:I

S

n(. . . )dS D
Z
V

r(. . . )dV , (1.276)

where the (. . . ) symbol denotes a tensor of any rank.

1.76
R

S (ru � r f ) � dS .

1.81� As per the common rule (1.105), covariant divergence is expressed as fol-
lows:

Γ μ
μα D 1

2
gμλ

�
@gμλ

@qα C @gαλ

@qμ � @gαμ

@qλ

�
D 1

2
gμλ @gμλ

@qα ,

that is,

Aμ
Iμ D @Aμ

@qμ C 1
2

gμλ @gμλ

@qα Aα . (1)

Now consider the determinant g D jgμνj. Its differential equals the sum of the
differentials of all its elements multiplied by the respective algebraic cofactors:
dg D D μνdgμν , where D μν D (�1)μCν Δμν , Δμν is the minor. On the other hand,
the algebraic cofactors are expressed through the components of the inverse tensor,
that is, gμν: D μν D ggμν (see Problem 1.27). In the end, we have

dg D ggμνdgμν , gμν @gμν

@qλ
D 1

g
@g
@qλ

.

Having inserted the latter quantity in (1), we find the expression specified in the
condition for the problem.

1.82

ΔS D 1p
g

@

@qμ

�p
ggμν @S

@qν

�
. (1.277)
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1.83

T μνIμ D 1p
g

@

@qμ

�p
gT μν�C Γ ν

μλ T μλ .

1.84

AμνIν D 1p
g

@

@qν

�p
gAμν� .

1.86

gμνIλ D gμνIλ D 0 .

1.90�

(ΔA)r D ΔA r � A r

r2
� 2

r2

@A α

@α
,

(ΔA)α D ΔA α � A α

r2
C 2

r2

@A r

@α
,

(ΔA)z D ΔA z . (1.278)

1.91�

(ΔA)r D ΔA r � 2
r2 A r � 2

r2 sin #

@

@#
(A# sin #) � 2

r2 sin #

@A α

@α
,

(ΔA)# D ΔA# � A#

r2 sin2 #
C 2

r2

@A r

@#
� 2 cos #

r2 sin2 #

@A α

@α
,

(ΔA)α D ΔA α � A α

r2 sin2 #
C 2

r2 sin #

@A r

@α
C 2 cos #

r2 sin2 #

@A#

@α
. (1.279)

1.92 (i) A C B ln r ; (ii) A C B α; (iii) A C B z.

1.93 (i) A C B
r ; (ii) A C B ln tan( #

2 ); (iii) A C B α.

1.94�

x D ˙
�

(� C a2)(η C a2)(� C a2)
(b2 � a2)(c2 � a2)

�1/2

,

y D ˙
�

(� C b2)(η C b2)(� C b2)
(c2 � b2)(a2 � b2)

�1/2

,

z D ˙
�

(� C c2)(η C c2)(� C c2)
(a2 � c2)(b2 � c2)

�1/2

I

h1 D
p

(� � η)(� � � )
2R�

, h2 D
p

(η � � )(η � � )
2Rη

,
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h3 D
p

(� � � )(� � η)
2R�

I

Δ D 4
(� � η)(� � � )(η � � )

�
(η � � )R�

@

@�

�
R�

@

@�

�

C(� � � )Rη
@

@η

�
Rη

@

@η

�
C (� � η)R�

@

@�

�
R�

@

@�

��
,

where Ru D p
(u C a2)(u C b2)(u C c2). The formulas for x, y, and z show that

there are eight threes: x , y , z for every three values of � , η, � . One may make
sure that the ellipsoidal system of coordinates is orthogonal by finding gradients
r� , rη, r� and then the scalar products r� � rη and so on, all of which turn out
to be equal to zero. The gradients may be found directly from the equations deter-
mining ellipsoidal coordinates (see the condition for the problem), resulting in a
gradient from both members of each of these equations.

