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Introduction
Philippe Grelu

Light travels fast. Photons are its swift messengers. Designing an optical
cavity is the appropriate answer to the necessity of enhancing the interaction time
between photons and matter, through the recirculation of light amidst an optical
medium of bounded size. The wave nature of light allows these multiple passes
to interfere, and buildup at resonant wavelengths or frequencies. As a result, the
nonlinear response of materials can be more easily awakened in optical cavities
than in transmission experiments, as much as nonlinear effects can be sharply
revealed through the microscopic wavelength ruler that is naturally embedded
into a resonant optical cavity.
The science of photonics is diffusing continuously into all major sectors of the

industry, frommanufacturing and communications tomedicine and environmen-
tal monitoring. Consequently, there is an increasing demand to develop efficient,
compact, and cost-effective optical sources or devices to perform a wide range
of tasks, which include high-speed spectroscopy and sensing, material process-
ing, communication and data processing, andmetrology.The optical cavity, either
in its active – laser – or passive form, is becoming more and more an applicative
node. The tremendous progress made in the field of semiconductor laser sources
in the past decades makes a striking illustration. Currently, a wide range of other
optical cavity designs show great promises, such as microresonators and fiber
lasers. Thus, it is important to consider, in a newly unified way, the broad range of
fast and ultrafast dynamics that now make a coherent conceptual frame for light
generation and processing. This is the scope of this book, definitely grounded on
fundamental considerations and also highlighting major applications.
The recirculation of light in the optical cavity produces a feedback mechanism,

whose association with nonlinearity is conducive to the appearance of bistable
behaviors. Thus, bistability is a generic feature of nonlinear optical cavities. As
the optical nonlinearity can be of dispersive or dissipative nature – or rigorously,
a combination of the two – various types of optical bistability can, accordingly,
manifest [1]. Bistability is a fascinating property that naturally translates into
the notion of information storage and manipulation. However, due to the scale
of optical wavelengths, the density of optically stored information cannot
compete with the memory density implemented in modern CMOS technology.
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2 1 Introduction

Thus, applicative motivations clearly shift toward the realization of optical buffer
memories or arbitrary long delay lines, all-optical switches, and other advanced
optical processing units. Recent technological breakthroughs in optical cavities,
from microresonators to ultra-long fiber cavities, have entitled the exploration of
nonlinear optical dynamics over unprecedented spatial and temporal orders of
magnitude.
Indeed, the key advantage of optical technology lays in its potentially ultrahigh

bandwidth, or equivalently, ultrafast transmission. As soon as thematerial nonlin-
earity response time is in the femtosecond to the picosecond range, as it is the case,
for instance, with Kerr nonlinearity in most glass materials, the effects of nonlin-
earity and dispersion can combine to shape up short-to-ultrashort optical pulses.
When the previous combination reaches a balance amid a single optical pulse,
the latter becomes an optical soliton, which subsequently maintains its specific
temporal waveform during propagation [2–3].
However, dealing with the arbitrarily long propagation distances that are

accumulated through the succession of cavity round-trips, losses cannot be
avoided. Several strategies can be implemented to compensate for these losses.
In general, a coherent driving field can inject the cavity, either continuously or
synchronously. Or, the cavity may include an incoherently pumped gain medium
that makes it a laser system. In all cases, to maintain a given light state in the
optical cavity, a balance between gain and losses should be reached. As soon
as nonlinearity is involved in this dissipative balance, stable pulsed light states
pertain to the general class of dissipative solitons [4]. The qualifier “dissipative”
has to be understood in the broad dynamical sense attributed by Nicolis and
Prigogine [5], and not as amere synonym of a “lossy” system. Instead of remaining
deceptive, dissipative systems, through the perpetual and bidirectional exchange
of energy with their environment, can manifest conditions for self-organization.
They have become during the past decade a fascinating area of research [4, 6].
Dissipative solitons are confined wave-packets of light whose existence and
stability crucially depend on the energy balance. The dissipative soliton paradigm
is underlying most of the chapters of the present volume, encompassing a
myriad of possible dynamics, from stationary to pulsating and chaotic pulsed
regimes.
Conceptually, the simplest nonlinear optical cavity scheme may correspond

