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C H A P T E R 1

Background

1.1 RATIONALE FOR BAYESIAN INFERENCE AND PRELIMINARY

VIEWS OF BAYES’ THEOREM

In 1763 an important scientific paper was published in England, authored by a

Reformist Presbyterian minister by the name of Thomas Bayes (Bayes, 1763).

The implications of the paper indicated how to make statistical inferences that

build upon earlier understanding of a phenomenon, and how formally to combine

that earlier understanding with currently measured data in a way that updates the

degree of belief (subjective probability) of the experimenter. The earlier understand-

ing and experience is called the ‘‘prior belief’’ (belief or understanding held prior to

observing the current set of data, available either from an experiment or from other

sources), and the new belief that results from updating the prior belief is called the

‘‘posterior belief’’ (the belief held after having observed the current data, and having

examined those data in light of how well they conform with preconceived notions).

This inferential updating process is eponymously called Bayesian inference. The

inferential process suggested by Bayes shows us that to find our subjective prob-

ability for some event, proposition, or unknown quantity, we need to multiply our

prior beliefs about the event by an appropriate summary of the observational data.

Thus, Bayesian inference suggests that all formal scientific inference inherently

involves two parts, a part that depends upon subjective belief and scientific under-

standing that the scientist has prior to carrying out an experiment, and a part that

depends upon observational data the scientist obtains from the experiment. We

present Bayes’ theorem compactly here in order to provide an early insight into

the development of the book in later chapters.

Briefly, in its most simple form, the form for events (categorical or discrete data),

Bayes’ theorem or formula asserts that if PfAg denotes the probability of an event A,

and PfBjAg denotes the probability of an event B conditional on knowing A, then:

PfBjAg ¼
PfAjBgPfBg

PfAjBgPfBg þ PfAj �BBgPf �BBg
;
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where �BB denotes the complementary event to event B. This simple statement of

conditional probability is the basis for all Bayesian analysis. PðBÞ denotes the

prior belief about B;PfBjAg denotes the posterior belief about B (once we know

A), and PfAjBg denotes the model, that is, the process that generates the event A

based upon knowing B.

As an example, suppose you take a laboratory test for diabetes. Let A denote the

outcome of the test; it is a positive outcome if the test finds that you have the tell-tale

indicators of diabetes, and it is a negative outcome if you do not. But do you really

have the disease? Sometimes, although you do not actually have diabetes, the test

result is positive because of imperfect characteristics of the laboratory test. Similarly,

sometimes when you take the test there is a negative outcome when in fact you do

have the disease. Such results are called false positives and false negatives, respec-

tively. Let B denote the event that you actually do have diabetes. You would like to

know the chances that you have diabetes in light of your positive test outcome,

PfBjAg. You can check with the laboratory to determine the sensitivity of the test.

Suppose you find that when the test is negative, the error rate is 1 percent (false

negative error rate), and when the test is positive, its accuracy is 3 percent (the false

positive error rate). In terms of the Bayes’ formula,

PfA ¼ þtestjB ¼ diabetesg ¼ 1 � Pf �AA ¼ �testjB ¼ diabetesg

¼ 1 � 0:01 ¼ 0:099;

and

Pfþtestj �BB ¼ no diabetesg ¼ probability of a false positive ¼ 0:03:

Bayes’ formula then gives:

PfB jþg ¼
PfþjBgPfBg

PfþjBgPfBg þ Pfþj �BBgPf �BBg

Pfdiabetes jþg ¼
ð0:99ÞPfBg

ð0:99ÞPfBg þ ð0:03ÞPfBg
:

It only remains to determine PfBg, the chances of someone having diabetes. Suppose

there is no indication that diabetes runs in your family, so the chance of you having

diabetes is that of a randomly selected person in the population about your age, say

about one chance in one million, that is, PfBg ¼ 10�6. Substituting in the above

formula gives:

Pf you have diabetes jpositive test resultg ¼ 0:003 ¼ 0:3%:
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If we are concerned with making inferences about an unknown quantity y, which

is continuous, Bayes’ theorem takes the form appropriate for continuous y:

hðyjx1; . . . ; xnÞ ¼
f ðx1; . . . ; xn jyÞgðyÞÐ
f ðx1; . . . ; xn jyÞgðyÞdy

;

where hð	Þ denotes the probability density of the unknown y subsequent to observing

data ðx1; . . . ; xnÞ that bear on y; f denotes the likelihood function of the data, and g

denotes the probability density of y prior to observing any data. The integration is

taken over the support of y. This form of the theorem is still just a statement of

conditional probability, as we will see in Chapter 4.

