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1
Functions of One Variable

1.1
Limits

It is often said thatmostmathematical errors, which get published, follow theword
“clearly” and involve the improper interchange of two limits. In simple terms, a
“limit” is the number that a function or sequence “approaches” as the input or
index approaches some value. For example, we will say that the sequence xn = 1

n
approaches the limit 0 as n moves to infinity Or, in other words, we can make xn
arbitrarily small by choosing n big enough. We often write this as

lim
n→∞

xn = 0

We can also take the limit of a function, for example, if f (x) = x2 then

lim
x→2

f (x) = 4

A sequence of numbers xn is said to converge to a limit x if we canmake the differ-
ence |x − xn| arbitrarily small by making n big enough. If such a limit point does
not exist, then we state that the sequence diverges. For example, the sequence of
integers

xn = 1, 2, 3,…

is unbounded as n → ∞, while the sequence

xn = 1 + (−1)n

oscillates and never settles down to a limit. More formally, we state

Definition 1.1. Let f be a function defined on a real interval I then the limit as
x → a exists if there exists a number l such that given a number 𝜖 > 0 no matter
how small, we can find a number 𝛿 > 0, where for all x 𝜖 I satisfying

|x − a| < 𝛿

we have

|f (x) − l| < 𝜖
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4 1 Functions of One Variable

x

y

β = f(b)

γ

α = f(a)

a c b

Figure 1.1 If y = f (x) is a continuous function on [a, b] if we pick any value, 𝛾 , that is
between the value of 𝛼 = f (a) and the value of 𝛽 = f (b) and draw a line straight out from
this point, the line will hit the graph in at least one point with an x value between a and b.

Notice that we do not necessarily let x ever reach a but only get infinitesimally
close to it. If in fact f (a) = l, then we state that the function is continuous. Intu-
itively, a function that is continuous on some interval [a, b] will take on all values
between f (a) and f (b) (Figure 1.1). For a more formal discussion see [1]. An intu-
itively obvious result is the intermediate value theorem.

Theorem 1.1. Let f be a continuous function on a closed interval [a, b]
𝛼 = f (a), 𝛽 = f (b). If 𝛾 is a number such that 𝛼 < 𝛾 < 𝛽, then there exists a number
c such that

f (c) = 𝛾

Proof: For a formal proof see for example [1] ◾

Consider the sequence of partial sums

Sn =
n∑

j=1
xn (1.1)

if the sequence of partial sums converges to some limit S as n → ∞ then we say
that the infinite series

∑∞
j=0 xj is convergent.

Example 1.1. The geometric series
Let

sn =
n∑

j=1
axj



1.2 Elementary Calculus 5

then

(1 − x)sn =
n∑

j=1
axj − axj+1

= a − 𝑎𝑥 + 𝑎𝑥 − ax2 + ax2 + · · · + axn−1 − axn + axn − axn+1

= a(1 − xn+1)

hence

sn = a(1 − xn+1)
1 − x

Clearly, therefore, if |x| < 1 the series converges. Its value being given by
∞∑

j=1
axj = a

1 − x

if |x| ≥ 1, the series diverges.

1.2
Elementary Calculus

Assume that we are observing an object moving in one dimension. We measure
its position to be x0 at time t = t0 and x0 + Δx at time t = t0 + Δt, thus its average
speed is

v =
(x0 + Δx) − x0
(t0 + Δt) − t0

= Δx
Δt

(1.2)

Of course, this is only an average value the object could accelerate and decelerate
during the time interval; if we need to know its speed at any given point, then we
must shorten the time interval, and to know the “instantaneous” speed at a time
t = t0, we need to let Δt lead to zero, that is,

v(t) = lim
Δt→0

x0 + Δx − x0
t0 + Δt − t0

(1.3)

This motivates us to define the derivative of a function.

Definition 1.2. If f is only a function of x, then the first derivative of f at x is
defined to be

𝑑𝑓 (x)
𝑑𝑥

≡ lim
h→0

f (x + h) − f (x)
h

(1.4)

If this limit exists, then the function is said to be differentiable. The function f is
said to be continuously differentiable if the derivative f ′(x) exists and is itself a
continuous function.
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Frequently, we use the notation f ′(a) as a shorthand, that is,

f ′(a) = 𝑑𝑓 (x)
𝑑𝑥

|x=a

Example 1.2. If f (x) = x, then

f ′(x) = 𝑑𝑓 (x)
𝑑𝑥

= lim
h→0

x + h − x
h

= 1

If f (x) = c, where c is a constant, then f (x + h) − f (x) = 0 for all h, consequently
f ′(x) = 0. A partial converse to this result is as follows. If f (′x) = 0 on some interval
I, then f (x) = c on I, where c is a constant. This is a consequence of the interme-
diate value theorem; see Problem 1.1. Clearly if

f ′(x) = g′(x) on I (1.5)

then

f (x) = g(x) + c on I (1.6)

where c is a constant.