to a single transverse mode, coherently driven, cavity incorporating an ultrafast
Kerr medium. It can then be considered as “the hydrogen atom” of nonlinear
optical cavity dynamics. This statement obviously stands as long as polarization
dynamics, thermal, and additional higher-order effects are not involved. In its
distributed form, the optical cavity can be scaled from a compact microring to
a kilometer-long fiber ring. Interestingly, going beyond the mean-field equation
describing optical bistability, the stability analysis unveils the – parameter depen-
dent – possibility of reaching various modulated and pulsating regimes. This
underpins the existence of well-localized temporal cavity solitons, which can be
considered as individual, addressable optical bits of information that travel round
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the optical cavity. Coen and Erkintalo discuss this topic extensively in Chapter 2,
in correspondence with fiber ring cavity experiments.
For high-finesse-driven resonators, the Lugiato–Lefever equation (LLE) is a

central dynamical model [7, 8]. It is used in several chapters, and chapter authors
were allowed to retain their own derivation and notations for the reader’s con-
venience. The solitary wave solutions of the LLE have been called cavity solitons,
and they belong to the general class of dissipative solitons, as explained previously
and reflected in Lugiato and Lefever’s [7] seminal 1987 paper. Interestingly, the
latter original study considered the spatiotemporal dynamics of optical cavities
with high Fresnel numbers, namely, the possibility to form transverse patterns
and spots – spatial cavity solitons. This readily increases the complexity of the
nonlinear optical cavity system: not only from the theoretical point of view,
where complex two-dimensional transverse structures, such as vortices, can
form without having an equivalent in the purely temporal case but also – and
mostly – because it is extremely difficult to realize a homogeneous wide-aperture
cavity. Then, losing the translational symmetry, the spatial cavity solitons are set
to move transversally, sensing the gradients of their local environments, until
they become pinned by defects.
In activemedia, laser light can be generated with versatile underlying dynamics,

from stationary to pulsating and chaotic ones. Emphasizing on ultrafast dynam-
ics, the vital arena for the information technology, we find the soliton as a com-
mon conceptual keyword, thriving into its modern developments with the closely
related denominations of dissipative solitons and cavity solitons.
Broad-area vertical-cavity surface emitting lasers (VCSELs) make an advanta-

geous technological platform to experiment cavity solitons [9]. They benefit from
the compactness and high nonlinearity of grown semiconductor structures. It is
also possible to combine their optical gain with a particular feedback mechanism,
to circumvent the necessity of an external coherent driving transverse wave. Such
a design allows the observation of specific cavity solitons, namely, laser cavity
solitons. As can be expected, the use of a semiconductor material increases the
complexity of the underlying theoretical description, involving a set of coupled
nonlinear equations for the carrier density along with the intracavity optical field.
It is also particularly interesting to study the interactions between neighboring
laser cavity solitons, and their coherence properties. All these points are addressed
in Chapter 3, by Ackemann et al., maturing a thorough expertise about complex
spatiotemporal dynamics. A challenging perspective is to find experimental con-
ditions where cavity solitons localized both transversally and in the time domain,
namely, laser light bullets, could manifest. Until now, stable light bullets that can
be manipulated remain the holy grail of nonlinear optics [10, 11].
Semiconductor laser cavities are characterized by a short gain relaxation time of

the order of a nanosecond or less. By extending the cavity length, with a delay line
in air, onemay shift the laser dynamical regime from class B to class A. Now, let us
consider a single transverse-mode semiconductor laser. When the gain relaxation
lifetime becomes much shorter than the cavity round-trip time, and by using a
suitable saturable absorber, it is possible tomodelock the extended semiconductor
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laser cavity with multiple independent pulses. Because these pulses do not inter-
act, when sufficiently separated, they can be considered as “localized structures,”
a particular class of dissipative solitons, making a laser analog of the temporal cav-
ity solitons described in Chapter 1. Similarly, these laser temporal cavity solitons
can be manipulated as independent information bits. This is the main subject of
Chapter 4, by Barland et al.
In general, any extended optical cavity will experimentally feature some amount

