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Introduction

1.1 FAILURE TIME DATA

We consider methods for the analysis of data when the response of interest is the

time until some event occurs. Such events are generically referred to as failures,

although the event may, for instance, be the performance of a certain task in a learn-

ing experiment in psychology or a change of residence in a demographic study.

Major areas of application, however, are biomedical studies and industrial life

testing.

We assume that observations are available on the failure time of n individuals

usually taken to be independent. A principal problem examined is that of develop-

ing methods for assessing the dependence of failure time on explanatory variables.

Typically, such explanatory variables will describe prestudy heterogeneity in the

experimental material or differential allocations of treatments resulting from the

study design. A secondary problem involves the estimation and specification of

models for the underlying failure time distribution.

Additional problems arise in the analysis of multivariate failure times and failure

types. These problems entail assessing the frequency of recurrent failures and esti-

mating the correlation among failure times and types. There are a number of rea-

sons why special methods and special treatment is required for failure time data,

and it is convenient to illustrate some of the distinguishing features through the

following examples.

1.1.1 Carcinogenesis

Table 1.1 gives the times from insult with the carcinogen DMBA to mortality from

vaginal cancer in rats. Two groups were distinguished by a pretreatment regimen.

We might consider comparing the two regimes using the t-test (presumably to

transformed data) or one of several nonparametric tests. Such procedures cannot

be applied immediately, however, because of a feature very prevalent in failure

time studies. Specifically, four failure times in Table 1.1 are censored. For these

four rats, we can see that the failure times exceed 216, 244, 204, and 344 days,
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respectively, but we do not know the failure times exactly. In this example, the

(right) censoring may have arisen because these four rats died of causes unrelated

to application of the carcinogen and were free of tumor at death, or they may simply

not have died by the time of data analysis. The necessity of obtaining methods of

analysis that accommodate censoring has been a principal motivating factor for the

development of specialized models and procedures for failure time data.

A larger set of animal carcinogenesis data is given in Appendix A (data set V).

Two groups of male mice were given 300 rads of radiation and followed for cancer

incidence. One group was maintained in a germ-free environment. The new feature

of these data is that more than one failure mode occurs. It is of interest, for example,

to evaluate the effect of a germ-free environment on the incidence rate of reticulum

cell sarcoma while accommodating the competing risks of developing thymic lym-

phoma or other causes of failure.

1.1.2 Randomized Clinical Trial

Table 1.2 gives some data from a randomized clinical trial on 64 patients with

severe aplastic anemia. Prior to the trial, all the patients were treated with high-

dose cyclophosphamide followed by an infusion of bone marrow from an HLA-

identical family member. Patients were then assigned to each of two treatment

groups: cyclosporine and methotrexate (CSPþMTX) or methotrexate alone

(MTX). One endpoint of interest was the time from assignment until the diagnosis

of a life-threatening stage (�2) of acute graft versus host disease (AGVHD). The

times are given in days. Also included are two covariates measured at the outset:

the patient’s age in years at the time of transplant and an indicator of whether or

not the patient was assigned to a laminar airflow (LAF) isolation room. Storb et al.

(1986) report on the subset of 46 patients who were randomly assigned to treatment,

with stratification by age group and LAF. For purposes of illustration, we shall treat

the data as though all 64 patients had been randomly assigned. In this trial, only 20

of the 64 patients actually reached the endpoint; the remaining 44 patients were

right censored.

Appendix A (data set II) gives a part of the data from a much larger clinical trial

carried out by the Radiation Therapy Oncology Group. The full study included

patients with squamous cell carcinoma of 15 sites in the mouth and throat, with

16 participating institutions, although only the data on three sites in the oropharynx

Table 1.1 Days to Vaginal Cancer Mortality in Rats

Group 1 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220

227, 230, 234, 246, 265, 304, 216�, 244�

Group 2 142, 156, 163, 198, 205, 232, 232, 233, 233, 233, 233

239, 240, 261, 280, 280, 296, 296, 323, 204�, 344�

Source: Pike (1966).
� These four items are right censored.
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reported by the six largest institutions are given. Patients entering the study were

randomly assigned to one of two treatment groups: radiation therapy alone or radia-

tion therapy together with a chemotherapeutic agent. One objective of the study was

to compare the two treatment policies with respect to patient survival.

Approximately 30% of the survival times are censored, owing primarily to

patients surviving to the time of analysis. Some patients were lost to follow up

because the patient moved and was unable to continue, but these cases were

relatively rare. From a statistical point of view, a key feature of these data is the

considerable lack of homogeneity between individuals being studied. Of course,

as a part of the study design, certain criteria for patient eligibility had to be met

which eliminated extremes in the extent of disease, but still many factors are not

controlled. This study included measurements of many covariates that would be

expected to relate to survival experience. Six such variables are given in the data

of Appendix A (sex, T staging, N staging, age, general condition, and grade). The

site of the primary tumor and possible differences between participating institutions

require consideration as well.

The TN staging classification gives a measure of the extent of the tumor at the

primary site and at regional lymph nodes. T1 refers to a small primary tumor, 2 cm

or less in largest diameter, whereas T4 is a massive tumor with extension to adjoin-

ing tissue. T2 and T3 refer to intermediate cases. N0 refers to the absence of clinical

Table 1.2 Time in Days to Severe (Stage � 2) Acute Graft Versus Host Disease

(AGVHD), Death, or Last Contact for Bone Marrow Transplant Patients Treated

with Cyclosporine and Methotrexate (CSPþMTX) or with MTX Only a

CSPþMTX MTX

—————————————————— —————————————————

Time LAF Age Time LAF Age Time LAF Age Time LAF Age

3* 0 40 324* 0 23 9 1 35 104* 1 27

8 1 21 356* 1 13 11 1 27 106* 1 19

10 1 18 378* 1 34 12 0 22 156* 1 15

12* 0 42 408* 1 27 20 1 21 218* 1 26

16 0 23 411* 1 5 20 1 30 230* 0 11

17 0 21 420* 1 23 22 0 7 231* 1 14

22 1 13 449* 1 37 25 1 36 316* 1 15

64* 0 20 490* 1 37 25 1 38 393* 7 27

65* 1 15 528* 1 32 25.* 0 20 395* 0 2

77* 1 34 547* 1 32 28 0 25 428* 0 3

82* 1 14 691* 1 38 28 0 28 469* 1 14

98* 1 10 769* 0 18 31 1 17 602* 1 18

155* 0 27 1111* 0 20 35 1 21 681* 0 23

189* 1 9 1173* 0 12 35 1 25 690* 1 9

199* 1 19 1213* 0 12 46 1 35 1112* 1 11

247* 1 14 1357* 0 29 49 0 19 1180* 0 11

a Asterisks indicate that time to severe AGVHD is right censored; that is, the patient died without severe

AGVHD or was without severe AGVHD at last contact.
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evidence of a lymph node metastasis and N1;N2; and N3 indicate, in increasing

magnitude, the extent of existing lymph/node involvement. Patients with classifica-

tions T1N0; T1N1; T2N0; or T2N1 or with distant metastasis were excluded from

study.

The variable ‘‘general condition’’ gives a measure of the functional capacity of

the patient at the time of diagnosis (1 refers to no disability, whereas 4 denotes bed

confinement; 2 and 3 refer to intermediate levels). The variable grade is a measure

of the degree of differentiation of the tumor (the degree to which the tumor cell

resembles the host cell) from 1 (well differentiated) to 3 (poorly differentiated).

In addition to the primary question of whether the combined treatment mode is

preferable to the conventional radiation therapy, it is of considerable interest to

determine the extent to which the several covariates are related to subsequent sur-

vival. In answering the primary question, it may also be important to adjust the sur-

vival times for possible imbalance that may be present in the study with regard to

the other covariates. Such problems are similar to those encountered in the classical

theory of regression and the analysis of covariance. Again, the need to accommo-

date censoring is an important distinguishing point. In many situations, nonpara-

metric and robust procedures are desirable since there is frequently little empirical

or theoretical work to support a particular family of failure time distributions.

1.1.3 Heart Transplant Data

Crowley and Hu (1977) give survival times of potential heart transplant recipients

from their date of acceptance into the Stanford heart transplant program. These data

are reproduced in Appendix A, data set IV. One problem of considerable interest is

to evaluate the effect of heart transplantation on subsequent survival.