1.2.1
Differentiation Products and Quotients

Assuming f (x) can be written as the product of two functions, for example,

f (x) = u(x)v(x)

then
𝑑𝑓 (x)
𝑑𝑥

= lim
h→0

u(x + h)v(x + h) − u(x)v(x)
h

(1.7)

We may rewrite the numerator in (1.7) as

u(x + h)[v(x + h) − v(x)] + v(x)[u(x + h) − u(x)]

in the limit as h → 0 u(x + h) → u(x) and

lim
h→0

u(x + h) − u(x)
h

= 𝑑𝑢(x)
𝑑𝑥

lim
h→0

v(x + h) − v(x)
h

= 𝑑𝑣(x)
𝑑𝑥

it immediately follows that
d(u(x)v(x))

𝑑𝑥
= u(x)𝑑𝑣(x)

𝑑𝑥
+ v(x)𝑑𝑢(x)

𝑑𝑥
(1.8)

It is also possible to show, Problem 1.10, that

d
𝑑𝑥

f (x)
g(x)

=
f ′(x)g(x) − f (x)g′(x)

g(x)2
(1.9)
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Lemma 1.1.
dxN

𝑑𝑥
= NxN−1

Proof: If N = 1, clearly true since 𝑑𝑥

𝑑𝑥
= 1; assume to be true for all N ≤ N0,

consider

f (x) = xN0+1 = xxN0

then from (1.8)
𝑑𝑓 (x)
𝑑𝑥

= xN0
𝑑𝑥

𝑑𝑥
+ x dxN0

𝑑𝑥
(1.10)

Now, by assumption

dxN0

𝑑𝑥
= N0xN0−1

and as we have already seen
𝑑𝑥

𝑑𝑥
= 1

hence
𝑑𝑓 (x)
𝑑𝑥

= xN0 + xN0xN0−1 = xN0 [N0 + 1] (1.11)

Hence, by principle of induction, true for all integers. ◾

1.2.2
Chain Rule

Assume that

f (x) = u(v(x))

For example,

v(x) = x2

u(y) =
√
1 − y

⇒ f (x) =
√
1 − x2

then for such a function:

Lemma 1.2. If v is differentiable at the point x and that u is differentiable at the
point y = v(x), then

𝑑𝑓 (x)
𝑑𝑥

= u′(v(x))v′(x) (1.12)

or in other words
𝑑𝑓

𝑑𝑥
= 𝑑𝑓

𝑑𝑢

𝑑𝑢

𝑑𝑥
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Proof:

u(v(x + h) − u(v(x))
h

= u(v(x + h) − u(v(x))
v(x + h) − v(x)

v(x + h) − v(x)
h

(1.13)

We can now take the limit as h → 0 and we have the result. In fact, to be more
rigorous, we should worry about the possibility of v(x + h) − v(x) passing through
0. For a treatment where this problem is explicitly dealt with see [2]. ◾

Example 1.3. Newton’s second law can be written as

F = 𝑚𝑎 = m𝑑𝑣

𝑑𝑡

= m𝑑𝑥

𝑑𝑡

𝑑𝑣

𝑑𝑥
= 𝑚𝑣

𝑑𝑣

𝑑𝑥

=
d[ 1

2
mv2]
𝑑𝑥

(1.14)

Thus, force can be defined as the rate of mass times acceleration or as the rate of
change of the kinetic energy with distance

1.2.3
Inverse Functions

Consider the functions shown in Figure 1.2. Both are continuous but for f2(x) the
equation

y = f2(x)

2

1.5

1

0.5

0
−1.5 −0.5 0.5 1.5−1 0 1

f2(x)

f1(x)

x

y

Figure 1.2 Over the range shown, the function f1(x) is invertible, f2(x) is not.
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does not have a unique solution for y = 1
2
, while the equivalent equation for f1 will

have such a solution.The difference between the two functions is that f1 is strictly
increasing over the entire interval but f2 is not.

Definition 1.3. If f is a continuous strictly increasing function on [a, b], with
𝛼 = f (a), 𝛽 = f (b), then from the intermediate value theorem, Theorem 1.1, we
know that the set

{y = f (x)|a ≤ x ≤ b}

forms the interval [𝛼, 𝛽]. We may define a function g

g ∶ [𝛼, 𝛽]→ [a, b]
g( f (x)) = x
f ( g(y)) = y

It is clear that we could just as well have constructed an inverse for a strictly
decreasing function. The only time we will have a problem is when x1 ≠ x2 but
f (x1) = f (x2). Usually, we write g as f −1. Even for f2, we can define an inverse if
we agree to only look at the intervals −1.5 ≤ x < 0 and 0 < x ≤ 1.5 separately.
We can thus talk about a local inverse, that is, given a point x0 if we can find an
interval around it for which the function f is strictly increasing or decreasing,
then we can find an inverse valid in this region. We know that (see Problem 1.3)
a function is strictly increasing or decreasing on an interval once its derivative
does not change sign; so if the derivative is continuous and we are not at a point
x0, where f ′(x0) = 0, then we can always find an interval, however, small so that
the function is locally invertible. More formally, we may state the inverse function
theorem.

