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1
Introduction

Beginnings are hard.

Chaim Potok

Nothing is more expensive than a start.

Friedrich Nietzsche

This book is really two books. There is a rather traditional paper one with a re-
lated Web site, as well as an eBook version containing a variety of digital fea-
tures best experienced on a computer. Yet even if you are reading from paper, you
can still avail yourself of many of digital features, including video-based lecture
modules, via the book’s Web sites: http://physics.oregonstate.edu/~rubin/Books/
CPbook/eBook/Lectures/ and www.wiley.com/WileyCDA.
We start this chapter with a description of how computational physics (CP) fits into
physics and into the broader field of computational science. We then describe the
subjects we are to cover, and present lists of all the problems in the text and in
which area of physics they can be used as computational examples. The chapter
finally gets down tobusiness bydiscussing the Python language, someof themany
packages that are available for Python, and some detailed examples of the use of
visualization and symbolic manipulation packages.

1.1
Computational Physics and Computational Science

This book presents computational physics (CP) as a subfield of computational
science. This implies that CP is a multidisciplinary subject that combines aspects
of physics, applied mathematics, and computer science (CS) (Figure 1.1a), with
the aim of solving realistic and ever-changing physics problems. Other compu-
tational sciences replace physics with their discipline, such as biology, chemistry,
engineering, and so on. Although related, computational science is not part of
computer science. CS studies computing for its own intrinsic interest and devel-
ops the hardware and software tools that computational scientists use. Likewise,
applied mathematics develops and studies the algorithms that computational sci-
entists use. As much as we also find math and CS interesting for their own sakes,
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2 1 Introduction

Figure 1.1 (a) A representation of the multi-
disciplinary nature of computational physics
as an overlap of physics, applied mathematics
and computer science, and as a bridge among
them. (b) Simulation has been added to ex-

periment and theory as a basic approach in
the search for scientific truth. Although this
book focuses on simulation, we present it as
part of the scientific process.

our focus is on helping the reader do better physics for which you need to under-
stand the CS and math well enough to solve your problems correctly, but not to
become an expert programmer.
As CP has matured, we have come to realize that it is more than the overlap of

physics, computer science, and mathematics. It is also a bridge among them (the
central region in Figure 1.1a) containing core elements of it own, such as com-
putational tools and methods. To us, CP’s commonality of tools and its problem-
solving mindset draws it toward the other computational sciences and away from
the subspecialization found in so much of physics. In order to emphasize our
computational science focus, to the extent possible, we present the subjects in
this book in the form of a Problem to solve, with the components that consti-
tute the solution separated according to the scientific problem-solving paradigm
(Figure 1.1b). In recent times, this type of problem-solving approach, which can
be traced back to the post-World War II research techniques developed at US
national laboratories, has been applied to science education where it is called
something like computational scientific thinking. This is clearly related to what
the computer scientists more recently have come to callComputationalThinking,
but the former is less discipline specific. Our computational scientific thinking is
a hands-on, inquiry-based project approach in which there is problem analysis,
a theoretical foundation that considers computability and appropriate modeling,
algorithmic thinking and development, debugging, and an assessment that leads
back to the original problem.
Traditionally, physics utilizes both experimental and theoretical approaches to

discover scientific truth. Being able to transform a theory into an algorithm re-
quires significant theoretical insight, detailed physical and mathematical under-
standing, and amastery of the art of programming. The actual debugging, testing,
and organization of scientific programs are analogous to experimentation, with
the numerical simulations of nature being virtual experiments. The synthesis of
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numbers into generalizations, predictions, and conclusions requires the insight
and intuition common to both experimental and theoretical science. In fact, the
use of computation and simulation has now become so prevalent and essential a
part of the scientific process that many people believe that the scientific paradigm
has been extended to include simulation as an additional pillar (Figure 1.1b). Nev-
ertheless, as a science, CPmust hold experiment supreme, regardless of the beauty
of the mathematics.

1.2
This Book’s Subjects

This book starts with a discussion of Python as a computing environment and
then discusses some basic computational topics. A simple review of computing
hardware is put off until Chapter 10, although it also fits logically at the beginning
of a course. We include some physics applications in the first third of this book,
by put off most CP until the latter two-thirds of the book.
This text have been written to be accessible to upper division undergraduates,

although many graduate students without a CP background might also benefit,
even from themore elementary topics.We cover both ordinary and partial differ-
ential equation (PDE) applications, as well as problems using linear algebra, for
which we recommend the established subroutine libraries. Some intermediate-
level analysis tools such as discrete Fourier transforms, wavelet analysis, and sin-
gular value/principal component decompositions, often poorly understood by
physics students, are also covered (and recommended). We also present various
topics in fluid dynamics including shock and soliton physics, which in our expe-
rience physics students often do not see otherwise. Some more advanced topics
include integral equations for both the bound state and (singular) scattering prob-
lem in quantum mechanics, as well as Feynman path integrations.
A traditional way to view the materials in this text is in terms of its use in

courses. In our classes (CPUG, 2009), we have used approximately the first third of
the text, with its emphasis on computing tools, for a course called Scientific Com-
puting that is taken after students have acquired familiarity with some compiled
language. Typical topics covered in this one-quarter course are given in Table 1.1,
although we have used others as well. The latter two-thirds of the text, with its
greater emphasis on physics, has typically been used for a two-quarter (20-week)
course in CP. Typical topics covered for each quarter are given in Table 1.2. What
withmany of the topics being research level, thesematerials can easily be used for
a full year’s course or for extended research projects.
The text also uses various symbols and fonts to help clarify the type of material

being dealt with. These include:

⊙ Optional material
Monospace font Words as they would appear on a computer screen
Vertical gray line Note to reader at the beginning of a chapter saying
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Table 1.1 Topics for one-quarter (10 Weeks) scientific computing course.

Week Topics Chapter Week Topics Chapter

1 OS tools, limits 1, (10) 6 Matrices, N-D search 6
2 Visualization, Errors 1, 3 7 Data fitting 7
3 Monte Carlo, 4, 4 8 ODE oscillations 8
4 Integration, visualization 5, (1) 9 ODE eigenvalues 8
5 Derivatives, searching 5, 7 10 Hardware basics 10

Table 1.2 Topics for two-quarters (20 Weeks) computational physics course.

Computational Physics I Computational Physics II
Week Topics Chapter Week Topics Chapter

1 Nonlinear ODEs 8, 9 1 Ising model, Metropolis 17
2 Chaotic scattering 9 2 Molecular dynamics 18
3 Fourier analysis, filters 12 3 Project completions —
4 Wavelet analysis 13 4 Laplace and Poisson PDEs 19
5 Nonlinear maps 14 5 Heat PDE 19
6 Chaotic/double pendulum 15 6 Waves, catenary, friction 21
7 Project completion 15 7 Shocks and solitons 24
8 Fractals, growth 16 8 Fluid dynamics 25
9 Parallel computing, MPI 10, 11 9 Quantum integral equations 26
10 More parallel computing 10, 11 10 Feynman path integration 17

1.3
This Book’s Problems

For this book to contribute to a successful learning experience, we assume that the
reader will work through what we call the Problem at the beginning of each dis-
cussion. This entails studying the text, writing, debugging, and running programs,
visualizing the results, and then expressing inwordswhat has been performed and
what can be concluded. As part of this approach, we suggest that the learner write
up a mini lab report for each problem containing sections on

Equations solved Numerical method Code listing
Visualization Discussion Critique

Although we recognize that programming is a valuable skill for scientists, we also
know that it is incredibly exacting and time-consuming. In order to lighten the
workload, we provide “bare bones” programs. We recommend that these be used
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as guides for the reader’s own programs, or tested and extended to solve the prob-
lem at hand. In any case, they should be understood as part of the text.
While we think it is best to take a course, or several courses, in CP, we recognize

that this is not always possible and some instructors may only be able to include
some CP examples in their traditional courses. To assist in this latter endeavor,
in this section we list the location of each problem distributed throughout the
text and the subject area of each problem. Of course this is not really possible
with a multidisciplinary subject like CP, and so there is an overlap. The code
used in the table for different subjects is: QM= quantum mechanics or modern
physics, CM= classical mechanics, NL=nonlinear dynamics, EM= electricity
and magnetism, SP= statistical physics, MM=mathematical methods as well as
tools, FD= fluid dynamics, CS= computing fundamentals, Th= thermal physics,
and BI= biology. As you can see from the tables, there are many problems and
exercises, which reflects our view that you learn computing best by doing it, and
that many problems cover more than one subject.