For each study subject the explanatory variables ‘‘age’’ and ‘‘prior surgery’’

were recorded. There were also donor–recipient variables that may be predictive

of post-transplant survival time. The main new feature here is that patients

change treatment status during the course of the study. Specifically, a patient

is part of the control group until a suitable donor is located and transplantation takes

place, at which time he or she joins the treatment group. Correspondingly, some

explanatory variables, such as waiting time for transplant, are observed during

the course of the study and depend on the time elapsed to transplant. This study

is examined in some detail in Chapter 6 using the ideas of time-dependent covari-

ates and time-dependent stratification.

The existence of covariates that change over time is yet another unusual feature

of failure time data that requires special methods and attention to model character-

istics and implications. Transplant studies, such as the heart transplant study, pro-

vide a class of examples where such covariates arise because of the very nature of

the treatment. Alternatively, we can imagine a system operating under stress where

the stress factor is varied as time elapses. In such a situation, it would be common to

examine the relationship between the stress applied now and the current risk of

failure. Other examples arise in clinical studies, such as, for example, measures
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of immune function taken at regular intervals for leukemia patients in remission. One

may wish, in this instance, to study the relationship between changes in immune func-

tion and corresponding propensity to relapse. Such examples are also discussed in

Chapter 6. In comparative trials, time-dependent covariates such as measures of

immune function can be responsive; that is, they can be affected by the treatments

under investigation. Responsive covariates have the potential to be useful in examin-

ing the mechanism of a treatment effect (does the treatment work by improving

immune function?) or even in serving as a surrogate for the primary failure time

outcome. If, however, they are treated as ordinary covariates in a regression model

to investigate the effect of treatments, they can mask a treatment effect.

1.1.4 Accelerated Life Test

Nelson and Hahn (1972) present data on the number of hours to failure of motor-

ettes operating under various temperatures. The name accelerated life test for this

type of study derives from the use of a stress factor, in this case temperature, to

increase the rate of failure over that which would be observed under normal oper-

ating conditions. The data are presented in Table 1.3 and exhibit severe censoring,

with only 17 of 40 motorettes failing. Note that the stress (temperature) is constant

for any particular motorette over time. The principal interest in such a study

involves determination of the relationship between failure time and temperature

for the purpose of extrapolating to usual running temperatures. Of course, the valid-

ity of such an extrapolation depends on the constancy of certain relationships over a

very wide range of temperatures. For this study, the failure time distribution at the

regular operating temperature of 130�C was of interest.

As in earlier examples, the censoring here is type I or time censoring. That is,

censored survival times were observed only if failure had not occurred prior to a

predetermined time at which the study was to be terminated. Experiments of this

type, where considerable control is available to the experimenter, offer the possibi-

lity of other censoring schemes. For instance, in the study above it might have been

decided in advance to continue the study until specified numbers of motorettes had

failed at each of the temperatures (e.g., until one, three, five, and seven motorettes

had failed at 150�C, 170�C, 190�C, and 220�C, respectively). Such censoring

is usually referred to as type II or order statistic censoring, in that the study termi-

nates as soon as certain order statistics are observed. With certain models, some

Table 1.3 Hours to Failure of Motorettes

150�C All 10 motorettes without failure at 8064 hours

170�C 1764, 2772, 3444, 3542, 3780, 4860, 5196

3 motorettes without failure at 5448 hours

190�C 408, 408, 1344, 1344, 1440

5 motorettes without failure at 1680 hours

220�C 408, 408, 504, 504, 504

5 motorettes without failure at 528 hours
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inferential procedures (e.g., exact significance tests) are simpler for type II than for

type I censoring. It should be noted, however, that type II censoring usually does

not allow an upper bound to be placed on the total duration of the study and is

generally not a feasible study design if there is staggered entry to the study.

Some of the examples above are considered further throughout the book. We

turn now, however, to mathematical representations of failure times and consider

the very simplest case of an independent sample from a homogeneous population

(no explanatory variables) with a single failure mode.

1.2 FAILURE TIME DISTRIBUTIONS

Let T be a nonnegative random variable representing the failure time of an indivi-

dual from a homogeneous population. The probability distribution of T can be spe-

cified in many ways, three of which are particularly useful in survival applications:

the survivor function, the probability density function, and the hazard function.

Interrelations among these three representations are given below for discrete and

continuous distributions.

The survivor function is defined for discrete and continuous distributions by the

probability that T exceeds a value t in its range; that is,

FðtÞ ¼ PðT > tÞ; 0 < t < 1:

Note that F in some settings refers to the cumulative distribution function,

PðT � tÞ, and therefore gives the probabilities in the left tail rather than in the right

tail of the distribution. The right tail, however, is the important component for the

incorporation of right censoring, so it is more convenient to concentrate on the sur-

vivor function in dealing with failure time distributions. Clearly, FðtÞ is a non-

increasing right-continuous function of t with Fð0Þ ¼ 1 and limt!1 FðtÞ ¼ 0.

1.2.1 T (Absolutely) Continuous

The probability density function (PDF) of T is

f ðtÞ ¼ �dFðtÞ=dt:

The range of T is ½0;1Þ, and this should be understood as the domain of definition

for functions of t. It is convenient to remember that f ðtÞ gives the density of prob-

ability at t and for h small has the interpretation

f ðtÞh ’ Pðt � T < t þ hÞ ¼ FðtÞ � Fðt þ hÞ;

provided that f ðtÞ is continuous at t. We note also that f ðtÞ � 0,
Ð1
0

f ðtÞ dt ¼ 1, and

FðtÞ ¼
ð1
t

f ðsÞ ds:
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The hazard function is defined as

�ðtÞ ¼ lim
h!0þ

Pðt � T < t þ h j T � tÞ=h ð1:1Þ

and specifies the instantaneous rate at which failures occur for items that are surviv-

ing at time t. The hazard function fully specifies the distribution of t and so deter-

mines both the density and the survivor functions. From (1.1) and using the

definition of the density function, it follows that

�ðtÞ ¼ �f ðtÞ=FðtÞ
¼ �d logFðtÞ=dt:

Now integrating with respect to t and using Fð0Þ ¼ 1, we obtain

FðtÞ ¼ exp �
ðt
0

�ðsÞ ds
� �

¼ exp ��ðtÞ½ �; ð1:2Þ

where �ðtÞ ¼
Ð t
0
�ðsÞ ds is called the cumulative hazard function. The PDF of T can

be obtained by differentiating (1.2) to find that

f ðtÞ ¼ �ðtÞexp½��ðtÞ�: ð1:3Þ

Examination of (1.2) indicates that any nonnegative function �ðtÞ that satisfiesðt
0

�ðsÞ ds < 1

for some t > 0 and ð1
0

�ðsÞ ds ¼ 1

can be the hazard function of a continuous random variable.

Other representations of the failure time distribution are occasionally useful. An

example is the expected residual life at time t,

rðtÞ ¼ EðT � t j T � tÞ;

which uniquely determines a continuous survival distribution with finite mean. To

see this, note that

rðtÞ ¼
Ð1
t
ðs� tÞ f ðsÞ ds

FðtÞ
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and integrate by parts to obtain

rðtÞ ¼
Ð1
t

FðsÞ ds
FðtÞ ; ð1:4Þ

where we have used the fact that EðTÞ < 1 implies that limt!1 tFðtÞ ¼ 0. Substi-

tuting t ¼ 0 in (1.4) gives the useful result

EðTÞ ¼ rð0Þ ¼
ð1
0

FðsÞ ds: ð1:5Þ

Taking the reciprocal of both sides of (1.4), we obtain

1

rðtÞ ¼ � d

dt
log

ð1
t

FðsÞ ds;

so that ðt
0

ds

rðsÞ ¼ �log

ð1
t

FðsÞ dsþ log rð0Þ:

This leads finally to the expression

FðtÞ ¼ rð0Þ
rðtÞ exp �

ðt
0

du

rðuÞ

� �
for the survivor function.

1.2.2 T Discrete

If T is a discrete random variable taking values a1 < a2 < � � � with associated

probability function

f ðaiÞ ¼ PðT ¼ aiÞ; i ¼ 1; 2; . . . ;

the survivor function is

FðtÞ ¼
X
jjaj> t

f ðxjÞ:

The hazard at ai is defined as the conditional probability of failure at ai given that

the individual has survived to ai,

�i ¼ PðT ¼ ai j T � aiÞ ¼
f ðaiÞ
Fða�i Þ

; i ¼ 1; 2; . . . ;

8 INTRODUCTION



where Fða�Þ ¼ limt!a� FðtÞ. Corresponding to (1.2) and (1.3), the survivor func-

tion and the probability function are given by

FðtÞ ¼
Y
jjaj� t

ð1� �jÞ ð1:6Þ

and

f ðaiÞ ¼ �i

Yi�1

j¼1

ð1� �jÞ: ð1:7Þ

As in the continuous case, the discrete hazard function ð�i; i ¼ 1; 2; . . .Þ uniquely
determines the distribution of the failure time variable T .