1.95�

z D ˙
�

(� C c2)(η C c2)
c2 � a2

�1/2

, r D
�

(� C a2)(η C a2)
a2 � c2

�1/2

I

h1 D
p

� � η
2R�

, h2 D
p

� � η
2Rη

, h3 D r ,

where

R� D
q

(� C a2)(� C c2) , Rη D
q

(η C a2)(�η � c2) I

Δ D 4
� � η

�
R�

@

@�

�
R�

@

@�

�
C Rη

@

@η

�
Rη

@

@η

��
C 1

r2

@2

@α2 .

1.96�

x D ˙
�

(� C a2)(� C a2)
a2 � b2

�1/2

, r D
�

(� C b2)(� C b2)
b2 � a2

�1/2

I

h1 D
p

� � �
2R�

, h2 D r , h3 D
p

� � �
2R�

,

where

R� D
q

(� C a2)(� C b2) , R� D
q

(� C a2)(�� � b2) I

Δ D 4
� � �

�
R�

@

@�

�
R�

@

@�

�
C R�

@

@�

�
R�

@

@�

��
C 1

r2

@2

@α2
.
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1.97�

h� D hη D a
cosh � � cos η

, hα D a sin η
cosh � � cos η

I

Δ D (cosh � � cos η)3

a2

�
@

@�

�
1

cosh � � cos η
@

@�

�

C 1
sin η

@

@η

�
sin η

cosh � � cos η
@

@η

�

C 1

sin2 η(cosh � � cos η)

@2

@α2

�
.

1.98� The surfaces � D const are toroids:

(
q

x2 C y 2 � a coth �)2 C z2 D
�

a
sinh �

�2

I

the surfaces � D const are spherical segments:

(z � arctan � )2 C x2 C y 2 D
�

a
sin �

�2

I

h� D h� D a
cosh � � cos �

, hα D a sinh �

cosh � � cos �
.

1.99 x ν Zν (x ) C C , �x�ν Zν(x ) C C .

1.100 1, 1
2 , 1

2n n! .

1.107�

1. x u00 C u0 C x (a2 � n2

x2 )u D 0 .
2. The integral is computed with the use of the equations for the functions u(x )

and v (x ) D Jn(bx ).
3. The first equality (1.175) directly follows from (1.174); the second one results

from passage to the limit.

1.111

P0 D 1 , P1 D x , P2 D 1
2

(3x2 � 1) , P3 D 1
2

(5x3 � 3x ) ,

P4 D 1
8

(35x4 � 30x2 C 3) , P5 D 1
8

(63x5 � 70x3 C 15x ) .
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1.112� The integral that should be computed contains the product of the deriva-
tives

R 1
�1[(x2 � 1)l ](l)[(x2 � 1)l 0 ](l

0)dx . To make things clear, l 0 	 l . Integrating by
parts, l times, we find (�1)l

R 1
�1(x2 � 1)l [(x2 � 1)l 0 ](lCl 0)dx . The second factor un-

der the integral is other than zero only when l 0 D l . In this case, beginning by
integrating over the angle # , we get

1Z
�1

(x2 � 1)l [(x2 � 1)l ](2l)dx D (�1)l(2l)!2

π/2Z
0

(sin #)2lC1d#

D (�1)l(2l)!B
�

l C 1,
1
2

�
.

The last integral here is expressed through a beta function (see the definition in
Abramovitz and Stegun, 1965; Gradshtein and Ryzhik, 2007):

B(z, w ) � Γ (z)Γ (w )
Γ (z C w )

D 2

π/2Z
0

(sin #)2z�1(cos #)2w�1d# .

Carefully eliminating factorials and gamma functions, we get the result specified
in the condition for the problem.

1.114 P2 D 1C3 cos 2#
4 .

1.115

1
sin #

d
d#

sin #
dP m

l

d#
C
�

l(l C 1) � m2

sin2 #

�
P m

l D 0 .

1.116� Use the Leibniz formula to find

(1 � x2)m/2[(x C 1)l (x � 1)l ](lCm)

D (�1)m/2
lCmX
kD0

(l C m)!l !l !
k!(l C m � k)!(k � m)!(l � k)!