Problems and exercises in computational basics
Subject Section Subject Section Subject Section

MM, CS 1.6 CS 2.2.2 CS 2.2.2
CS 2.4.3 CS 2.4.5 CS 2.5.2
CS 3.1.2 CS 3.2 CS 3.2.2
CS 3.3 CS 3.3.1 CS 4.2.2
MM, CS 6.6 CS 10.13.1 CS 10.14.1
CS 11.3.1 CS 11.1.2 CS 11.2.1

Problems and exercises in thermal physics and statistical physics
Subject Section Subject Section Subject Section

SP, MM 4.3 SP, MM 4.5 QM, SP 4.6
Th, SP 7.4 Th, SP 7.4.1 NL, SP 16.3.3
NL, SP 16.4.1 NL, SP 16.7.1 NL, SP 16.7.1
NL, SP 16.8 NL, SP 16.11 SP, QM 17.4.1
SP, QM 17.4.2 SP, QM 17.6.2 Th, MM 20.2.4
Th, MM 20.3 TH, MM 20.4.2 TH, MM 20.1
TH, MM 17.1 SP 16.2 SP, BI 16.3
SP 16.4 SP, MM 16.5 SP 16.6
SP 16.7
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Problems and exercises in electricity andmagnetism
Subject Section Subject Section Subject Section

EM, MM 19.6 EM, MM 19.7 EM, MM 19.8
EM, MM 19.9 EM, MM 23.2 EM, MM 23.5
EM, MM 23.5.1 EM, MM 23.6.6 EM, MM 22.7.2
EM, MM 22.10 EM, MM 19.2

Problems and exercises in quantummechanics
Subject Section Subject Section Subject Section

QM, SP 4.6 QM, MM 7.1 QM, MM 7.2.1
QM, MM 7.3.2 QM, MM 9.1 QM, MM 9.2
QM, MM 9.2.1 QM, MM 9.3 QM 13.6.3
QM, MM 17.7 QM, MM 26.1 QM, MM 26.3
QM, MM 22.1

Problems and exercises in classical mechanics and nonlinear dynamics
Subject Section Subject Section Subject Section

CM, NL 5.16 CM 6.1 CM, NL 8.1
CM, NL 8.7.1 CM, NL 8.8 CM, NL 8.9
CM, NL 8.10 CM, NL 9.4 CM, NL 9.4.3
CM 9.5 CM 9.7 CM 9.7
NL, FD 9.7 CM 9.7 CM, MM 6.6.2
CM, MM 6.6.1 CM, NL 12.1 BI, NL 14.3
CM, MM 6.6.1 BI, NL 14.4 BI, NL 14.5.2
BI, NL 14.5.3 BI, NL 14.10 BI, NL 14.11.1
BI, NL 14.11.4 BI, NL 14.11.5 CM, NL 15.1.3
CM, NL 15.1 NL, BI 14.1 NL, BI 14.9
CM, NL 15.2.2 CM, NL 15.3 CM, NL 15.4
CM, NL 15.5 CM, NL 15.6 CM, NL 15.7
CM, NL 15.7 NL, MM 16.2.1 NL, MM 16.3.3
NL, MM 16.4.1 NL, MM 16.5.3 NL, MM 16.7.1
NL, MM 16.7.1 NL, MM 16.8 NL, MM 16.11
CM, MM 21.2.4 CM, MM 21.3 CM, MM 21.4.3
CM, MM 24.6 CM, MM 21.1 CM, MM 21.5
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Problems and exercises in fluid dynamics
Subject Section Subject Section Subject Section

NL, FD 9.7 FD, MM 24.3.2 FD, MM 24.5.3
FD, MM 24.5.4 FD, MM 25.1 FD, MM 25.2.3
FD, MM 25.4.4 FD, MM 25.4.5

Problems and exercises in mathematical methods and computational tools
Subject Section Subject Section Subject Section

MM, CS 1.6 MM, SP 4.3 SP, MM 4.3.2
BI, MM 4.4 MM, SP 4.5 MM 5.12.3
MM 5.16 MM 5.17.2 MM 5.5
MM 5.5 QM, MM 7.1 QM, MM 7.2.1
QM, MM 7.3.2 MM, QM 9.1 QM, MM 9.2
QM, MM 9.2.1 QM, MM 9.3 CM, NL 9.4
MM, CS 6.6 CM, MM 6.6.2 CM, MM 6.6.1
MM 7.5.1 MM 7.5.2.1 MM 7.8
MM 7.8.1 MM 7.8.2 MM 12.3
MM 12.5.3 MM 12.7.1 MM 12.11
MM 13.3.1 MM 13.5.2 MM 13.6.3
CM, MM 15.5 NL, MM 16.2.1 NL, MM 16.3.3
NL, MM 16.4.1 NL, MM 16.5.3 NL, MM 16.7.1
NL, MM 16.7.1 NL, MM 16.8 NL, MM 16.11
Th, MM 20.2.4 Th, MM 20.3 TH, MM 20.4.2
EM, MM 19.6 EM, MM 19.7 EM, MM 19.8
EM, MM 19.9 EM, MM 23.5 EM, MM 23.5.1
EM, MM 23.6.6 CM, MM 21.2.4 CM, MM 21.3
CM, MM 21.4.3 QM, MM 22.2.2 QM, MM 22.2.2
QM, MM 22.2.3 EM, MM 22.7.2 EM, MM 22.10
FD, MM 24.3.2 FD, MM 24.5.3 FD, MM 24.5.4
FD, MM 25.2.3 FD, MM 25.4.4 FD, MM 25.4.5
QM, MM 26.2.3 QM, MM 26.2.4 QM, MM 26.4.5
QM, MM 26.4.6 MM, NL 13.1 MM, CM 12.1
MM 12.6 MM 12.8.1 MM 7.5
MM 7.5.2.1 MM 7.6 MM 7.8.2
MM 13.7.2



Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu: Computational Physics — 2015/5/5 — page 8 — le-tex

8 1 Introduction

Problems and exercises in molecular dynamics and biological applications
Subject Section Subject Section Subject Section

BI, MM 4.4 BI, NL 14.3 BI, NL 14.4
BI, NL 14.5.2 BI, NL 14.5.3 BI, NL 14.10
BI, NL 14.11.1 BI, NL 14.11.4 BI, NL 14.11.5
SP, BI 16.3 BI, NL 14.1 BI, NL 14.9
MD, QM 18.3 MD, QM 18.4 MD 18.4
MM, SP 18

1.4
This Book’s Language: The Python Ecosystem

The codes in this edition of Computational Physics employ the computer lan-
guage Python. Previous editions have had their examples in Java, Fortran and C,
and used post-simulation tools for visualization. Although we have experienced
no general agreement in the computational science community as to the best lan-
guage for scientific computing, this has not stopped many of the users of each
language from declaring it to be the best. Even so, we hereby declare that we have
found Python to be the best language yet for teaching CP. Python is free, robust
(not easily broken), portable (program run without modifications on various de-
vices), universal (available for most every computer system), has a clean syntax
that lets students learn the language quickly, has dynamic typing and high-level,
built-in data types that enable getting programs to work quickly without having
to declare data types or arrays, count matching braces, or use separate visualiza-
tion programs. Because Python is interpreted, students can learn the language by
executing and analyzing individual commands within an interactive shell, or by
running the entire program in one fell swoop. Furthermore, Python brings to sci-
entific computing the availability of a myriad of free packages supporting numer-
ical algorithms, state-of the art, or simple, visualizations and specialized toolkits
that rival those in Matlab and Mathematica/Maple. And did we mention, all of
this is free?
There are literally thousands of Python packages available, but not to worry, we

use only a few for numerical and visualization purposes. Because it is essential to
be able to run and modify the example codes in this book, we suggest that you
spend the time necessary to get Python to function properly on your computer
(and then leave notes as to what you did). For learning Python, we recommend the
online tutorials (Ptut, 2014; Pguide, 2014; Plearn, 2014), the books by Langtangen
Langtangen (2008) and Langtangen (2009), and the Python Essential Reference
(Beazley, 2009). For general numericalmethods, a book by Press et al. (1994) is the
standard, and most fun to read, while the NIST Digital Library of Mathematical
Functions (NIST, 2014) is probably the most convenient.
Python has developed rapidly since its first implementation in December 1989

(History, 2009). Python’s combination of language plus packages is now the stan-



Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu: Computational Physics — 2015/5/5 — page 9 — le-tex

91.4 This Book’s Language: The Python Ecosystem

dard for the explorative and interactive computing that typifies the present-day
scientific research. These rapid developments of Python have also led to a suc-
cession of new versions, and the inevitable incompatibilities. Most of the codes
in this book were written using Python 2, which was released in 2000, and specif-
ically Python 2.6 with the Visual package (also known as “VPython”). However,
there have been major changes to the Python development process as well as in
features, and this has led to the release of Python 3.0 in December 2008. Unfor-
tunately, some of the changes in Python 3 were not backward compatible with
Python 2.6 and 2.7, and so advances in both Python 2 and 3 and their associated
packages have been occurring in parallel. (For our codes, the major difference
is in the print statement using a parenthesis in 3, which is not hard to correct.)
Furthermore, there have been new versions of operating systems and processors
from 32- to 64-bit CPUs, and this also has led to the variety of Python versions
and associated packages.
To be honest, we have sometimes felt frustrated by these changes and resulting

incompatibilities; however, we are intent on not sharing that! While we will de-
scribe the packages and distribution briefly, we indicate here that we have adapted
to the real world by having both independent Python 2 and 3 implementations ex-
ist on our computers. Specifically, our Visual package programs use Python 3.2,
while the others use the Enthought Canopy Distribution Version 1.3.0, which at
present uses Python 2.7.3. (The Visual package is not available in Enthought.)

