
Designing Fast and
Supportable
Applications

PA R T

Two

200163_ch06_IngramX 8/6/02 2:05 PM Page 135

200163_ch06_IngramX 8/6/02 2:05 PM Page 136

137

What exactly does making an application supportable mean? It means that when a
running application encounters a problem, the exact location in the code can be located
immediately, and the root cause identified as quickly as possible. It means that an
application reports back on its status in a format that can be easily assimilated by sup-
port staff and automated monitoring processes. It means that an application needs to
be written in a way that is robust against various types of failures and takes advantage
of available features to mitigate the effects of those failures. Many factors influence
supportability, and this chapter covers the following topics to address them:

�� Tips for supportable SQL

�� How to provide tracing facilities

�� How to enable error reporting and logging

�� Run-time application configuration

�� The importance of restartability

�� How to use resumable operations in Oracle9i

This chapter is intended for both the database administrator (DBA) and developer.
If you’re a developer, consider implementing the suggestions to aid supportability.
Supportability translates directly to increased availability through reductions in out-
ages and faster problem resolution. If you’re a DBA, then you can put forward the
information in this chapter as a blueprint for the developers in your organization, with
a goal of reducing support costs.

Designing Supportable
Applications

C H A P T E R

6

200163_ch06_IngramX 8/6/02 2:05 PM Page 137

Creating Supportable SQL

This section contains four simple tips for SQL layout and naming that are frequently
missing from Oracle code yet can provide significant benefits to supportability with
minimal effort.

SQL Layout for Readability
Professional DBAs can spend a significant amount of time inspecting resource-
intensive SQL statements and investigating ways to improve them in order to improve
application response times for end users. It might surprise developers how much this
process can be expedited if SQL is written in a way that makes the SELECT list
columns, tables in the FROM clause, and WHERE predicates clear in the statement.
This is easily seen with an example. Consider this free formatted SQL statement:

SELECT Deal_Type, Deal_Num, Thin_Pack FROM TT_FX_OTC d WHERE

(((DEAL_STATE not in ('DLTD', 'MTRD', 'EXCD','ABND') or

EOD_REALISED_PREMIUM <> 0.0 or EOD_REALISED_PREMIUM_REVERSED <> 0.0) and

ALLOCATION_STATUS<>'ALLOC') or (DEAL_STATE in ('DLTD', 'MTRD','MTDL')

and d.DEAL_NUM in (select dt_vals.DEAL_NUM from DT_VALUES dt_vals where

dt_vals.DEAL_NUM = d.DEAL_NUM and dt_vals.PL_INC_SUR <> 0.0))) and

DEAL_ROLE <> 'BACK'

A DBA attempting to make sense of this SQL has a real challenge on his hands. As a
contrast, consider the same SQL formatted for readability:

SELECT Deal_Type, Deal_Num, Thin_Pack

FROM TT_FX_OTC d

WHERE

(

(

(DEAL_STATE not in ('DLTD', 'MTRD', 'EXCD','ABND')

or EOD_REALISED_PREMIUM <> 0.0

or EOD_REALISED_PREMIUM_REVERSED <> 0.0

) and ALLOCATION_STATUS<>'ALLOC'

)

or

(DEAL_STATE in ('DLTD', 'MTRD','MTDL')

and d.DEAL_NUM in

(select dt_vals.DEAL_NUM

from DT_VALUES dt_vals

where dt_vals.DEAL_NUM = d.DEAL_NUM

and dt_vals.PL_INC_SUR <> 0.0

)

)

)

and DEAL_ROLE <> 'BACK'

138 Chapter 6

200163_ch06_IngramX 8/6/02 2:05 PM Page 138

The reformatted version shows the tables involved clearly and more importantly
shows that the query result set depends on two OR clauses, where the second has a
dependency on another table. The structure of the query often relates directly to the
appearance of the query explain plan. The more closely the two match, the easier it is
to identify the part of the query on which to concentrate tuning efforts. The query
explain plan for the previous query is given in Figure 6.1 and shows that the first part
of the query requires a full table scan of the TT_FX_OTC table, identified by the excla-
mation mark. Tuning efforts could therefore concentrate on that part. Using the unfor-
matted statement, the relationship between the query plan and the SQL is not evident.

Most developers would never consider laying out code—be it Java, C, or PL/SQL—
in an unformatted way. The same rule should apply to SQL statements.

Use Table Aliases
Another simple SQL fix that can make tuning efforts easier is to always use table
aliases in SQL statements, in order to make explicit the table from which a SELECT list
column originates. Identification of the underlying table for each SELECT list column
is required during SQL tuning in order to check whether appropriate indexes on the
table are being used. The process can be appreciably slower when a query contains one
or more joins, and columns in the SELECT list don’t identify the table in the join. The
following SQL contains a SELECT list column that could originate from any of three
underlying tables:

SELECT SUM(PREMIUM_REVAL)

FROM TT_FX TT,DT_VALUES DT,SD_LIVE_DEAL_STATES LDS

WHERE DT.DEAL_NUM = TT.DEAL_NUM

AND TT.TRADING_BOOK = :b2 AND TT.DEAL_STATE = LDS.NAME AND

LDS.LIVE = 'Y'

In this case, a simple change to the SELECT list to include the table alias, DT, means
the DBA no longer needs to query the Oracle dictionary to identify the underlying
table, as shown:

SELECT SUM(DT.PREMIUM_REVAL)

FROM TT_FX TT,DT_VALUES DT,SD_LIVE_DEAL_STATES LDS

Designing Supportable Applications 139

Figure 6.1 Explain plan structure.

200163_ch06_IngramX 8/6/02 2:05 PM Page 139

WHERE DT.DEAL_NUM = TT.DEAL_NUM

AND TT.TRADING_BOOK = :b2 AND TT.DEAL_STATE = LDS.NAME AND

LDS.LIVE = 'Y'

When used together with the previous tip on layout, the speed with which DBAs
can analyze queries can be increased significantly, even for the simple examples
shown. The gains are much higher for longer and more complicated SQL.

Use Explicit Constraint Names
Explicit names should be used for Oracle constraints in DDL statements, rather than
allowing Oracle to generate them. Oracle-generated names always begin with the pre-
fix SYS_C. Constraint names are used in error messages generated by Oracle when
constraints are violated. The more meaningful the name, the quicker the DBA can iden-
tify the cause of the underlying problem. The following example shows the Oracle-
generated constraint names for a primary key and foreign key on the EMP table:

create table emp

(empno number(4) primary key,

ename varchar2(10),

deptno number(2) references dept);

select constraint_name,constraint_type

from user_constraints where table_name=’EMP’;

CONSTRAINT_NAME CONSTRAINT_TYPE

----------------- -----------------

SYS_C002402 P

SYS_C002403 R

The existence of system-generated constraint names can be avoided by explicit nam-
ing of the constraints. The previous example can be rewritten using the following SQL:

create table emp

(empno number(4) constraint pk_emp primary key,

ename varchar2(10),

job varchar2(9)

deptno number(2) constraint fk_deptno references dept);

Using explicit names has an extra benefit when the DBA needs to compare schema
objects during schema upgrade procedures, such as using Oracle Change Manager. If
you allow Oracle to choose the names, the chances are that a constraint with the same
purpose will have different names in different databases. Choosing explicit names
avoids that possibility and makes change management less complicated. Reduction in
complexity for any process generally leads to higher availability.

In Oracle9i, the data dictionary views that display constraint information include
an extra column named GENERATED to make it easy to identify constraints that use
system-generated (as opposed to user-generated) names, as shown in the following
example:

140 Chapter 6

200163_ch06_IngramX 8/6/02 2:05 PM Page 140

select constraint_name,constraint_type,generated

from all_constraints

where table_name like 'EMP%' and constraint_type='P';

CONSTRAINT_NAME CONSTRAINT_TYPE GENERATED

----------------- ----------------- ---------------

PK_EMP P USER NAME

SYS_C001898 P GENERATED NAME

Use Meaningful Object Names
A consistent naming scheme for objects helps the DBA to identify the types of objects
used in SQL statements more quickly by enabling the types to be identified from the
name. For example, many development teams use a V_ prefix or _V suffix to identify
views, an SP_ prefix to identify stored procedures, and _SEQ to identify sequences. The
use of IX prefixes or suffixes for indexes also helps to make sense of explain plans.

The ability to directly identify the underlying objects in SQL speeds up the tuning
process. Proponents of naming standards fall into two camps, those who use prefixes
and those who prefer suffixes. Prefixes are easier to identify in SQL because they
appear on the front of names, whereas suffixes make for easier identification of groups
of related objects by enabling the use of a wildcard on the end of the base object name
during queries of the Oracle data dictionary tables. The exact details of the standard
are not as important as having one and adhering to it at a company level.

Trace Facilities

All applications—whether interactive graphical user interface (GUI) or batch—should
provide built-in features for enabling and disabling Oracle SQL trace, including stan-
dard SQL tracing, tracing with bind variables, and tracing with event waits.

NOTE SQL tracing is used for the performance profiling of SQL statements
submitted to the database server and is covered in more detail in Chapters 9
and 28.

The options can be set using the SET_EV procedure, as shown in the following
examples for a session identified by SID�8 and SERIAL�149:

REM identical to ALTER SESSION SET SQL_TRACE TRUE, level 1

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>1,NM=>'');end;

REM trace SQL with bind variables, level 5

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>5,NM=>'');end;

REM trace SQL with event waits, level 9

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>9,NM=>'');end;

Designing Supportable Applications 141

200163_ch06_IngramX 8/6/02 2:05 PM Page 141

REM trace SQL with bind variables, event waits, level 13

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>13,NM=>'');end;

REM trace off for one session, level 0

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>0,NM=>'');end;

Although the DBA can set SQL trace for any session, it’s better for developers to pro-
vide facilities to set the trace within applications themselves, as this provides finer
granularity over the traced sections of code. For example, it’s possible to create a map-
ping table of procedure names and trace levels in a table, and have the procedure read
and set the trace settings at the top of the procedure, and unset them at the end. That
enables tracing to be turned on and off for individual procedures. In general, it’s better
to concentrate tracing efforts on the smallest code section possible because tracing can
generate massive amounts of trace information in a short time. In the case of batch
applications, tracing may need to be turned on at the start of processing, in which case
the DBA will not be able to allow tracing early enough during execution by calling
SET_EV from a separate session. Command-line utilities should enable tracing to be
set through command-line arguments.

The ability to trace the values of bind variables and values is especially important
when diagnosing the causes of obscure Oracle error messages in PL/SQL code, especially
triggers. It’s surprising how often code fails with incorrect values that, according to the
developer, couldn’t possibly be passed into subroutines. By building extensive tracing
facilities into an application, the causes of such problems can be definitively identified
more quickly. The inclusion of tracing facilities in code adds an overhead to the software
development process. It usually pays off quickly. Chapter 28 shows more examples.

It’s necessary for the application code to have access to the System ID (SID) and
SERIAL# values that identify the current session in order to pass the values to the
SET_EV procedure parameters SI and SE. One way to facilitate that is for the DBA to
provide a wrapper around the SET_EV procedure that has the relevant privileges
required to access the session settings. Chapter 25 on auditing shows three different
ways for identifying the SID and SERIAL# for the current session.

Error Reporting and Logging

All application error messages should provide sufficient information to identify unam-
biguously the exact location at which an error occurred in code and the cause. Too
often, applications use a single error number as a cover-all for several possible causes,
and this makes root cause diagnosis more difficult than it needs to be for support staff.
Oracle itself has been guilty of this. If you’ve ever reported an error message to Oracle
worldwide support (WWS) and it has taken a long time to identify the root cause,
that’s probably because the developer of the underlying code could have provided a
more specific cause for the error but chose not to in order to get the code completed
quicker. Error-handling code is tedious for the developer to implement, but that’s a
poor excuse for not implementing in a way that can minimize support requirements. If
error handling is not complete, then the onus is on the customer and WWS to try and

142 Chapter 6

200163_ch06_IngramX 8/6/02 2:05 PM Page 142

work out which of the range of possible causes is the real one. In such cases, most of the
effort to resolve the problem needs to be made by the customer.

For the developer, incomplete error handling makes application delivery slightly
quicker, but it’s a completely false economy from a business point of view. For exam-
ple, an extra couple of minutes spent by a developer adding code to identify the loca-
tion of an error and to specify the exact cause can translate into savings in terms of
hours when an error manifests itself in the code at run time. It’s not necessary to report
locations in a way that is meaningful to users but to report information in a way that is
meaningful to support. The following is a PL/SQL code fragment showing the use of
a simple numeric variable whereami and string, the_location, that can be used to iden-
tify the precise code location of errors in error messages:

...

the_location:='update_procedure';

whereami := 6;

cursor_name := dbms_sql.open_cursor;

whereami := 7;

dbms_sql.parse(cursor_name,update_sql,dbms_sql.v7);

whereami := 8;

ret := dbms_sql.execute(cursor_name);

whereami := 9;

dbms_sql.close_cursor(cursor_name);

whereami := 10;

cursor_name := dbms_sql.open_cursor;

whereami := 11;

dbms_sql.parse(cursor_name,update_last_check_sql,dbms_sql.v7);

whereami := 12;

ret := dbms_sql.execute(cursor_name);

whereami := 13;

dbms_sql.close_cursor(cursor_name);

EXCEPTION

when others then

dbms_output.put_line(location||':'

whereami||':'||

sqlerrm||':'||sqlcode);

An example of error message reporting in one of Oracle’s own products is quite
enlightening. If you’ve set up Oracle Real Application Clusters (RAC), as described in
Chapter 22, you’ll be aware that Oracle uses the UNIX remote copy (rcp) command to
enable the delivery of the Oracle software to each node in the cluster during installa-
tion using the Oracle Installer. Chapter 1 covers the basic configuration requirements
for rcp. These days, other Oracle products use rcp also.

If you’ve failed to configure rcp correctly, then the Oracle Installer will report on a
failure to connect to the other nodes in the cluster at install time. The developer could
have taken the trouble to report that an rcp connection failed but chose not to. If he or
she had, you could have addressed the problem in a couple of minutes. Instead, you,
as the customer, are left to work out what failure to connect to the other nodes means.
Eventually, through a process of trial and error, you’ll probably discover that the

Designing Supportable Applications 143

200163_ch06_IngramX 8/6/02 2:05 PM Page 143

remote shell (rsh) configuration is incorrect and that resolving this fixes the install
problem, but you shouldn’t have to. The developer, with a little extra diligence, could
have saved you the effort by being more specific on the cause of the problem when
reporting the error. Who knows how many other problems will result in that same
error message and cause the whole process to be repeated?

The mechanism used to report errors is just as important as the content of the
messages themselves. Three main techniques are typically used for reporting errors,
in addition to message dialogs typically returned by interactive GUI applications:
files, tables, and email. Use of email is covered in Chapter 24 on monitoring and
health checks. Files and tables have an advantage in that records of problems and sta-
tus information are stored persistently to enable historical information to be searched
easily.

The format used to log information should be designed to be easy for search tools to
scan and follow a standard format. For example, log output might contain a fixed for-
mat date as the first field, then a severity indication in the second field, then the data-
base instance in the third, and so on. If logging information has a poorly thought out
format, it can add complexity to the processing performed by monitoring tools that
need to raise alerts based on the logged information. Oracle’s own alert log informa-
tion does not follow a standard published format. As a result, it’s sometimes necessary
to join lines together to pull out the times that events occurred. Performing pattern
matching on various parts of the message information is less complex if all messages
follow a standard, predefined format and fit into a single line.

Error Logging Using Files
Oracle provides the UTL_FILE package to provide developers with a facility to log
messages in server side files. In order to use the facilities of the UTL_FILE package, the
DBA needs to make sure the UTL_FILE_DIR initialization parameter is set to the direc-
tories in which the file creation is to be enabled.

NOTE Sometimes DBAs choose to use the wildcard “*” as the UTL_FILE_DIR
parameter. This requires less effort than choosing an explicit list of directories
but represents a major security loophole because it enables any file owned by
the UNIX oracle account to be accessed by UTL_FILE, including files that are part
of the database. As a result, * should never be used for a production system.

Whenever you use UTL_FILE, great care needs to be taken to ensure that exceptions
raised during logging via UTL_FILE don’t affect the behavior of the application. In
general, error and status logging failures should be transparent to the application. For
example, you wouldn’t expect an Oracle application to stop working if the disk on
which the Oracle alert log is located became filled. The following example shows a pro-
cedure that can be used to log errors to a file /tmp/logfile.txt:

procedure sp_error_log(vtext in varchar2) is

fhandle utl_file.file_type;

location varchar2(16) := 'sp_error_log';

144 Chapter 6

200163_ch06_IngramX 8/6/02 2:05 PM Page 144

begin

fhandle := utl_file.fopen(‘/tmp’,’logfile.txt’,’a’);

utl_file.put_line(fhandle,vtext);

utl_file.fclose(fhandle);

exception

when utl_file.invalid_path then

sp_mail_log_error(location||': invalid path');

when utl_file.invalid_mode then

sp_mail_log_error(location||': invalid mode');

when utl_file.invalid_operation then

sp_mail_log_error(location||': invalid operation');

when utl_file.invalid_filehandle then

sp_mail_log_error(location||': invalid filehandle');

when utl_file.write_error then

sp_mail_log_error(location||': write error');

when utl_file.read_error then

sp_mail_log_error(location||': read error');

when utl_file.internal_error then

sp_mail_log_error(location||': internal error');

when others then

utl_file.fclose(fhandle);

end;

Errors during logging itself still need to be notified because valuable information is
potentially lost while logging is failing. In this case, SP_MAIL_LOG_ERROR uses
SMTP mail to notify the DBA team of logging failures. Chapter 24 contains a procedure
SP_SENDMAIL that could be used as the basis for such a procedure.

It’s worth pointing out that the procedure doesn’t cache the file handle between calls
and instead opens it every time. This means that the log file can be removed or com-
pressed between calls and the logging will continue to work. The Oracle alert log
behaves in a similar way. Opening files in append mode, as indicated by “a,” creates
the named file if it doesn’t exist already. The procedure also reports all the possible
causes of failures to write to the log file. It would be easier to simply use a single
WHEN OTHERS exception to handle all the possible errors, but, as explained earlier,
this makes it more difficult to identify the actual cause of the problem if logging fails.
So the error handler mails the specific cause of any problem with logging so it can be
resolved more quickly.

Error Logging Using Tables
Error logging using tables rather than files makes it significantly easier to report on
error and status information because SQL can be used to perform the process and
present the information. However, the need to commit error and status information in
log tables in order to view it from other sessions can interfere with the transaction units
of processing that failed. Oracle provides a feature known as autonomous (or nested)
transactions to enable persistent logging to tables to be performed in a way that doesn’t

Designing Supportable Applications 145

200163_ch06_IngramX 8/6/02 2:05 PM Page 145

have side effects on the transactions from which the log message is generated.
Autonomous transactions are enabled using the AUTONOMOUS_TRANSACTION
pragma in a PL/SQL procedure as shown in the following example:

create table log_table(msg varchar2(10));

create procedure log_record(p_msg in varchar2) is

pragma autonomous_transaction;

begin

insert into log_table values(p_msg);

commit;

end;

You can demonstrate the behavior by inserting rows into LOG_TABLE from within
the same session both directly via SQL INSERTS and using the autonomous transac-
tion. Subsequent viewing of the contents of LOG_TABLE from another session will
confirm that inserts performed via the autonomous transaction will be present, and
those performed via INSERTS won’t be visible until you commit them. This shows that
the autonomous transaction has taken place without side effects on the main transac-
tion in the other session.

Run Time Configuration

Application performance and supportability can benefit from the capability to set ses-
sion attributes at run time. The attributes might include the optimizer goal for the ses-
sion, the sort area size, trace settings, and resumable space allocation, among others.
The following example shows a database logon trigger, which is an appropriate point
at which to configure session-specific parameters:

create trigger session_config after logon on database

declare

begin

configure_session_for_user(user);

exception

when others then

null;

end;

The session-specific settings might be held in a table containing name value pairs for
each username and parameter, and be activated through the configure_session_
for_user procedure. Some possible settings are shown in the following:

select * from user_parameters;

USERNAME NAME VALUE

---------- --------------- ---------

BATCH optimizer goal ALL ROWS

146 Chapter 6

200163_ch06_IngramX 8/6/02 2:05 PM Page 146

BATCH resumable YES

BATCH sort area 10000000

ONLINE optimizer goal FIRST ROWS

ONLINE sort area 65536

ONLINE resumable NO

By providing mechanisms for influencing session behavior through data held in
tables, the developer makes it possible for code behavior to be enhanced without re-
quiring more risky changes to application code.

Reporting on Application Status

Oracle provides a package, DBMS_APPLICATION_INFO, that contains procedures to
enable developers to build facilities into their applications to report on the status of
application processing. Each procedure call updates a related column in the V$SES-
SION table. The three package procedures and the related column in V$SESSION are
shown in Table 6.1.

The DBA can then query the columns in V$SESSION using SQL to determine the
application status, for example, if users report that the application appears to be stalled.
Although the procedures can be used in any way the application developer chooses, the
names are intended to suggest the usage. So the SET_CLIENT_INFO might be called
once, at application connection time, to identify the application as follows:

begin dbms_application_info.set_client_info('DbCool'); end;

The SET_MODULE routine is typically used to identify a business process, which
itself might map to a single PL/SQL stored procedure in the application. The ACTION_
NAME, used to identify the current action within the module, can be set at the time of
the call to SET_MODULE or be passed as an empty string at the top of a procedure and
set separately using the SET_ACTION procedure as in the following example:

procedure sp_process_trades is
begin
-- identify the module to V$SESSION
dbms_application_info.set_module(

module_name=>'Trade Processing',
action_name=>'');

for rec in (select trade_id from all_trades where processed='N') loop

-- identify the current trade to V$SESSION
dbms_application_info.set_action('Processing Trade '||trade_id);

-- process the trade..
sp_process_one_trade(rec.trade_id);

end loop;

Designing Supportable Applications 147

200163_ch06_IngramX 8/6/02 2:05 PM Page 147

-- MUST UNSET THE VALUES when processing complete

-- don’t forget to unset in exception handlers also

dbms_application_info.set_module(

module_name=>'',

action_name=>'');

end;

The use of DBMS_APPLICATION_INFO has a very beneficial side effect on perfor-
mance management as well as supportability. The ability to identify business transac-
tions is a critical success factor for efficient performance management. As you might
expect, the best performance management tools can present information based upon
time spent in business transactions, rather than individual microscopic SQL state-
ments. The ability to do this relies on the application setting values for MODULE_
NAME and ACTION_NAME at appropriate points in the code and unsetting them
when processing is complete.

In effect, DBMS_APPLICATION_INFO provides a facility for developers and
designers to instrument the performance of business transactions using a few simple
procedure calls. If all Oracle applications were designed up front to include calls to
DBMS_APPLICATION_INFO, then performance problems would be identified faster
and solved faster. Chapter 16 on using performance management tools shows how the
power of DBMS_APPLICATION_INFO can be unleashed using a suitable tool that
takes advantage of the information.

It’s worth noting that an additional procedure present in DBMS_APPLICATION_
INFO, SET_SESSION_LOGOPS, can be used to log status information about long-
running operations into the V$SESSION_LONGOPS table. Several of Oracle’s own
tools, such as RMAN, make use of this feature, and Oracle designers can do the same.
The specification of the package is shown in the following code:

procedure set_session_longops(rindex in out pls_integer,

slno in out pls_integer,

op_name in varchar2 default null,

target in pls_integer default 0,

context in pls_integer default 0,

sofar in number default 0,

totalwork in number default 0,

target_desc in varchar2

default 'unknown target',

units in varchar2 default null);

148 Chapter 6

Table 6.1 DBMS_APPLICATION_INFO Procedures

PROCEDURE NAME V$SESSION COLUMN

SET_CLIENT_INFO CLIENT_INFO

SET_MODULE MODULE

SET_ACTION ACTION

200163_ch06_IngramX 8/6/02 2:05 PM Page 148

Restartability

Restartability is a term I use to define the behavior of applications that can continue to
function when Oracle database management system (DBMS) errors occur during pro-
cessing. For example, if a tablespace space shortage occurs during a batch insert, an
application can either exit and report an error, or report an error and attempt to repeat
the failed operation on a timer until the underlying problem is fixed. Programmers
using Oracle’s precompiler interfaces, such as Pro*C, can take advantage of features in
the language to identify the array index at which an array insert fails and restart the
insert from that point. In general, making programs robust against database errors of
any kind adds complexity to the code, and it can be difficult to balance the cost and
complexity of extra coding against the benefits that result.

The consequences of aborting a long-running operation, rather than suspending it,
can be very significant in terms of resource usage. For example, if a long-running batch
job fails due to a space shortage, then the transaction needs to be rolled back and resub-
mitted. Both operations cause large amounts of redo generation. Prior to Oracle9i, it
was the responsibility of the programmer to build features to work around space prob-
lems. For some situations like rollback segments filling up during a long transaction,
there was often no practical alternative other than to roll back the transaction and
restart. By their very nature, transactions that cause space problems tend to be long
running and costly to repeat.

Resumable Operations in Oracle9i
Oracle9i provides resumable space management features that can be used to suspend
sessions at the database level when space problems are encountered, until the DBA
adds more space. Oracle’s own products take advantage of these features. For exam-
ple, Oracle’s import utility includes a resumable�y option. Using features in the data-
base rather than providing similar features at the application is preferable because it
reduces application-coding complexity.

Three classes of spaces errors are resumable: those resulting from out-of-space
errors on data segments and rollback segments, those resulting from maximum
extents-reached conditions, and those resulting from space quota-exceeded errors.
Even long-running queries that perform sorts that exceed temporary space availability
can be resumed. Be aware that space allocation errors for rollback segments in dictio-
nary managed tablespaces are not resumable. This should not be an issue, as you
should be using the automatic undo features of Oracle9i in any case (as covered in
Chapter 2). In the simplest case, making an operation resumable means adding the fol-
lowing SQL statement to a section of code:

alter session enable resumable;

Because suspended statements can lock system resources, possibly for an extended
period, the RESUMABLE privilege is required in order to execute resumable opera-
tions. The following statement disables resumable operations:

alter session disable resumable;

Designing Supportable Applications 149

200163_ch06_IngramX 8/6/02 2:05 PM Page 149

Resumable operations that are suspended are shown in the DBA_RESUMABLE
view, and if resumable operations are in use, it’s essential that the DBA group performs
monitoring for the early detection of such errors. Here is an example of a transaction
that has suspended due to lack of undo space, which could be resolved by extending
the undo tablespace datafile:

select error_msg from dba_resumable where status <> 'NORMAL';

ERROR_MSG

--

ORA-30036: unable to extend segment by 16 in undo tablespace 'UNDOTBS2'

After a timeout period, which by default is set to 7,200 seconds and configurable
through the ALTER SESSION ENABLE RESUMABLE TIMEOUT seconds statement,
the suspended statement returns an error to the application. The DBMS_RESUMABLE
package contains routines to enable resumable parameters to be set and to read named
sessions, and it includes an ABORT procedure to enable a suspended operation to be
aborted by a DBA, if necessary.

Constraining Undo Requirements
Long-running batch jobs, such as data load and purge operations, can exhaust the
available undo space. Although Oracle9i provides resumable operations to provide the
potential for space shortages to be fixed, it’s not always a good idea to do that. Devel-
opers can take steps to constrain undo requirements by performing operations in
batches, rather than in a single large transaction. In general, Oracle performs the same
bulk DML operation faster when undo requirements are constrained within limits by
performing the operation across several transactions. Chapter 19 contains an example
showing that a reduction in import time can result from placing an upper limit on
transaction size.

For simple purge operations using the DML DELETE operation, the ROWNUM
pseudocolumn can be used to constrain transaction size to a fixed number of rows. For
example, the following statement has unbounded undo requirements that are deter-
mined by the number of rows in the ALL_TRANSACTIONS table in the given state:

delete from all_transactions where processed='Y';

The following PL/SQL does the same job but commits after each batch of 10,000
rows deleted, which means that the undo requirements are limited to the space
required to delete 10,000 rows, independent of the size of the ALL_TRANSACTIONS
table:

while true loop

delete from all_transactions where processed=’Y’

and rownum <=10000;

150 Chapter 6

200163_ch06_IngramX 8/6/02 2:05 PM Page 150

exit when SQL%NOTFOUND;

commit;

end loop;

Summary

In some large organizations, the development and DBA teams often work in isolation
without a clear understanding of each other’s roles. By making the developer and DBA
more aware of the requirements of the other, both performance and availability can be
enhanced. Apparently mundane development practices, such as adherence to well-
thought-out naming standards, code layout, and error reporting, can pay off signifi-
cantly in production environments. The use of the procedures in the DBMS_APPLI-
CATION_INFO package systematically throughout the development cycle for all
Oracle applications can pay off significantly in terms of earlier problem diagnosis and
an enhanced capability for performance management. The DBA can enhance availabil-
ity by ensuring that organizations make use of the resumable space operations avail-
able in Oracle9i. The potential for reducing outages through these features is a very
compelling reason to upgrade to Oracle9i, and the DBA has an important role to play
as an evangelist for Oracle9i within the development community.

Designing Supportable Applications 151

200163_ch06_IngramX 8/6/02 2:05 PM Page 151

200163_ch06_IngramX 8/6/02 2:05 PM Page 152