(x C 1)k�m/2(x � 1)l�kCm/2 I

and

(1 � x2)�m/2[(x C 1)l (x � 1)l ](l�m)

D (�1)�m/2
l�mX
sD0

(l � m)!l !l !
s!(l � m � s)!(s C m)!(l � s)!

(x C 1)sCm/2(x � 1)l�s�m/2 .

In both sums, the limits of summation are, actually, determined by the presence in
the denominators of the factorials of negative integers. In the second sum, replace
the summation index s ! k�m. As a result, in both sums, factors that depend on k
become the same. Comparing them with each other, we find the formula specified
in the condition for the problem.
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1.117

P0
l D Pl ,

P1
1 D �2P�1

1 D (1 � x2)1/2 D sin #,

P1
2 D �6P�1

2 D 3x (1 � x2)1/2 D 3 cos # sin #,

P2
2 D 24P�2

2 D 3(1 � x2) D 3 sin2 #,

P1
3 D �12P�1

3 D 3
2

(5x2 � 1)(1 � x2)1/2 D 3
2

(5 cos2 # � 1) sin #,

P2
3 D 120P�2

3 D 15x (1 � x2) D 15 cos # sin2 #,

P3
3 D �720P�3

3 D 15(1 � x2)3/2 D 15 sin3 # .

In the general case, adjoint Legendre polynomials contain radicals (1 � x2)1/2 and,
therefore, strictly speaking, are not polynomials.

1.118� When computing the normalization integral, use formula (1.198) and the
method used to solve Problem 1.112�:

1Z
�1

[P m
l (x )]2dx D (�1)m (l C m)!

(l � m)!

1Z
�1

P m
l (x )P�m

l (x )dx

D (2l)!(l C m)!
22l l !l !(l � m)!

B(l C 1, 1/2) ,

Cl m D
s

2l C 1
4π

(l � m)!
(l C m)!

.

Expressing the beta function through gamma functions and reducing fractions, we
find the normalization factor (down to the phase factor over the module equaling
1, which remains arbitrary).) In the end, we get the normalized spherical Legendre
function:

Yl m(#, ')

D
s

2l C 1
4π

(l � m)!
(l C m)!

(1 � cos2 #)m/2
�

d
d cos #

�lCm

(cos2 # � 1)l e i m' .

1.119

1
sin #

@

@#
sin #

@Yl m

@#
C 1

sin2 #

@2Yl m

@'2
C l(l C 1)Yl m D 0 .

1.120 � 5
3 , �2 , 0 , exp(α) C exp(�2α) .
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1.121 0 , f (a)δ(x � a) , 82δ(x � 4) C 2δ(x C 1) .

1.123

δ(r) D 1
2π r?

δ(r?)δ(z) ,

δ(r � a) D 1
a?

δ(r? � a?)δ(α � α0)δ(z � az ) .

To achieve passage to the limit a ! 0, one must not only make values a? and az

tend to zero, but must also average the second member over the azimuthal angle
α0, since a zero vector has no direction.

1.124

δ(r) D 1
4π r2 δ(r) , δ(r � a) D 1

a2 δ(r � a)δ(cos # � cos #0)δ(α � α0) .

1.125

f 0(x ) D g(x ) C 2δ(x � 1) , where g(x ) D
(

3x2 , if x < 1 ,

2x , if x > 1 .

1.126

f 0(x ) D d f
dx

C
nX

kD1

Δ f k δ(x � ak ) ,

where Δ f k D f (ak C 0) � f (ak � 0), d f /dx is a proper (“classical”) derivative in
the areas of the smooth variation of the function.

1.127

(�1)m m!
(n � m)!

f (m�n)(0) at m � n , 0 at m < n .