1.4.1
Python Packages (Libraries)

The Python language plus its family of packages comprise a veritable ecosystem
for computing. A package or module is a collection of related methods or classes
of methods that are assembled together into a subroutine library.1) Inclusion of
the appropriate packages extends the language to meet the specialized needs of
various science and engineering disciplines, and lets one obtain state-of-the-art
computing for free. In fact, the May/June 2007 and March/April 2011 issues of
Computing in Science and Engineering (Perez et al., 2010) focus on scientific com-
puting with Python, and we recommend them.
To use a package named PackageName, you include in your Python program ei-

ther an import PackageName or a from PackageName statement at the beginning of
your program. The import statement loads the entire package, which is efficient,
but may require you to include the package name as a prefix to the method you
want. For example,

>>> from v i s u a l . graph import * # Import from v isua l package
>>> y1 = v i s u a l . graph . gcurve ( co lo r = blue , d e l t a = 3) # Use of graph

1) The Python Package Index (PYPI, 2014), a repository of free Python packages, currently
contains more than 40 000 packages!
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Here >>> represents the prompt for a Python shell. Some of the typing can be
avoided by assigning a symbol to the package name:

>>> import v i s u a l . graph as p
>>> y1 = p . gcurve ( co lo r = blue , d e l t a = 3)

There is also a starred version of from that copies all of the methods of a package
(here Matplotlib called pylab) so that you can leave off prefixes:

>>> from pylab import * # Import a l l pylab methods
>>> p lo t ( x , y , ’ - ’ , lw=2) # A pylab method without pref ix

1.4.2
This Book’s Packages

We are about to describe some of the packages that make Python such a rich en-
vironment. If you are anxious to get started now, or worry about getting over-
whelmed by the Python packages, you may just want to load VPython now and
move on to the next chapter. You will need some more stuff to do visualizations
and matrices, but you can always upgrade your knowledge when you feel more
comfortable with Python.

Because all too often you do not knowwhat you do not know, or what you need to
know, we list here a few, basic Python packages and what each does. The packages
used in the text are underlined and described more fully later.

Boost.Python A C++ library that enables seamless interoperability between
C++ and Python, thus extending the lifetime of legacy codes and making use
of the speed of C, www.boost.org/doc/libs/1_55_0/libs/python/doc/.

Cython: C Extensions for Python A superset of the Python language that sup-
ports calling C functions and intermixing Python and C for legacy purposes
and for high performance, http://cython.org/.

f2py: Fortran to Python Interface Generator that provides connection be-
tween Python and Fortran languages; great for steering legacy codes, http:
//cens.ioc.ee/projects/f2py2e/.

IPython: Interactive Python An advanced shell (command line interpreter)
that extends Python’s basic interpreter IDLE. IPython has enhanced inter-
activity and interactive visualization capabilities that encourage exploratory
computing. IPython also has a browser-based notebook like Mathematica
that permits embedded code executions, as well as capabilities for parallel
computing, http://ipython.org/.

Matplotlib: Mathematics Plotting Library A 2D and 3D graphics library that
uses NumPy (Numerical Python), and produces publication quality figures
in a variety of hard copy formats, and permits interactive graphics. Simi-
lar to MATLAB’s plotting (except Matplotlib is free and doesn’t need its li-
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cense renewed yearly). See Section 1.5.3 for examples and discussion, http:
//matplotlib.sf.net.

Mayavi Interactive and simplified 3D visualization. Also contains TVTK, a
wrapper for the more basic Visualization Tool Kit VTK. (“Mayavi” is San-
skrit for magician.) See Section 1.5.6 for examples and discussion, http:
//mayavi.sf.net.

Mpmath: Multiprecision Floating Point Arithmetic A pure-Python library
for multiprecision floating-point arithmetic for transcendental functions,
unlimited exponent sizes, complex numbers, interval arithmetic, numeri-
cal integration and differentiation, root-finding, linear algebra, and more,
https://code.google.com/p/mpmath/.

NumPy: Numerical Python Permits the use of fast, high-level multidimen-
sional arrays in Python, which are used as the basis formany of the numerical
procedures in Python libraries (NumPy, 2013; SciPy, 2014) – the successor to
both Numeric and Numarray. Used by Visual and Matplotlib. SciPy extends
NumPy. See Sections 6.5, 6.5.1, and 11.2 for examples of NumPy array use.

Pandas: Python Data Analysis Library A collection of high-performance,
user-friendly data structures and data analysis tools, http://pandas.pydata.
org/.

PIL: Python Imaging Library Image processing and graphics routines for var-
ious file formats, www.pythonware.com/products/pil/.

Python The Python standard library, http://python.org.
PyVISA Wrappers for the VISA library providing controls for measurement

equipment through various busses from within Python programs, http:
//pyvisa.readthedocs.org/en/latest/.

SciKits: SciPy Toolkits A collection of toolkits that extend SciPy to special dis-
ciplines such as audio processing, financial computation, geosciences, time
series analysis, computer vision, engineering, machine learning, medical
computing, and bioinformatics, https://scikits.appspot.com/.

SciPy: Scientific Python A basic library for mathematics, science, and engi-
neering. (See SciKits for further extensions.) Provides user-friendly and effi-
cient numerical routines for linear algebra, optimization, integration, special
functions, signal and image processing, statistics, genetic algorithms, ODE
solutions, and others. Uses NumPy’s N-dimensional arrays but also extends
NumPy. SciPy essentially provides wrapper for many existing libraries in
other languages, such as LAPACK (Anderson et al., 2013) and FFT. The
SciPy distribution usually includes Python, NumPy, and f2py, http://scipy.org.

Sphinx Python documentation generator for output in various formats, http://
sphinx-doc.org/.

SWIG An interface compiler that connects programs written in C and C++with
scripting languages such as Perl, Python, Ruby, and TCL. Useful for extending
the lifetime of legacy codes or formaking use of the speed of C, http://swig.org.

SyFi: Symbolic Finite Elements Built on top of the symbolic math library
GiNaC, SyFi is used in the finite element solution of PDEs. It provides polyg-



Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu: Computational Physics —
2015/5/5 — page 12 — le-tex

12 1 Introduction

onal domains, polynomial spaces and degrees of freedom as symbolic expres-
sions that are easily manipulated, https://pypi.python.org/pypi/SyFi/.

SymPy: Symbolic Python A system for symbolic mathematics using pure
Python (no external libraries) to provide a simple computer algebra sys-
tem that also includes calculus, differential equations, etc. Similar to Maple
orMathematica, with the Sage package being evenmore complete. Examples
in Section 1.7. See also mpmath, http://sympy.org/.

VisIt Distributed, parallel, visualization tool for visualizing data defined on 2D
and 3D structured and unstructured meshes, https://wci.llnl.gov/codes/visit/.

Visual (VPython) Python programming language plus the visual 3D graphics
module, with the VIDLE interactive shell replacing Python’s standard IDLE.
Particularly helpful, even for novices, in creating 3D demonstrations and ani-
mations for education.We often use Visual for 2D plots of numerical data and
animations. Can be installed separately from Canopy, http://vpython.org/.

1.4.3
The EasyWay: Python Distributions (Package Collections)

Although most Python packages are free, there is a true value for both users and
vendors to distribute a collection of packages that have been engineered and tuned
to work well together, and that can be installed in one fell swoop. (This is similar
to what Red Hat and Debian do with Linux.) These distributions can be thought
of as complete Python ecosystems assembled for specific purposes, and are highly
recommended. Here we mention four with which we are familiar:

Anaconda A free Python distribution includingmore than 125 packages for sci-
ence,mathematics, engineering, and data analysis, including Python, NumPy,
SciPy, Pandas, IPython, Matplotlib, Numba, Blaze, and Bokeh. Anaconda is
self-described as enterprise-ready for large-scale data processing, predic-
tive analytics, and scientific computing, and permits easy switching between
Python 2.6, 2.7, and 3.3. As also true for Canopy, Anaconda installs in its own
directory and so runs independently from other Python installations on your
computer, https://store.continuum.io/cshop/anaconda/.

Enthought Canopy A comprehensive and complete Python analysis environ-
ment with easy installation and updates. The commercial distribution in-
cludes more than 150 packages, yet is available for free to academic users. In
any case, there is an Express version containing more than 50 packages that
is free to everyone. The packages include the IPython, NumPy, SciPy, Mat-
plotlib, Mayavi, scikit, SymPy, Chaco, Envisage, and Pandas, /https://www.
enthought.com/products/canopy/.

Python XY A free scientific and engineering development collection of pack-
ages for numerical computations, data analysis, and data visualization em-
ploying the Qt graphical libraries for GUI development and the Spyder in-
teractive scientific development environment, https://code.google.com/p/
pythonxy/.
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Sage An amazingly complete collection of open-source packages for mathe-
matical computations, both numerically and symbolically using the IPython
interface and notebooks. Sage’s stated mission is to create a viable, free,
open-source alternative to Magma, Maple, Mathematica, and Matlab, www.
sagemath.org/.

1.5
Python’s Visualization Tools

If I can’t picture it, I can’t understand it.

Albert Einstein

In the sections to followwe discuss tools to visualize data produced by simulations
and measurements. Whereas other books may choose to relegate this discussion
to an appendix, or not to include it at all, we believe that visualization is such an
integral part of CP, and so useful for your work in the rest of this book, that we have
placed it here, right up front. We describe the use of Matplotlib, Visual (VPython),
and Mayavi. VPython makes easy 2D plot, solid geometric figures, and animations.
Matplotlibmakes very nice 3D (surface) plots,whileMayavi can create state-of-the-
art visualizations.