Theorem 1.2. For functions of a single real variable, if f is a continuously differ-
entiable function with nonzero derivative at the point x0, then f is invertible in a
neighborhood of x0, the inverse is continuously differentiable and

df −1(y)
𝑑𝑦

= 1
f ′(x)

where x = f −1(y).

Proof: If f has a nonzero derivative at x0, then it follows that there is a interval
around x0 where it is either increasing or decreasing then (Problem 1.4), f −1 is
continuous. Let 𝛼 < y0 < 𝛽; y0 = f (x0), y = f (x), then

g(y) − g(y0)
y − y0

=
x − x0

f (x) − f (x0)
= 1

f (x)−f (x0)
x−x0

since f −1 is continuous the result follows. ◾
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1.3
Integration

There are number of equivalent ways of looking at integrals. Perhaps the most
intuitive is to consider

I = ∫
b

a
f (x)𝑑𝑥

as the area in the plane bounded by the curves y = f (x), y = 0, y = f (a), y = f (b).
Conventionally, we often describe this quantity as the area under the curve
y = f (x); see Figure 1.3. As a first approximation, we could simply assume that
the function y = f (x) could be approximated by its initial value y = f (a) over the
entire range, and we would have

I ≈ f (a)(b − a)

See Figure 1.3(a). Now, we clearly lose some area by this approximation. We can
improve it by taking a point c, with a ≤ c ≤ b and approximating the integral by
two rectangles of area f (a)(c − a) and f (b)(b − c).
We can continue this process by adding more and more subintervals. If

a = 𝜒0 < 𝜒1 < 𝜒2 < · · · < 𝜒n = b (1.15)

then we can approximate

I ≈
n∑

j=1
f (xi)(𝜒i − 𝜒i−1) (1.16)

where

𝜒i−1 ≤ xi ≤ 𝜒i

If we make these intervals arbitrarily small, that is, let n → ∞, then we should
get an accurate measure of the area under the curve. This prompts the following
definition.

Definition 1.4. The integral from a to b of the function f is given by

I = ∫
b

a
f (x) = lim

n→∞

n∑
j=1

f (xi)(𝜒i − 𝜒i−1) (1.17)

where

a = 𝜒0 < 𝜒1 < 𝜒2 < · · · < 𝜒i−1 ≤ xi ≤ 𝜒i < · · · < 𝜒n = b

We can use the intermediate value theorem to establish the following theorem.

Theorem 1.3. Mean value theorem for integrals. Let f be continuous on [a, b],
then there exists a c 𝜖 (a, b) s.t.

∫
b

a
f (x)𝑑𝑥 = (b − a)f (c)
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y

(a)

(b)

(c)

yb = f(b)

ya = f(a)
b

a

a b x

y

yb = f(b)

ya = f(a) b

a

a x1 b x

f(x)dx ≅ f(x1)(x1 – a)

           +f(b)(b – x1)

f(x)dx ≅ f(a)(b – a)

y

yb = f(b)

ya = f(a)
b

a
f(x)dx ≅ f(a)(x1 − a)

+ f(x2)(x2 − x1)

+f(b)(b−x2)

a b xx1 x2

Figure 1.3 (a) Approximating the value of the integral as f (a)(b − a), (b) picking a point x1

where a ≤ x1 ≤ b and approximating integral as ∫ b
a f (x)𝑑𝑥 ≈ f (x1)(x1 − a) + f (x1)(b − x1), and

(c) picking another point x2 where x1 ≤ x1 ≤ b and approximating integral as ∫ b
a f (x)𝑑𝑥 ≈

f (x1)(x1 − a) + f (x2)(x2 − x1) + f (b)(b − x2).
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Proof: From Definition 1.2, if m is the minimum value of f on [a, b] and M its
maximum, then

m(b − a) ≤ ∫
b

a
f (x)𝑑𝑥 ≤ M(b − a)

Hence, by the intermediate value theorem, there exists c 𝜖 [a, b] s.t.

f (c) =
∫ b

a f (x)𝑑𝑥
b − a ◾

We can define a function

F(x) = ∫
x

a
f (y)𝑑𝑦 (1.18)

Theorem 1.4.
𝑑𝐹 (x)
𝑑𝑥

= f (x)

Proof:

F(x + h) =∫
x+h

a
f (y)𝑑𝑦

F(x) =∫
x

a
f (y)𝑑𝑦

F(x + h) − F(x) = ∫
x+h

x
f (y)𝑑𝑦 (1.19)

Now, if h is sufficiently small, we can take f (y) = f (x) over the entire interval and
F(x + h) − F(x)

h
= x + h − x

h
f (x) = f (x) (1.20)

take the limit h → 0 and the result follows immediately. ◾

We note that the constant a is entirely arbitrary. Theorem 1.4 is rather grandly
known as the fundamental theorem of calculus, and it essentially states that inte-
gration is the inverse process to differentiation. It has an important corollary.