The results in (1.6) and (1.7) are quite easily deduced by considering the failure

time process unfolding over time and a sequence of trials, each of which may or

may not result in a failure. For example, the result in (1.7) follows from noting

that an individual fails at time ai if and only if:

� The individual survives in sequence each of the preceding discrete failure times

a1; . . . ; ai�1 with corresponding (conditional) probabilities ð1� �1Þ; . . . ;
ð1� �i�1Þ:

� Having survived to ai, the individual fails at ai with (conditional) prob-

ability �i.

1.2.3 T has Discrete and Continuous Components

More generally, the distribution of T may have both discrete and continuous com-

ponents. In this case, the hazard function can be defined to have the continuous

component �cðtÞ and discrete components �1; �2; . . . at the discrete times

a1 < a2 < � � � . The overall survivor function can then be written

FðtÞ ¼ exp �
ðt
0

�cðuÞ du
� � Y

jjaj� t

ð1� �jÞ:

The discrete, mixed, and continuous cases can be combined. The cumulative

hazard function,

�ðtÞ ¼
ðt
o

�cðuÞ duþ
X
jjaj � t

�j;

is a right-continuous nondecreasing function. From �ðtÞ we define the differential

increment

d�ðtÞ ¼ �ðt� þ dtÞ � �ðt�Þ
¼ P½T 2 ½t; t þ dtÞjT � t�

¼
�i; t ¼ ai; i ¼ 1; 2; . . .

�cðtÞ dt; otherwise:

�
which specifies the hazard of failure over the infinitesimal interval ½t; t þ dtÞ.
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The survivor function in the discrete, continuous, or mixed cases can then be

written as

FðtÞ ¼ Pt
0½1� d�ðuÞ�; ð1:8Þ

where the product integral P is defined by

Pt
0½1� d�ðuÞ� ¼ lim

Yr
k¼1

f1� ½�ðukÞ � �ðuk�1Þ�g:

Here 0 ¼ u0 < u1 < � � � < ur ¼ t and the limit is taken as r ! 1 and

maxðui � ui�1Þ ! 0. In the continuous case (�i ¼ 0 for all i), it can be shown

that this reduces to

FðtÞ ¼ Pt
0½1� d�ðuÞ� ¼ Pt

0½1� �cðuÞ du� ¼ exp �
ðt
0

�cðuÞ du
� �

:

In the discrete case ½�cðtÞ ¼ 0 for all t�, it is easily seen that

Pt
0½1� d�ðuÞ� ¼

Y
jjaj� t

ð1� �iÞ:

This unification shows that failure time data can be considered to arise in essen-

tially the same way in both the discrete and continuous cases. The product repre-

sentation in (1.8) can be thought of as describing a coin-tossing experiment in

which the probability of heads varies over time. The coin is tossed repeatedly

and failure corresponds to the first occurrence of a tail. Thus, in general, the survi-

val probability at time t is obtained by taking the product of the conditional survival

probabilities 1� d�ðuÞ over infinitesimal intervals up to time t. This way of view-

ing a failure mechanism has led to many developments in the area and is crucial in

understanding many of the ideas and techniques. In effect, it is possible to examine

survival experience by looking at the survival experience over each interval condi-

tional upon the experience to that point. Simple arguments for estimating the sur-

vivor function (Section 1.4) or for constructing censored data tests (Section 1.5)

depend on this idea. It also underlies failure time analysis by counting processes

and martingales (Chapter 5), the construction of the likelihood under independent

censoring (Section 6.2), the construction of partial likelihood in the Cox model

(Section 4.3), and the analysis of multivariate failure times and life-history pro-

cesses (Chapter 9).

Note that f ðtÞ and FðtÞ [or more usually, the cumulative distribution function
�FðtÞ ¼ 1� FðtÞ] are common representations of the distribution of a random vari-

able. The hazard function �ðtÞ is a more specialized characterization but is particu-

larly useful in modeling survival time data. In many instances, information is
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available as to how failure rates change with the amount of time on test. This infor-

mation can be used to model �ðtÞ and easily translated into implications for FðtÞ
and f ðtÞ using the formulas above. For example, in modeling age at death of human

populations, it is clear that initially, �ðtÞ is elevated, owing to infant mortality and

childhood diseases. This is followed by a period of relatively low mortality, after

which the mortality rate increases very rapidly (see Figure 1.1a). In other applica-

tions, monotone increasing hazards (positive aging) or decreasing hazards (negative

aging) may be suggested (Figure 1.1b and c). Such qualitative information on �ðtÞ
can be useful in selecting a family of probability models for T. In Chapter 2

we discuss and examine some commonly used models for failure time and their

associated hazard functions.

In the discussion above, we have specified models for a homogeneous popula-

tion in which all individuals independently experience the same probability laws

governing their failure. As noted earlier, there are many applications where we

Figure 1.1 Examples of hazard functions: (a) hazard for human mortality; (b) positive aging;

(c) negative aging.
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wish to incorporate measured covariates into the model. With covariates x measured

at the time origin of the study, we can then think of models for the corresponding

hazard function

�ðt; xÞ ¼ lim
h!0

PfT 2 ½t; t þ hÞjT � t; xg=h;

which applies to those individuals with covariate value x. Corresponding to this,

there are density and survivor functions, written f ðt; xÞ and Fðt; xÞ, respectively.

1.3 TIME ORIGINS, CENSORING, AND TRUNCATION

In considering failure time data, it is important to have a clear and unambiguous

definition of the time origin from which survival is measured. In some instances,

time may represent age, with the time origin the birth of the individual. In other

instances, the natural time origin may be the occurrence of some event, such as ran-

domization or entry into a study or diagnosis of a particular disease. In like manner,

one must have a clear definition of what constitutes failure. For example, in a trial

to compare treatments of heart disease, one might take previous documented occur-

rence of a heart attack as providing eligibility for study. The time origin might be

admission and randomization to the study, and failure may correspond to the recur-

rence of a heart attack. One would need to define carefully the clinical medical con-

ditions that correspond to failure (and eligibility for the study). We will not talk

about this further, but the clear identification of an origin and an endpoint are cru-

cial applied aspects of failure time studies.

As noted earlier, failure time data often include some individuals who do not fail

during their observation period; the data on these individuals are said to be right

censored. In some situations, right censoring arises simply because some indivi-

duals are still surviving at the time that the study is terminated and the analysis

is done. In other instances, individuals may move away from the study area for rea-

sons unconnected with the failure time endpoint, so contact is lost. In yet other

instances, individuals may be withdrawn or decide to withdraw from the study

because of a worsening or improving prognosis. As is intuitively apparent, some

censoring mechanisms have the potential to introduce bias into the estimation of

survival probabilities or into treatment comparisons.

A right-censoring mechanism is said to be independent if the failure rates that

apply to individuals on trial at each time t > 0 are the same as those that would

have applied had there been no censoring. We discuss this idea more thoroughly

in Chapter 6, but a brief discussion here is useful to set the stage. Suppose that

the failure rate at time t that applies in the absence of censoring for an individual

selected at random from a group with covariate value x is �ðt; xÞ. Here, as before, x
consists of measurements taken on the individual at the time that he or she enters

the study, such as age, sex, measures of physical condition, and so on. Suppose that

within this group, individuals are to be censored according to a specific mechanism.
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Consider the subset of individuals who are at risk of failure (neither failed nor cen-

sored) at some time t > 0. The censoring mechanism or scheme is independent if

for an individual selected at random from this subset, the failure rate is �ðt; xÞ. Thus
we require that at each time t,

lim
h!0

PfT 2 ½t; t þ hÞjx; T � tg
h

¼ lim
h!0

PfT 2 ½t; t þ hÞjx; T � t; YðtÞ ¼ 1g
h

; ð1:9Þ

where YðtÞ ¼ 1 indicates that the individual has neither failed nor been censored

prior to time t (is at risk of failure at time t). If the censoring scheme is independent,

it can be shown that an individual who is censored at time t contributes the term

PðT > t; xÞ ¼ Fðt; xÞ to the likelihood. Thus the information that the individual is

censored at time t tells us only that the time to failure exceeds t.