Generalities One of the most rewarding aspects of computing is visualizing the
results of calculations. While in the past this was performed with 2D plots, in
modern times it is a regular practice to use 3D (surface) plots, volume rendering
(dicing and slicing), animations, and virtual reality (gaming) tools. These types of
visualizations are often breathtakingly beautiful and may provide deep insights
into problems by letting us see and “handle” the functions with which we are
working. Visualization also assists in the debugging process, the development of
physical and mathematical intuition, and the all-around enjoyment of work.
In thinking about ways to view your results, keep in mind that the point of visu-

alization is to make the science clearer and to communicate your work to others.
Then it follows that you should make all figures as clear, informative, and self-
explanatory as possible, especially if you will be using them in presentations with-
out captions. This means labels for curves and data points, a title, and labels on
the axes.2) After this, you should look at your visualization and ask whether there
are better choices of units, ranges of axes, colors, style, and so on, that might get
the message across better and provide better insight. And try to remember that
those colors which look great on your monitor may turn into uninformative grays
when printed. Considering the complexity of human perception and cognition,

2) Although this may not need saying, place the independent variable x along the abscissa
(horizontal), and the dependent variable y = f (x) along the ordinate.



Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu: Computational Physics —
2015/5/5 — page 14 — le-tex

14 1 Introduction

there may not be a single best way to visualize a particular data set, and so some
trial and error may be necessary to “see” what works best.

Listing 1.1 EasyVisual.py produces two different 2D plot using the Visual package.

# EasyVisual . py : Simple graph object using Visual
2

from v i s u a l . graph import * # Import Visual
4

P lot1 = gcurve ( co lo r = co lo r . white ) # gcurve method
6

f o r x in arange ( 0 . , 8 . 1 , 0 . 1 ) : # x range
8P lot1 . p l o t ( pos = ( x , 5 . * cos ( 2 . * x ) * exp ( −0 .4* x ) ) ) # Plot pts

10graph1 = gd i sp l ay ( width =600 , he ight =450 ,\
t i t l e = ’ Visual 2D Plot ’ , x t i t l e = ’ x ’ , y t i t l e = ’ f (x) ’ , \

12foreground = co lo r . b lack , background = co lo r . white )

14P lot2 = gdots ( co lo r = co lo r . b lack ) # Dots

16f o r x in arange ( −5. , +5 , 0 . 1 ) :
P lot2 . p l o t ( pos = ( x , cos ( x ) ) )

1.5.1
Visual (VPython)’s 2D Plots

As indicated in the description of packets, VPython (Python plus the Visual pack-
age) is a simple way to get started with Python and visualizations.3) The Visual
package is useful for creating 3D solids, 2D plots, and animations. For example,
in Figure 1.2, we present two plots produced by the program EasyVisual.py in List-
ing 1.1. Notice that the plotting technique is to create first a plot object, and then
to add the points to the object, one by one. (In contrast,Matplotlib creates a vector
of points and then plots the entire vector.)

Figure 1.2 Screen dumps of two x–y plots produced by EasyVisual.py using the Visual pack-
age. Plot (a) uses default parameters, while plot (b) uses user-supplied options.

3) Because Visual is not one of the Canopy packages, to run our Visual programs you would
need to install the Visual package and the version of Python that runs with it, even if you
have Canopy installed. There is no problem doing this because VPython and Canopy go into
different folders/directories.
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EasyVisual.py is seen to create two plot objects, Plot1 and Plot2, with the plot
method used to plot each object. Plot1 uses the gcurve method with no options
specified other than the color of the curve (white). We obtain (Figure 1.2a) a con-
nected curve by default, but no labels. In contrast, Plot2 uses the gdisplay method
to set the display characteristics for the plot to follow, and then gdots to draw the
data as points (Figure 1.2b). You use a gdisplay plotting object before you create a
gcurve graph object, in order to set the size, position, and title for the graph win-
dow, to specify titles for the x and y axes, and to specify maximum values for each
axis. The gdisplay arguments are self-explanatory, with the width and height given
in pixels. Because we set Plot2= gdots(), only points are plotted.

Listing 1.2 3GraphVisual.py produces a 2D x–y plot with the Matplotlib and NumPy pack-
ages.

1# 3GraphVisual . py : 3 plots in the same figure , with bars , dots and curve

3from v i s u a l import *
from v i s u a l . graph import *

5
s t r i n g = " blue : s in ^2(x) , white : cos ^2(x) , red : s in (x)* cos (x) "

7graph1 = gd i sp l ay ( t i t l e =s t r ing , x t i t l e = ’x ’ , y t i t l e = ’y ’ )

9y1 = gcurve ( co lo r=co lo r . yel low , d e l t a =3) # curve
y2 = gvbars ( co lo r=co lo r . white ) # v e r t i c a l bars

11y3 = gdots ( co l o r=co lo r . red , d e l t a =3) # dots

13f o r x in arange (−5 , 5 , 0 . 1 ) : # arange for f l o a t s
y1 . p l o t ( pos=(x , s in ( x ) * s in ( x ) ) )

15y2 . p l o t ( pos=(x , cos ( x ) * cos ( x ) / 3 . ) )
y3 . p l o t ( pos=(x , s in ( x ) * cos ( x ) ) )

Note that thePython codes are listedwithin shadedboxeswith some formatting
to improve readability. For example, see Listing 1.2. Note that we have structured
the codes so that a line is skipped before major elements like functions, and that
indentations indicate structures in Python (where Java and C may use braces).
It is often a good idea to place several plots in the same figure. The program

3GraphVisual.py in Listing 1.2 does that and produces the graph in Figure 1.3a.
There arewhite vertical bars createdwith gvbars, red dots createdwith gdots, and a
yellow curve created with gcurve (colors appear only as shades of gray in the paper
text). Also note in 3GraphVisual.py that we avoid having to include the package
name as a prefix to the commands by starting the programwith import visual.graph
as vg. This both imports Visual’s graphing package and assigns the symbol vg to
visual.graph.

1.5.1.1 VPython’s 3D Objects

Listing 1.3 3Dshapes.py produces a sample of VPython’s 3D shapes.

# 3Dshapes . py : Some 3D Shapes of VPython
2

from v i s u a l import *
4

graph1 = d i s p l a y ( width =500 , he ight =500 , t i t l e = ’VPython 3D Shapes ’ ,
range=10)
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6sphere ( pos =(0 , 0 , 0 ) , r ad iu s =1 , co l o r=co lo r . green )
sphere ( pos= (0 ,1 , −3) , r ad iu s =1 .5 , co l o r=co lo r . red )

8arrow ( pos =(3 , 2 , 2 ) , a x i s = (3 , 1 , 1 ) , co l o r=co lo r . cyan )
c y l i nd e r ( pos=(−3 ,−2 ,3) , a x i s =(6 ,−1 ,5) , co l o r=co lo r . ye l low )

10cone ( pos=(−6 ,−6 ,0) , a x i s =( −2 ,1 ,−0.5) , r ad iu s =2 , co l o r=co lo r . magenta )
h e l i x ( pos=(−5 ,5 ,−2) , a x i s = (5 , 0 , 0 ) , r ad iu s =2 , th i cknes s =0 .4 ,

co lo r=co lo r . orange )
12r ing ( pos=( −6 ,1 ,0) , a x i s = (1 , 1 , 1 ) , r ad iu s =2 , th i cknes s =0 .3 ,

co l o r = ( 0 . 3 , 0 . 4 , 0 . 6 ) )
box ( pos=(5 ,−2 ,2) , l ength =5 , width =5 , he ight =0 .4 , co l o r = ( 0 . 4 , 0 . 8 , 0 . 2 ) )

14pyramid ( pos =(2 , 5 , 2 ) , s i z e = (4 , 3 , 2 ) , co l o r = ( 0 . 7 , 0 . 7 , 0 . 2 ) )
e l l i p s o i d ( pos=(−1 ,−7 ,1) , a x i s = (2 , 1 , 3 ) , l ength =4 , he ight =2 , width =5 ,

co l o r = ( 0 . 1 , 0 . 9 , 0 . 8 ) )

Oneway tomake simulations appearmore realistic is to use 3D solid shapes, for
example, a sphere for a bouncing ball rather than just a dot. VPython can produce
a variety of 3D shapes with one-line commands, as shown in Figure 1.4, and as
produced by the code in Listing 1.3. To make the ball bounce, you would need to
vary the position variable according to some kinematic equations.

Figure 1.3 (a) Output from the program 3GraphVisual.py that places three different types of
2D plots on one graph using Visual. (b) Three frames from a Visual animation of a quantum
mechanical wave packet produced with HarmosAnimate.py.

Figure 1.4 Some 3D shapes created with single commands in VPython.
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1.5.2
VPython’s Animations

Creating animations with Visual is essentially just making the same 2D plot over
and over again, with each one at a slightly differing time, and then placing the
plots on top of each other.When performed properly, this gives the impression of
motion. Several of our sample codes produce animations, for example,HarmosAni-
mate.py and 3Danimate.py. Three frames produced byHarmosAnimate.py are shown
in Figure 1.3b. The major portions of these codes deal with the solution of PDEs,
which need not concern us yet. The part which makes the animation is simple:

PlotObj= curve ( x=xs , co l o r=co lo r . yel low , r ad iu s =0 .1 )
. . .
whi le True : # Runs forever

r a t e (500 )
psr [1 : −1] = . . .
p s i [1 : −1] = . .
PlotObj . y = 4 * ( psr * *2 + ps i * * 2 )

Here PlotObj is a curve that continually gets built from within a while loop and
thus appears to bemoving.Note that being able to plot points individuallywithout
having to store them all in an array for all times keeps the memory demand of the
program quite small and leads to fast programs.