Corollary 1.1. Assume that g is continuously differentiable function that maps
the real interval [a, b] onto the real interval I and that f is a continuous function
that maps I into ℝ. Then,

∫
g(b)

g(a)
f (x) = ∫

b

a
f (g(t))g′(t)𝑑𝑡

Proof: The function f (g(t))g′(t) is continuous on [a, b] just as f is; therefore, both

∫
g(b)

g(a)
f (x)𝑑𝑥 and ∫

b

a
f (g(t))g′(t)𝑑𝑡 exist. All we have to show is that they are, in
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fact, equal. Since f is continuous, the fundamental theorem tells us that it has a
differentiable “anti-derivative” F . If we apply the chain rule to h(t) = F(g(t)), then

h′(t) = F ′(g(t))g′(t)
= f (g(t)g′(t)

⇒ ∫
b

a
f (g(t))g′(t)𝑑𝑡 = ∫

b

a
h′(t)𝑑𝑡

= h(b) − h(a)
= F(g(b)) − F(g(a))

= ∫
g(a)

g(b)
f (x)𝑑𝑥

Note that we have used the fundamental theorem twice more. ◾

We remark that the result looks very much neater if we use the 𝑑𝑦

𝑑𝑥
notation, that

is, if we write
𝑑𝑥

𝑑𝑡
= g′(t)

𝑑𝑥 = g′(t)𝑑𝑡

then our result becomes

∫
b

a
f (x)𝑑𝑥 = ∫

g(b)

g(a)
f (g(t))𝑑𝑔(t)

𝑑𝑡
𝑑𝑡 (1.21)

If we rewrite (1.8 ) in the form
d(u(x)v(x))

𝑑𝑥
= u(x)v′(x) + v(x)u′(x) (1.22)

and integrate, we have

u(x)v(x) = ∫ u(x)v′(x)𝑑𝑥 + ∫ v(x)u′(x)𝑑𝑥

∫ u(x)v′(x)𝑑𝑥 = u(x)v(x) − ∫ u′(x)v(x)𝑑𝑥 (1.23)

The result (1.23) gives us the useful method of evaluating integrals, known as inte-
gration by parts.We have seen here that the derivative of a constant, any constant,
is zero. Thus, if we know that

𝑑𝐹 (x)
𝑑𝑥

= f (x)

then all we can state is that

F(x) = ∫
x

a
f (y)𝑑𝑦 + c (1.24)

where c is some constant. From our definition of the integral (Definition 1.2), we
see that

∫
a

a
f (x)𝑑𝑥 = 0 (1.25)
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hence

F(a) = c

Wemay write (1.24) as

F(x) − F(a) = ∫
x

a
f (y)𝑑𝑦 (1.26)

1.4
The Binomial Expansion

Definition 1.5. If n is a nonzero positive integer, then we define

n! = n ⋅ (n − 1) ⋅ (n − 2) · · · 3 ⋅ 2 ⋅ 1

we take 0! = 1.

Definition 1.6. If n,m are integers, n ≥ m, we define the binomial coefficients( n
m

)
= n!

m!(n − m)!

Lemma 1.3.(N
m

)
+
( N

m − 1

)
=
(N + 1

m

)

Proof: (N
m

)
+
( N

m − 1

)
= N !

(N − m)!m!
+ N !

(N − (m − 1))!(m − 1)!

= N !
(m − 1)!(N − m)!

[ 1
m

+ 1
N − m + 1

]
= N !

(m − 1)!(N − m)!

[
N + 1

m(N − m + 1)

]
= (N + 1)!

m!(N − m + 1)!
◾

Theorem 1.5. If x is a real number and n is an integer, then

(1 + x)n =
n∑

m=0

( n
m

)
xm (1.27)

Proof: We will proceed by induction. We first note that if n = 1 then the right-
hand side of (1.27) reduces to(1

0

)
x0 +

(1
1

)
x = 1 + x
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Assume that (1.27) is true for n = N , then

(1 + x)N+1 = (1 + x)
N∑

m=0

(N
m

)
xm

=
N∑

m=0

(N
m

)
xm +

(N
m

)
xm+1

= 1 +
N∑

m=1

[(N
m

)
+
( N

m − 1

)]
xm + xN+1

=
N+1∑
m=0

(N + 1
m

)
xm + xN+1

where we havemade use of the result of Lemma 1.3; thus, by principle of induction
true for all n. ◾

Corollary 1.2. If x, y are real numbers and n is an integer, then

(y + x)n =
n∑

m=0

( n
m

)
xmyn−m (1.28)

Proof:

(1 + z)n =
n∑

m=0

( n
m

)
zm

Let z = x
y
and result follows. ◾

1.5
Taylor’s Series

Very often in physical problems you need to find a relatively simple approximation
to a complex function or you need to estimate the size of a function. One of the
most commonly used techniques is to approximate a function by a polynomial.

Theorem 1.6. Let f be a real function, which is continuous and has continuous
derivatives up to the n + 1 order, then

f (x) = f (a) +
f ′(a)
1!