As mentioned, independent censoring is examined more fully in Chapter 6. It is

interesting to note, however, that some standard censoring schemes are indepen-

dent. Consider, for example, a random censorship model where the ith individual

has a time Ti to failure and a time Ci to censoring. Given the covariate value xi, we

suppose that Ci and Ti are independent random variables. Further, conditional on

the xi’s, ðTi;CiÞ are independent, i ¼ 1; . . . ; n, where n is the number of subjects

in the study. The time Ti to failure is observed if Ti � Ci. Otherwise, the individual

is censored at Ci. For this case, it is easy to see that

lim
h!0

PfTi 2 ½t; t þ hÞjxi; Ti � tg
h

¼ lim
h!0

PfT2½t; t þ hÞjxi; Ti � t;Ci � tg
h

;

which is equivalent to the condition (1.9). Type II censoring, in which individuals

are put on trial until the kth item fails, for some fixed k, was discussed briefly Sec-

tion 1.1.4. This censoring scheme is also independent.

In general, a censoring scheme is independent if the probability of censoring at

each time t depends only on the covariate x, the observed pattern of failures and

censoring up to time t in the trial, or on random processes that are independent

of the failure times in the trial. Mechanisms in which the failure times of indivi-

duals are censored because the individuals appear to be at unusually high (or

low) risk of failure are not independent. For these mechanisms, the condition

(1.9) is violated, and the basic methods of survival analysis are not valid. Because

of this, it is very important to follow the individuals entered into a study as com-

pletely as possible, so that the possibility of dependent censoring is minimized.

In some studies, individuals are not identified for observation at their respective

time origin, but rather, at the occurrence of a subsequent event. Thus, there is a

larger group of individuals who could have been observed, but the study is com-

prised of a subset of those in the cohort who experience some intermediate event.

For these individuals, we observe the time origin and the follow-up time until they

fail or are censored. For example, suppose that is the chosen time variable, so that

time of birth is the time origin. Interest centers on the group of individuals who
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were exposed to some environmental risk, and individuals are identified for study at

the time they respond to an advertisement. Any individuals who died prior to the

advertisement are not observed, and in fact may not even be known to exist. Those

who are observed are subject to delayed entry or left truncation. There is a condi-

tion similar to (1.9) for independent left truncation which requires that the failure

rates of individuals under observation at time t are representative of those in the

study population. Many of the methods and analyses that we discuss extend easily

to allow for independent left truncation as well as independent right censoring.

Individuals can also be subject to left censoring, which occurs if the individual is

observed to fail prior to some time t, but the actual time of failure is otherwise

unknown. In this case, we observe that T 2 ½0; t�, which is analogous to right cen-

soring, where we observe that T 2 ðt;1Þ. Left censoring should not be confused

with left truncation, as discussed in the preceding paragraph. With left censoring,

we know the individual exists and failed prior to the time t. With left truncation, the

existence of an individual who fails before the beginning of observation is hidden

from us.

Other types of censoring also arise. For example, in some situations individuals

are interval censored, so we observe only that the failure time falls within some

interval T 2 ða; bÞ. One might also have situations in which individuals are subject

to right truncation. That is, an individual is observed if and only if its failure time is

less than some given time t. Exercise 1.13 gives an example. We discuss these more

general censoring schemes in Chapter 3 in the context of parametric analyses. Most

of our attention, however, is focused on independent right censoring and extensions

to allow independent delayed entry or left truncation.

1.4 ESTIMATION OF THE SURVIVOR FUNCTION

1.4.1 Kaplan–Meier or Product Limit Estimator

The empirical distribution function,

�FnðxÞ ¼
no: sample values � x

n

is a simple estimate of the distribution function �FðxÞ ¼ PðX � xÞ and is a familiar

and convenient way to summarize and display data. A plot of �FnðxÞ versus x

visually represents the sample and provides full information on the percentile

points, the dispersion, and the general features of the sample distribution. Besides

these obvious descriptive uses, it is an indispensable aid in studying the distribu-

tional shape of the population from which the sample arose; in fact, the empirical

distribution function can serve as a basic tool in constructing formal tests of good-

ness of fit of the data to hypothesized probability models (see, e.g., Cox and

Hinkley, 1974, pp. 69ff.).

In the analysis of survival data, it is very often useful to summarize the survival

experience of particular groups of patients in terms of the empirical survivor
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function. If an uncensored sample of n distinct failure times is observed from a con-

tinuous homogeneous population, the sample survivor function FnðtÞ ¼ 1� �FnðtÞ is
a step function that decreases by n�1 at each failure time observed. As noted earlier,

survival data very often involve right censoring, and in this case a convenient

method for estimating FðtÞ is required.
Let t1 < t2 < � � � < tk represent the observed failure times in a sample of size

n ¼ n0 from a homogeneous population with (unknown) survivor function F. Sup-

pose that dj items fail at tj and mj items are censored in the interval ½tj; tjþ1Þ at times

tj1; . . . ; tjmj
; j ¼ 0; . . . ; k, where t0 ¼ 0 and tkþ1 ¼ 1. Let nj ¼

ðmj þ djÞ þ � � � þ ðmk þ dkÞ denote the number of items at risk at a time just prior

to tj. The probability of failure at tj is

PðT ¼ tjÞ ¼ Fðt�j Þ � FðtjÞ:

We assume that the contribution to the likelihood of a censored survival time at tjl is

PðT > tjlÞ ¼ FðtjlÞ:

Here we are assuming that the observed censoring time tjl tells us only that the

unobserved failure time is greater than tjl. This is appropriate provided that the

censoring is independent, as discussed in Section 1.3.

The probability of the data is then of the form

L ¼
Yk
j¼0

Fðt�j Þ � FðtjÞ
h idjYmj

l¼1

FðtjlÞ
( )

;

which, given the data, can be viewed as a likelihood function on the space of all

survivor functions F. The (nonparametric) maximum likelihood estimate (MLE)

is the survivor function F̂ that maximizes L.

Clearly, F̂ðtÞ is discontinuous at the failure times observed (i.e., places some

positive probability mass at each tj) since otherwise, L ¼ 0. Further, since tjl � tj,

FðtjlÞ is maximized by taking FðtjlÞ ¼ FðtjÞ ð j ¼ 1; . . . ; k; l ¼ 1; . . . ;mjÞ. The

required MLE, F̂ðtÞ, is therefore a discrete survivor function with hazard compo-

nents �̂1; . . . ; �̂k at t1; . . . ; tk, respectively. Thus

F̂ðtjÞ ¼
Yj
l¼1

ð1� �̂lÞ ð1:10Þ

and

F̂ðt�j Þ ¼
Yj�1

l¼1

ð1� �̂lÞ; ð1:11Þ
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where the �̂l’s are chosen to maximize the function

Yk
j¼1

�
dj
j

Yj�1

l¼1

ð1� �lÞdj
Yj
l¼1

ð1� �lÞmj

" #
¼
Yk
j¼1

�
dj
j ð1� �jÞnj�dj ; ð1:12Þ

obtained by substituting (1.10) and (1.11) in L. Clearly, �̂j ¼ dj=njð j ¼ 1; . . . ; kÞ
and the Kaplan–Meier or product limit estimate of the survivor function is

F̂ðtÞ ¼
Y
jjtj� t

nj � dj

nj
: ð1:13Þ

In the product limit estimate, we are in effect making the estimated hazard or con-

ditional probability of failure at each tj agree exactly with the observed proportion

ðdj=njÞ of the nj individuals at risk who fail at tj. Again we are viewing the survival

experience sequentially and at each failure time estimating the hazard of failure to

be the observed proportion of failures. It should be noted that F̂ðtÞ never reduces to
zero if mk > 0. In this instance, the largest time recorded is censored and it is usual

to take F̂ðtÞ as undefined for t > tkmk
.

The estimate F̂ðtÞ is the direct generalization of the sample survivor function for

censored data. It was first derived by Kaplan and Meier (1958), and as a conse-

quence, is often referred to as the Kaplan–Meier estimate. Table 1.4 and Figure 1.2

exemplify the Kaplan–Meier estimate (1.13) for the carcinogenesis data of Section

1.1.1.