Listing 1.4 EasyMatPlot.py produces a, 2D x–y plot using the Matplotlib package (which
includes the NumPy package).

1# EasyMatPlot . py : Simple use of matplotlib ’ s plot command

3from pylab import * # Load Matplotlib

5Xmin = −5 . ; Xmax = +5 . ; Npoints= 500
DelX = (Xmax − Xmin) / Npoints

7x = arange (Xmin , Xmax, DelX )
y = s in ( x ) * s in ( x * x ) # function of x array

9
pr in t ( ’ arange => x [ 0 ] , x [ 1 ] , x[499]=%8.2 f %8.2 f %8.2 f ’

%(x [ 0 ] , x [ 1 ] , x [ 4 9 9 ] ) )
11pr in t ( ’ arange => y [ 0 ] , y [ 1 ] , y[499]=%8.2 f %8.2 f %8.2 f ’

%(y [ 0 ] , y [ 1 ] , y [ 4 9 9 ] ) )
pr in t ( "\n Now doing the p lo t t ing thing , look f o r Figure 1 on desktop " )

13x l a b e l ( ’x ’ ) ; y l a b e l ( ’ f (x ) ’ ) ; t i t l e ( ’ f (x ) vs x ’ )
t e x t ( −1 .75 , 0 . 75 , ’ MatPlotLib \n Example ’ ) # Text on plot

15p lo t ( x , y , ’ - ’ , lw=2)
g r id ( True ) # Form grid

17show ( )

1.5.3
Matplotlib’s 2D Plots

Matplotlib is a powerful plotting package that lets you make 2D and 3D graphs,
histograms, power spectra, bar charts, error charts, scatter plots, and more, all
directly from within your Python program. Matplotlib is free, uses the sophisti-
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cated numerics of NumPy and LAPACK (Anderson et al., 2013), and, believe it or
not, is easy to use. Specifically, Matplotlib uses the NumPy array (vector) object
to store the data to be plotted. In Chapter 6, we talk at more length about NumPy
arrays, so you may want to go there soon to understand arrays better.
Matplotlib commands are by design similar to the plotting commands ofMAT-

LAB, a commercial problem-solving environment that is particularly popular in
engineering. As is true for MATLAB, Matplotlib assumes that you have placed
the x and y values that you wish to plot into 1D arrays (vectors), and then plots
these vectors in one fell swoop. This is in contrast to Visual, which first creates
a plot object and then adds points to the object one by one. Because Matplotlib
is not part of standard Python, you must import the entire Matplotlib package,
or the individual methods you use, into your program. For example, on line 2 of
EasyMatPlot.py in Listing 1.4 (line numbers are in the dark shading on the right),
we import Matplotlib as the pylab library:

from pylab import * # Load Matplotlib

Then, on lines 6 and 7 we calculate and input arrays of the x and y values

x = arange (Xmin , Xmax , DelX ) # Form x array in range with increment
y = −s in ( x ) * cos ( x ) # Form y array as function of x array

As you can see, NumPy’s arange method constructs an array covering “a range”
between Xmax and Xmin in steps of DelX. Because the limits are floating-point
numbers, so also will be the xi ’s. And because x is an array, y = -sin(x)*cos(x) is
automatically one too! The actual plotting is performed on line 14 with a dash “–”
used to indicate a line, and lw = 2 to set its width.The result is shown in Figure 1.5a
with the desired labels and title. The show() command produces the graph on your
desktop.More commands are given in Table 1.3. We suggest you try out some of
the options and types of plots possible.

(a) (b)

Figure 1.5 Matplotlib plots. (a) Output of EasyMatPlot.py showing a simple, x–y plot. (b) Out-
put from GradesMatPlot.py that places two sets of data points, two curves, and unequal upper
and lower error bars, all on one plot.
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Table 1.3 Some common Matplotlib commands.

Command Effect Command Effect

plot(x, y, ’-’, lw=2) x–y curve, line width 2 myPlot.setYRange(-8., 8.) Set y range
show() Show output graph myPlot.setSize(500, 400) Size in pixels
xlabel(’x’) x-axis label pyplot.semilogx Semilog x plot
ylabel(’f(x)’) y-axis label pyplot.semilogy Semilog y plot
title(’f vs x’) Add title grid(True) Draw grid
text(x, y, ’s’) Add text s at (x , y) myPlot.setColor(false) Black and White
myPlot.addPoint Add (x , y) to set 0 myPlot.setButtons(true) For zoom button

(0,x,y,true) connect
myPlot.addPoint Add (x , y) to 1, myPlot.fillPlot() Fir ranges to data

(1,x,y, false) no connect
pyplot.errorbar Point + error bar myPlot.setImpulses(true,0) Vertical lines, set 0
pyplot.clf() Clear current figure pyplot.contour Contour lines
pyplot.scatter Scatter plot pyplot.bar Bar charts
pyplot.polar Polar plot pyplot.gca For current axis
myPlot.setXRange(-1., 1.) Set x range pyplot.acorr Autocorrelation

Listing 1.5 GradesMatPlot.py produces a, 2D x–y plot using the Matplotlib package.

# Grade . py : Using Matplotlib ’ s plot command with multi data se t s & curves
2

import pylab as p # Matplotlib
4from numpy import *

6p . t i t l e ( ’Grade I n f l a t i o n ’ ) # Ti t l e and labe l s
p . x l a b e l ( ’ Years in College ’ )

8p . y l a b e l ( ’GPA’ )

10xa = ar ray ([ −1 , 5 ] ) # For horizonta l l ine
ya = ar ray ( [ 0 , 0 ] ) # " "

12p . p l o t ( xa , ya ) # Draw horizonta l l ine

14x0 = ar ray ( [ 0 , 1 , 2 , 3 , 4 ] ) # Data set 0 points
y0 = ar ray ( [ −1 .4 , +1 .1 , 2 . 2 , 3 . 3 , 4 . 0 ] )

16p . p l o t ( x0 , y0 , ’ bo ’ ) # Data set 0 = blue c i r c l e s
p . p l o t ( x0 , y0 , ’ g ’ ) # Data set 0 = l ine

18
x1 = arange (0 , 5 , 1 ) # Data set 1 points

20y1 = ar ray ( [ 4 . 0 , 2 . 7 , −1.8 , −0.9 , 2 . 6 ] )
p . p l o t ( x1 , y1 , ’ r ’ )

22
errTop = ar ray ( [ 1 . 0 , 0 . 3 , 1 . 2 , 0 . 4 , 0 . 1 ] ) # Asymmetric error bars

24errBot = ar ray ( [ 2 . 0 , 0 . 6 , 2 . 3 , 1 . 8 , 0 . 4 ] )
p . e r ro rb a r ( x1 , y1 , [ errBot , errTop ] , fmt = ’ o ’ ) # Plot error bars

26
p . g r id ( True ) # Grid l ine

28p . show ( ) # Create plot on screen

In Listing 1.5, we give the code GradesMatplot.py, and in Figure 1.5b we show its
output. This is not a simple plot. Here we repeat the plot command several times
in order to plot several data sets on the same graph, and to plot both the data
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points and the lines connecting them. On line 3, we import Matplotlib (pylab),
and on line 4 we import NumPy, which we need for the array command. Because
we have imported two packages, we add the pylab prefix to the plot commands so
that Python knows which package to use.
In order to place a horizontal line along y = 0, on lines 10 and 11 we create a

data set as an array of x values,−1 ≤ x ≤ 5, and a corresponding array of y values,
yi ≡ 0. We then plot the horizontal on line 12. Next we place four more curves in
the figure. First on lines 14–15, we create data set 0, and then plot the points as
blue circles (’bo’), and connect the points with green (’g’) lines (the color will be
visible on a computer screen, but will appear only as shades of gray in print). On
lines 19–21, we create and plot another data set as a red (’r’) line. Finally, on lines
23–25, we define unequal lower and upper error bars and place them on the plot.
We finish by adding grid lines (line 27) and showing the plot on the screen.

Listing 1.6 MatPlot2figs.py produces the two figures shown in Figure 1.6. Each figure con-
tains two plots with one Matplotlib figure.