(x − a) +
f (2)(a)
2!

(x − a)2 + · · · +
f (n)(a)

n!
(x − a)n + Rn(x) (1.29)

where n! = n ⋅ (n − 1) ⋅ (n − 2) · · · 3 ⋅ 2 ⋅ 1 and

Rn(x) = ∫
x

a

f (n+1)(t)
n!

(x − t)n 𝑑𝑡 (1.30)

Proof: We proceed by induction. For n = 0, (1.29) reduces to

f (x) − f (a) = ∫
x

a
f ′(t)𝑑𝑡 (1.31)
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which is just a statement of the fundamental theorem of calculus.Now assuming
that (1.29) is true for n = N ,

f (x) = f (a) +
f ′(a)
1!

(x − a)

+
f (2)(a)
2!

(x − a)2 + · · · +
f (N)(a)

N !
(x − a)N + ∫

x

a

f (N+1)(t)
N !

(x − t)N 𝑑𝑡

(1.32)

Now, use integration by parts to evaluate the integral on the left-hand side of (1.32)
Let

u(t) =
f N+1(t)

N !
, 𝑑𝑣 = (x − t)N

then

∫
x

a

f (N+1)(t)
N !

(x − t)N

𝑑𝑡 = −
f N+1(t)

N + 1.N !
(x − t)N+1|x

a + ∫
x

a

f N+2(t)
(N + 1)!

(x − t)N+1 𝑑𝑡 (1.33)

Hence, by principle of induction, results true for all n. ◾

Clearly, if Rn goes to zero uniformly as n → ∞, then we can find an infinite series.
Examples:

ex = 1 + x + x2
2!

+ · · ·

sin x = 1 − x + x3
3!

+ · · ·

An alternative form for the remainder term can be derived by making use of the
mean value theorem for integrals, that is,

Rn+1 = ∫
x

a

f (n+1)(t)
n!

(x − t)n 𝑑𝑡 = f (n+1)(𝛼) (x − a)(x − 𝛼)n

n!
(1.34)

where 𝛼 is some number, a ≤ 𝛼 ≤ x. The form (1.34) is the Cauchy form of the
remainder term.
An alternative form was derived by Lagrange

Rn+1(x) =
f (n+1)(𝛽)
(n + 1)!

(x − a)n+1 (1.35)

with a ≤ 𝛽 ≤ x.

Corollary 1.3. If f (x) is a differentiable function defined on some interval, I, and

f ′(x) = 0 for all x 𝜖 I

thenf (x) is constant on I.
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Proof: f is differentiable; so applying (1.29) and(1.34), we have

f (x) = f (0) + R1 = f (0)

for all x 𝜖 I. ◾

1.6
Extrema

Let us assume that F(x) is a continuous function with a continuous first derivate.
Assume further that F has a local maximum at some point x0; hence, for some
infinitesimal increment |h|,

F(x0 ± |h|) < F(x0) (1.36)

hence
F(x0 + |h|) − F(x0)|h| < 0

(1.37)
F(x0 − |h|) − F(x0)

−|h| > 0

We can make |h| arbitrarily small. Hence, when we take limit from the left and
right and since we have assumed the derivative is continuous, we must have

𝑑𝐹 (x0)
𝑑𝑥

≡ 𝑑𝐹 (x)
𝑑𝑥

|x0 = 0 (1.38)

Following a similar argument, it is immediately obvious that if x0 corresponds to
a minimum (1.38) also holds. Now, assume that F is a continuous function with
continuous first and second derivatives and that there is a point x0 in its domain
where (1.38) holds. Then, using the Taylor’s expansion (1.29), we have

F(x) = F(x0) + (x − x0)
𝑑𝐹 (x0)
𝑑𝑥

+ 1
2

d2F(x0)
dx2

(x − x0)2 + O(|x − x0|3)
= F(x0) +

1
2

d2F(x0)
dx2

(x − x0)2 + O(|x − x0|3) (1.39)

Now, since (x − x0)2 > 0 and since we can choose x arbitrarily close to x0, we see
at once that

F has a maximum at x0 if
d2F(x0)

dx2
< 0

F has a minimum at x0 if
d2F(x0)

dx2
> 0

1.7
Power Series

The geometric series we considered earlier is an example of a power series.
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Definition 1.7. A power series is a function of a variable x defined as an infinite
sum

∞∑
n=0

anxn (1.40)

where an are numbers.

In the case of the geometric series, all the ans are equal. Just becausewewrite down
a series of the form (1.40) it does not mean that such a thing is well defined. It is, in
essence, a limit of the sequence of partial sums and this limit may ormay not exist.
We have already seen that the geometric series converges if and only if |x| < 1.The
interval of convergence is the range of values a < x < b for which (1.40) converges.
Note this is an open interval, that is, we need to consider the end points separately.
In our example the geometric series diverges at both end points! We have seen in
the previous section that if a function f has a Taylor expansion with remainder
term Rn which uniformly goes to zero on some interval I = {x|a < x < b}, then f
can be represented by a power series on this interval. Power series are extremely
useful. We will state some results and refer the reader to [1] for proof, see also [3].

