
1
Introducing EKA2
by Jane Sales with Martin Tasker

The ability to quote is a serviceable substitute for wit.

W. Somerset Maugham

1.1 The history of EKA2

Kernel design is one of the most exciting opportunities in software
engineering. EKA2 is the second iteration of Symbian’s 32-bit kernel
architecture, and this in turn follows 8- and 16-bit kernels designed in the
1980s for Psion’s personal organizers and PDAs.

Psion’s Organiser, launched in 1984, was based on an 8-bit processor
and supported only built-in applications. For such a device, the only
kernel needed was a bootstrap loader and a small collection of system
services. There was no clear requirement to differentiate the 8-bit kernel
from middleware or application software.

In 1986, Psion launched the Organiser II, an 8-bit machine offering
expansion based on the interpreted OPL language. The demands on the
OS were slightly greater – sufficiently good memory management, for
example, to support an interpreted language.

A major evolution came when, beginning in 1990, Psion launched
a range of machines including a laptop, a clamshell organizer and an
industrial organizer, all based on a single OS. The 16-bit EPOC kernel
was tied to the Intel 8086 architecture and supported expansion, with
applications written not only in OPL, but also in the native C APIs of the
EPOC OS – thus opening up the OS itself to any number of aftermarket
application writers.

This openness placed massive new demands on the kernel. For one
thing, it had to be documented and made accessible to aftermarket
programmers. Perhaps some applications would be poorly written: the
kernel had to provide memory protection so a bug in one program would



2 INTRODUCING EKA2

not crash another – or even crash the whole OS. Applications demanded
sophisticated memory management for their own working memory. A
potentially limitless number of event-driven services had to execute
efficiently on a highly resource-constrained machine. And all this had to
be delivered on the platform of the 8086’s segmented memory model,
with challenges that PC programmers of the day will readily recall.

The 16-bit EPOC kernel thus had to address many of the requirements
which are met by EKA2 today, because of its positioning between the
embedded real-time operating systems and classic desktop operating
systems such as Windows. Although it was similar to embedded RTOSes (it
ran from ROM), it was bigger because it supported richer functionality and
was open to aftermarket applications. Although it was similar to desktop
OSes (it was open and used the 8086 architecture), it was smaller because
the memory and power resources available were considerably less.

Two further evolutionary steps were necessary to arrive at EKA2.
EPOC32, released in Psion’s Series 5 PDA in 1997, began life in 1994.

Its kernel, retrospectively dubbed EKA1, carried over the best features
of the 16-bit EPOC kernel and fixed several significant issues. Firstly,
EKA1 was thoroughly 32-bit – with no relics of the awkwardness in EPOC
resulting from the 8086-segmented memory architecture. Secondly, the
EKA1 kernel was designed from the beginning with hardware variety and
evolution in mind – unlike 16-bit EPOC, which had been tied closely to a
single 80186-based chipset. Many implementation details were changed
as a result of these fundamentals, but EKA1 was otherwise surprisingly
similar in spirit to 16-bit EPOC.

At that time, one of the proudest moments of my career took place – in
my spare bedroom! The rest of the team were out of the office, so I
worked at home for a week, frantically trying to achieve the first ever
boot of the kernel before they got back. And late on the Friday afternoon,
the null thread finally printed out its debug message – EKA1 was born.

But EKA1 was not destined to be the end of the story. The Symbian OS
system for supporting event-driven programming was efficient overall,
but provided no real-time guarantees. The kernel itself was designed
with robustness – key for PDAs that hold a user’s personal data – as the
primary goal. As Symbian OS began to address the processing needs
of mobile phones, it became apparent that an OS that could provide
real-time guarantees was really needed.

There were other influences on EKA2 too. The experience gained
from real hardware porting in the context of EKA1 was beginning to
demonstrate that EKA1’s module boundaries were not always drawn in the
right place to make porting easy. Some ports, which should have required
only a driver change, in practice required the kernel to be re-built.

So a new kernel architecture was conceived and, to distinguish it
from the original 32-bit EPOC kernel, it was named EKA2 (EPOC Kernel
Architecture 2), with the term EKA1 being invented for the original.



BASIC OS CONCEPTS 3

EKA2 was conceived in 1998 and, little by little, brought from drawing
board to market. By 2003, Symbian’s lead licensees and semiconductor
partners were committed to adopting EKA2 for future products.

This book was written to provide a detailed exposition on the new
real-time kernel, providing the reader with the insights of the software
engineers who designed and wrote it.

This chapter is designed as the foundations for that book and should
give you a good understanding of the overall architecture of the new
real-time kernel, and of the reasoning behind our design choices. I will
also say a little about the design of the emulator, and then return to this
subject in more detail a couple of times later in the book.

1.2 Basic OS concepts

I’d like to start with a basic definition of an operating system (OS):
The operating system is the fundamental software that controls the

overall operation of the computer it runs on. It is responsible for the man-
agement of hardware – controlling and integrating the various hardware
components in the system. The OS is also responsible for the manage-
ment of software – for example, the loading of applications such as email
clients and spreadsheets.