Table 1.4 Kaplan–Meier Survivor Function Estimates for Carcinogenesis Data

Group 1 Group 2

————————————————— —————————————————

ti di ni F̂ðtiÞ cvar ðF̂Þ ti di ni F̂ðtiÞ cvar ðF̂Þ
143 1 19 0.947 0.00262 142 1 21 0.952 0.00216

164 1 18 0.895 0.00496 156 1 20 0.905 0.00410

188 2 17 0.789 0.00875 163 1 19 0.857 0.00583

190 1 15 0.737 0.01021 198 1 18 0.810 0.00734

192 1 14 0.684 0.01137 205 1 16 0.759 0.00885

206 1 13 0.632 0.01225 232 2 15 0.658 0.01109

209 1 12 0.579 0.01283 233 4 13 0.455 0.01240

213 1 11 0.526 0.01312 239 1 9 0.405 0.01208

216 1 10 0.474 0.01312 240 1 8 0.345 0.01148

220 1 8 0.414 0.01311 261 1 7 0.304 0.01067

227 1 7 0.355 0.01264 280 2 6 0.202 0.00814

230 1 6 0.296 0.01170 296 2 4 0.101 0.00459

234 1 5 0.237 0.01029 323 1 2 0.051 0.00243

246 1 3 0.158 0.00873

265 1 2 0.079 0.00530

304 1 1 0.000
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We consider now the asymptotic distribution of F̂ðtÞ at a prespecified value of t.

A heuristic derivation of an asymptotic variance can be obtained by regarding

(1.12) as a parametric likelihood in the parameters �1; . . . ; �k. Standard likelihood

methods, reviewed in Section 3.4, would yield an estimate djðnj � djÞ=n3j for the

asymptotic variance of �̂j and hence for

log F̂ðtÞ ¼
X
jjtj � t

log ð1� �̂jÞ;

an asymptotic variance estimate of

cvar log F̂ðtÞ� �
¼
X
jjtj� t

ð1� �̂jÞ�2 cvar ð1� �̂jÞ

¼
X
jjtj� t

dj

njðnj � djÞ
:

The induced expression for the asymptotic variance of F̂ðtÞ is then

V̂FðtÞ ¼ cvar F̂ðtÞ
� �

¼ F̂2ðtÞ
X
jjtj � t

dj

njðnj � djÞ
: ð1:14Þ

Figure 1.2 Kaplan–Meier survivor funtions estimates for carcinogenesis data: solid line, group; dashed

line, group 2.
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Expression (1.14), known as Greenwood’s formula (Greenwood, 1926), was first

derived as the asymptotic variance of the classical life-table estimator, which is

discussed below. The derivation above would be valid if the distribution of t

were discrete with finitely many mass points. Proper treatment of the asymptotic

properties of the Kaplan–Meier estimator in the continuous case can be based on

counting process formulations and related martingale theory. We discuss these

topics in Chapter 5, and asymptotics for the Kaplan–Meier and related estimates

are discussed further in Section 1.7. Essentially, under reasonably mild conditions

on the censoring and large n, the results justify the use of a normal approximation

of the distribution of F̂ðtÞ with mean FðtÞ and variance estimate (1.14). These

results hold whether T is discrete or continuous or mixed with discrete and contin-

uous components.

An approximate 95% confidence interval for FðtÞ is F̂ðtÞ 	 1:96½cvar F̂ðtÞ�1=2. At
extreme values of t (e.g., t � 188 or t > 246 for the group 1 data of Table 1.3, such

an approximate confidence interval may include impossible values outside the

range ½0; 1�. This problem can be avoided by applying the asymptotic normal

distribution to a transformation of FðtÞ for which the range is unrestricted. For

example, the asymptotic variance of

v̂ ðtÞ ¼ log �log F̂ðtÞ
� �

is, from Greenwood’s formula and asymptotic theory (Section 3.4), estimated by

ŝ2ðtÞ ¼ cvar log F̂ðtÞ� �
= log F̂ðtÞ
� �2

:

An asymptotic 95% confidence interval of v̂ðtÞ 	 1:96ŝðtÞ for vðtÞ ¼ log½�logFðtÞ�
gives a corresponding asymptotic 95% confidence interval for FðtÞ of

F̂ðtÞ
� �exp½	1:96ŝðtÞ�

;

which takes values in 0; 1½ �. Application of this method to the group 1 data of

Table 1.1 gives an approximate 95% confidence interval for FðtÞ at t ¼ 150 of

ð0:679; 0:992Þ. A normal approximation to the distribution of F̂ð150Þ, in contrast,

gives ð0:846; 1:047Þ, a clearly unsatisfactory result.

It should be noted that many authors consider first the cumulative hazard

function �ðtÞ, which is most naturally estimated using the Nelson–Aalen estimator,

�̂ðtÞ ¼
X
ti� t

di=ni ¼
X
ti� t

�̂i; ð1:15Þ

which is a right-continuous step function whose increments are the empirical

hazard estimates. Note that since the estimated distribution is discrete, the
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Nelson–Aalen and Kaplan–Meier estimators are related in the way that one should

expect [see (1.6) and (1.8)]

F̂ðtÞ ¼ Pt
0½1� d�̂ðuÞ� ¼

Y
ti�t

ð1� �̂iÞ:

1.4.2 Life-Table and Related Estimates

Many other estimators of the survivor function have been considered. The oldest is

that formed from the life table (see, e.g., Chiang, 1968). A life table is a summary

of the survival data grouped into convenient intervals. In some applications (e.g.,

actuarial), the data are often collected in such a grouped form. In other cases, the

data might be grouped to get a simpler and more easily understood presentation.

Suppose, for example, that the data are grouped into intervals I1; . . . ; Ik such that

Ij ¼ ðb0 þ � � � þ bj�1; b0 þ � � � þ bjÞ

is of width bj with b0 ¼ 0. The life table then presents the number of failures and

censored survival times falling in each interval.

Suppose that mj censored times and dj failure times fall in the interval Ij, and let

nj ¼
P

l� jðdl þ mlÞ be the number of individuals at risk at the start of the jth inter-

val. The standard life-table estimator of the conditional probability of failure in Ij
given survival to enter Ij, is q̂j ¼ 1 if nj ¼ 0 and

q̂j ¼
dj

nj � mj=2

otherwise. The mj=2 term in the denominator is used in an attempt to adjust for the

fact that not all the nj individuals are at risk for the whole of Ij. The corresponding

life-table estimator of the survivor function at the end Ij is

~Fðb1 ¼ � � � þ bjÞ ¼
Yj
l¼1

ð1� q̂lÞ: ð1:16Þ

Greenwood’s formula (1.14), with nj replaced by nj � mj=2, provides an estimator

of the variance of ~F.
The life-table method is designed primarily for situations in which actual failure

and censoring times are unavailable and only the dj’s and mj’s are given for the jth

interval. A simple modification of the life-table method utilizes the additional infor-

mation when the (continuous) failure times are known. Suppose, for example, that

tj1; . . . ; tjrj are the observed times in Ij of which mj are censored and dj are failures,

rj ¼ dj þ mjð j ¼ 1; . . . ; kÞ. Suppose that the hazard function �ðtÞ is taken to be a
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step function having constant value �j in the interval Ij. In this case, it can be shown

that the maximum likelihood estimate of �j is

�̂j ¼ dj=Sj;

where

Sj ¼
Xrj
l¼1

tjl �
Xj�1

0

bi

 !
þ njþ1bj

is the total observed survival time in the interval Ij. The corresponding estimator of

the survivor function is for t 2 Ij,

F̂ðtÞ ¼ exp ��̂j t �
Xj�1

l¼0

bl

 !
�
Xj�1

i¼1

�̂ibi

" #
: ð1:17Þ

Unlike the preceding estimators, this is a continuous function of t and so relatively

easier to view and to interpret shape. There is, however, an arbitrariness in the

choice of intervals and in the piecewise constant model. Nonetheless, for explora-

tory purposes, the estimator (1.17) can be very useful.

1.5 COMPARISON OF SURVIVAL CURVES

Often, it is of interest to determine whether two or more samples could have arisen

from identical survivor functions. One approach would involve the use of the

asymptotic results for F̂ðtÞ mentioned above to devise a test for equality of the sur-

vivor functions at some prespecified time t. Such a procedure, however, would not

usually make efficient use of the data available, and attention has turned instead to

test statistics that attempt to evaluate differences between survivor function estima-

tors over the entire study period. The most commonly used statistics of this type can

be viewed as censored data generalizations of such familiar nonparametric rank

tests as the Wilcoxon test and the Savage (1956) or exponential scores test.

In this section, a heuristic derivation of the log-rank test is given. This test is a

censored data generalization of the Savage test and is particularly good when the

ratio of hazard functions in the populations being compared is approximately con-

stant. It can also be advocated on the basis of ease of presentation to nonstatistical

personnel since the test statistic is particularly simple in form. It amounts to the

difference between the number of failures observed in each group and a quantity

that, for most purposes, can be thought of as the corresponding expected number

of failures under the null hypothesis.