• A power series may be differentiated or integrated term by term: the resulting
series converges to the derivative or the integral of the function represented by
the original series within the same interval of convergence.

• Two power series may be added, subtracted, or multiplied by a constant, and
this will converge at least within the same interval of convergence, i.e. Suppose
that

s1(X) =
∞∑

n=0
anXn

s2(X) =
∞∑

m=0
bmXm

are both convergent within the interval I and 𝛼, 𝛽 are numbers. Then,

s3 =
∞∑

n=0
(𝛼an + 𝛽bn)Xn

is convergent within the interval I and

s3(X) = 𝛼s1(X) + 𝛽s2(X)

• The power series of a function is unique, that is, if

f (X) =
∞∑

n=0
anXn

f (X) =
∞∑

m=0
bmXm

then an = bn for all n.
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1.8
Basic Functions

1.8.1
Exponential

Assume that there exists a function exp(x), which is its own derivative, and whose
value at x = 0 is 1, that is,

𝑑 exp(x)
𝑑𝑥

= exp(x); exp(0) = 1 (1.41)

We can then construct a Taylor’s series

exp(x) =
∞∑

n=0

xn

n!
= 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · ·Rn. (1.42)

For x > 0, each term is greater than zero, so the exponential function is positive.
Since it is its own derivative, its derivative is positive and, therefore, is strictly
increasing. We need to consider the remainder term

Rn =
xn exp(𝜉)

n!
, 0 ≤ 𝜉 ≤ x

It can be shown that the remainder term can bemade arbitrarily small by choosing
n large enough, that is,

lim
n→o

Rn = 0

hence

exp(x) =
∞∑

n=0

xn

n!
(1.43)

We take (1.43) to be the defining equation for the exponential function.

Definition 1.8. The exponential function is defined for all real x by the power
series

exp(x) =
∞∑

n=0

xn

n!
(1.44)

We assume that (1.44) is uniformly convergent and hence differentiable term by
term. Thus,

d exp(x)
𝑑𝑥

=
∞∑

n=0
n x(n−1)

n!

=
∞∑

n=0

x(n−1)
(n − 1)!

= exp(x)
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Thus, the exponential function is its own derivative, as expected; furthermore

exp(0) = 1 (1.45)

Using the chain rule, we see at once that
d exp(−x)

𝑑𝑥
= − exp(−x) (1.46)

Consider

f (x) = exp(x) exp(−x) ⇒ 𝑑𝑓 (x)
𝑑𝑥

= 0

where we have made use of (1.46) and the product rule.Therefore,

exp(x) exp(−x) = c

where c is a constant, now considering x = 0 and using (1.45) we have

exp(x) exp(−x) = 1 (1.47)

From this, it follows that

exp(x) ≠ 0 (1.48)

for all x and

exp (x)−1 = exp(−x) (1.49)

so exp(−x) is a strictly decreasing, positive function of x for x > 0. Clearly

lim
y→−∞

exp(y) = 0

lim
y→∞

exp(y) =∞

Lemma 1.4. If g(x) is another function s.t.

g′(x) = g(x)

then g(x) = c exp(x) where c is a constant.

Proof: Let

f (x) =
g(x)
exp(x)

then f ′(x) = 0; hence f (x) = c where c is a constant; hence, c exp(x) = g(x). ◾

The immediate consequence of Lemma 1.4 is that exp(x) is uniquely defined by the
requirement that it be equal to its derivative and the initial condition exp(0) = 1,
that is, if g(x) is s.t. g′(x) = g(x) and g(0) = 1, we know that g(x) = c exp(x). Sub-
stituting the values at 0 shows that c = 1; hence, g(x) = exp(x).

Corollary 1.4.

exp(x + y) = exp(x) exp(y) (1.50)
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Proof: For any number y, define

g(x) = exp(x + y)

Clearly, g′(x) = g(x). Hence, from Lemma 1.4

exp(x + y) = c exp(x)

Replacing x = 0 shows that c = exp(y). ◾

Hence, for every positive integer n exp(𝑛𝑥) = exp (x)n, we further note

exp(−x) = exp (x)−1

All of these prompt us to write

exp(x) = ex (1.51)

where for consistency we define the irrational number “e” to be

e =
∞∑

n=0

1
n!

≅ 2.718282

The function exp(x) is a rapidly increasing function of x. If you have a situation
where the rate at which a population grows or decreases is proportional to the
population at a given time, then we have

𝑑𝑁(t)
𝑑𝑡

= 𝜇N(t) (1.52)

If the constant, 𝜇, is positive, then we have a growing population, which would
be characteristic of an animal population with plenty of available food and no
predators. If 𝜇 is negative, then we have a decreasing population, for example,
radioactive nuclei that decay probabilistically.