of spatial inhomogeneity and drift. These two additional effects can lead to a wide
range of bifurcations, including excitable behavior. Interestingly, an analogy can
be made between the transverse spatial case, and the longitudinal temporal case,
when the spatial inhomogeneity is replaced by the periodic injection of driving
pulses. When the injection period does not precisely coincide with the cavity
fundamental repetition frequency, an equivalent drift source also appears. These
fundamental explorations of nonlinear cavity dynamics, relevant for systems rang-
ing from broad-area VCSELs to microresonators and frequency comb generation,
are developed in Chapter 5 by Parra-Rivas et al.
Frequency combs establish a modern workhorse for high-precision spectral

measurements that can be performed in a record time [12–14]. Driven by
the perspective of developing compact, efficient, and reliable frequency comb
generators, the research on microresonators has expanded tremendously during
the past 10 years. One has to realize the major gaps, technological as well as
conceptual ones, needed to progress from the observation of optical bistability
[15], usually dominated by slow thermal nonlinearities, to the efficient cascading
of four-wave mixing, exploiting the ultrafast Kerr nonlinearity of the optical
material [16], and nowadays, to the study and control of the coherence properties
of the generated frequency combs.
It is remarkable that the latest research trends have brought closer several sci-

entific communities that used to thrive quite separately. This is particularly true
concerning the communities of optical microresonators, of nonlinear dynamics,
and of mode-locked lasers. As the reader may have guessed, this recent move-
ment represents amajormotivation to encompass, as much as possible, the joined
expertise into a single book volume. Also, it is quite conspicuous that the con-
cept of a dissipative soliton represents a major thread linking all these current
researches. The cross-fertilization between various areas is also represented by
the alternation of spectral and temporal pictures, or temporal and spatial pictures,
that are put in vivid correspondence.
Chapters 6 and 7 successively unveil the major developments in the area of

microresonators designed for frequency comb generation. Chapter 6, by Herr
et al., unfolds the recent history of the progresses made, from experimental
and fundamental points of view, which lead to the mastering of frequency
comb generation in specifically shaped, ultrahigh quality factor, crystalline
microresonators.The focus is then on the particular experimental conditions and
parameters that allow the multiple frequency lines to lock in order to promote the
formation of temporal dissipative solitons that circulate round the laser-driven
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microresonator. Despite being based on completely different technological plat-
forms, with around five orders of magnitude difference between their respective
sizes, driven microresonators and fiber ring cavities behave similarly, as attested
by the common use of the LLE to reveal the most salient temporal dynamics.
Naturally, this huge dimension gap initially made scientific languages to develop
relatively apart: whereas it is natural to describe the microresonator dynamics
in terms of spectral modes that are well resolved with any standard optical
spectrum analyzer, the real-time observation of pulsed structures is challenging,
due to their high repetition rate. The picture is opposite for long fiber cavities,
which also feature a much lower finesse: the tightly packed, weakly modulated,
spectral modes remain generally unresolved, but the low cavity repetition rate
makes the direct observation of the temporal structures in the making a natural
scope, despite the gigahertz bandwidth limitation of the analyzing electronics.
After recalling the equivalence between the spectral and temporal formalisms,
Chapter 7 by Coillet et al. takes on the solid grounds of the temporal modeling of
driven-microresonator dynamics to explore the wide range of dynamical prop-
erties of frequency combs, backed by comparisons with experimental results,
which includes Turing patterns, bright and dark solitons, as well as higher-order
pulsations and chaotic states. The latter are shown to support the transient
formation of optical rogue waves, which are extreme-wave events ubiquitous in
highly dimensional nonlinear systems [17].
Although the technological platforms of fiber cavities and microresonators