Suppose that one wishes to test the hypothesis that the survivor functions

F0ðtÞ; . . . ;FpðtÞ are equal on the basis of samples from each of pþ 1 populations.
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Let t1 < � � � < tk denote the failure times for the sample formed by pooling the

pþ 1 samples. Suppose that dj failures occur at tj and that nj study subjects are

at risk just prior to tj ( j ¼ 1; . . . ; k). Let dij and nij be the corresponding numbers

in sample i (i ¼ 0; . . . ; p). The data at tj can be summarized in the form of a

2
 ðpþ 1Þ contingency table, as illustrated in Table 1.5. Conditional on the failure

and censoring experience up to time tj, the joint probability function of d0j; . . . ; dpj
is simply the product of independent binomial terms,

Yp
i¼0

nij

dij

� �
�
dij
j ð1� �jÞnij�dij ;

where �j is the conditional failure probability (or hazard) at tj, which under the null

hypothesis is common for each of the pþ 1 samples. The conditional distribution

for d0j; . . . ; dpj given dj is then the multivariate hypergeometric distribution with

probability function

Yp
i¼0

nij

dij

� �
nj

dj

� ��1

: ð1:18Þ

The conditional mean and variance of dij from (1.18) are, respectively,

eij ¼ nij dj n
�1
j

and

ðWjÞii ¼ nijðnj � nijÞdjðnj � djÞn�2
j ðnj � 1Þ�1: ð1:19Þ

The conditional covariance of dij and dlj is

ðWjÞil ¼ �nij nlj djðnj � djÞn�2
j ðnj � 1Þ�1: ð1:20Þ

Thus, the statistic w0
j ¼ ðd1j � e1j; . . . ; dpj � epjÞ has conditional mean 0 and p
 p

variance matrix Wj. Summing over the k failure times yields the log-rank statistic

w ¼
Xk
j¼1

wj ¼ O� E; ð1:21Þ

Table 1.5 Frequency of Failures and Survivals at the Observed Failure Time tj

Sample 0 � � � Sample i � � � Sample p Total

Failures d0j � � � dij � � � dpj dj
Survivors n0j � d0j � � � nij � dij � � � npj � dpj nj � dj
At risk n0j � � � nij � � � npj nj
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where O ¼ ðO1; . . . ;OpÞ0; E ¼ ðE1; . . . ;EpÞ0; Oi ¼
Pk

j¼1 dij, and Ei ¼
Pk

j¼1 eij;
i ¼ 1; . . . ; p. Note that O is the vector of observed numbers of failures and E can

informally be thought of as a vector of ‘‘expected’’ failures. This is informal only in

that E is the sum of conditional expectations and its elements are random variables.

If the k contingency tables were independent, the variance of the log-rank statis-

tic w would be W ¼ W1 þ � � � þWk, and an approximate test of equality of the

pþ 1 survival distributions could be based on an asymptotic �2
p distribution for

w0W�1w: ð1:22Þ

Note that any of the pþ 1 samples might be chosen as sample 0 and the log-rank

statistic computed on the remaining p samples relabeled 1; . . . ; p. It can be shown

that the value of the statistic (1.22) is unchanged under any such relabeling.

Application of the log-rank method to a comparison of the two groups (p ¼ 1) of

survival data in Section 1.1.1 gives a log-rank statistic (1.21), w ¼ 19� 23:763 ¼
�4:763, with corresponding variance estimate W ¼ 7:263. The approximate �2

1

statistic has value ð4:763Þ2ð7:263Þ�1 ¼ 3:12, which is just significant at the 10%

level. The slight evidence of a difference that this test shows suggests improved

survival for the group 2 rats. This is exhibited in the log-rank statistic, in which

we see that the observed number (19) of failures in this group is less than the

expected number (23.763).

The derivation of the log-rank test above is similar to that given by Mantel

(1966). It is difficult, however, to formalize the distribution theory from this devel-

opment since the contingency tables over failure times are clearly not independent.

It can, however, be shown that the wj’s are uncorrelated and that W provides an

estimate of the covariance matrix of w. The chi-squared limiting distribution of

(1.22) can be shown to hold under fairly general conditions. The asymptotic results

are most easily established using counting processes and martingale limit theorems,

as outlined in Chapter 5.

There are two important extensions of the log-rank procedure which can be men-

tioned at this stage. The first is stratification, and the second concerns the inclusion

of weights.

1.5.1 Stratified Log-Rank Test

A simple means of testing equality of several survival curves while allowing for

heterogeneity in the populations to be compared involves stratification on auxiliary

variables. An overall test statistic is obtained by summing the log-rank statistics

(1.21) and corresponding variances obtained within each of the independent strata.

Specifically, if the strata are indexed by h, and wðhÞ and W ðhÞ are the corresponding
log-rank and variance statistics based on the data in stratum h, the stratified log-rank

test is based on the statistic

Xs
h¼1

wðhÞ

 !T Xs
h¼1

W ðhÞ

 !�1 Xs
h¼1

wðhÞ

 !
: ð1:23Þ
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Under the null hypothesis, (1.23) typically has an asymptotic �2
p distribution. It

should be noted that this test will be most sensitive to differences among the

pþ 1 treatment groups that are similar across the strata. Examination of the indi-

vidual log-rank tests in each of the strata can also provide some insights into pos-

sible treatment by strata interactions. This method can provide a valuable means of

initial analysis and presentation for many data sets. As well, it is often a useful tool

for communicating the results of a more complex analysis to nonstatistical personnel.

1.5.2 Weighted Log-Rank Test

The log-rank statistic as formulated above is most sensitive to departures from the

null hypothesis in which the hazard ratios among the samples are roughly constant

over time. In some instances, there may be reason to expect that any differences in

the failure rates would occur early and that after the treatment has been in place for

some time, treated and untreated individuals would show little difference. Conver-

sely, there may be situations where any differences in failure rates between treat-

ment groups might be expected to be small to begin and then larger later. Consider

the weighted log-rank statistic

wðgÞ ¼
Xk
j¼1

gjwj; ð1:24Þ

where g1; . . . ; gk are weights chosen in specific applications to emphasize or

deemphasize in an appropriate way the differences measured by the wj’s. The

gj’s may be functions of time or of j, or they may depend on the past failure and

censoring experience in the study. For example, one might consider the weights

g
ðGÞ
j ¼ nj, which yields the Gehan–Breslow generalization of the Wilcoxon or

Kruskal–Wallis statistic. Alternatively, the weights g
ðPÞ
j ¼

Q
i� j½1� di=ðni þ 1Þ�

yield the Peto and Prentice generalization of the Wilcoxon. Note that g
ðPÞ
j is a sur-

vivor function estimate, close to the Kaplan–Meier estimator at tj. Both of these

weighting schemes emphasize early differences in the failure rates.

Under the null hypothesis, arguments similar to those outlined above show that

the weighted log-rank statistic (1.24) has mean 0 and variance estimated byWðgÞ ¼P
g2j Wj. This again yields a simple asymptotic �2

p statistic,

wðgÞ0WðgÞ�1
wðgÞ:

These statistics are considered much more comprehensively in Chapter 7.

1.6 GENERALIZATIONS TO ACCOMMODATE DELAYED ENTRY

The methods of survivor function estimation and log-rank and related tests are

easily generalized to accommodate independent left truncation or delayed entry

into the study sample. In fact, there are essentially no changes involved in the for-

mula and results given. As individuals enter the study, they become at risk of failure
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and so are included in the nj or nij’s.With right censoring only, the number at risk in each

sample will decrease over time as individuals fail or are censored. With left truncation,

however, each new entry increases the number at risk in the appropriate group.

As a brief example, the Atomic Bomb Casualty Commision/Radiation Effects

Research Foundation in Japan has, since 1950, followed a lifespan study cohort

of over 100,000 persons who resided in Hiroshima or Nagasaki as of October 1,

1950. Data on this cohort are used to assess the effects of ionizing radiation

exposure on mortality. The cohort includes a subsample who were residents of,

but not in, either city at the time of the 1945 bombings. Key analyses from this

cohort use date of bombing in the respective cities as the time origin, since mortal-

ity risk as a function of radiation exposure and time since exposure is of interest

from both the public health and radiation biology perspectives. Data on time

from exposure to death in this cohort are subject to left truncation since the cohort

was not assembled until 1950. One can, however, estimate failure rates just as

before as dj=nj, where dj is the number of deaths at the jth chronological death

time tj and nj is the number of cohort members alive and without censoring just

prior to tj. Similar changes generalize the log-rank procedures to this case. In

this example it is not possible to estimate the failure rates or survival distribution

for early times because no individuals who die early are included in the data. Typi-

cally, however, one can estimate the survival experience after some threshold time.