# MatPlot2figs . py : plot of 2 subplots on 1 f i g & 2 separate f i g s
2

from pylab import * # Load matplotlib
4

Xmin = −5 .0 ; Xmax = 5 . 0 ; Npoints= 500
6DelX= (Xmax−Xmin) / Npoints # Delta x

x1 = arange (Xmin , Xmax , DelX ) # x1 range
8x2 = arange (Xmin , Xmax , DelX /20 ) # Different x2 range

y1 = −s in ( x1 ) * cos ( x1 * x1 ) # Function 1
10y2 = exp (−x2 / 4 . ) * s in ( x2 ) # Function 2

pr in t ( "\n Now plott ing , look f o r Figures 1 & 2 on desktop " )
12# Figure 1

f i g u r e ( 1 )
14subplot ( 2 , 1 , 1 ) # 1 s t subplot in f i r s t f igure

p lo t ( x1 , y1 , ’ r ’ , lw=2)
16x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ f (x) ’ ) ; t i t l e ( ’ - s in (x)* cos (x^2) ’ )

g r id ( True ) # Form grid
18subplot ( 2 , 1 , 2 ) # 2nd subplot in f i r s t f igure

p lo t ( x2 , y2 , ’ - ’ , lw=2)
20x l a b e l ( ’ x ’ ) # Axes labe l s

y l a b e l ( ’ f (x) ’ )
22t i t l e ( ’ exp ( - x/4)* s in (x) ’ )

24# Figure 2
f i g u r e ( 2 )

26subplot ( 2 , 1 , 1 ) # 1 s t subplot in 2nd figure
p lo t ( x1 , y1 * y1 , ’ r ’ , lw=2)

28x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ f (x) ’ ) ; t i t l e ( ’ s in ^2(x)* cos ^2(x^2) ’ )

# form grid
subplot ( 2 , 1 , 2 ) # 2nd subplot in 2nd figure

30p lo t ( x2 , y2 * y2 , ’ - ’ , lw=2)
x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ f (x) ’ ) ; t i t l e ( ’ exp ( - x/2)* s in ^2(x) ’ )

32g r id ( True )

34show ( ) # Show graphs

Often the science is clearer if there are several curves in one plot, and, sev-
eral plots in one figures. Matplotlib lets you do this with the plot and the subplot
commands. For example, in MatPlot2figs.py in Listing 1.6 and Figure 1.6, we have
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Figure 1.6 (a,b) Columns show two separate outputs, each of two figures, produced by Mat-
Plot2figs.py. (We used the slider button to add some space between the plots.)

placed two curves in one plot, and then output two different figures, each con-
taining two plots. The key here is the repetition of the subplot command:

f i g u r e ( 1 ) # The 1 s t f igure
subplot ( 2 , 1 , 1 ) # 2 rows , 1 column , 1 s t subplot
subplot ( 2 , 1 , 2 ) # 2 rows , 1 column , 2nd subplot

The listing is self-explanatory, with sections that set the plotting limits, that cre-
ates each figure, and then creates the grid.

Listing 1.7 PondMatPlot.py produces the scatter plot and the curve shown in Figure 5.5 in
Chapter 5.

1# PondMatPlot . py : Monte−Carlo integrat ion v ia vonNeumann re j ec t ion

3import numpy as np
import matp lo t l i b . pyp lot as p l t

5
N = 100

7x1 = np . arange (0 , 2*np . p i +2*np . p i /N, 2 * np . p i /N)
f i g , ax = p l t . subp lo t s ( )

9y1 = x1 * np . s in ( x1 ) * *2 # Integrand
ax . p l o t ( x1 , y1 , ’ c ’ , l i new id th =4)

11ax . s e t _x l im ( ( 0 , 2*np . p i ) )
ax . s e t _y l im ( ( 0 , 5 ) )

13ax . s e t _ x t i c k s ( [ 0 , np . pi , 2*np . p i ] )
ax . s e t _ x t i c k l a b e l s ( [ ’ 0 ’ , ’ $\uppi$ ’ , ’ 2$\uppi$ ’ ] )

15ax . s e t _ y l a b e l ( ’ $ f (x) = x\ ,\ s in ^2 x$ ’ , f o n t s i z e =20)
ax . s e t _ x l a b e l ( ’x ’ , f o n t s i z e =20)

17f i g . patch . s e t _ v i s i b l e ( F a l s e )
x i = [ ] ; y i = [ ] ; xo = [ ] ; yo =[]

19
de f f x ( x ) : # Integrand

21re turn x *np . s in ( x ) * *2

23j = 0 # Inside curve counter
Npts = 3000

25ana l y t = np . p i * *2
xx = 2 . * np . p i * np . random . rand ( Npts ) # 0 =< x <= 2pi

27yy = 5*np . random . rand ( Npts ) # 0 =< y <= 5
f o r i in range ( 1 , Npts ) :
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29i f ( yy [ i ] <= fx ( xx [ i ] ) ) : # Below curve
i f ( i <=100) : x i . append ( xx [ i ] )

31i f ( i <=100) : y i . append ( yy [ i ] )
j +=1

33e l s e :
i f ( i <=100) : yo . append ( yy [ i ] )

35i f ( i <=100) : xo . append ( xx [ i ] )

37boxarea = 2 . * np . p i * 5 . # Box area
area = boxarea * j / ( Npts−1) # Area under curve

39ax . p l o t ( xo , yo , ’ bo ’ , markers ize =3)
ax . p l o t ( xi , y i , ’ ro ’ , markers ize =3)

41ax . s e t _ t i t l e ( ’ Answers : Analytic = %5.3 f , MC = %5.3 f ’%( analyt , area ) )
p l t . show ( )

Scatter Plots Sometimes we need a scatter plot of data points, and maybe even a
curve thrown in as well. In Figure 5.5 in Chapter 5, we show such a plot created
with the code PondMapPlot.py in Listing 1.7. The key statements here are of the
form ax.plot(xo, yo, ’bo’, markersize=3), which in this case adds a blue point (on
screen) of size 3.

1.5.4
Matplotlib’s 3D Surface Plots

A 2D plot of the potential V (r) = 1∕r vs. r is fine for visualizing the radial depen-
dence of the potential field surrounding a single charge, but if youwant to visualize
a dipole potential such as V (x , y) = (B + C(x2 + y2)−3∕2)x, you need a 3D visu-
alization. We get that by creating a world in which the z dimension (mountain
height) is the value of the potential, and the x and y axes define the plane below
the mountain. Because the surface we are creating is a 3D object, it is not truly
possible to draw it on a flat screen, and so different techniques are used to give
the impression of three dimensions to our brains.Wedo that by rotating the object
(by grabbing it with your mouse), shading it, employing parallax, and other tricks.

Listing 1.8 Simple3Dplot.py produces the Matplotlib 3D surface plots in Figure 1.7.

# Simple3Dplot . py : matplotlib 3D plot you can rota te and sca le v ia mouse
2

import matp lo t l i b . py lab as p
4from mpl_ too l k i t s . mplot3d import Axes3D

6pr in t " Please be patient , I have packages to import & points to plot "
d e l t a = 0 .1

8x = p . arange ( −3. , 3 . , d e l t a )
y = p . arange ( −3. , 3 . , d e l t a )

10X, Y = p . meshgrid ( x , y )
Z = p . s in (X) * p . cos (Y) # Surface height

12
f i g = p . f i g u r e ( ) # Create f igure

14ax = Axes3D ( f i g ) # Plots axes
ax . p l o t _ su r f a c e (X, Y , Z) # Surface

16ax . p lot_wire frame (X, Y , Z , co l o r = ’ r ’ ) # Add wireframe
ax . s e t _ x l a b e l ( ’X’ )

18ax . s e t _ y l a b e l ( ’Y’ )
ax . s e t _ z l a b e l ( ’Z ’ )

20
p . show ( ) # Output f igure
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(a) (b)

Figure 1.7 (a) A 3D wire frame. (b) A surface plot with wire frame. Both are produced by the
program Simple3dplot.py using Matplotlib.

In Figure 1.7a, we show a wire-frame plot and in Figure 1.7b, a surface-plus-
wire-frame plot. These are obtained from the program Simple3Dplot.py in List-
ing 1.8. Note that there is an extra import of Axes3D from the Matplotlib tool kit
needed for 3D plotting. Lines 8 and 9 are the usual creation of x and y arrays of
floats using arange. Line 11 uses the meshgrid method to set up the entire coordi-
nate matrix grid from the x and y coordinate vectors with a vector call, and line
12 constructs the entire Z surface with another vector operation. The remaining
of the program is self-explanatory, with fig being the plot object, ax the 3D axes
object, and plot_wireframe and plot_surface creating wire frame and surface plots,
respectively.
Another type of 3D plot is particularly useful when examining data of the form

(xi , y j , zk ), is a scatter plot into the 3D (x, y, z) volume. In Listing 1.9, we give the
program Scatter3dPlot.py that created the plot in Figure 1.8. This program, which
is taken from the Matplotlib documentation, uses the NumPy random number
generator, with the 111 notation being a hand-me-down fromMATLAB indicat-
ing a 1 × 1 × 1 grid.

Listing 1.9 Scatter3dPlot.py produces a 3D scatter plot using Matplotlib 3D tools.

1" Scatter3dPlot . py from matplot l ib examples "

3import numpy as np
from mpl_ too l k i t s . mplot3d import Axes3D

5import matp lo t l i b . pyp lot as p l t

7de f randrange (n , vmin , vmax ) :
re turn ( vmax−vmin ) *np . random . rand (n ) + vmin

9
f i g = p l t . f i g u r e ( )

11ax = f i g . add_subplot (111 , p ro j e c t ion = ’ 3d ’ )
n = 100

13f o r c , m, z l , zh in [ ( ’ r ’ , ’ o ’ , −50 , −25) , ( ’b ’ , ’ ^ ’ , −30 , −5) ] :
xs = randrange (n , 23 , 32)

15ys = randrange (n , 0 , 100)
zs = randrange (n , z l , zh )

17ax . s c a t t e r ( xs , ys , zs , c=c , marker=m)



Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu: Computational Physics —
2015/5/5 — page 24 — le-tex

24 1 Introduction

Figure 1.8 A 3D scatter plot produced by the program Scatter3dPlot.py using Matplotlib.