Example 1.4. Radioactive Decay. Radioactive nuclei decay according to the law
𝑑𝑁(t)
𝑑𝑡

= −𝜆N(t) (1.53)

N(t) being the number of atoms at time t, 𝜆 is known as the decay constant and is
characteristic of a given species. Rewriting (1.53) using our chain rule, we have

d(−𝜆N(t))
d(−𝜆t)

= −𝜆N(t) (1.54)

Hence

Ce−𝜆t

is the solution, where C is a constant Equation (1.53) states that the rate of decay
is proportional to the number of radioactive nuclei present. Let N0 be the number
present at time t = 0. Hence

N(t) = N0e−𝜆t
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Figure 1.4 Plot of N(t) = 10e𝜇t . 𝜇 = +1, solid line; 𝜇 = −1, dashed line.

is the solution. A frequently asked question is how long will it take for half of the
atoms to decay, which is the “half life” of the nuclear species, th (Figure 1.4). It is the
solution of

N0
2

=N0e−𝜆th

⇒ e−𝜆th =1
2

1.8.2
Logarithm

The function f (x) = exp(x) is strictly increasing for all x and thus by Theorem 1.2
an inverse function g exists and

𝑑exp−1(y)
𝑑𝑦

= 1
f ′(g(y))

= 1
f (g(y))

= 1
y

Now, since f (0) = 1, we must have g(1) = 0 (Figure 1.5). The function g will be
denoted by ln or loge.

Lemma 1.5.

ln (𝑥𝑎) = ln x + ln a. (1.55)
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Figure 1.5 Plot of y = ln x.

Proof: Consider

F(x) = ln(𝑎𝑥) − ln(x)

F ′(x) = d ln(𝑎𝑥)
d(𝑎𝑥)

𝑑𝑎𝑥

𝑑𝑥
− d ln(x)

𝑑𝑥

= 1
𝑎𝑥

a − 1
x

= 0

Thus, F(x) = c, where c is constant. Now take x = 1 and we have F(1) = ln(a) = c.
◾

Corollary 1.5.

ln(xn) = n ln x

Proof: Clearly true for n = 1, assume to be true for n = N , that is, assume ln xN =
N ln x.

ln(xN+1) = ln(x(xN )) = ln x + ln xN = ln x + N ln x = (N + 1) ln x

Thus, by principle of induction, true for all N . ◾

Assume that n ≠ 1, then from Corollary 1.2

ln(1n) = n ln(1)
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which yields a contradiction unless

0 = ln(1)
= ln(xx−1)
= ln x + ln x−1

⇒

ln x−1 = − ln x (1.56)

It follows from (1.56) that as x → ∞ ln( 1
x
) → −∞.

1.9
First-Order Ordinary Differential Equations

Assume that we are presented with the ordinary differential equation
𝑑𝑦

𝑑𝑡
+ p(t)y = g(t) (1.57)

then we can solve it by the following method: define

r(t) = exp
(
∫

t

a
p(x) 𝑑𝑥

)
(1.58)

Notice that x here is a dummy variable and a is an arbitrary constant, which we
can choose later. Employing the chain rule and the fundamental theorem, we have

𝑑𝑟

𝑑𝑡
= exp

(
∫

t

a
p(x) 𝑑𝑥

) d ∫ t
a p(x)
𝑑𝑡

= p(t) exp
(
∫

t

a
p(x) 𝑑𝑥

)
(1.59)

now multiplying (1.57) by r(t), we immediately arrive at
𝑑𝑟(t)y(t)

𝑑𝑡
= g(t)r(t) (1.60)

which we can now integrate directly. The term r(t) is known as an integrating
factor.

Example 1.5. Solve

t 𝑑𝑦(t)
𝑑𝑡

+ 2y = 4t2 (1.61)

subject to

y(1) = 2

Divide (1.61) by t to put it in the form (1.57), then
𝑑𝑦(t)
𝑑𝑡

+ 2
y
t
= 4t

r(t) = exp
(
∫

t

a

2
x
𝑑𝑥

)
⇒ r(t) = exp(2 ln t − 2 ln a) (1.62)



1.10 Trigonometric Functions 25

With loss of generality, we may take the arbitrary constant a to be unity and then

r(t) = exp(2 ln t) = exp(ln t2) = t2 (1.63)

Multiplying (1.61) by t2, we have

t2 𝑑𝑦
𝑑𝑡

+ 2𝑡𝑦 = 4t3

⇒
dt2y
𝑑𝑡

= 4t3

⇒ t2y(t) = t4 + c (1.64)

where c is a constant. Now substitute the initial condition y(1) = 2 and we have
c = 1.