Thus we can estimate that

Fðt j T > aÞ ¼ PðT > t j t > aÞ ¼ FðtÞ=FðaÞ

for some suitably chosen a, where a might be October 1, 1950 or later in the illus-

tration above.

In other instances, the data are subject to right truncation. In this case, the con-

dition for study membership is that the event of interest occurs before some time of

recruitment. Appendix A (data set III) gives data on transfusion-related AIDS cases

in the United States. This study contains those individuals who were diagnosed with

AIDS prior to 1988 and for whom the mode of infection was determined to be by

blood transfusion. The distribution of the time from infection to diagnosis of

AIDS (the incubation period) is of interest. In this study, individuals whose diag-

nosis occurs after the end of the study period are not included in the study, and the

times included in the study are subject to very strong selection favoring the shorter

incubation times. Right truncation is more difficult than left truncation to incorpo-

rate. Right truncation and this example are discussed further in Exercise 1.13.

1.7 COUNTING PROCESS NOTATION

Counting processes provide an alternative very compact notation for describing

many of the results discussed above, and the related martingale theory provides a

framework for deriving asymptotic properties. The theoretical framework and some

of the asymptotic results are discussed in Chapter 5. In this section, some of the
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counting process notation is introduced and the estimators, tests, and variance formulas

are reexpressed in these terms. The counting process notation is widely used in the

literature on failure time analysis, and a general acquaintance with it is important.

1.7.1 Kaplan–Meier and Related Estimators

As in Section 1.4, suppose that n individuals from a homogeneous population are

put on study at time 0. Let F be the survivor function and � be the cumulative

hazard function; these may be discrete, continuous, or mixed. For the ith individual,

let NiðtÞ count the number of failures observed in the interval ð0; t� and let

Nið0Þ ¼ 0. Note that Ni is right continuous and takes value 0 until a failure is

observed to occur, at which time it jumps to 1. Let Yi be the at-risk process defined

such that YiðtÞ ¼ 1 if the individual is without failure and uncensored just prior to

time t, and YiðtÞ ¼ 0 otherwise. By convention, Yi is taken to be left continuous.

Let N:ðtÞ ¼
Pn

i¼1 NiðtÞ and Y:ðtÞ ¼
Pn

i¼1 YiðtÞ, 0 < t < 1. Clearly, Y:ðtÞ is the

number of individuals in the entire study group that are at risk at time t, and

N:ðtÞ is the total number of observed failures in the interval ð0; t�. In the notation

of Section 1.4, N:ðtÞ ¼
P

ti� t di is a right-continuous step function with a jump of di
at ti, i ¼ 1; . . . ; k and Y:ðtÞ; 0 < t < 1 is a left-continuous step function that

specifies the number of individuals who are uncensored and surviving at time t.

Note that Y:ðtiÞ ¼ ni; i ¼ 1; . . . ; k.
The Nelson–Aalen estimator of the cumulative hazard (1.15) can be written as

the stochastic integral

�̂ðtÞ ¼
ðt
0

JðuÞ
Y :ðuÞ dN:ðuÞ; ð1:25Þ

where JðuÞ ¼ I½Y:ðuÞ > 0� with the convention that 0=0 is interpreted as 0. Note

that JðuÞ is used as a device to account for the possibility that at time u�, there
may be no items at risk. The Kaplan–Meier estimator of the survivor function is

F̂ðtÞ ¼
Y
u�t

½1� d�̂ðuÞ� ¼ Pt
0½1�

JðuÞ
Y :ðuÞ dN:ðuÞ�: ð1:26Þ

We had previously considered the Kaplan–Meier and Nelson–Aalen estimators to

be undefined for t values greater than the maximum observed time if that time cor-

responded to a censoring. The convention being used in (1.25) and (1.26), however,

takes the estimates as defined at all t, but constant following the maximum observed

time. The former convention is more appropriate in most contexts, but the latter is

convenient for some theoretical arguments.

A variance estimator for the Nelson–Aalen estimator (1.15) or (1.25) is

V̂ðtÞ ¼
ðt
0

JðuÞ
½Y :ðuÞ�2

1��N:ðuÞ
Y :ðuÞ

� �
dN:ðuÞ

¼
X
tj� t

djðnj � djÞ
n3j

; ð1:27Þ
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where �N:ðuÞ ¼ NðuÞ � Nðu�Þ. Large-sample properties of the Nelson–Aalen

estimator can be shown to hold under relatively mild conditions, as outlined in

Section 5.5. If for given t, Y :ðuÞ ! 1 for all u 2 ð0; t� as n ! 1, it is shown

that �̂ðtÞ!P �ðtÞ and

½�̂ðtÞ � �ðtÞ�=V̂ðtÞ0:5 !D Nð0; 1Þ;

where !P and !D indicate convergence in probability and convergence in distribu-

tion, respectively.

Greenwood’s variance formula (1.14) can be written

cvar ½F̂ðtÞ� ¼ ½F̂ðtÞ�2
ðt
0

1

Y :ðsÞ½Y:ðsÞ ��N:ðsÞ� dN:ðsÞ: ð1:28Þ

1.7.2 Log-Rank and Related Tests

Consider the experimental situation described in Section 1.5, where ni0 items are

placed on test in the ith group at time 0, and let NilðtÞ; t > 0 be the counting process

for the number of failures observed in ð0; t� for the lth individual in the ith group,

l ¼ 1; . . . ; ni0; i ¼ 0; . . . ; p. The corresponding at risk processes are Yi‘ðtÞ, and again
we assume independent censoring. Let Ni:ðtÞ ¼

Pni0
l¼1 NilðtÞ record the number of

observed failures in the ith group and Yi:ðtÞ ¼
P

Yi‘ðtÞ specify the number at risk

at time t. The ith component of the log-rank statistic (1.21) can now be written as

wi ¼
ð1
0

dNi:ðuÞ �
Yi:ðuÞ
Y ::ðuÞ dN::ðuÞ; ð1:29Þ

where N::ðtÞ ¼
Pp

i¼0 Ni:ðtÞ. With some algebra, it can be verified that

wi ¼
Xp
‘¼0

ð1
0

�i‘ �
Yi:ðuÞ
Y ::ðuÞ

� �
dN‘:ðuÞ; i ¼ 1; . . . ; p; ð1:30Þ

where �i‘ ¼ 1ði ¼ ‘Þ. The variance and covariance formulas can also be expressed

in counting process notation, as discussed further in Section 5.6.

BIBLIOGRAPHIC NOTES

Some useful references to life-table estimation are those by Berkson and Gage

(1952), Cutler and Ederer (1958), Chiang (1960,1968), and Gehan (1969). The

Kaplan–Meier or product limit estimator appears first to have been proposed as a

limit of the life-table estimator by Böhmer (1912). It was not followed up, however,
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and was reintroduced in the important paper by Kaplan and Meier (1958), who

showed that the estimate was a nonparametric MLE through an argument similar

to that given in Section 1.4.1. Efron (1967) showed that the estimate satisfied a cer-

tain self-consistency property and discussed asymptotic properties. Breslow and

Crowley (1974) first derived the asymptotic results for the Kaplan–Meier estimator

under a random censorship model. More recent references for asymptotic results

utilizing counting processes and martingales are reviewed in the notes to

Chapter 5. The estimates based on the life table will tend to be slightly biased

due to the grouping, and this will also typically be true for the piecewise continuous

estimate (1.17). The nonparametric maximum likelihood approach and the self-

consistency ideas of Efron (1967) were extended by Turnbull (1974, 1976) to

include left and right truncations and interval censoring. Some of this work is

reviewed in Section 3.9.1, and additional references and discussion on interval cen-

soring are given in the bibliographic notes for Chapter 3.

The Nelson–Aalen estimate was first proposed by Nelson (1969,1972) as the

basis for simple graphical checks for hazard shape in industrial life testing. Its

large-sample properties were studied by Breslow and Crowley (1974) and by

Aalen (1976). Altshuler (1970) also derived the Nelson–Aalen estimator and

gave a related estimate of the survivor function. The product integral was intro-

duced in the statistical literature by Cox (1972) as a compact description of the rela-

tionship between the hazard and the survivor function. A useful summary can be

found in Dollard and Friedman (1979). See Gill and Johansen (1990) for a compre-

hensive account of product integration in relation to failure time data.