may seem a world apart, there is an original research at their crossroad, which is
represented by microfiber, nanofiber, and microcoil resonators. As a prerequisite,
this has implied during the past decade, the transformation of artisanship skills
to automated procedures, in order to routinely produce high-quality submicron-
diameter optical fibers drawn from optical fibers of standard diameters.That said,
microfibers represent an easily accessible and particularly versatile technological
platform [18], which is able to test a wide range of concepts of integrated
nonlinear optics, such as frequency conversion, pulse shaping, and nonlinear
switching. Chapter 8, by Abdul Khudus et al., reviews all these prospects in the
light of both experimental and numerical explorations.
The crossroad between microresonators and fiber lasers represents a different

recent conjunction. Although it is known that both platforms can be used sepa-
rately to generate optical frequency combs, it would be highly desirable to com-
bine the technological connectivity and the dynamical self-organization that are
naturally available in fiber lasers with the multi-gigahertz frequency range spac-
ing of comb lines that are intrinsic to microresonators. Pasquazi et al. relate this
endeavor in Chapter 9.The authors explain the advantages and constraints inher-
ent to the association of a long and a short cavity, aimed at processing distinct tasks
for the establishment of a high-harmonic laser mode locking, and emphasize on
the stability features of the demonstrated pulsed sources.
For passively mode-locked fiber lasers, harmonic mode locking is just one

among the myriads of multipulse dynamics that can be experimented. Owing to
the general efficiency of fiber lasers, to the scalability of their pulsed dynamics,
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and to the availability of intense pump modules, the number of ultrashort pulses
that can coexist in a fiber laser cavity can be varied from a few to thousands. In
contrast to the situation in passive-driven resonators (Chapter 2) and to some
specific class-A lasers (Chapter 4), multiple pulses in mode-locked fiber lasers
always interact in a manifested way, which can become dramatic for some cavity
parameter settings. This topic is thoroughly developed in Chapter 10 by Sanchez
et al., and explained in the light of dissipative soliton dynamics. Remarkable
collective behaviors include soliton crystals, which could represent an alternative
way to obtain stable frequency combs and high-harmonic mode locking, and
complex soliton dynamics such as soliton rain and dissipative optical rogue
waves (DRWs). A bridge is established among DRWs, chaotic pulse bunching,
and noise-like pulse emission, which are denominations of chaotic dynamics well
represented in the arena of short-pulse fiber laser dynamics.
In Chapter 11, Chang and Akhmediev build a noteworthy bridge between

rogue waves and another category of short-pulse chaotic dynamics: exploding
solitons. Exploding solitons are remarkable states linked to the existence of
strange attractors [19]. In addition, chaotic dynamics in highly-dimensional non-
linear systems are conducive to rogue wave formations [17]. The authors having
a foremost expertise in both topics quite naturally anticipate and demonstrate
numerically the existence of a significant overlap between DRW and exploding
soliton dynamics, using a passively mode-locked laser propagation model.
The area of short-pulse fiber lasers is extremely dynamic [20–22]. The recent

dissipative soliton paradigm [23] applied to mode-locked lasers has allowed
relaxing several of the previously implied cavity design constraints, notably
concerning the sign of the chromatic dispersion, and the amount of acceptable
losses of the fiber laser cavity. Such renewed freedom has promoted a lot of
creative cavity design, including all-normal-dispersion chirped-pulsed lasers
[24], and soliton–similariton mode-locked lasers [25] as prominent illustrations.
One clear objective is now to obtain optimized pulse features – in terms of pulse
energy, optical bandwidth, or pulse duration – out of all-fibered laser oscillators.
The analysis of the current pulse energy limitations of mode-locked fiber lasers,
and the possibilities to circumvent them, are explored in detail in Chapter 12 by
Babin et al.
Beyond representing a complication for experiments and modeling alike,