19ax . s e t _ x l a b e l ( ’X Label ’ )
ax . s e t _ y l a b e l ( ’Y Label ’ )

21ax . s e t _ z l a b e l ( ’Z Label ’ )

23p l t . show ( )

Finally, the program FourierMatplot.py, written by Oscar Restrepo, performs a
Fourier reconstruction of a saw tooth wave, with the number of waves included
controlled by the viewer via a slider bar, as shown in Figure 1.9. (We discuss the
mathematics of Fourier transforms in Chapter 12.) The slider method is included
via the extra lines:

from matp lo t l i b . w idgets import S l i d e r
. . .
snumwaves = S l i d e r ( axnumwaves , ’# Waves ’ , 1 , 20 , v a l i n i t =T)
. . .
snumwaves . on_changed ( update )

1.5.5
Matplotlib’s Animations

Matplotlib also can do animations, although not as simply as VPython. The Mat-
plotlib example page shows a number of them. We include some Matplotlib an-
imation codes in the PythonCodes/Visualizations directory, and show a sample
code for the heat equation in Listing 1.10. Here too most of the code deals with
solving a PDE, which need not interest us yet. The animation is carried out at the
bottom of the code.
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Figure 1.9 A comparison of a saw tooth function to the sum of its Fourier components, with
the number of included waves varied interactively by a Matplotlib slider. FourierMatplot.py,
which produced this output, was written by Oscar Restrepo.

Listing 1.10 EqHeatAnimateMatPlot.pyproduces an animation of a cooling bar using Mat-
plotlib.

1# EqHeat . py Animated heat equation soltn v ia f ine d i f f e rences

3from numpy import *
import numpy as np

5import matp lo t l i b . pyp lot as p l t
import matp lo t l i b . animation as animation

7
Nx = 101

9Dx = 0.01414
Dt = 0 .6

11KAPPA = 210 . # Thermal
conduct iv ity

SPH = 900 . # Spec i f i c heat
13RHO = 2700 . # Density

cons = KAPPA/ ( SPH*RHO) *Dt / (Dx*Dx ) ;
15T = np . zeros ( (Nx, 2 ) , f l o a t ) # Temp @ f i r s t 2 times

de f i n i t ( ) :
17f o r i x in range ( 1 , Nx − 1) : # I n i t i a l temperature

T[ ix , 0 ] = 100 . 0 ;
19

T[0 , 0 ] = 0 .0 # Bar ends T = 0
21T[0 , 1 ] = 0 .

T[Nx − 1 , 0 ] = 0 .
23T[Nx − 1 , 1 ] = 0 .0

i n i t ( )
25k=range ( 0 ,Nx)

f i g=p l t . f i g u r e ( ) # Figure to plot
27# s e l e c t axis ; 111: only one plot , x , y , s c a l e s given

ax = f i g . add_subplot (111 , au tosca le_on =False , xl im=(−5 , 105) , yl im =(−5 ,
110 . 0 ) )

29ax . g r id ( ) # Plot
grid

p l t . y l a b e l ( "Temperature " )
31p l t . t i t l e ( " Cooling o f a bar " )
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l i ne , = ax . p l o t ( k , T[ k , 0 ] , " r " , lw=2)
33p l t . p l o t ( [ 1 , 9 9 ] , [ 0 , 0 ] , " r " , lw=10)

p l t . t e x t (45 , 5 , ’ bar ’ , f o n t s i z e =20)
35

de f animate (dum) :
37f o r i x in range ( 1 , Nx − 1) :

T[ ix , 1 ] = T[ ix , 0 ] + cons * (T[ i x + 1 , 0 ] + T[ ix − 1 , 0 ] −
2 . 0 *T[ ix , 0 ] )

39l i n e . s e t _da t a ( k ,T[ k , 1 ] )
f o r i x in range ( 1 , Nx − 1) :

41T[ ix , 0 ] = T[ ix , 1 ] # Row of 100 pos it ions at
t = m

re turn l i ne ,
43

ani = animation . FuncAnimation ( f i g , animate , 1 ) # Animation
45p l t . show ( )

1.5.6
Mayavi’s Visualizations Beyond Plotting*

This section onMayavi is indicated as optional becausewe do not use it in our sam-
ple programs. However, we recommend that, at least, the reader browse through it
in order to obtain some ideas about the next level of Python visualization.

Although Matplotlib is excellent for plotting functions vs. one or two of its vari-
ables, it is not designed to do the sculpture-like 3D visualizations of functions of
three ormore variables that are often displayed by supercomputer centers.Mayavi
(Sanskrit for “magician”) is designed for this next level of visualization. Mayavi is
open source, tightly integrated with Python and included in the Canopy distribu-
tion.
Mayavi consists of two different packages and two different interfaces to those

packages. The packagewe illustrate here is the set ofMatlab- orMathematica-like
commands that operate at a fairly high level of abstraction and works naturally
with NumPy arrays. The other package is a set of VTK (Visual Tool Kit) prim-
itives that may be more appropriate for developing your own, research-specific,
visualization modules. Even with the high-level package, you have the choice of
interacting withMayavi via scripting fromwithin your Python program (what we
demonstrate) or via a stand-alone application that runs separately from your pro-
grams.
Wewill now show a few examples derived from the Enthought tutorial.We start

by having Mayavi produce a standard surface plot of z(x , y) = x4 + y4:

import numpy ; import Matp lo t l i b ; import matp lo t l i b . pyp lot
import mayavi ; import mayavi . mlab

X, Y = numpy . mgrid [ −2 : 2 : 0 . 1 , −2 :2 : 0 . 1 ] ; Z = X**4 + Y**4

mayavi . mlab . su r f (Z) ; mayavi . mlab . axes ( )
mayavi . mlab . ou t l i n e ( ) ; mlab . show ( )

You see here that we use NumPy’s numpy.mgrid method to set up the X and Y ar-
rays, and then set up the Z array with a vectorized evaluation of X4 + Y 4. Then
we use Mayavi to create the Z surface, to draw the axes and to outline the surface
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Figure 1.10 (a) A Mayavi surface plot of the function z = x4 + y4 as seen in the screen viewer.
(b) A rotatable visualization of a spherical harmonic Ym

l (θ,𝜙) in which the radial distance rep-
resents the value of the function.

with a box. Finally, there is an important call to mlab.show() to show the visualiza-
tion in a display box such as that in Figure 1.10a. This display box is seen (well,
if enlarged) to contain a number of (too small) buttons that lets you produce dif-
ferent views and sizes, insert directional arrows, save the file in various formats
to disk, edit properties of the visualization, and open the pipeline window. The
pipeline window shows, and lets the user control, the various stages of a visu-
alization: loading the data into a data source object, transforming the data with
filters, and visualizing it with modules.
Now we go beyond the direct plotting of a function’s values to the creation of

a visualization of a spherical harmonic function Ym
l (θ, φ) that is defined over the

surface of a sphere (Figure 1.10b):

from numpy import pi , sin , cos , mgrid
from mayavi import mlab
dphi , dtheta = pi / 250 . 0 , p i / 250 . 0
[ phi , t he t a ] = mgrid [ 0 : p i+dphi * 1 . 5 : dphi , 0 : 2 * p i+dtheta * 1 . 5 : dtheta ]
m0 = 4 ; m1 = 3 ; m2 = 2 ; m3 = 3 ; m4 = 6 ; m5 = 2 ; m6 = 6 ; m7 = 4 ;
r = s in (m0* phi ) * *m1 + cos (m2* phi ) * *m3 + s in (m4* the t a ) * *m5 +

cos (m6* the t a ) * *m7
x = r * s in ( phi ) * cos ( the t a ) ; y = r * cos ( phi ) # Function
z = r * s in ( phi ) * s in ( the t a ) # Project ions
# View data

s = mlab . mesh ( x , y , z )
mlab . show ( )

Because we do not have four dimensions to use, we take the values of Ym
l (θ, φ) at

various grid points and plot those values as the radial distances from the origin
for each value of θ and φ. The new element here is the statement s = mlab.mesh(x,
y, z) that produces a mesh throughout 3D space, and then the projection of the
radius into its (x , y, z) components.
In the next example, we start with a data set in the form of (xi , y j , zk ) values

and connect the points with tubes of various colors:
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Figure 1.11 (a) A Mayavi visualization in which tubes are used to connect a set of data points.
(b) A Mayavi visualization using arrows (glyphs) to represent a vector field.

import numpy ; import mayavi
from mayavi . mlab import *

n_mer , n_long = 6 , 11 ; p i =numpy . p i
dphi = pi / 1000 .0
phi = numpy . arange ( 0 . 0 , 2 * p i + 0 .5 * dphi , dphi )
mu = phi * n_mer
x = numpy . cos (mu) * (1 + numpy . cos ( n_long * mu / n_mer ) * 0 . 5 )
y = numpy . s in (mu) * (1 + numpy . cos ( n_long * mu / n_mer ) * 0 . 5 )
z = numpy . s in ( n_long * mu / n_mer ) * 0 . 5

p lot3d ( x , y , z , numpy . s in (mu) , tub e_ rad iu s =0 .025 , colormap= ’ Spectra l ’ )
mayavi . mlab . show ( )