A large international school of scientists (some of whom even preceded Bayes)

supported, expanded, and developed Bayesian thinking about science. These include

such famous scientists as James Bernoulli, writing in 1713, Pierre Simon de Laplace,

writing in 1774, and many nineteenth- and twentieth-century scientists. Today,

scientists schooled in the Bayesian approach to scientific inference have been chan-

ging the way statistical methodology itself has been developing. Many believe that a

paradigm shift has been taking place in the way scientific inference is carried out,

away from what is sometimes referred to as classical, or frequentist, statistical

inference. Many scientists now recognize the advantages of bringing prior beliefs

into the inferential process in a formal way from the start, instead of striving, and

almost inevitably failing, to achieve total objectivity, and bringing the prior informa-

tion into the problem anyway, in surreptitious, or even unconscious ways. Subjec-

tivity may enter the scientific process surreptitiously in the form of seemingly

arbitrarily imposed constraints in the introduction of initial and boundary conditions

in the arbitrary levels of what should be called a significant result (selecting the

‘‘level of significance’’), and in the de-emphasizing of certain outlying data points

that represent suspicious observations.

Scientists will see that Bayes’ theorem gives the degree of a person’s belief (that

person’s subjective probability) about some unknown entity once something about it

has been observed (i.e., posterior to collecting data about that entity), and shows that

this subjective probability is proportional to the product of two types of information.

The first type of information characterizes the data that are observed; this is usually

thought of as the objective portion of posterior belief, since it involves the collection

of data, and data are generally thought to be objectively determined. (We recognize

that we do not really mean that data are objective unless we assume that there were

no subjective influences surrounding the data collected.) This so-called objective

information is summarized in the likelihood function. But the likelihood function is

of course almost invariably based upon data that has been influenced by the subjec-

tivity of the observer. Moreover, in small or often in even moderate size samples its

structural form is not very well determined. So the likelihood function will almost

invariably contain substantial subjective influences and uncertainty.

The second type of information used in Bayesian analysis is the person’s degree

of belief, the subjective probability about the unknown entity, held prior to observing
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anything related to it. This belief may be based, at least in part, on things that were

observed or learned about this unknown quantity prior to this most recent measure-

ment. Using Bayes’ theorem, scientific belief about some phenomenon is formally

updated by new measurements, the idea being that we learn about something by

modifying what we already believe about it (our prior belief) to obtain a posterior

belief after new observations are taken.

While it is well known that for a wide variety of reasons there are always some

subjective influences in the research of scientists, and always have been, it is less

well known that strong major subjective influences have actually been present in

some of the work of the most famous scientists in history (see, for example, Press

and Tanur, 2001). The personal beliefs and opinions of these scientists have often

very strongly influenced the data they collected and the conclusions they drew from

those data. While the phenomena these scientists were investigating were generally

truly objective phenomena, external to the human mind, nevertheless, the data

collected about these phenomena, and the decisions made relative to these pheno-

mena were often driven by substantial subjectivity. Bayesian analysis, had it been

available to these scientists, and had it been used, might have permitted these

scientists to distinguish between models whose coexistence has caused controversy

about their results even hundreds of years later.

Further, several scientists examining the same set of data from an experiment

often develop different interpretations. This phenomenon is not unusual in science.

When several scientists interpret the same set of data they rarely have exactly the

same interpretations. Almost invariably, their own prior beliefs about the underlying

phenomenon enter their thinking, as do their individual understanding of how mean-

ingful each data point is. Their conclusions regarding the extent to which the data

support the hypothesis will generally reflect a mixture of their prior degree of belief

about the hypothesis they are studying, and the observed data.

Thus, we see that whether formal Bayesian inference is actually used in dealing

with the data in an experiment, or whether other, nonBayesian methods are used,

subjective prior belief is used in one way or another by all good scientists in a

natural, and sometimes quite informal, way. Science cannot, and should not, be

totally objective, but should and does involve a mixture of both subjective and

objective procedures, with the one type of procedure feeding back on the other.

As the data show the need for modification of the hypothesis, a new hypothesis is

entertained, a new experiment is designed, new data are taken, and what was pos-

terior belief in the earlier experiment becomes the prior belief in the new experi-

ment, because the result of the last experiment is now the best understanding the

scientist has of what result to expect in a new experiment. To study the future,

scientists must learn from the past, and it is important—indeed inevitable—that

the learning process be partly subjective.

During the twentieth century, since the development of methods of Bayesian

statistical inference, there have been many exciting new scientific discoveries and

developments. Some have been simply of the qualitative type where certain pheno-

mena have been discovered that were not previously known (such as the discovery of

the existence of the radiation belts that surround the Earth, the discovery of super-
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conductivity, or the discovery of the double helical structure of DNA), and others

have been quantitative, establishing relationships not previously established (such as

the discoveries of the dose=effect relationships of certain pharmaceutical drugs,

vaccines, and antibiotics that would minimize the chances of contracting various

infectious diseases, or maximize the chance of a cure).