1.128 When r ¤ r 0, G is a bounded differentiable function and the equation is
satisfied, since ΔG D 0. When r ! r 0, the function has a singularity. To find out
the nature of that singularity ΔG when r ! r 0, integrate (1.225) over the volume
of a small sphere of radius R ! 0 with its center at the point r D r 0. Using the
Gauss–Ostrogradskii theorem, we getZ

V

ΔGdV D
Z
V

div grad
�

1
r

�
dV D

I
S

�
r 1

r

�
� dS

D �
Z

1
R2 R2dΩ D �4π .

The same value is obtained by the integral over the volume in the second member
of the equation, which is how it is satisfied.
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1.129

f (x ) D π
2

� 4
π

1X
kD0

cos(2k C 1)x
(2k C 1)2

.

1.130

f (x ) D 4a
π

1X
kD0

sin(2k C 1)x
2k C 1

.

1.131

f (x ) D a
2

C 2a
π

1X
kD0

(�1)k cos((2k C 1)πx/L)
2k C 1

.

The Fourier series of f (�x ) D f (x ), which is a function that is even within the
interval [�L, CL], contains only cosines. The odd function f (�x ) D � f (x ) is ex-
pandable in sines. A function that has no clear-cut parity contains both sines and
cosines in its Fourier expansion.

1.132 i λF(λ).

1.133

1
a

F
�

λ � b
a

�
.

1.134 π exp(�jλj).

1.135 p
π

α
exp

�
� λ2

4α2

�
.

1.136

π3/2

α3 exp
�

� k2

4α2

�
,

where k is a radius vector of the three-dimensional space of Fourier variables (see
(1.252)).

1.137� 4π
k2C�2 .

1.138� To compute Fourier integral (1.252), use spherical coordinates and select
the O z axis along the vector k. Firstly, doing integration over angles and then over r,
we find

F(k) D lim
R!1

4π
k2 [1 � cos(k R)] .
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Formally, the function in the second member has no limit. However, it is easy
to understand that the limit of the cosine may be regarded as effectively equal to
zero since, when the inverted Fourier transformation is being done, the member
with infinitely oscillating cosine will make zero contribution. As a result, we have
F(k) D 4π/ k2.

1.139 Write down the expansion as

exp(i k r cos θ ) D
1X

lD0

u l(k r)Pl(cos θ )

and, using the orthogonality of Legendre polynomials (see Problem 1.112�), find
an integral representation of the functions ul sought:

u l(k r) D 2l C 1
2

1Z
�1

e i k r x Pl (x )dx .

Use the Rodrigues formula and integrate l times by parts to get

u l(k r) D (2l C 1)(�i k r)l

2lC1 l !

1Z
�1

e i k r x(x2 � 1)ldx .

Further, expand the exponent in a power series and integrate this absolutely con-
vergent series termwise. Only terms with even powers of x are left:

u l(k r) D (2l C 1)(�i k r)l

2l l !

1X
mD0

(i k r)2m

(2m)!

1Z
0

x2m(x2 � 1)ldx .

Finally, the transition to a new integration variable t D x2, dx D dt/2
p

t allows
us to express the integral in the latter equality through a beta function:

1Z
0

t k�1/2(1 � t)l d t D B(k C 1/2, l C 1) D Γ (k C 1/2)Γ (l C 1)
Γ (l C k C 3/2)

.

In the end, bundle all the factors to get the following series:

u l(k r) D i l(2l C 1)
(k r)l

1 � 3 . . . (2l C 1)

�
�

1 � k2r2/2
1!(2l C 3)

C (k2r2/2)2

2!(2l C 3)(2l C 5)
� . . .

	
D i l(2l C 1) j l(k r) ,
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where j l(k r) is a spherical Bessel function; see formulas (10.1.2) in Abramovitz
and Stegun (1965).

1.140�

exp(i k � r) D 4π
1X

lD0

lX
mD�l

i l j l(k r)Y �
l m(θ , φ)Yl m(#, ') .



�

� Igor N. Toptygin: Foundations of Classical and Quantum Electrodynamics —
Chap. c02 — 2013/10/8 — page 90 — le-tex

�

�

�

�

�

�




