
CHAPTER 1

BEAMS IN BENDING

This book deals with the extension, bending, and torsion of bars, especially thin-
walled members. Although computational approaches for the analysis and design of
bars are emphasized, traditional analytical solutions are included.

We begin with a study of the bending of beams, starting with a brief review of
some of the fundamental concepts of the theory of linear elasticity. The theory of
beams in bending is then treated from a strength-of-materials point of view. Both
topics are treated more thoroughly in Pilkey and Wunderlich (1994). Atanackovic
and Guran (2000), Boresi and Chong (1987), Gould (1994), Love (1944), and Sokol-
nikoff (1956) contain a full account of the theory of elasticity. References such as
these should be consulted for the derivation of theory-of-elasticity relationships that
are not derived in this chapter. Gere (2001), Oden and Ripperger (1981), Rivello
(1969), and Uugural and Fenster (1981) may be consulted for a detailed develop-
ment of beam theory.

1.1 REVIEW OF LINEAR ELASTICITY

The equations of elasticity for a three-dimensional body contain 15 unknown func-
tions: six stresses, six strains, and three displacements. These functions satisfy three
equations of equilibrium, six strain–displacement relations, and six stress–strain
equations.

1.1.1 Kinematical Strain–Displacement Equations

The displacement vector u at a point in a solid has the three components ux (x, y, z),
uy(x, y, z), uz(x, y, z) which are mutually orthogonal in a Cartesian coordinate sys-
tem and are taken to be positive in the direction of the positive coordinate axes. In
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2 BEAMS IN BENDING

vector notation,

u =

ux

uy

uz


 = [

ux uy uz
]T (1.1)

Designate the normal strains by εx , εy , and εz and the shear strains are γxy, γxz, γyz .
The shear strains are symmetric (i.e., γi j = γ j i ). In matrix notation

� =




εx

εy

εz

γxy

γxz

γyz




= [
εx εy εz γxy γxz γyz

]T = [
εx εy εz 2εxy 2εxz 2εyz

]T

(1.2)

As indicated, γik = 2εik , where γik is sometimes called the engineering shear strain
and εik the theory of elasticity shear strain.

The linearized strain–displacement relations, which form the Cauchy strain ten-
sor, are

εx = ∂ux

∂x
εy = ∂uy

∂y
εz = ∂uz

∂z

γxy = ∂uy

∂x
+ ∂ux

∂y
γxz = ∂uz

∂x
+ ∂ux

∂z
γyz = ∂uz

∂y
+ ∂uy

∂z

(1.3)

In matrix form Eq. (1.3) can be written as


εx

εy

εz

γxy

γxz

γyz




=




∂x 0 0
0 ∂y 0
0 0 ∂z

∂y ∂x 0
∂z 0 ∂x

0 ∂z ∂y




ux

uy

uz


 (1.4)

or

� = D u

with the differential operator matrix

D =




∂x 0 0
0 ∂y 0
0 0 ∂z
∂y ∂x 0
∂z 0 ∂x

0 ∂z ∂y




(1.5)
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Six strain components are required to characterize the state of strain at a point
and are derived from the three displacement functions ux , uy, uz . The displacement
field must be continuous and single valued, because it is being assumed that the body
remains continuous after deformations have taken place. The six strain–displacement
equations will not possess a single-valued solution for the three displacements if the
strains are arbitrarily prescribed. Thus, the calculated displacements could possess
tears, cracks, gaps, or overlaps, none of which should occur in practice. It appears
as though the strains should not be independent and that they should be required to
satisfy special conditions. To find relationships between the strains, differentiate the
expression for the shear strain γxy with respect to x and y,

∂2γxy

∂x ∂y
= ∂2

∂x ∂y

∂ux

∂y
+ ∂2

∂x ∂y

∂uy

∂x
(1.6)

According to the calculus, a single-valued continuous function f satisfies the condi-
tion

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x
(1.7)

With the assistance of Eq. (1.7), Eq. (1.6) may be rewritten, using the strain–
displacement relations, as

∂2γxy

∂x ∂y
= ∂2εx

∂y2
+ ∂2εy

∂x2
(1.8)

showing that the three strain components γxy , εx , εy are not independent functions.
Similar considerations that eliminate the displacements from the strain–displacement
relations lead to five additional relations among the strains. These six relationships,

2
∂2εx

∂y ∂z
= ∂

∂x

(
−∂γyz

∂x
+ ∂γxz

∂y
+ ∂γxy

∂z

)

2
∂2εy

∂x ∂z
= ∂

∂y

(
−∂γxz

∂y
+ ∂γxy

∂z
+ ∂γyz

∂x

)

2
∂2εz

∂x ∂y
= ∂

∂z

(
−∂γxy

∂z
+ ∂γyz

∂x
+ ∂γxz

∂y

)

∂2γxy

∂x ∂y
= ∂2εx

∂y2
+ ∂2εy

∂x2

∂2γxz

∂x ∂z
= ∂2εx

∂z2
+ ∂2εz

∂x2

∂2γyz

∂y ∂z
= ∂2εz

∂y2
+ ∂2εy

∂z2

(1.9)
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are known as the strain compatibility conditions or integrability conditions. Although
there are six conditions, only three are independent.

1.1.2 Material Law

The kinematical conditions of Section 1.1.1 are independent of the material of which
the body is made. The material is introduced to the formulation through a material
law, which is a relationship between the stresses � and strains �. Other names are
the constitutive relations or the stress–strain equations.

Figure 1.1 shows the stress components that define the state of stress in a three-
dimensional continuum. The quantities σx , σy, and σz designate stress components
normal to a coordinate plane and τxy, τxz, τyz, τyx , τzx , and τzy are the shear
stress components. In the case of a normal stress, the single subscript indicates that
the stress acts on a plane normal to the axis in the subscript direction. For the shear
stresses, the first letter of the double subscript denotes that the plane on which the
stress acts is normal to the axis in the subscript direction. The second subscript letter
designates the coordinate direction in which the stress acts. As a result of the need
to satisfy an equilibrium condition of moments, the shear stress components must be
symmetric that is,

τxy = τyx τxz = τzx τyz = τzy (1.10)

Then the state of stress at a point is characterized by six components. In matrix form,

σx

x

y

σy

σz

τxy

τxz

τyx

τzx

τyz

τzy

z

Figure 1.1 Notation for the components of the Cartesian stress tensor.



REVIEW OF LINEAR ELASTICITY 5

� =




σx

σy
σz

τxy

τxz

τyz




= [
σx σy σz τxy τxz τyz

]T (1.11)

For a solid element as shown in Fig. 1.1, a face with its outward normal along
the positive direction of a coordinate axis is defined to be a positive face. A face
with its normal in the negative coordinate direction is defined as a negative face.
Stress (strain) components on a positive face are positive when acting along a positive
coordinate direction. The components shown in Fig. 1.1 are positive. Components on
a negative face acting in the negative coordinate direction are defined to be positive.

An isotropic material has the same material properties in all directions. If the
properties differ in various directions, such as with wood, the material is said to
be anisotropic. A material is homogeneous if it has the same properties at every
point. Wood is an example of a homogeneous material that can be anisotropic. A
body formed of steel and aluminum portions is an example of a material that is
inhomogeneous, but each portion is isotropic.

The stress–strain equations for linearly elastic isotropic materials are

εx = σx

E
− ν

E
(σy + σz)

εy = σy

E
− ν

E
(σx + σz)

εz = σz

E
− ν

E
(σx + σy)

γxy = τxy

G

γxz = τxz

G

γyz = τyz

G

(1.12)

where E is the elastic or Young’s modulus, ν is Poisson’s ratio, and G is the shear
modulus. Only two of these three material properties are independent. The shear
modulus is given in terms of E and ν as

G = E

2(1 + ν)
(1.13)
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


εx

εy

εz

· · ·
γxy

γxz

γyz




= 1

E




1 −ν −ν
...

−ν 1 −ν
... 0

−ν −ν 1
...

· · · · · · · · · ... · · · · · · · · ·
... 2(1 + ν) 0 0

0
... 0 2(1 + ν) 0
... 0 0 2(1 + ν)







σx

σy

σz

· · ·
τxy

τxz

τyz




� = E−1 � (1.14)

Stresses may be written as a function of the strains by inverting the six relation-
ships of Eq. (1.12) that express strains in terms of stresses. The result is

σx = λe + 2Gεx

σy = λe + 2Gεy

σz = λe + 2Gεz

τxy = Gγxy τxz = Gγxz τyz = Gγyz

(1.15)

where e is the change in volume per unit volume, also called the dilatation,

e = εx + εy + εz (1.16)

and λ is Lamé’s constant,

λ = νE

(1 + ν)(1 − 2ν)
(1.17)

The matrix form appears as


σx

σy

σz

· · ·
τxy

τxz

τyz




= E

(1 + ν)(1 − 2ν)




1 − ν ν ν
.
.
.

ν 1 − ν ν
.
.
. 0

ν ν 1 − ν
.
.
.

· · · · · · · · ·
.
.
.

.

.

.
1 − 2ν

2
0 0

0
.
.
. 0

1 − 2ν

2
0

.

.

. 0 0
(1 − 2ν)

2







εx

εy

εz

· · ·
γxy

γxz

γyz




� = E � (1.18)



REVIEW OF LINEAR ELASTICITY 7

For uniaxial tension, with the normal stress in the x direction given a constant
positive value σ0, and all other stresses set equal to zero,

σx = σ0 > 0 σy = σz = τxy = τyz = τxz = 0 (1.19a)

The normal strains are given by Hooke’s law as

εx = σ0

E
εy = εz = −νσ0

E
(1.19b)

and the shear strains are all zero. Under this loading condition, the material under-
goes extension in the axial direction x and contraction in the transverse directions y
and z. This shows that the material constants ν and E are both positive:

E > 0 ν > 0 (1.20)

In hydrostatic compression p, the material is subjected to identical compressive
stresses in all three coordinate directions:

σx = σy = σz = −p p > 0 (1.21)

while all shear stresses are zero. The dilatation under this loading condition is

e = − 3p

3λ + 2G
= −3p(1 − 2ν)

E
(1.22)

Since the volume change in hydrostatic compression is negative, this expression for
e implies that Poisson’s ratio must be less than 1

2 :

ν < 1
2 (1.23)

and the following properties of the elastic constants are established:

E > 0 G > 0 λ > 0 0 < ν < 1
2 (1.24)

Materials for which ν ≈ 0 and ν ≈ 1
2 are very compressible or very incompressible,

respectively. Cork is an example of a very compressible material, whereas rubber is
very incompressible.

1.1.3 Equations of Equilibrium

Equilibrium at a point in a solid is characterized by a relationship between internal
(volume or body) forces pV x , pV y, pV z, such as those generated by gravity or accel-
eration, and differential equations involving stress. Prescribed forces are designated
with a bar placed over a letter. These equilibrium or static relations appear as

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ pV x = 0
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∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ pV y = 0 (1.25)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ pV z = 0

where pV x , pV y , pV z are the body forces per unit volume. In matrix form,




∂x 0 0
... ∂y ∂z 0

0 ∂y 0
... ∂x 0 ∂z

0 0 ∂z
... 0 ∂x ∂y







σx

σy

σz

· · ·
τxy

τxz
τyz




+




pV x

pV y

pV z


 =




0

0

0




DT � + pV = 0

(1.26)

where the matrix of differential operators DT is the transpose of the D of Eq. (1.5).
These relationships are derived in books dealing with the theory of elasticity and,
also, in many basic strength-of-materials textbooks.

1.1.4 Surface Forces and Boundary Conditions

The forces applied to a surface (i.e., the boundary) of a body must be in equilibrium
with the stress components on the surface. Let Sp denote the part of the surface of
the body on which forces are prescribed, and let displacements be specified on the
remaining surface Su . The surface conditions on Sp are

px = σx nx + τxyny + τxznz

py = τxynx + σyny + τyznz (1.27)

pz = τxznx + τyzny + σznz

where nx , ny , nz are the components of the unit vector n normal to the surface and
px , py , pz are the surface forces per unit area.

In matrix form,


px

py

pz


 =




nx 0 0
... ny nz 0

0 ny 0
... nx 0 nz

0 0 nz
... 0 nx ny







σx

σy

σz

· · ·
τxy

τxz

τyz




p = NT �

(1.28)
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Note that NT is similar in form to DT of Eq. (1.26) in that the components of NT

correspond to the derivatives of DT. The relations of Eq. (1.27) are referred to as
Cauchy’s formula.

Surface forces (per unit area) p applied externally are called prescribed surface
tractions p. Equilibrium demands that the resultant stress be equal to the applied
surface tractions p on Sp:

p = p on Sp (1.29)

These are the static (force, stress, or mechanical) boundary conditions. Continuity
requires that on the surface Su , the displacements u be equal to the specified dis-
placements u:

u = u on Su (1.30)

These are the displacement (kinematic) boundary conditions.

Unit Vectors on a Boundary Curve It is helpful to identify several useful
relationships between vectors on a boundary curve. Consider a boundary curve lying
in the yz plane as shown in Fig. 1.2a. The vector n is the unit outward normal n =
nyj + nzk and t is the unit tangent vector t = tyj + tzk, where j and k are unit
vectors along the y and z axes. The quantity s, the coordinate along the arc of the
boundary, is chosen to increase in the counterclockwise sense. As shown in Fig. 1.2a,
the unit tangent vector t is directed along increasing s. Since n and t are unit vectors,
n2

y + n2
z = 1 and t2

y + t2
z = 1. The components of n are its direction cosines, that is,

from Fig. 1.2b,

ny = cos θy and nz = cos θz (1.31)

since, for example, cos θy = ny/
√

n2
y + n2

z = ny .

From Fig. 1.2c it can be observed that

cos ϕ = ny sin ϕ = nz

sin ϕ = −ty cos ϕ = tz
(1.32)

As a consequence,

ny = tz nz = −ty (1.33)

and the unit outward normal is defined in terms of the components ty and tz of the
unit tangent as

n = tzj − tyk = t × i (1.34)
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(d) Differential components

ϕ

n
t

nz

tz

ny-ty

ϕ

(c) Unit normal and tangential vectors

dz
ds

dy

ϕ

y

s
r

n
t

y

n

nz

z

ny

θz

(b) Components of the unit normal vector

θy

z

(a) Normal and tangential unit vectors
on the boundary

Figure 1.2 Geometry of the unit normal and tangential vectors.

From Fig. 1.2d it is apparent that

sin ϕ = −dy

ds
and cos ϕ = dz

ds
(1.35)

Thus,

ny = tz = dz

ds
nz = −ty = −dy

ds
(1.36)

The vector r to any point on the boundary is

r = yj + zk

Then

dr = dy j + dz k = dr
ds

ds =
(

dy

ds
j + dz

ds
k
)

ds = t ds (1.37)
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1.1.5 Other Forms of the Governing Differential Equations

The general problem of the theory of elasticity is to calculate the stresses, strains,
and displacements throughout a solid. The kinematic equations � = Du (Eq. 1.4)
are written in terms of six strains and three displacements, while the static equations
DT� + pV = 0 (Eq. 1.26) are expressed as functions of the six stress components.
The constitutive equations � = E� (Eq. 1.18) are relations between the stresses and
strains. The boundary conditions of Eqs. (1.29) and (1.30) need to be satisfied by the
solution for the 15 unknowns.

In terms of achieving solutions, it is useful to derive alternative forms of the
governing equations. The elasticity problem can be formulated in terms of the dis-
placement functions ux , uy , uz . The stress–strain equations allow the equilibrium
equations to be written in terms of the strains. When the strains are replaced in the
resulting equations by the expressions given by the strain–displacement relations,
the equilibrium equations become a set of partial differential equations for the dis-
placements. Thus, substitute � = Du into � = E� to give the stress–displacement
relations � = EDu. The conditions of equilibrium become

DT� + pV = DTEDu + pV = 0 (1.38)

or, in scalar form,

(λ + G)
∂e

∂x
+ G∇2ux + pV x = 0

(λ + G)
∂e

∂y
+ G∇2uy + pV y = 0 (1.39)

(λ + G)
∂e

∂z
+ G∇2uz + pV z = 0

where ∇2 is the Laplacian operator

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(1.40)

The dilatation e is a function of displacements

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= � · u (1.41)

where u is the displacement vector, whose components along the x , y, z axes are
ux , uy , uz , and ∇ is the gradient operator. The displacement vector is expressed as
u = ux i + uyj + uzk, where i, j, k are the unit base vectors along the coordinates
x, y, z, respectively. The gradient operator appears as

� = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(1.42)
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To complete the displacement formulation, the surface conditions on Sp must
also be written in terms of the displacements. This is done by first writing these
surface conditions of Eq. (1.27) in terms of strains using the material laws, and then
expressing the strains in terms of the displacements, using the strain–displacement
relations. The resulting conditions are

λenx + Gn · �ux + Gn · ∂u
∂x

= px

λeny + Gn · �uy + Gn · ∂u
∂y

= py (1.43)

λenz + Gn · �uz + Gn · ∂u
∂z

= pz

where n = nx i + nyj + nzk. If boundary conditions exist for both Sp and Su , the
boundary value problem is called mixed. The equations of equilibrium written in
terms of the displacements together with boundary conditions on Sp and Su consti-
tute the displacement formulation of the elasticity problem. In this formulation, the
displacement functions are found first. The strain–displacement relations then give
the strains, and the material laws give the stresses.

1.2 BENDING STRESSES IN A BEAM IN PURE BENDING

A beam is said to be in pure bending if the force–couple equivalent of the stresses
over any cross section is a couple M in the plane of the section

M = Myj + Mzk (1.44)

z

y
My

x

Mz

O

Figure 1.3 Beam in pure bending.
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z

y
My

x

Mz

σx ∆A

O

Figure 1.4 Stress resultants on a beam cross section.

where j, k are the unit vectors parallel to the y, z axes, and the x axis is the beam
axis, as shown in Fig. 1.3. In terms of the stress σx , the bending moments may be
calculated as stress resultants by summing the moments about the origin O of the
axes (Fig. 1.4)

My =
∫

zσx dA Mz = −
∫

yσx dA (1.45)

The point about which the moments are taken is arbitrary because the moment of a
couple has the same value about any point.

Since in pure bending there is no axial stress resultant,∫
σx dA = 0 (1.46)

According to the Bernoulli–Euler theory of bending, the cross-sectional planes of
the beam remain plane and normal to the beam axis as it deforms. Choose the x axis
(i.e. the beam axis) such that it passes through a reference point with coordinates
(x, 0, 0). This point is designated by O in Fig. 1.5. The axial displacement ux of a
point on the cross section with coordinates (x, y, z) can be expressed in terms of the
rotations of the cross section about the y and z axes and the axial displacement u(x)

of the reference point (Fig. 1.5). Thus

ux (x, y, z) = u(x) + zθy(x) − yθz(x) (1.47)

where θy , θz are the angles of rotation of the section about the y, z axes. Thus, the
displacement ux at a point on the cross section has been expressed in terms of the
beam axis variables u, θy , and θz . Note that the quantities u, θy , and θz do not vary
over a particular cross section. The terms zθy and yθz vary linearly. Figure 1.6 shows
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z

yux(x,y,z)

x
u(x)

θz θy

O Beam axis

Figure 1.5 Axial displacement. During bending the cross-sectional plane remains plane and
normal to the beam axis.

the displacement of a point P of the section with respect to point O as a result of a
rotation about the y axis.

The axial strain at the point (x, y, z) is found from the strain–displacement equa-
tion (Eq. 1.3)

εx = ∂ux

∂x
= κε + κyz − κz y (1.48)

where

κε = du

dx
κy = dθy

dx
κz = dθz

dx

z

y

θy

x

My

P'

P

O

θy

Figure 1.6 Rotation of a cross section about the y axis.
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At a given cross section, κε , κy , κz are constants, so that the normal strain distribution
over the section is linear in y and z.

In pure bending, the only nonzero stress is assumed to be the normal stress σx ,
which is given by the material law for linearly elastic isotropic materials as σx =
Eεx , so that

σx = E(κε + κyz − κz y) (1.49)

For a nonhomogeneous beam, the elastic modulus takes on different values over
different parts of the section, making E a function of position:

E = E(y, z)

The stress distribution at a given cross section is then expressed as

σx(y, z) = E(y, z)(κε + κyz − κz y) (1.50)

The stress distribution is statically equivalent to the couple at the section so that
the total axial force calculated as a stress resultant is zero and the moments are equal
to the bending moments at the section. Thus, from Eqs. (1.45), (1.46), and (1.50),∫

σx dA = κε

∫
E dA + κy

∫
zE dA − κz

∫
y E dA = 0

∫
zσx dA = κε

∫
zE dA + κy

∫
z2 E dA − κz

∫
yzE dA = My (1.51)

∫
yσx dA = κε

∫
y E dA + κy

∫
yzE dA − κz

∫
y2E dA = −Mz

Define geometric properties of the cross section as

Qy =
∫

z dA Qz =
∫

y dA (1.52a)

Iy =
∫

z2 dA Iz =
∫

y2 dA Iyz =
∫

yz dA (1.52b)

where Qy and Qz are first moments of the cross-sectional area and Iy , Iz, and Iyz

are the second moments of a plane area or the area moments of inertia. Place the
definitions of Eqs. (1.52) in Eq. (1.51):

κε A + κy Qy − κz Qz = 0

κε Qy + κy Iy − κz Iyz = My

E
(1.53)

κε Qz + κy Iyz − κz Iz = − Mz

E

where the elastic modulus E is assumed to be constant for the cross section.
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C

P

rPC

y

z

rPO

rCO

O

z
_

y
_

Figure 1.7 Translation of the origin O to the centroid C.

The three simultaneous relations of Eq. (1.53) for the constants κε , κy , and κz

become simpler if advantage is taken of the arbitrariness of the choice of origin O.
Let a new coordinate system with origin C be defined as shown in Fig. 1.7 by a
translation of axes. Figure 1.7 shows that the coordinate transformation equation for
any point P of the section is rP O = rPC + rC O , or

rPC = rP O − rC O (1.54a)

The components of this vector equation are

y = y − yC z = z − zC (1.54b)

where y and z are the coordinates of P relative to the y, z coordinate axes and yC and
zC are the coordinates of C relative to the y, z coordinate axes. Choose the origin C
such that the first moments of area in the coordinate system C y z are zero:

Qy =
∫

z dA =
∫

(z − zC ) dA = 0

Qz =
∫

y dA =
∫

(y − yC) dA = 0
(1.55)

With the definitions of Eq. (1.52a), these conditions yield the familiar geometric
centroid of the cross section:

yC = Qz

A
zC = Qy

A
(1.56)
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Transform Eq. (1.53) to the centroidal coordinate system by assuming that Qy ,
Qz , Iy , Iz , and Iyz are measured from the centroidal coordinates. Since Qy and Qz
are equal to zero (Eq. 1.55), Eq. (1.53) reduces to

κε A = 0

κ y Iy − κz Iy z = My

E

κ y Iy z − κz Iz = − Mz

E

where Iy , Iz , and Iyz are the moments of inertia about the y, z centroidal axes. Solve
these expressions for κε, κ y , and κz , and substitute the results into σx of Eq. (1.49)
expressed in terms of centroidal coordinates [i.e., σx = E(κε + κ yz − κz y)]. This
leads to an expression for the normal stress:

σx = − Iy z My + Iy Mz

Iy Iz − I 2
y z

y + Iz My + Iy z Mz

Iy Iz − I 2
y z

z (1.57)

The neutral axis is defined as the line on the cross section for which the normal
stress σx is zero. This axis is the line of intersection of the neutral surface, which
passes through the centroid of the section, and the cross-sectional plane. By equating
Eq. (1.57) to zero, we find that the neutral axis is a straight line defined by

−(Iy z My + Iy Mz)y + (Iz My + Iy z Mz)z = 0

or

y = Iz My + Iy z Mz

Iy z My + Iy Mz
z (1.58)

If Mz = 0, Eq. (1.57) reduces to

σx = My
Izz − Iy z y

Iy Iz − I 2
y z

(1.59)

The centroidal coordinates can be located using Eq. (1.56). Sometimes it is con-
venient to calculate the area moment of inertia first about a judiciously selected co-
ordinate system and then transform them to the centroidal coordinate system. The
calculation for Iz , for instance, is

Iz =
∫

y2 dA =
∫

(y − yC)2 dA

=
∫

(y2 − 2yyC + y2
C) dA

= Iz − y2
C A
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From Eq. (1.55), the integral
∫

y dA in this expression is equal to
∫

yC dA. This is
one of Huygens’s or Steiner’s laws and is referred to as a parallel axis theorem. The
complete set of equations is

Iy = Iy − z2
C A

Iz = Iz − y2
C A (1.60)

Iy z = Iyz − yC zC A

Here Iy, Iz, Iyz and Iy, Iz, Iyz are the moments of inertia about the y, z and y, z
(centroidal) axes, respectively.

Example 1.1 Thin-Walled Cantilevered Beam with an Asymmetrical Cross Sec-
tion. Find the normal stress distribution for the cantilevered angle shown in Fig. 1.8.
The beam is fixed at one end and loaded with a vertical concentrated force P at the
other end.

SOLUTION. The centroid for this asymmetrical section is found to be located as
shown in Fig. 1.9a. Assume that the thickness t is much smaller than the dimension
a. Then the moments of inertia can be calculated from Eq. (1.52b) as

Iy =
∫

z2 dA =
∫ 2a/3−t/2

−4a/3

∫ −a/6+t/2

−a/6−t/2
z2 d y dz

L

x a

2a

P
_

Figure 1.8 Thin-walled cantilevered beam with an asymmetrical cross section.
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(b) Distribution of normal stress σx

-PL

a2t

5PL

4a2t

PL

2a2t

y

z

6

a
a

3

2a

2a

t

D

t

A

(a) Cross section

B

C

(c) Neutral axis

y

z

tA

9
2a

2

a

Figure 1.9 Normal stress distribution of the thin-walled beam of Example 1.1.



20 BEAMS IN BENDING

+
∫ 2a/3+t/2

2a/3−t/2

∫ 5a/6

−a/6−t/2
z2 d y dz

= 4
3 a3t + 1

4 at3 ≈ 4
3 a3t (1)

Iz =
∫

y2 dA = 1
4 a3t + 5

24 at3 ≈ 1
4 a3t

Iyz =
∫

yz dA = 1
3a3t − 5

48at3 ≈ 1
3 a3t

Numerical values for these and other cross-sectional parameters are given in
Table 1.1.

The normal stress σx on a cross-sectional face is given by Eq. (1.57). The sign
convention for My and Mz is detailed in Chapter 2. At a distance L from the free
end, My = −P L and Mz = 0, so that Eq. (1.57) becomes

σx = − Iy z My + Iy Mz

Iy Iz − I 2
y z

y + Iz My + Iy z Mz

Iy Iz − I 2
y z

z

= − (a3t/3)(−P L)

(4a3t/3)(a3t/4) − (a3t/3)2
y + (a3t/4)(−P L)

(4a3t/3)(a3t/4) − (a3t/3)2
z (2)

= 3P L

2a3t
y − 9P L

8a3t
z

TABLE 1.1 Part of the Output File for the Computer Program of the Appendixes for
the Angle Section of Examples 1.1 and 1.2 with a = 1 and t = 0.1a

Corresponds
Cross-Sectional Properties to Equation:

Cross-Sectional Area 0.3000
Y Moment of Area −0.1999 1.52a
Z Moment of Area 0.0499 1.52a

Y Centroid 0.1663 1.56
Z Centroid −0.6663 1.56

Moment of Inertia Iȳ 0.1336 1.52b
Moment of Inertia Iz̄ 0.0252 1.52b
Product of Inertia Iȳz̄ 0.0332 1.52b

Principal Bending Angle (deg) −15.7589 1.82 or 1.95
Principal Moment of Inertia (max) 0.1430 1.88
Principal Moment of Inertia (min) 0.0158 1.88

a See Fig. 5.26b for coordinate systems.
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If the terms involving t3 in (1) are not neglected, we would find

σx = 48P L

at

16a2 − 5t2

512a4 + 944a2t2 + 95t4
y

− 48P L

at

12a2 + 10t2

512a4 + 944a2t2 + 95t4
z

(3)

Equation (2) is the desired distribution of σx on the cross section. The stress at point
A of Fig. 1.9a is found by substituting z = 2a/3 and y = 5a/6 into (2):

(σx)A = P L

2a2t
(4)

At point B, y = −a/6, z = 2a/3, and σx becomes

(σx)B = − P L

a2t
(5)

Finally, at point D, y = −a/6, z = −4a/3, and σx is found to be

(σx)D = 5P L

4a2t
(6)

The distribution of the normal stresses is illustrated in Fig. 1.9b.
The neutral axis is defined by Eq. (1.58) as

y = Iz My

Iyz My
z = Iz

Iyz
z = 3

4
z (7)

This line is plotted in Fig. 1.9c. The angle between the y axis and the neutral axis is
53.13◦.

If the asymmetrical nature of the cross section is ignored, Iyz would be zero and
the normal stress σx of Eq. (1.57) would be

σx = My

Iy
z (8)

The maximum stress occurs at point D with z = −4a/3, so that (8) becomes

(σx)D = P L

a2t
(9)

At points A and B, z = 2a/3 and (8) becomes

(σx)A = (σx)B = − P L

2a2t
(10)

Note that these values are not consistent with (4), (5), and (6).
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The radii of gyration about the centroidal axes y, z are defined by

r y =
√

Iy

A
r z =

√
Iz

A
(1.61)

The elastic section moduli Ye, Ze about the centroidal axes y, z are defined by

Ye = Iy

zmax
Ze = Iz

ymax
(1.62)

where zmax is the maximum distance between the y axis and the material points of
the cross section, that is, zmax is the distance from the y axis to the outermost fiber;
ymax is the maximum distance between the z axis and the material points of the cross
section. The polar moment of inertia Ip with respect to the centroid of the section is
the sum of the area moments of inertia about the y and z axes:

Ip = Iy + Iz (1.63)

Modulus-Weighted Properties If the material properties are not homogeneous
on the cross section, it is useful to introduce a reference modulus Er and to define a
modulus-weighted differential area by

dÃ = E

Er
dA (1.64)

Then, Eq. (1.51) appears as

κε Ã + κy Q̃ y − κz Q̃z = 0

κε Q̃ y + κy Ĩy − κz Ĩyz = My

Er
(1.65)

κε Q̃z + κy Ĩyz − κz Ĩz = − Mz

Er

In this equation, modulus-weighted section properties of the beam are utilized. The
modulus-weighted first moments of area are

Q̃ y =
∫

z dÃ Q̃z =
∫

y dÃ (1.66a)

The modulus-weighted area moments of inertia are given by

Ĩy =
∫

z2dÃ Ĩz =
∫

y2dÃ (1.66b)

and the modulus-weighted area product of inertia is

Ĩyz =
∫

yz dÃ (1.66c)
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For a homogeneous beam, the elastic modulus E has the same value at any point
of the section, and Er is chosen equal to E . The modulus-weighted properties then
become purely geometric properties of the cross section of Eq. (1.52).

Equation (1.65) is simplified if the relationships are transformed to the centroidal
coordinates. For the modulus-weighted case, the components of Eq. (1.54b) are

y = y − ỹC z = z − z̃C (1.67)

As in the homogeneous case, the origin C is chosen such that the first moments of
area in the coordinate system C yz are zero:

Q̃ y =
∫

z dÃ =
∫

(z − z̃C) dÃ = 0

Q̃z =
∫

y dÃ =
∫

(y − ỹC) dÃ = 0

(1.68)

These conditions give

ỹC = Q̃z

Ã
z̃C = Q̃ y

Ã
(1.69)

The point C is the modulus-weighted centroid of the cross section. When the material
is homogeneous, C becomes the familiar geometric centroid, given by Eq. (1.56).

Transform Eq. (1.65) for the constants κε , κy , κz to the centroidal coordinate sys-
tem. Introduce Eq. (1.68). Then

κε Ã = 0

κ y Ĩy − κz Ĩy z = My

Er
(1.70)

κ y Ĩy z − κz Ĩz = − Mz

Er

Solve these equations for κε , κ y , and κz, and substitute the results into σx of
Eq. (1.50), expressed in terms of κε , κ y , and κ z . This leads to the normal stress

σx = E

Er


− Ĩy z My + Ĩy Mz

Ĩy Ĩz − Ĩ 2
y z

y + Ĩz My + Ĩy z Mz

Ĩy Ĩz − Ĩ 2
yz

z


 (1.71)

The parallel axis theorem transformation equations for the modulus-weighted
properties are
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Ĩy = Ĩy − z̃2
C Ã

Ĩz = Ĩz − ỹ2
C Ã (1.72)

Ĩy z = Ĩyz − ỹC z̃C Ã

The radii of gyration about the centroidal axes y, z are defined as

r y =
√

Ĩy

Ã
r z =

√
Ĩz

Ã
(1.73)

and the elastic section moduli about the centroidal axes are

Ye = Ĩy

zmax
Ze = Ĩz

ymax
(1.74)

Finally, the polar moment of inertia with respect to the centroid is

Ĩ p = Ĩy + Ĩz (1.75)

1.3 PRINCIPAL BENDING AXES

Figure 1.10 shows centroidal axes y, z and a rotated set of centroidal axes y′, z′. The
unit vectors j, k are directed along the y, z axes and the unit vectors j′, k′ along the

y

y'

z'

jr

ϕ
j'

k
k'

z

C

P

Figure 1.10 Rotated centroidal coordinate system.
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y
C

y'

z'

ϕ

P

dA

ϕ

ϕz cos ϕ
y cos ϕ

y sin ϕ

z

z sin
 ϕ

Figure 1.11 Rotation of the centroidal coordinate system.

y′, z′ axes. The position vector r of a point P on the cross section may be expressed
as

r = yj + zk = y′j′ + z′k′ (1.76)

where y and z are the coordinates of P from the y, z axes. Similarly, y′ and z′ are
the coordinates of P from the y′, z′ axes. The y′, z′ coordinates can be obtained in
terms of the y, z coordinates (Fig. 1.11):

y′ = yj · j′ + zk · j′ = y cos ϕ + z sin ϕ

z′ = yj · k′ + zk · k′ = −y sin ϕ + z cos ϕ
(1.77)

Suppose that the differential area dA is located at point P . The second moments of
the area (i.e., the area moments of inertia) in the rotated coordinate system are

Iy′ =
∫

z′2 dA = Iz sin2 ϕ + Iy cos2 ϕ − 2Iyz sin ϕ cos ϕ

Iz′ =
∫

y′2 dA = Iz cos2 ϕ + Iy sin2 ϕ + 2Iyz sin ϕ cos ϕ (1.78)

Iy′z′ =
∫

y′z′ dA = Iyz(cos2 ϕ − sin2 ϕ) + (Iy − Iz) sin ϕ cos ϕ

where the relations of Eq. (1.77) have been utilized. The use of the familiar trigono-
metric identities 2 cos2 ϕ = 1+cos 2ϕ, 2 sin2 ϕ = 1−cos 2ϕ, 2 sin ϕ cos ϕ = sin 2ϕ,
leads to an alternative form:

Iy′ = Iy + Iz

2
+ Iy − Iz

2
cos 2ϕ − Iyz sin 2ϕ (1.79a)
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Iz′ = Iy + Iz

2
− Iy − Iz

2
cos 2ϕ + Iyz sin 2ϕ (1.79b)

Iy′z′ = Iy − Iz

2
sin 2ϕ + Iyz cos 2ϕ (1.79c)

Equations (1.78) and (1.79) provide the area moments of inertia Iy′, Iz′ , and Iy′x ′
about coordinate axes y′, x ′ at rotation angle ϕ. These three area moments of inertia
as functions of ϕ are shown in Fig. 1.12. Note that these moments of inertia are
bounded. The upper bound for Iy′ and Iz′ is Imax = I1 and the lower bound is
Imin = I2. Also, for the product of inertia Iy′z′ ,

− 1
2 (I1 − I2) ≤ Iy′z′ ≤ + 1

2 (I1 − I2) (1.80)

The extreme values of the moments of inertia I1 and I2 are called principal moments
of inertia and the corresponding angles define the principal directions. In the case
shown in Fig. 1.12, both I1 and I2 are positive. As observed in Fig. 1.12 by the
vertical dashed lines, the product of inertia is zero at the principal directions, which
are 90◦ apart. That is, the two principal directions are perpendicular to each other.

To find the angle ϕ at which the moment of inertia Iy′ assumes its maximum
value, set ∂ Iy′/∂ϕ equal to zero. From Eq. (1.79a) this gives

(Iy − Iz)(− sin 2ϕ) − 2Iyz cos 2ϕ = 0 (1.81)

ϕ

2
π

2
π

Iz'

Iy'

I1

I2

Iy'z'

Figure 1.12 Three moments of inertia as a function of the rotation angle ϕ.
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or

tan 2ϕ = 2Iyz

Iz − Iy
(1.82)

This angle ϕ identifies the so-called centroidal principal bending axes. Note that ϕ

of Eq. (1.82) also corresponds to the rotation for which the product of inertia Iy′z′
is zero. This result, which also was observed in Fig. 1.12, is verified by substituting
Eq. (1.81) into Eq. (1.79c). Equation (1.81) determines two values of 2ϕ that are
180◦ apart, that is, two values of ϕ that are 90◦ apart. At these values, the moments
of inertia Iy′ and Iz′ assume their maximum or minimum possible values, that is, the
principal moments of inertia I1 and I2. The magnitudes of I1 and I2 can be obtained
by substituting ϕ of Eq. (1.82) into Eq. (1.79a and b). These same values will be
obtained below by a different technique. The corresponding directions defined by
±j′ and ±k′ are the principal directions. As a particular case, if a cross section is
symmetric about an axis, this axis of symmetry is a principal axis.

Consider another approach to finding the magnitudes of the principal moments of
inertia I1 and I2. It is possible to derive some relationships that are invariant with
respect to the rotating coordinate system. It follows from Eq. (1.78) or (1.79) that

Iy′ + Iz′ = Iy + Iz

Iy′ Iz′ − I 2
y′z′ = Iy Iz − I 2

yz

(1.83)

As noted above, the product of inertia Iy′z′ is zero at the principal directions and Iy′
and Iz′ become I1 and I2. Then

Iy′ + Iz′ = Iy + Iz = I1 + I2

Iy′ Iz′ − I 2
y′z′ = Iy Iz − I 2

yz = I1 I2
(1.84)

The principal moments of inertia I1 and I2 can be considered to be the roots of the
equation

(I − I1)(I − I2) = 0 (1.85)

Expand Eq. (1.85):

I 2 − (I1 + I2)I + I1 I2 = 0 (1.86)

and introduce Eq. (1.84):

I 2 − (Iy + Iz)I + Iy Iz − I 2
yz = 0 (1.87)

The two roots of this equation are the principal moments of inertia
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I1 = Imax = Iy + Iz

2
+ �

I2 = Imin = Iy + Iz

2
− �

(1.88)

where

� =
√(

Iy − Iz

2

)2

+ I 2
yz

Numerical values for some of these parameters are given in Table 1.1 for an angle
section.

It is useful to place the transformation relations of Eq. (1.78) or (1.79) in a partic-
ular matrix form. Equation (1.87) can be expressed as

(I − Iy)(I − Iz) − I 2
yz = 0 (1.89)

or ∣∣∣∣ I − Iy Iyz
Iyz I − Iz

∣∣∣∣ = 0 (1.90)

This determinant is the characteristic equation for the symmetric 2 × 2 matrix A:

A =
[

Iy −Iyz
−Iyz Iz

]
(1.91)

With the negative signs on Iyz , A transforms according to the rotation conventions
implied by Fig. 1.10 with ϕ measured counterclockwise positive from the y axis.
Define a rotation matrix

R =
[

cos ϕ sin ϕ

− sin ϕ cos ϕ

]
(1.92)

It may be verified that the transformation

A′ =
[

Iy′ −Iy′z′
−Iy′z′ Iz′

]
= RAR−1 = RART (1.93)

is identical to the rotation transformation equations of Eq. (1.78) or (1.79) derived
from Fig. 1.10. If the off-diagonal elements of A are taken to be +Iyz , the relation-
ship between A and A′ no longer matches these equations.

An alternative approach is to base the determination of the principal axes on the
diagonalization of matrix A of Eq. (1.91). When the product of inertia Iyz is zero,
the y, z axes are already the principal axes and no further computation is necessary.
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In the special case when Iy = Iz , any axis is a principal axis. If Iyz is not zero, the
two vectors

v1 = Iyzj + (Iy − I1)k

v2 = (Iz − I2)j + Iyzk
(1.94)

are two orthogonal eigenvectors of A corresponding to the eigenvalues I1 and I2.
Some characteristics of eigenvectors are discussed in Chapter 8. The angle ϕ between
the y axis and the axis belonging to the larger principal moment of inertia can be
computed as the angle between ±v1 and j:

ϕ = tan−1 Iy − I1

Iyz
(1.95)

Since the angle between the smaller principal value and the y axis is ϕ + 90◦, the
specification of ϕ is enough to determine both principal axes.

The results of this section apply also to nonhomogeneous beams. It is only nec-
essary to replace all geometric section properties with modulus-weighted ones. If a
nonhomogeneous section has an axis of geometric as well as elastic symmetry, it
may be concluded that this axis is a principal axis.

Normal Stresses from the Principal Bending Axes If y′, z′ are the cen-
troidal principal bending axes, Eq. (1.71) simplifies to

σx = E

Er

(
− Mz y′

Ĩz′
+ Myz′

Ĩy′

)
(1.96)

For homogeneous materials, Eq. (1.96) reduces to

σx = − Mz y′

Iz′
+ My z′

Iy′
(1.97)

In general, the bending moment components are initially calculated in any convenient
coordinate system, and when using Eq. (1.96) or (1.97), it is necessary to compute
the bending moment components along the principal bending axes.

Example 1.2 Thin-Walled Cantilevered Beam with an Asymmetrical Cross Sec-
tion. Return to the cantilevered angle of Fig. 1.8 and find the normal stresses using
Eq. (1.97), which is based on the principal bending axes.

SOLUTION. From Eq. (1) of Example 1.1 and Eq. (1.88),

Iy = 4
3 a3t Iz = 1

4 a3t Iyz = 1
3 a3t (1)

� =
√(

Iy − Iz

2

)2

+ I 2
yz =

√
233

24
a3t (2)



30 BEAMS IN BENDING

I1 = Iy + Iz

2
+ � = a3t

24
(19 + √

233)

I2 = Iy + Iz

2
− � = a3t

24
(19 − √

233)

(3)

The centroidal principal bending axes are located by the angle ϕ, where (Eq. 1.82)

tan 2ϕ = 2Iyz

Iz − Iy
= − 8

13
(4)

This relationship leads to the two angles ϕ = −15.8◦ and ϕ = 74.2◦, one of which
corresponds to I1 and the other to I2. Further manipulations are necessary to deter-
mine which angle corresponds to I1 and which to I2. For example, place ϕ = −15.8◦
into Iy′ of Eq. (1.78) and find Iy′ = (a3t/24)(19 + √

233), which is equal to I1.
The problem of the uncertainty of which value of ϕ corresponds to I1 is avoided

if Eq. (1.95) is used. In this case,

ϕ = tan−1 Iy − I1

Iyz
= tan−1

[
1
8

(
13 − √

233
)]

(5)

so that ϕ = −15.8◦ and 164.2◦, both of which identify I1 (Fig. 1.13).
The cross-sectional normal stress σx is given by Eq. (1.97). At an axial distance

L from the free end, the bending moment components along the principal bending
axes are

y'

z'

15.8
y

Corresponds to I2

Corresponds to I1

z

Figure 1.13 Principal bending axes of an asymmetrical cross section.
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My′ = −P L cos(−15.8◦)

Mz′ = −[−P L sin(−15.8◦)] = P L sin(−15.8◦)
(6)

The sign convention for these moments is discussed in Chapter 2. Equation (1.97)
becomes

σx = − Mz y′

Iz′
+ My z′

Iy′
= − P L sin(−15.8◦)y′

(a3t/24)(19 − √
233)

+ −P L cos(−15.8◦)z′

(a3t/24)(19 + √
233)

= 1.75P L

a3t
y′ − 0.674P L

a3t
z′ (7)

At point A of the cross section shown in Fig. 1.9a, y = 5a/6 and z = 2a/3, and
from Eq. (1.77),

y′ = 5a

6
cos(−15.8◦) + 2a

3
sin(−15.8◦) = 0.620a

z′ = −5a

6
sin(−15.8◦) + 2a

3
cos(−15.8◦) = 0.869a

(8)

Substitution of these coordinates into (7) gives (σx)A = P L/2a2t . At point B, y =
−a/6, z = 2a/3, and Eq. (1.77) gives y′ = −0.342a and z′ = 0.596a. From (7),
(σx)B = −P L/a2t . At point D, y = −a/6, z = −4a/3, y′ = 0.203a, z′ =
−1.328a, and (σx)D = 5P L/4a2t . These are the values calculated in Example 1.1.

1.4 AXIAL LOADS

An axial load Nx applied in the x direction at point P of the beam cross section
shown in Fig. 1.7 causes additional normal stress. In this case, it is necessary to
replace the force at P with its force–couple equivalent at the centroid C . The moment
of the equivalent couple is

rPC × Nx i = (zPk + yP j) × Nx i = zP Nx j − yP Nx k (1.98)

where yP , zP are the coordinates of point P in the coordinate system C yz. The
additional bending moments due to the axial force are added to the pure bending
moments M0

y , M0
z at the section

My = M0
y + zP Nx Mz = M0

z − yP Nx (1.99)

With the inclusion of the axial force, Eqs. (1.57) and (1.71) for normal stress
become

σx = Nx

A
− Iy z My + Iy Mz

Iy Iz − I 2
y z

y + Iz My + Iy z Mz

Iy Iz − I 2
y z

z (1.100)
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and

σx = E

Er

(
Nx

Ã
− Ĩy z My + Ĩy Mz

Ĩy Ĩz − Ĩ 2
y z

y + Ĩz My + Ĩy z Mz

Ĩy Ĩz − Ĩ 2
y z

z

)
(1.101)

1.5 ELASTICITY SOLUTION FOR PURE BENDING

A beam for which the moments My and Mz are constant along the length is said to be
in the state of pure bending. The elasticity solution for the displacements ux , uy , and
uz of a homogeneous beam in pure bending is obtained by assuming a strain field
and attempting to satisfy the equations of elasticity. The axes are chosen as shown in
Fig. 1.3. The origin O is at the centroid C of the cross section, so that the (x, y, z)
and (x, y, z) axes coincide. The beam material is assumed to be homogeneous and
body forces are assumed to be absent. It follows from the displacement of Eq. (1.47)
that a reasonable form of the strains is

εx = κε + κyz − κz y

εy = −νεx

εz = −νεx

γxy = 0

γyz = 0

γzx = 0

(1.102)

As shown in Eq. (1.48), the strain εx is obtained from ∂u/∂x . This strain field identi-
cally satisfies the conditions of compatibility of Eq. (1.9). Substitution of the strains
of Eq. (1.102) into the Hooke’s law formulas of Eq. (1.18) shows that the only
nonzero stress is the axial stress:

σx = Eεx (1.103)

The total axial force Nx acting on the cross section is

Nx =
∫

σx dA = E
∫

(κε + κyz − κz y) dA = Eκε A (1.104)

In this calculation, the factors multiplying κy and κz , that is, the integrals E
∫

z dA
and E

∫
y dA, are proportional to the y, z coordinates of the centroid, which are both

zero because the centroid C is at the origin O of the coordinates. For pure bending the
axial force Nx will be zero (Eq. 1.46). It follows from Eq. (1.104) that the constant κε

is zero. Then the y, z components of the bending moment as expressed by Eq. (1.45)
are
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My =
∫

zσx dA = E(κy Iy − κz Iyz)

Mz = −
∫

yσx dA = E(−κy Iyz + κz Iz)
(1.105)

where the moments of inertia are given by Eq. (1.52b). Equation (1.105) can be
solved for the constants κy and κz , giving

κy = Iz My + Iyz Mz

E(Iy Iz − I 2
yz)

κz = Iyz My + Iy Mz

E(Iy Iz − I 2
yz)

(1.106)

It follows from σx = Eεx = E(κyz − κz y) that the axial stress is again given by Eq
(1.57), with y = y and z = z.

The displacements can be obtained from the strain–displacement relations of
Eq. (1.3). With the strains given by Eq. (1.102),

εx = ∂ux

∂x
= κy z − κz y εy = ∂uy

∂y
= −ν(κyz − κz y)

εz = ∂uz

∂z
= −ν(κyz − κz y) γxy = ∂uy

∂x
+ ∂ux

∂y
= 0

γxz = ∂uz

∂x
+ ∂ux

∂z
= 0 γyz = ∂uz

∂y
+ ∂uy

∂z
= 0

(1.107)

The displacements will be determined from these six equations by direct integration.
From the first equation, the axial displacement may be expressed as

ux = κy xz − κz xy + ux0(y, z) (1.108)

where ux0 is an unknown function of y and z. The derivatives of uy and uz with
respect to x are given in terms of ux0 by γxy = 0 and γxz = 0:

∂uy

∂x
= −∂ux

∂y
= κz x − ∂ux0

∂y

∂uz

∂x
= −∂ux

∂z
= −κy x − ∂ux0

∂z

(1.109)

from which the displacements uy and uz are obtained in the form

uy = κz
x2

2
− x

∂ux0

∂y
+ uy0(y, z)

uz = −κy
x2

2
− x

∂ux0

∂z
+ uz0(y, z)

(1.110)

where uy0 and uz0 are unknown functions of y and z, respectively.
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The second and third strain–displacement relations of Eq. (1.107) become

εy = ∂uy

∂y
= −x

∂2ux0

∂y2
+ ∂uy0

∂y
= −ν(κyz − κz y)

or − x
∂2ux0

∂y2
+ ∂uy0

∂y
+ ν(κyz − κz y) = 0

εz = ∂uz

∂z
= −x

∂2ux0

∂z2
+ ∂uz0

∂z
= −ν(κyz − κz y)

or − x
∂2ux0

∂z2
+ ∂uz0

∂z
+ ν(κyz − κz y) = 0

(1.111)

Note the functional form of these equations, with the coordinate x occurring only
once as a factor multiplying a second partial derivative of ux0. Since these equations
must hold for all values of x ,

∂2ux0

∂y2
= 0

∂2ux0

∂z2
= 0 (1.112)

Consequently, uy0 and uz0 can be obtained by integration of Eq. (1.111):

uy0 = −ν

(
κy yz − κz

y2

2

)
+ uy1(z)

uz0 = −ν

(
κy

z2

2
− κz yz

)
+ uz1(y)

(1.113)

The final strain–displacement relation of Eq. (1.107),

γyz = ∂uz

∂y
+ ∂uy

∂z
= 0 (1.114)

becomes

−2x
∂2ux0

∂y ∂z
+ ∂uz0

∂y
+ ∂uy0

∂z
= −2x

∂2ux0

∂y ∂z
+ duz1

dy
+ νκzz + duy1

dz
− νκy y = 0

(1.115)

The functional form of this equality shows that the factor multiplying x is zero

∂2ux0

∂y ∂z
= 0 (1.116)

Hence

duz1

dy
− νκy y + duy1

dz
+ νκz z = 0 (1.117)
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By a separation of variables,

duz1

dy
− νκy y = C0

duy1

dz
+ νκz z = −C0 (1.118)

where C0 is a constant.
The relations

∂2ux0

∂y2
= 0

∂2ux0

∂z2
= 0

∂2ux0

∂y ∂z
= 0 (1.119)

of Eqs. (1.112) and (1.116) show that the function ux0 has the form

ux0 = C1y + C2z + C3 (1.120)

in which the Ck are constants. It follows from Eq. (1.108) that the axial displacement
appears as

ux = κy xz − κz xy + C1 y + C2z + C3 (1.121)

To find uy1, uz1 of Eq. (1.113), integrate Eq. (1.118):

uy1 = −C0z − νκz
z2

2
+ C4

uz1 = C0 y + νκy
y2

2
+ C5

(1.122)

so that, from Eq. (1.113),

uy0 = −ν

(
κy yz − κz

y2 − z2

2

)
− C0z + C4

uz0 = −ν

(
κy

z2 − y2

2
− κz yz

)
+ C0 y + C5

(1.123)

The displacements uy and uz of Eq. (1.110) may therefore be expressed as

uy = κz
x2

2
− ν

(
κy yz − κz

y2 − z2

2

)
− C0z − C1x + C4

uz = −κy
x2

2
− ν

(
κy

z2 − y2

2
− κz yz

)
+ C0 y − C2x + C5

(1.124)

The constants of integration in the expressions derived for the displacements de-
pend on the support conditions. For example, suppose that the centroid at the origin
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of the coordinates (x = 0, y = 0, z = 0) at the left end (x = 0) of the hori-
zontal beam is fixed such that no translational or rotational motion is possible. Then
ux = 0, uy = 0, uz = 0 at x = 0, y = 0, z = 0. Also, at x = 0, y = 0, z = 0,
there is no rotation in the z direction (∂uz/∂x = 0), no rotation in the y direction
(∂uy/∂x = 0), and no rotation about the x axis (∂uy/∂z = 0).

The enforcement of these boundary conditions amounts to restraining the beam at
x = 0, y = 0, z = 0 against rigid-body translation and rotation. From Eqs. (1.121)
and (1.124) these boundary conditions require that

C0 = 0, C1 = 0, C2 = 0, C3 = 0, C4 = 0, C5 = 0 (1.125)

The displacements can now be written as (Eqs. 1.121, 1.124, and 1.125)

ux = (κyz − κz y)x (1.126a)

uy = κz
x2

2
− ν

(
κy yz − κz

y2 − z2

2

)
(1.126b)

uz = −κy
x2

2
− ν

(
κy

z2 − y2

2
− κz yz

)
(1.126c)

Consider a special case of a beam with a cross section symmetric about the z axis
and for which Mz = 0. Then, from Eq. (1.106), κz = 0 and κy = My/E Iy.For this
case, the displacements of Eq. (1.126) become

ux = κyzx (1.127a)

uy = −νκy yz (1.127b)

uz = −κy

2
[x2 + ν(z2 − y2)] (1.127c)

The deflection of the centroidal beam axis is given by Eq. (1.127c) with y and z equal
to zero; that is,

uz(x, 0, 0) = w = −κy
x2

2
= − My

E Iy

x2

2
(1.128)

This is the same deflection given by engineering beam theory (Chapter 2) for a can-
tilevered beam loaded with a concentrated moment at the free end. Some interesting
characteristics of beams in bending can be studied by considering the displacements
away from the central axis.

To find the axial displacement at a particular cross section, say at x = a, consider
ux (x, y, z) of Eq. (1.127a). Thus

ux(a, y, z) = κyza (1.129)
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We see that cross-sectional planes remain planar. This is not surprising since the
assumed strain εx corresponds to a linear variation in the displacements in the y and
z directions (Eq. 1.47).

Note from Eq. (1.127a) that beam fibers in the z = 0 plane do not displace in
the x direction [i.e., ux (x, y, 0) = 0]. Consequently, this plane is referred to as the
neutral plane. The x axis before deformation is designated as the neutral axis.

To illustrate the distortion of the cross-section profile, consider the rectangular
section of Fig. 1.14. From Eq. (1.127b), the horizontal displacements uy of the ver-
tical sides are

uy

(
x,±b

2
, z

)
= ±b

2
(−νκyz) (1.130)

Thus, the vertical sides rotate. The vertical displacements of the top and bottom
(z = ±h/2) are (Eq. 1.127c)

uz

(
x, y,±h

2

)
= −κy

2

[
x2 + ν

(
h2

4
− y2

)]
= M

2E Iy

[
x2 + ν

(
h2

4
− y2

)]

(1.131)

where, as seen in Fig. 1.15a, κy = My/E Iy = −M/E Iy . This shows that the top
and bottom are deformed into parabolic shapes. Assume that b � h. Note that if
the curvature of the longitudinal axis of the beam is concave upward (Fig. 1.15a),
the curvature of the top and bottom surfaces are concave downward (Fig. 1.15b).
This is referred to as anticlastic curvature. For the thin-walled beam of Fig. 1.15,
the anticlastic curvature can be significant. In contrast, if the depth and width are of
comparable size (Fig. 1.14), the effect is small.

z

yh

b

Figure 1.14 Beam cross section.
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z

h

b/2

y

(b)(a)

y

z

x

M

M

Figure 1.15 Anticlastic curvature.

There is a simple physical interpretation of this behavior in bending. For pure
bending as shown in Fig. 1.15a, the upper fibers are in compression and the lower
fibers in tension. Strain εx along the x direction is accompanied by strain −νεx in
the y direction, where ν is Poisson’s ratio. It follows that as the upper fibers are
compressed in the x direction, they become somewhat longer in the y direction.
Conversely, as the lower fibers are extended in the x direction, they shorten in the y
direction.

Engineering Beam Theory In contrast to the pure bending assumptions of this
section, engineering beam theory, which is presented in Chapter 2, is applied to
beams under general lateral loading conditions. The bounding surface of the beam
is often not free of stress; body forces are not necessarily zero; the shear force at
each section is nonzero; and the bending moment is not constant along the beam.
Engineering beam theory neglects the normal stresses σy and σz , which are much
smaller than the axial stress. Also neglected is the influence of Poisson’s ratio, so
that longitudinal fibers deform independently. For engineering beam theory, the nor-
mal stresses and strains are calculated as in the case of pure bending, although the
bending moment is no longer constant along the beam axis.
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