Considerable scientific advance is based upon finding important phenomena that

are sometimes so shrouded in noise that it is extremely difficult to distinguish the

phenomenon of interest from other factors and variables. In such cases, prior infor-

mation about the process, often based upon previous theory, but sometimes on

intuition or even wild guesses, can often be profitably brought to bear to improve

the chances of detecting the phenomenon in question. A considerable amount of

Bayesian statistical inference procedures that formally admit such prior information

in the scientific process of data analysis have had to await the advent of modern

computer methods of analysis, an advent that did not really occur until the last

couple of decades of the twentieth century. However, since the arrival of real-time

interactive computers, computational Bayesian methods such as Markov Chain

Monte Carlo (MCMC, see Chapter 6) have been very usefully applied to problems

in imaging and other problems in physics and engineering (see the series of books

edited by different authors, every year since 1980, Maximum Entropy and Bayesian

Methods published by Kluwer), problems of meta-analysis to synthesize results in a

field—in biology, medicine, economics, physics, sociology, education, and others—

and in a variety of scientific fields (see, for example, Appendix 5).

Subjectivity in science implies that we generally arrive at universal scientific

truths by a combination of subjective and objective means. In other words, the

methodology we use to discover scientific truths benefits greatly from bringing

informed scientific judgment to bear on the hypotheses we formulate, and on the

inferences we make from data we collect from experiments designed to test these

hypotheses. Informed scientific judgment should not be shunned as a nonobjective,

and therefore a poor methodological approach; collateral information about the

underlying process should be actively sought so that it can be used to improve

understanding of the process being studied. Combining informed knowledge with

experimental data will generally improve the accuracy of predictions made about

future observations.

Subjectivity is an inherent and required part of statistical inference and the

scientific method. It is a sine qua non in the process of creating new understanding

of nature. It must play a fundamental role in how science is carried out.

However, excessive, informal, untested subjectivity in science is also responsible

for some basic errors, misrepresentations, overrepresentations, or scientific beliefs

that were later shown to be false, that have occurred in science (see, for example,

Press and Tanur, 2001). This author’s views of subjectivity in science coincide

closely with those of Wolpert (1992, p. 18) who wrote:

. . . the idea of scientific objectivity has only limited value, for the way in which

scientific ideas are generated can be highly subjective, and scientists will defend their

views vigorously . . . It is, however, an illusion to think that scientists are unemotional in

their attachment to their scientific views—they may fail to give them up even in the face
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of evidence against them . . . scientific theories involve a continual interplay with other

scientists and previously acquired knowledge . . . and an explanation which the other

scientists would accept.

To illustrate the notion that subjectivity underlies experimental science, in Section

1.2 we use a very simple example involving whether or not a desired effect is

observed in an experiment to show that merely observing scientific data and forming

a likelihood function can involve considerable subjectivity.

1.2 EXAMPLE: OBSERVING A DESIRED EXPERIMENTAL EFFECT

Let us suppose that 100 observations are collected from an experiment replicated

100 times; there is one observation from each replication. These data are sent to five

scientists located in five different parts of the world. All five scientists examine the

same data set, that is, the same 100 data points. (Note that for the purposes of this

example, the subjectivity involved in deciding what data to collect and in making the

observations themselves is eliminated by sending the same ‘‘objective’’ data to all

five scientists.) Should we expect all five of the scientists to draw the same conclu-

sions from these data?

The answer to this question is a very definite ‘‘no’’. But how can it be that

different observers will probably draw different conclusions from precisely the

same data? As has been said above, inferences from the data will be a mixture of

both subjective judgment (theorizing) and objective observation (empirical verifica-

tion). Thus, even though the scientists are all looking at the same observational data,

they will come to those same data with differing beliefs about what to expect.

Consequently, some scientists will tend to weight certain data points more heavily

than others, while different scientists are likely to weight experimental errors of

measurement differently from one another. Moreover, if scientists decide to carry

out formal checks and statistical tests about whether the phenomenon of interest in

the experiment was actually demonstrated (to ask how strongly the claimed experi-

mental result was supported by the data), such tests are likely to have different results

for different scientists, because different scientists will bring different assumptions to

the choice of statistical test. More broadly, scientists often differ on the mathematical

and statistical models they choose to analyse a particular data set, and different

models usually generate different conclusions. Different assumptions about these

models will very often yield different implications for the same data.

These ideas that scientists can differ about the facts are perhaps startling. Let us

return to our 100 observations and five scientists to give a very simple and elemen-

tary example, with the assurance that analogous arguments will hold generally for

more realistic and more complicated situations.

Let us assume that the purpose of the experiment is to determine the probability

that a certain genetic effect will take place in the next generation of a given type of

simple organism. The question at issue is whether the effect occurs randomly or is

subject to certain genetic laws. If the experiment is carried out many times, inde-
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pendently, under approximately the same set of conditions, how frequently will the

genetic effect be observed? If the effect is observed say, 50 percent of the time, we

will say it occurs merely at random, but it might occur, say 60 percent of the time, or

more frequently. More generally, what percentage of the time will it occur under

those experimental conditions? Call the (unknown) proportion of the time the effect

should be observed, when the experiment is carried out repeatedly and indepen-

dently, p; p ¼ 0:5 if the effect is merely observed at random.

To determine p you repeat the experiment many times, each time record the

result, and on the basis of the outcome, determine whether the effect is observed

(called a ‘‘success’’), or not (called a ‘‘failure’’). In our case the experiment is

repeated 100 times, and the outcome of success or failure is recorded for each

trial of the experiment. Next, suppose that 90 successes were obtained. The question

now is, ‘‘What is the value of p ’’?

These are the data you send to the five scientists in five different locations around

the world (three women and two men) to see how they interpret the results. You tell

each of them that there were 90 successes out of 100 trials of an experiment (or 90

percent of the experiments had successful outcomes). You also tell them that you

plan to publish their estimates and their reasoning behind their estimates in a profes-

sional scientific journal, and that their reputations are likely to be enhanced or to

suffer, in proportion to their degrees of error in estimating p. As we shall see, it will

turn out that they will all have different views about the value of p after having been

given the results of the experiment.

Scientist #1 is largely a theorist by reputation. She thinks successes are occurring

at random since her theoretical understanding of the biochemical mechanism

involved suggests to her that there should not be an effect; so for her, p ¼ 0:5 no

matter what. Her line of reasoning regarding the experimental outcomes is that

although it just happened that 90 percent of the first 100 replications of the experi-

ment were successful, it does not mean that if the experiment were to be repeated for

another 100 trials, the next 100 trials would not produce, say, 95 failures, or any

other large proportion of failures. Scientist #1 has a very strong preconceived belief

based upon theory that the effect should not take place ( p ¼ 0:5), in the face of real

data that militates against that belief. For her, unless told otherwise, all such experi-

ments under these preset conditions should not demonstrate any real effect, even if

many runs of successes or many runs of failures just happen to occur.

Scientist #2 has the reputation for being an experimentalist. He thinks p ¼ 0:9,

because that is the proportion of successes found in 100 replications. (This estimate

of p is actually the maximum likelihood estimate.) Scientist #2’s definition of the

best estimate available from the data is the fraction of successes actually obtained.

While Scientist #1 believed strongly in theory, Scientist #2 is ready to abandon

theory in favor of strong belief in data, regardless of theory.

Scientist #3 is also a well-known skeptic. She decides that there is something

strange about the reported results since they violate her strongly held expectation

that the effect really should not be observed, other than at random, so there should be

only about 50 successes in 100 replications. Scientist #3 then writes to you and asks

you for details about the experimental equipment used. When Scientist #3 receives
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these details, she decides to replicate the experiment herself another 100 times. Most

of the time she finds successes. These efforts convince Scientist #3 that the effect is

really being produced, just as Scientist #2 concluded. The effect actually turns up 82

times. But what should Scientist #3 do now? Since her recent collection of replica-

tions found 82 successes in her new 100 trials, and the previous collection found 90

successes, Scientist #3 reasons that the experiment has been replicated 200 times, so

perhaps it would not be unreasonable to estimate p as (82 þ 90)=200¼ 0.86.

When he actually carries out experiments in his research, which is only occa-

sionally, Scientist #4 is an extremely thorough and careful experimentalist. He feels

that he should know more about the experiment outcomes than he has been told so

far. He writes to you for a copy of the actual sequence of experiment outcomes,

studies it, and decides to ignore a run of 50 straight successes that occurred, feeling

that such a run must be a mistake in reporting since it is so unlikely. This reduces the

sample size (the number of available data points) from 100 down to 50, and out of

those 50, 40 were successes. So his conclusion is that p ¼ 40=50 ¼ 0:8. Scientist #4

has taken the practical posture that many scientists take of weighting the observa-

tions so that some observations that are believed to be errors are discarded or

downweighted in favor of those thought to be better measurements or more valid

in some experimental sense.

Scientist #5 may be said to be other-directed. She badly wants the recognition

from her peers that you said would depend on the accuracy of her estimate. She

learns from you the names of the other four scientists. She then writes to them to find

out the estimates they came up with. Having obtained their results, Scientist #5

decides that the best thing to do would be to use their average value. So for Scientist

#5, the estimate of p ¼ ð0:5 þ 0:9 þ 0:86 þ 0:8Þ=4 ¼ 0:765. Or perhaps, learning

that Scientist #1 made an estimate of p that was not data dependent, Scientist #5

might eliminate Scientist #1’s estimate from her average, making the subjective

judgment that it was not a valid estimate. Then Scientist #5 would have an estimate

of p ¼ ð0:9 þ 0:86 þ 0:8Þ=3 ¼ 0:853. Scientist #5’s strategy is used by many scien-

tists all the time so that the values they propose will not be too discrepant with the

orthodox views of their peers.

So the five scientists came up with five different estimates of p for the same

observed data. All the estimates are valid. Each scientist came to grips with the data

with a different perspective and a different belief about p.

Suppose there had been a sixth scientist, a decision theorist, driven by a need to

estimate unknown quantities on the basis of using them to make good decisions.

Such a scientist would be interested in minimizing the costs of making mistakes, and

might perhaps decide that overestimating p is as bad as underestimating it, so the

costs should be the same for making these two types of errors. Moreover, he wants to

select his estimator of p to enhance his reputation, and you have told him that a

correct estimate will do just that. So he decides to select his estimator in such a way

that the cost of being wrong will be as small as possible—regardless of the true value

of p (under such circumstances he would often adopt a ‘‘quadratic loss function’’). If

Scientist #6 were to adopt the subjective belief that all values of p are equally likely,
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and then he used Bayes’ theorem, his resulting estimate of p would be p ¼

91=102 ¼ 0:892.

In summary, the values of p found by the six scientists are thus:

Scientist #1 #2 #3 #4 #5 #6

Estimated value of p 0.500 0.900 0.860 0.800 0.765 or 0.853 0.892

But what is the true value of p? Note that with the exception of Scientist #1, who

refuses to be influenced by the data, all the scientists agree that p must be somewhere

between 0.765 and 0.900, agreeing that the effect is not occurring at random, but

disagreeing about how often it should occur theoretically.

Suppose the experiment had been replicated 1000 times instead of the 100 times

we have just considered, but with analogous results of 90 percent successes. Would

this have made any difference? Well perhaps it might have to Scientist #1, because

people differ as to the point at which they will decide to switch positions from

assuming the effect is occurring only at random, in spite of the experimental

outcome results, to a position in which they are willing to assume the effect is

actually being generated from the experimental conditions. One scientist may

switch after 9 successes out of 10 trials, another after 90 out of 100, whereas another

may not switch until there are perhaps 900 successes out of 1000 trials, or might

insist on an even more extensive experiment. In any case the scientists may still

differ in their views about the true value of p for a very wide variety of reasons, only

a few of which are mentioned above.

The biochemical experiment example just discussed was very elementary as far

as experiments go, but it was science nevertheless. Similar interpretive and metho-

dological issues arise in all branches of the sciences. In this book we examine the

probabilistic and inferential statistical foundations, principles, methods, and applica-

tions of Bayesian statistical science, and throughout we adopt the notion of subjec-

tive probability, or degree of belief.

1.3 THOMAS BAYES

Thomas Bayes was a Presbyterian minister and mathematician who lived in England

in the 1700s (born about 1702 and died April 17, 1761). Richard Price, a friend of

Bayes, and interested in Bayes’ research, submitted Bayes’ manuscript on inverse

probability in the binomial distribution to the professional journal, Philosophical

Transactions of the Royal Society, which published the paper (posthumously) in

1763, an article reproduced in Appendix 4 of this book, along with biographical

information about Bayes reproduced in Appendices 1 to 3.

There has been some mystery associated with Thomas Bayes. We are not quite

certain about the year of his birth or about the authenticity of his portrait. Moreover,

questions have been raised about what his theorem actually says (Stigler, 1982), and

who actually wrote the paper generally attributed to him (Stigler, 1983). The
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common interpretation today is that the paper proposed a method for making prob-

ability inferences about the parameter of a binomial distribution conditional on some

observations from that distribution. (The theorem attributed to Thomas Bayes is

given in Proposition 9, Appendix 4; the Scholium that follows it has been contro-

versial, but has been widely interpreted to mean that ‘‘knowing nothing’’ about a

parameter in the unit interval implies we should take a uniform distribution on it.)

Common belief is that Bayes assumed that the parameter had a uniform distribution

on the unit interval. His proposed method for making inferences about the binomial

parameter is now called Bayes’ theorem (see Section 2.2) and has been generalized

to be applicable beyond the binomial distribution, to any sampling distribution.

Bayes appears to have recognized the generality of his result but elected to present

it in that restricted binomial form. It was Laplace (1774) who stated the theorem on

inverse probability in general form, and who, according to Stigler (1986), probably

never saw Bayes’ essay, and probably discovered the theorem independently. (Bayes

carried out his work in England, where his theorem was largely ignored for over

20 years; Laplace carried out his work in France.) Jeffreys (1939) rediscovered

Laplace’s work.

Your distribution for the unknown; unobservable parameter is called your prior

distribution, because it represents the distribution of your degree of belief about the

parameter prior to your observing new data, that is, prior to your carrying out a new

experiment that might bear on the value of the parameter. Bayes’ theorem gives a

mathematical procedure for updating your prior belief about the value of the para-

meter to produce a posterior distribution for the parameter, one determined subse-

quent to your having observed the outcome of a new experiment bearing on the value

of the unknown parameter. Thus, Bayes’ theorem provides a vehicle for changing, or

updating, the degree of belief about an unknown quantity (a parameter, or a proposi-

tion) in light of more recent information. It is a formal procedure for merging

knowledge obtained from experience, or theoretical understanding of a random

process, with observational data. Thus, it is a ‘‘normative theory’’ for learning

from experience, that is, it is a theory about how people should behave, not a

theory about how they actually do behave, which would be an ‘‘empirical theory.’’

The ideas in the theorem attributed to Bayes were really conceived earlier by

James Bernoulli in 1713, in Book 4 of his famous treatise on probability, Ars

Conjectandi (‘‘The Art of Conjecturing’’), published posthumously. In that book,

James Bernoulli, or Jakob Bernoulli as he was known in German, not only devel-

oped the binomial theorem and laid out the rules for permutations and combinations

but also posed the problem of inverse probability of Bayes (who wrote his essay 50

years later). However, Bernoulli did not give it mathematical structure. In Ars

Conjectandi, James Bernoulli (1713) wrote:

To illustrate this by an example, I suppose that without your knowledge there are

concealed in an urn 3000 white pebbles and 2000 black pebbles, and in trying to

determine the numbers of these pebbles you take out one pebble after another (each

time replacing the pebble you have drawn before choosing the next, in order not to

decrease the number of pebbles in the urn), and that you observe how often a white and

how often a black pebble is withdrawn. The question is, can you do this so often that it
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becomes ten times, one hundred times, one thousand times, etc., more probable (that is,

it be morally certain) that the numbers of whites and blacks chosen are in the same 3 : 2

ratio as the pebbles in the urn, rather than in any other different ratio?

This is the problem of inverse probability, which concerned eighteenth-century

mathematicians (Stigler, 1986, Chapter 2). According to Egon Pearson (1978, p.

223), James Bernoulli ‘‘ . . .was destined by his father to be a theologian, and [he]

devoted himself after taking his M.A. at Basel (Switzerland) to theology.’’ This

endeavor involved Bernoulli in philosophical and metaphysical questions (Bayes,

of course, received similar training, being a minister). In fact, Maistrov (1974, p. 67),

evaluating Bernoulli, believes he was an advocate of ‘‘metaphysical determinism,’’ a

philosophy very similar to that of Laplace, some of whose work did not appear until

100 years after Bernoulli. Writing in Ars Conjectandi, in the first chapter of the

fourth part, Bernoulli said:

For a given composition of the air and given masses, positions, directions, and speed of

the winds, vapor, and clouds and also the laws of mechanics which govern all these

interactions, tomorrow’s weather will be no different from the way it should actually be.

So these phenomena follow with no less regularity than the eclipses of heavenly bodies.

It is, however, the usual practice to consider an eclipse as a regular event, while

(considering) the fall of a die, or tomorrow’s weather, as chance events. The reason for

this is exclusively that succeeding actions in nature are not sufficiently well known.

And even if they were known, our mathematical and physical knowledge is not

sufficiently developed, and so, starting from initial causes, we cannot calculate these

phenomena, while from the absolute principles of astronomy, eclipses can be pre-

calculated and predicted . . . The chance depends mainly upon our knowledge.

In the preceding excerpt, Bernoulli examined the state of tomorrow’s weather, given

today’s observational data that relate to weather and a belief about tomorrow’s

weather. He noted that, of necessity, because of our inability to understand precisely

the behavior of the forces governing weather, we must treat tomorrow’s weather as

uncertain and random to some extent, but predictable in terms of chance (proba-

bility), in accordance with our knowledge. This is precisely the kind of question

addressable by Bayes’ theorem of 1763, in terms of degree of belief about tomor-

row’s weather, given today’s observations and a prior belief about tomorrow’s

weather. Moreover, the development of quantum mechanics and the Heisenberg

uncertainty principle have elaborated Bernoulli’s view of chance, showing that

chance is a fundamental property of nature that goes beyond mere lack of knowledge

of the physical laws governing some physical phenomenon.

Additional background on the life of Thomas Bayes may be found in Appendices

1 to 3.

1.4 BRIEF DESCRIPTIONS OF THE CHAPTERS

This book is subdivided into four parts. Part 1 includes Chapters 1 to 5 on founda-

tions and principles, Part 2 includes Chapters 6 and 7 on numerical implementation

of the Bayesian paradigm, Part 3 includes Chapters 8 to 11 on Bayesian inference
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and decision making, and Part 4 includes Chapters 12 to 16 on models and applica-

tions.

In this introductory chapter we have shown that the interpretation of scientific

data has always involved a mixture of subjective and objective methods. We have

pointed out that it is no longer necessary to adopt the informal subjective methods

used by scientists in the past, but that now, Bayesian inference is available to

formalize the introduction of subjectively based information into the analysis of

scientific data, and computational tools have been developed to make such inference

practical. Chapter 2 discusses probability as a degree of belief, calibration, and the

axiomatic basis of Bayesian inference and decision making. Chapter 3 presents the

meaning of the likelihood principle and conditional inference. Chapter 4, the central

chapter in the book, presents and interprets Bayes’ theorem for both discrete and

continuous data and discrete and continuous parameters. Chapter 5 presents a wide

variety of subjective and objective prior distributions, both discrete and continuous,

for individuals and for groups, in both univariate and multivariate parameter cases.

Chapters 6 and 7 focus on computer routines that sample from the posterior

distribution, approximations, and relevant software. We treat Gibbs sampling, the

Metropolis–Hastings algorithm, data augmentation, and some computer software

that has been developed for use in Bayesian analysis. In Complement A to Chapter

6 we have provided a detailed discussion of the WinBUGS Program, probably the

most widely used software program that affords access to the Gibbs sampling para-

digm without doing your own programming. Complement B to Chapter 6 provides a

listing of other popular Bayesian software. Chapter 7 discusses the role of large

sample posterior distributions (normal), the Tierney–Kadane and Naylor–Smith

approximations, and importance sampling.

Chapter 8 discusses Bayesian estimation, both point and interval, and Chapter 9

discusses hypothesis testing. Both treat univariate and multivariate cases. Chapter 10

discusses predictivism, including the de Finetti theorem, de Finetti transforms, and

maximum entropy. Chapter 11 presents the Bayesian approach to decision making.

In the last part of the volume, in Chapter 12, we discuss the Bayesian approach to the

analysis of the general linear model, both univariate and multivariate, including

regression, analysis of variance and covariance, and multivariate mixed models. In

Chapter 13 we discuss Bayesian model averaging to account for model uncertainty.

Chapter 14 explicates Bayesian hierarchical modeling, Chapter 15 discusses Baye-

sian factor analysis, and Chapter 16 concludes with a presentation of Bayesian

classification and discrimination methods.

There are seven appendices, the first three of which relate to the life of Thomas

Bayes, and the posthumous submission of his famous theorem to a journal. Appen-

dix 4 presents Bayes’ original paper in its entirety. Appendix 5 is a list of references,

by subject, of applications of the Bayesian paradigm that have been made across

diverse disciplines. It is not intended to be an exhaustive list, merely an indication of

a few of the applications that have been made. Appendix 6 presents an explanation

of how the most important contributors to the development of Bayesian statistics, a

Bayesian Hall of Fame, were selected. There are exercises at the end of each chapter.

Appendix 7 provides solutions to selected exercises.
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SUMMARY

In this chapter we have examined the role of subjectivity in science and have found

that subjectivity, judgment, and degree of belief are fundamental parts of the scien-

tific process. We have also seen from the example involving observing a desired

experimental effect (Section 1.2) that observing some phenomenon involves an

interpretation of the observational data. Different observers will often have different

interpretations of the same data, depending upon their own backgrounds, beliefs

they brought to the experiment a priori, and theoretical expectations of the experi-

mental outcomes.

EXERCISES

1.1 Give examples of subjectivity in medical diagnosis by a physician; in the

introduction of ‘‘evidence’’ by an attorney in civil or criminal trials; in studies

of the human genome by molecular biologists; in portfolio analysis of financial

securities by certified financial analysts; in the design of a building by a civil

engineer; in the ‘‘reading’’ of X rays by a radiologist; and in the evaluation of

objects found at an ancient archeological site.