The adequacy of the asymptotic approximations to the Kaplan–Meier and

Nelson–Aalen estimators has received some attention in the literature. It is evident

that transformations to improve the asymptotic approximation in the tail is a useful

technique and this has been explored by Klein (1991), who suggests a logistic rather

than a logð�logÞ transformation. Thomas and Grunkemeier (1975) developed a

generalized likelihood ratio test of an hypothesized value for FðcÞ at a given c

(see Exercise 1.8) and argued that a �2
1 asymptotic distribution should apply and

gave some simulations. This approach has received some attention in the literature,

and asymptotic results have been derived by Li (1995a,b), Li et al. (1996), and

Murphy (1995) for nonparametric likelihood ratio tests in various contexts. This

approach is essentially that of empirical likelihood, and the recent book by Owen

(2001) gives references and a good summary of asymptotic results.

We have given a derivation of the log-rank test in Section 1.5 that is essentially

the same as that given originally by Mantel (1966). The test has been widely used

in the literature, and both it and the weighted log-rank test arise in various contexts.

The name log-rank was coined by Peto and Peto (1972) and the motivation of the

term is not entirely clear to all — some say to apply it one first logs the data and then

ranks them. The weighted log-rank test has been considered by many authors. Tar-

one and Ware (1977) first considered the general class. Harrington and Fleming

(1982) considered a family of weight functions indexed by a parameter � that

included the Wilcoxon and log-rank tests as special cases. They derive the asymp-

totic null distribution of the maximum weighted log-rank statistic in the class.
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Fleming and Harrington (1991, Chap. 7) give an extensive discussion of log-rank

and weighted log-rank procedures and have collected numerous references.

References for counting processes and associated asymptotics are collected in

Chapter 5.

EXERCISES AND COMPLEMENTS

1.1 Consider the mouse carcinogenesis data of Appendix A (data set V).

Compute the product limit (Kaplan–Meier) estimates (1.10) of the survivor

function for the endpoint, reticulum cell sarcoma, for the control and germ-

free groups by:

(a) Ignoring failures from thymic lymphoma and other causes (i.e., eliminate

mice dying by these causes before carrying out calculations).

(b) Regarding failure times from lymphoma or other causes as right censored.

Comment on the relative merits of parts (a) and (b). (Hint: Try to understand

what is being estimated in both cases.) On the basis of the survivor function

plots, does the germ-free environment appear to reduce the risk of reticulum

cell sarcoma?

1.2 Plot on a single graph the logarithms of the estimates obtained from the life

table (1.16), product limit (1.10), and the continuous (1.17) estimates of the

survivor function for the thymic lymphoma data in the germ-free group.

Regard failures from reticulum cell sarcoma and other causes as censored.

Use grouping intervals of width 50 days for (1.16) and (1.17).

1.3 Show that the Kaplan–Meier estimate reduces to F̂ðtÞ ¼ ðno: observations >
tÞ=n when there is no censoring. Show that Greenwood’s formula (1.14)

reduces in this case to the usual estimate of the variance of a binomial

proportion. That is,

cvar ½F̂ðtÞ� ¼ n�1F̂ðtÞ½1� F̂ðtÞ�:

1.4 Let T be a discrete failure time variable taking values on the points x1; x2; . . .
with survivor function FðtÞ. Show that the area under the survivor function,Ð1
0

FðtÞ dt ¼ EðT Þ. (Note: A simple geometric proof of this is obtained by

partitioning a plot of the survivor function into rectangles with bases along

the vertical axis.)

1.5 Let T be a discrete, continuous, or mixed random variable with survivor

function FðtÞ. Show that EðTÞ ¼
Ð1
0

FðtÞ dt.

1.6 An electronic system is at continuous risk of failure with a constant hazard of

� events per hour. In addition, power surges occur each hour (i.e., at times

1,2,. . .), and at each power surge there is a 10% chance that the system will
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fail immediately. Obtain expressions for the survivor and cumulative hazard

functions. Find the mean of T .

1.7 Let the survival time T > 0 be an integer-valued random variable with finite

mean r0 and let

ri ¼ EðT � i j T > iÞ

be the expected residual life at time i; i ¼ 1; 2; . . . : Show that the survivor

function for integer t is

FðtÞ ¼ PðT > tÞ ¼
Yt
i¼1

ri�1 � 1

ri
:

Thus, in the discrete case also, the residual mean lifetime specifies the

distribution of T. (Note: The geometric argument in Exercise 1.4 can be used

to show that rj ¼ ½1� Fð1Þ � � � � � Fð j� 1Þ�=Fð jÞ, for j ¼ 1; 2; . . . .)

1.8 As in Section 1.3, let t1 < t2 < � � � < tk represent the observed failure times in

a sample of size n0 from a homogeneous population with survivor function

FðtÞ. Suppose that dj items fail at tj and that nj items are at risk at t�j .

(a) Let b be a prespecified time ðb > t1Þ and c be a constant ð0 � c � 1Þ.
Show that subject to the constraint FðbÞ ¼ c, the nonparametric

maximum likelihood estimate of FðtÞ is
~FðtÞ ¼

Y
jjtj� t

ð1� ~�jÞ;

where t0 ¼ ~�0 ¼ 0 and ~�j ¼ dj=ðnj þ aÞ if tj � b and dj=nj if tj > b,

j ¼ 1; . . . ; k. The value a is chosen to satisfy ~FðbÞ ¼ c. Note that if b � t1,

the constrained estimate is not unique for t < b. An arbitrary convention

would assign a hazard 1� c at t ¼ � for some small positive � < b.

(b) Show that the log-likelihood ratio statistic for the hypothesis FðbÞ ¼ c

can be written

R ¼
X
ijti�b

ðni � diÞ log 1þ a

ni � di

� �
� ni log 1þ a

ni

� �� �
:

(c) Thomas and Grunkemeier (1975) show that the usual asymptotic prop-

erties apply and that �2R is asymptotically �2
1 under the hypothesis. Use

this result to establish a 95% confidence interval for FðbÞ. Compare these

results with those obtained in Section 1.3 for the carcinogenesis data

(Table 1.1) with b ¼ 150.

1.9 Suppose that censored samples are available on two populations with survivor

functions F1ðtÞ and F2ðtÞ. Consider the hypothesis F2ðbÞ ¼ F1ðbÞ at some-

prespecified time b. Extend the results in Exercise 1.8 to obtain the nonparametric
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likelihood ratio statistic for this hypothesis. Apply this approach to test for

equality of the survivor functions at b ¼ 250 for the carcinogenicity data

(Table 1.1).

1.10 Show that the mean vector and variance matrix for ðd1j; . . . ; dpjÞ in the

distribution (1.18) are as asserted.

1.11 Consider again the mouse carcinogenesis data (data set V, Appendix A). Use

the log-rank test (1.16) to test the hypothesis that germ-free isolation does not

affect overall mortality.

1.12 Suppose that T1; . . . ; Tn are independent exponential variates with respective

failure rates �1; . . . ; �n. Let �1; . . . ; �m be the distinct elements of �1; . . . ; �n.

Let S ¼
Pn

i¼1 Ti.

(a) Show that the survivor function of S may be written as

FSðtÞ ¼ PðS > tÞ ¼
Xm
j¼1

pjðtÞe��jt;

where the pj’s are polynomials in t.

(b) Let �SðtÞ be the hazard function of S and show that �SðtÞ � �min for all t

and that limt!1 �SðtÞ ¼ �min, where �min ¼ minð�1; . . . ; �mÞ.

1.13 Consider the transfusion-related AIDS data in data set III, Appendix A. As

discussed in Section 1.6, these data are subject to right truncation in that a

condition for study membership is that diagnosis of AIDS takes place prior to

the end of the study period. Let T represent the number of months from

transfusion to AIDS diagnosis, and FðtÞ ¼ PðT > tÞ be the corresponding

(discrete) survivor function. Let ti be the month of diagnosis, and let ai be the

total months elapsed to the end of the study period for the ith subject,

i ¼ 1; . . . ; n.

(a) Under what conditions would the likelihood function be of the formQn
i¼1f½FðtiÞ � Fðt�i Þ�=½1� FðaiÞ�g.

(b) Explain why F can only be estimated up to a constant of proportionality.

(c) Let a ¼ maxða1; . . . ; anÞ, and find the maximum likelihood estimate

of the conditional survivor function GðtÞ ¼ FðtÞ=½1� FðaÞ� ¼
PðT > t j T � aÞ.

(d) What additional information would you need to estimate the median time

from transfusion infection to diagnosis with AIDS? (Lagakos et al., 1988;

Kalbfleisch and Lawless, 1989)

1.14 Consider the data of Table 1.2. Apply the log-rank test to compare the two

treatment groups in the trial. Consider dividing the data into three strata

consisting of patients in the age groups �15, 16–25, and �26, respectively.

Apply a log-rank test separately in each stratum and the stratified log-rank

test. Discuss the results.

30 INTRODUCTION