polarization introduces a smart degree of freedom to the dynamics, which
can dispel some fundamental impossibility. For example, we all know that, by
using polarization components and a nonreciprocal element such as a Faraday
rotator, the principle of reversible ray tracing does not hold any longer, which
is very useful to design the optical isolators and circulators that are ubiquitous
in laser and optical communication technology. Involving polarization and
vector systems, in general, the dynamical domains multiply. For instance, using
birefringent fibers, parameters can be found to trigger modulation instability
(MI) in the normal dispersion regime, through simple propagation experiments
[26, 27], whereas scalar MI necessitates an anomalous dispersion regime. In the
light of the previous chapters, there is a recurrent observation: as soon as the
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space of parameters expands, new dynamical breaches appear, such as MI in
driven, normally dispersive resonators – by virtue of the detuning extra degree
of freedom [28], and bright dissipative soliton pulses in normally dispersive laser
cavity – by virtue of the dissipative terms [29].
Involving polarization dynamics can have far-reaching consequences for laser

systems. Indeed, for instance, dispersive (crossed-Kerr effect) and/or dissipative
(crossed gain saturation) contributions can initiate short-pulse dynamics in the
absence of known (scalar) saturable absorber in the laser cavity [30]. To address
this topic, the most instructive route begins with a journey through vectorial
solid-state lasers, where the piecewise cavity design allows controlling and mod-
eling well all the anisotropies. This is presented by Brunel et al., in Chapter 13.
Although disconcertingly simple linear physics is sufficient to understand the
onset of self-pulsing at specific beat frequencies, the pulse shaping definitely
involves the presence of crossed nonlinearities. Subsequently combinations of
anisotropy, saturable absorption, and frequency-shifted feedback lead to various
illustrations of synchronization mechanisms among the vector cavity modes.
The modeling of vector fiber ring lasers is more challenging, as the fiber

anisotropies are not uniformly distributed, and not precisely known, in the
experiment. However, vector pattern formations and complex self-pulsing
dynamics are found to abound in fiber laser experiments, even without any
explicit saturable absorber element, with an underlying perspective of chaos
synchronization [31]. Wabnitz et al., in Chapter 14, present the recent explo-
ration of these vector dynamics, and put forward universal distributed vector
equations as phenomenological models allowing to picture qualitatively well the
experimentally observed dynamics.
Egorov and Lederer, in Chapter 15, review the nonlinear dynamics of amarkedly

different vector laser system: the strong coupling between excitons and photons
in a driven quantum-well semiconductor microcavity. Exciton-polaritons are
half-light, half-matter quantum quasi-particles that have attracted considerable
attention during the past few years [32, 33]. Numerical investigations demon-
strate how the nonlinear coupling can form stable localized exciton-polaritons
collective states, namely, cavity polariton solitons, which can be of different types
and spatial dimensionality.
Almost all nonlinear dynamical systems involved in this volume are of quasi-

infinite dimensionality – being modeled by partial derivative equations. This
explains the great diversity of the nonlinear dynamics that can be found in these
systems, from localized solitons to pattern formation, and from stationary to pul-
sating and chaotic evolutions. However, when considering practical applications,
it may become vital to develop efficient and reliable automated procedures of
surveillance and control of these complex dynamical systems. This is the focus
of Chapter 16, by Kutz et al., where essential dimensionality-reduction methods,
sparse representation, and data-driven machine learning strategies are presented.
To conclude this introductory chapter, I am particularly grateful to all the

eminent specialists, representing various aspects of nonlinear optical cavity
dynamics, who have contributed to this volume. They have allowed me to gather
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key contributions that illustrate the diversity of dynamics as well as the strong
analogies and cross-fertilization between topics that used to thrive more inde-
pendently, spanning from mode-locked lasers to driven cavities, miniature and
microcavities for frequency comb generation, to spatially extended cavities and
spatiotemporal cavity solitons. Considering also the vital soaring of photonics
in our industries and its growing impact on our societies, with the potential
of nonlinear optical cavity dynamics in particular to perform ultrafast light
engineering and analysis, I hope that this monograph will serve as a valuable
reference guide for photonics researchers and graduate students as well as a
source of inspiration for photonics engineers.
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