1.10
Trigonometric Functions

Lemma 1.6. Let c(x), s(x) be continuous differentiable functions such that

s′(x) = c(x)
c′(x), = −s(x)

s(0) = 0
c(0) = 1 (1.65)

then

c2(x) + s2(x) = 1 (1.66)

Proof: Let

c2(x) + s2(x) = F(x)

F ′(x) = 2c(x)c′(x) + 2s(x)s′(x) = 0

thus F(x)must be a constant. Substituting the values at x = 0, we have the result.
◾

Lemma 1.7. If we have two sets of functions c(x), s(x) and f (x), g(x) s.t.

c′(x) = −s(x) g′(x) = −f (x)
s′(x) = c(x) f ′(x) = g(x)
c(0) = 1 g(0) = 1
s(0) = 0 f (0) = 0

then f (x) = s(x); c(x) = g(x) for all x.
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Proof: We know that both the pairs (c, s), ( f , g)must satisfy the relation (1.66)

c2(x) + s2(x) = 1
f 2(x) + g2(x) = 1

The functions

F1(x) = f (x)c(x) − s(x)g(x)
F2(x) = f (x)s(x) + c(x)g(x)

are such that
dF1(x)
𝑑𝑥

=
dF2(x)
𝑑𝑥

= 0

Hence

a = f (x)c(x) − s(x)g(x)
b = f (x)s(x) + c(x)g(x)

where a and b are constants. Substituting the values at x = 0 yields

0 = f (x)c(x) − s(x)g(x)
1 = f (x)s(x) + c(x)g(x)

Hence

0 = f (x)c2(x) − c(x)s(x)g(x)
s(x) = f (x)s2(x) + s(x)c(x)g(x)

Adding the last two lines yields

s(x) = f (x)

Hence

s′(x) = f ′(x)

Hence

c(x) = g(x) ◾

Clearly, the functions c(x), s(x) have all the properties of the sin(x) and cos(x) of
trigonometry. The rest of the properties that we know and love can be derived
from the above-mentioned results. We can write down a Taylor series for both
using (1.65), which leads us to the following definition.

Definition 1.9. We define the sin and cos functions by the uniformly convergent
power series

sin(X) =
∑
n≥0

(−1)n

(2n + 1)!
X2n+1

(1.67)

cos(X) =
∑
n≥0

(−1)n

(2n)!
X2n



1.10 Trigonometric Functions 27

Differentiating term by term, we see that these functions satisfy the conditions
in Lemma 1.7 and are consequently unique. This may appear to be an odd way
to discuss the sin and cos functions but there is an important lesson here in that
perfectly good functions can be defined simply as the solution of differential
equations.

Definition 1.10. We define the tan, sec, and csc functions

tan(X) = sinX
cosX

sec(X) = 1
cosX

csc(X) = 1
sinX

1.10.1
L’Hôpital’s Rule

We often times have to deal with the limit of a quotient:

lim
x→a

f (x)
g(x)

where

g(a) = f (a) = 0

Perhaps surprisingly a finite limit may exist, since
f (a + h)
g(a + h)

=
f (a + h) − f (a)
g(a + h) − g(a)

(1.68)

wherewe have used the fact that, g(a) = f (a) = 0.Nowdividing the numerator and
denominator on the right-hand side of (1.68) by h and taking the limit as h → 0
yields

lim
x→a

f (x)
g(x)

=
lim
h→0

( f (a + h) − f (a))∕h

lim
h→0

(g(a + h) − g(a))∕h
=

f ′(a)
g′(a)

(1.69)

The relation (1.69) is known as “l’Hôpital’s rule.”

Example 1.6.

lim
x→o

sin x
x

= cos 0
1

= 1

Problems

1.1 Prove Rolle’s theorem: Let g be continuous on the closed interval [a, b] and
differentiable on the open interval (a, b). Assume that g(a) = g(b), then
show that there exists at least one point x0 in (a, b) s.t. g′(x0) = 0.
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1.2 Prove the mean value theorem: Let f be continuous on the the closed inter-
val [a, b] and differentiable on the open interval (a, b) then there exist at
least one point x0 in (a, b) s.t.

f (b) − f (a)
b − a

= f ′(x0)

1.3 Show that f is strictly increasing (decreasing) on an interval (a, b) if and
only if f ′(x) > 0(f ′(x) < 0) for all x 𝜖 (a, b).

1.4 Let f be continuous and strictly increasing on [a, b]. Show that the inverse
function of f is continuous and strictly increasing.

1.5 Show that

f (x) = 4x2 − 4x + 1 = 0

has exactly one solution.
1.6 Solve

𝑑𝑦

𝑑𝑥
+ 𝑥𝑦 = x

for y.
1.7 Consider

f (x) = x4 + 2x3 − 3x2 − 4x + 4

Find:
• the extrema of f
• the zeros of f
• the intervals on which f is increasing, decreasing

Plot the function.
1.8 Assume that y = xx. Find 𝑑𝑦

𝑑𝑥
.

1.9 a) Evaluate

∫
𝑑𝑥√

24 − 16x2

b) Evaluate

∫
𝑑𝑥

24 + 16x2

1.10 From first principles, prove that

d
𝑑𝑥

f (x)
g(x)

=
f ′(x)g(x) − f (x)g′(x)

g(x)2

1.11 Evaluate

∫ ex cos(x)𝑑𝑥