The new command here is plot3d, which is seen in Figure 1.11b to produce rain-
bow colored (‘Spectral’) tubes connecting the data points. The arange command
sets up the array of phi values, and then the arrays of x, y, z, mu and sin(mu) values
all follow.
A popular style of visualization for vector fields is one in which arrows (glyphs)

are drawn at various points in space with the directions of the arrows indicat-
ing the directions of the field, and with the length of the arrows indicating its
strengths.Here we create such a visualization and show its output in Figure 1.11b:

import numpy
from mayavi . mlab import *

x , y , z = numpy . mgrid [ −2 :3 , −2:3 , −2:3]
r = numpy . sq r t ( x * * 2 + y * * 2 + z * * 4)
u = y * numpy . s in ( r ) / ( r + 0 . 001 )
v = −x * numpy . s in ( r ) / ( r + 0 . 001 )
w = 4*numpy . z e r o s _ l i k e ( z )

qu iver3d ( x , y , z , u , v , w, l ine_w id th =3 , s c a l e _ f a c t o r =1 .5 )
show ( )

As before, we useNumPy to set an (x , y, z) grid. Thenwe set up an array of r values
as an intermediate function of (x , y, z), and finally set up arrays of the (u, v, w)
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Figure 1.12 (a) A Mayavi visualization of the contours of the scalar field 𝜙(x , y, z) =
sin(xyz)∕xyz. (b) A volume rendering of the same scalar field.

components of the vector field as functions of the other arrays. The newcommand
here is quiver3d which provides a collection of arrows (cute name).
If the fieldwewish to visualize is a scalar field, such as φ(x , y, z) = sin(x yz)∕x yz,

then the appropriate visualization would be an iso-surface (a 3D contour plot of
equal values) throughout a 3D space. We do that with the contour3d command:

import numpy as np
from mayavi import mlab
x , y , z = np . ogr id [ −10 :10 :20 j , −10:10:20 j , −10:10:20 j ]
s c a l a r = np . s in ( x * y * z ) / ( x * y * z )
mlab . contour3d ( s c a l a r )
mlab . show ( )

Figure 1.12a shows the output, which is periodic, but not obviously trigonometric.
We now take our visualization of the same scalar field and showhow some other

Mayavi methods yield different views of the field. First, a volume rendering to
produce the nebulous view in Figure 1.12b:

import numpy as np
from mayavi import mlab
x , y , z = np . ogr id [ −10 :10 :20 j , −10:10:20 j , −10:10:20 j ]
s = np . s in ( x * y * z ) / ( x * y * z )
mlab . p i p e l i n e . volume (mlab . p i p e l i n e . s c a l a r _ f i e l d ( s ) )
mlab . show ( )

Next, we take the same field and replace the mlab.contour3d(s) command with the
pipeline command:

mlab . p i p e l i n e . volume (mlab . p i p e l i n e . s c a l a r _ f i e l d ( s ) )

This produces the nebulous visualization in Figure 1.12b. Next, we produce the
visualization in Figure 1.13a by having some planes cut through the scalar field:
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Figure 1.13 (a) A Mayavi visualization of the same scalar field 𝜙(x , y, z) = sin(xyz)∕xyz using
cut planes. (b) A visualization of the same scalar field combining cut planes and contours.

import numpy as np
from mayavi import mlab
x , y , z = np . ogr id [ −10 :10 :20 j , −10:10:20 j , −10:10:20 j ]
s c a l a r = np . s in ( x * y * z ) / ( x * y * z )
mlab . p i p e l i n e . image_plane_widget (mlab . p i p e l i n e . s c a l a r _ f i e l d ( s c a l a r ) ,

p l ane_or i en t a t i on = ’ x_axes ’ , s l i c e _ i nd e x =10 ,)
mlab . p i p e l i n e . image_plane_widget (mlab . p i p e l i n e . s c a l a r _ f i e l d ( s c a l a r ) ,

p l ane_or i en t a t i on = ’ y_axes ’ , s l i c e _ i nd e x =10 ,)
mlab . ou t l i n e ( )
mlab . show ( )

Although we cannot show it, the user can interact with the visualization by mov-
ing the cuts and rotating the figures. And to finish, we place both contours and
cut planes in the same plot to produce the interesting visualization as shown in
Figure 1.13b.

1.6
Plotting Exercises

We encourage you to make your own plots and personalize them by trying out
other commands and by including further options in the commands. The Mat-
plotlib documentation is extensive and available on the Web. As an exercise, ex-
plore:

1. how to zoom in and zoom out on sections of a plot?
2. how to save your plots to files in various formats?
3. how to print up your graphs?
4. the options available from the pull-down menus?
5. how to increase the space between subplots?
6. and how to rotate and scale the surfaces.
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1.7
Python’s Algebraic Tools

While this book’s focus is on the use of Python for numerical simulations, this is
not to discount the importance of computational symbolic manipulations (even
though that may be the way we feel). Python actually has (at least) two packages
that can be used for symbolic manipulations, and they are quite different. As in-
dicated in Section 1.4.3, the Sage package is very much in the same class as Maple
and Mathematica, with a notebook graphical interface that lets the user create
publication quality text, within which Python programs can be run, or the equa-
tions can bemanipulated symbolically. Yet Sage is a big and powerful package that
goes beyond pure Python by including multiple computer algebra systems as well
as visualization tools and more. Using the multiple features of Sage can get to be
quite complicated, and, in fact, books have beenwritten andworkshops taught on
the use of Sage. We refer the interested reader to the online Sage documentation
page at www.sagemath.org/help.html.
The SymPy package for symbolic manipulations runs very much like any other

Python package fromwithin your regular Python shell. It can be downloaded from
https://github.com/sympy/sympy/releases, or you can use the Canopy distribution
that includes SymPy. Now we give some simple examples of SymPy’s use, but you
really need to start with the SymPy Tutorial http://docs.sympy.org/latest/tutorial/
if you want to use SymPy. (Note, despite the fact that we are working within a
Python shell, SymPy has automatically found our LATEXapplication and used it to
format the output.) To start, we will take some derivatives to show that SymPy
knows calculus:

>>> from sympy import *
>>> x , y = symbols ( ’x y ’ )
>>> y = d i f f ( tan ( x ) , x ) ; y tan2(x) + 1
>>> y = d i f f ( 5 * x * *4 + 7* x * *2 , x , 1 ) ; y # d y∕dx with optional 1

20x3 + 14x
>>> y = d i f f ( 5 * x **4+7* x * *2 , x , 2 ) ; y # d2 y∕dx2

2 (30x2 + 7)

We see here that we must first import methods from SymPy and then use the
symbols command to declare the variables x and y as algebraic. The rest is rather
obvious, with diff being the derivative operator and the x argument in diff indicat-
ing what we are taking the derivative with respect to x. Now let us try expansions:

>>> from sympy import *
>>> x , y = symbols ( ’x y ’ )
>>> z = ( x + y ) * * 8 ; z

(x + y)8
>>> expand ( z ) x8 + 8x7 y + 28x6 y2 + 56x5 y3 + 70x4 y4 + 56x3 y5 + 28x2 y6 + 8x y7 + y8

SymPy knows about infinite series and different expansion points:

>>> s in ( x ) . s e r i e s ( x , 0 ) # Usual sin x s e r ie s about 0
x − x3∕6+ x5∕120 + (x6)

>>> s in ( x ) . s e r i e s ( x , 1 0 ) # sin x about x= 10
sin(10) + x cos(10) − x2 sin(10)∕2 − x3 cos(10)∕6 + x4 sin(10)∕24 + x5 cos(10)∕120 + (x6)
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>>> z = 1/ cos ( x ) ; z # A div is ion , not an inverse
1∕ cos(x)

>>> z . s e r i e s ( x , 0 ) # Expand 1∕ cos x about x = 0
1 + x2∕2+ 5x4∕24 + (x6)

One of the classic difficulties with computer algebra systems is that even if the
answer is correct, if it is not simple, then it probably is not useful. And so, SymPy
has a simplify function as well as a factor function (and collect, cancel and apart
which we will not illustrate):

>>> f a c t o r ( x * *2 −1)
(x − 1)(x + 1) # A nice answer

>>> f a c t o r ( x * *3 − x * *2 + x − 1)
(x − 1)(x2 + 1)

>>> s imp l i f y ( ( x * *3 + x * *2 − x − 1) / ( x * *2 + 2* x + 1) )
x − 1 # Much

bet ter !
>>> s imp l i f y ( x **3+3* x * * 2 * y+3*x * y **2+y * * 3 )

x3 + 3x2 y + 3x y2 + y3 # No help !
>>> f a c t o r ( x **3+3* x * * 2 * y+3*x * y **2+y * * 3 )

(x + y)3 # Much better !
>>> s imp l i f y (1 + tan ( x ) * * 2 )

cos(x)(−2)
>>> s imp l i f y (2 * tan ( x ) /(1+ tan ( x ) * * 2 ) )

sin(2x)