1.2* By going to the original reference sources, explain who Stigler believes

actually wrote Bayes’ theorem, and also, explain what Stigler believes

Bayes’ theorem was really saying.

1.3 In the observing of a desired experimental effect example of Section 1.2 of this

chapter, can you think of other interpretations of the same data?

1.4* Why is the book Ars Conjectandi by James Bernoulli of particular interest to

people interested in Bayesian statistical inference?

1.5 In the observing of a desired experimental effect example of Section 1.2 of this

chapter, which interpretation of the data seems most appropriate to you? Why?

1.6 In an experiment you were doing, or one that you were analysing, how would

you decide whether certain observations were too large or too small to be

considered as part of the basic data set?

1.7* Distinguish between prior and posterior distributions.

1.8* The methodological approaches to science of some of the most famous

scientists in history (Aristotle, Marie Curie, Charles Darwin, Albert Einstein,

Michael Faraday, Sigmund Freud, Galileo Galilei, William Harvey, Antoine

Lavoisier, Isaac Newton, Louis Pasteur, and Alexander von Humboldt) were

sometimes quite subjective. Give examples in the cases of three of these

people. (Hint: see Press and Tanur, 2001.)

1.9* Explain the meaning of the statement, ‘‘Most scientific inference is already

partly subjective, and it always has been.’’

* Solutions for asterisked exercises may be found in Appendix 7.

EXERCISES 15



FURTHER READING

Bayes, T. (1763). ‘‘An Essay Towards Solving a Problem in the Doctrine of Chances,’’ Philos.

Trans. Royal Soc. London, V61.53, 370–418. Reprinted in Appendix 4.

Bernoulli, J. (1713). Ars Conjectandi, Book 4, Baseae, Impensis Thurnisiorum.

Gatsonis, C., Hodges, J. S., Kass, R. E., and Singpurwalla, N. D., Eds. (1993). Case Studies in

Bayesian Statistics, New York, Springer-Verlag.

Gatsonis, C., Hodges, J. S., Kass, R. E., and Singpurwalla, N. D., Eds. (1995). Case Studies in

Bayesian Statistics, Vol. II, New York, Springer-Verlag.

Gatsonis, C., Hodges, J. S., Kass, R. E., McCulloch, R., Rossi, P., and Singpurwalla, N. D.

(1997). Case Studies in Bayesian Statistics, Vol. III, New York, Springer-Verlag.

Gatsonis, C., Kass, R. E., Carlin, B., Carriquiry, A., Gelman, A., Verdinelli, I., and West, M.

(1999). Case Studies in Bayesian Statistics, Vol. IV, New York, Springer-Verlag.

Howson, C. and Urbach, P. (1989). Scientific Reasoning, La Salle, Illinois, Open Court

Publishing Co.

Jeffreys, H. (1939, 1st edition; 1948, 2nd edition; 1961, 3rd edition). Theory of Probability,

Oxford, Oxford University Press and Clarendon Press.

Laplace, P. S. (1774, 1814). Essai Philosophique sur les Probabilites, Paris. This book went

through five editions (the fifth was in 1825) revised by Laplace. The sixth edition appeared

in English translation by Dover Publications, New York, in 1951. While this philosophical

essay appeared separately in 1814, it also appeared as a preface to his earlier work, Theorie

Analytique des Probabilites.

Maistrov, L. E. (1974). Probability Theory: A Historical Sketch, S. Kotz, Trans. and Ed. New

York, Academic Press.

Matthews, R. A. J. (1998a). ‘‘Fact versus Factions: the Use and Abuse of Subjectivity in

Scientific Research’’, ESEF Working Paper 2=98, The European Science and Environment

Forum, Cambridge, England, September, 1998.

Matthews, R. A. J. (1998b) ‘‘Flukes and Flaws,’’ Prospect., 35, 20–24.

Pearson, E. (1978). The History of Statistics in the 17th and 18th Centuries, New York,

Macmillan.

Press, S. J. and Tanur, J. M. (2001). The Subjectivity of Scientists and the Bayesian Approach,

New York, John Wiley and Sons, Inc.

Stigler, S. M. (1982). ‘‘Thomas Bayes and Bayesian Inference,’’ J. Roy. Statist. Soc. ðAÞ, 145 (2)

250–258.

Stigler, S. M. (1983). ‘‘Who Discovered Bayes’ Theorem,’’ Amer. Stat., 37(4), 290–296.

Stigler, S. M. (1986). The History of Statistics, Cambridge, MA, The Belknap Press of Harvard

University Press.

Wolpert, L. (1992). The Unnatural Nature of Science, Boston, Harvard University Press.

16 BACKGROUND