The operating system is usually the first software that is loaded into a
computer’s memory when that computer boots. The OS then continues
the start-up process by loading device drivers and applications. These,
along with all the other software on the computer, depend on the
operating system to provide them with services such as disk access,
memory management, task scheduling, and interfacing with the user.

Symbian OS has a design that is more modular than many other oper-
ating systems. So, for example, disk services are in the main performed
by the file server, and screen and user input services by the window
server. However, there is one element that you can think of as the heart
of the operating system – the element that is responsible for memory
management, task management and task scheduling. That element is of
course the kernel, EKA2.

There are many different flavors of operating system in the world, so
let’s apply some adjectives to Symbian OS, and EKA2 in particular:

Symbian OS and EKA2 are modular. As I’ve already said, operating sys-
tem functionality is provided in separate building blocks, not one mono-
lithic unit. Furthermore, EKA2 is modular too, as you can see in Figure 1.1.

EKA2 is single user. There is no concept of multiple logins to a
Symbian OS smartphone, unlike Windows, Mac OS X, UNIX or traditional
mainframe operating systems.

EKA2 is multi-tasking. It switches CPU time between multiple threads,
giving the user of the mobile phone the impression that multiple applica-
tions are running at the same time.



4 INTRODUCING EKA2

HAL

ESTARTEFILE
(file server)

EWSRV
(window server)

EUSER
(user library)

MMU CPU

nano
kernel

memory
model

EKERN
(kernel)

software

hardware

user

kernel

BSP
boundary

Peripherals
Pic

& timer

ASSP

variant

Platform
Specific

Layer

Platform
Indepent

Layer
LDD

PDD

DEVICE
DRIVER

EXTENSION

RTOS
PERSONALITY

LAYER
(EXTENSION)

privilege
boundary

physical
boundary

Figure 1.1 Symbian OS overview

EKA2 is a preemptively multi-tasking OS. EKA2 does not rely on
one thread to relinquish CPU time to another, but reschedules threads
perforce, from a timer tick.

EKA2 is a priority-based multi-tasking OS with priority inheritance.
EKA2 allocates CPU time based on a thread’s priority and minimizes the
delays to a high-priority thread when a low-priority thread holds a mutex
it needs.

EKA2 is real-time. Its services are (mostly) bounded, that is it completes
them in a known amount of time.

EKA2 can be a ROM-based OS.
EKA2 is suitable for open but resource-constrained environments. We

designed it for mobile phones, and so it needs less of key resources such
as memory, power and hard disk than open desktop operating systems
such as Windows or Linux.

1.3 Symbian OS design

1.3.1 Design goals
When creating EKA2 we set ourselves a number of design constraints. We
started by deciding what we didn’t want to lose from EKA1. This meant
that we wanted to ensure that the new kernel was still:

1. In the embedded OS tradition

2. Suitable for resource-constrained environments



SYMBIAN OS DESIGN 5

3. Modular: consisting of microkernel and user-side servers

4. Portable to a range of evolving chipsets

5. Robust against badly written user code

6. Of high integrity, ensuring the safety of user data.

Then we decided on our new goals. The key goal was that the new
kernel would be real-time and have enhanced overall performance. We
decided that we would meet this if we could run a GSM protocol
stack on our new operating system. A side benefit, and a worthy one,
would be the ability to better support high-bandwidth activities such as
comms and multimedia. This goal broke down into several sub-goals and
requirements:

1. Latency ≤ 1 ms from interrupt to user thread

2. Latency ≤ 500 µs from interrupt to kernel thread

3. Fast mutex operations

4. OS calls to be of determined length where possible

5. OS calls to be preemptible

6. Priority-order waiting on semaphores and mutexes

7. Timers with a finer resolution.

Then we considered how else we could improve the operating system,
and we came up with the following list:

1. Ease porting – although EKA1 had been designed to be portable, we
could go much further to make life easier for those porting the OS to
new hardware

2. Be robust against malicious (rather than merely badly written) user
code

3. Enable single-core solutions, in which embedded and user-application
code run on the same processor core

4. Provide a better emulator for code development and debugging, that
emulator being a closer match to real hardware

5. Simplify life for device driver writers.

And as we considered these design goals, we were aware that there
was one over-riding constraint on our design. That constraint was to
be backwards source compatibility with the EKA1’s EUSER class library.



6 INTRODUCING EKA2

EUSER is the interface to the kernel for all Symbian OS applications, and
there are a lot of them out there!

1.3.2 Symbian OS kernel architecture
With those design goals in mind, we designed an operating system whose
architecture, at the highest level, looked like that in Figure 1.1. You can
see the major building blocks of the kernel. I’ve also included two other
key system components that are usually considered to be part of the
operating system, and that I will cover in this book: the file server and the
window server. I’ll cover each of these building blocks and give you an
idea of its basic functionality.

1.3.2.1 Nanokernel

The main function of the nanokernel is to provide simple, supervisor-mode
threads, along with their scheduling and synchronization operations. We
named the nanokernel as we did because the services it provides are
even more primitive than those provided by most embedded real-time
operating systems (RTOSes). However, we have carefully chosen those
services to be sufficient to support a GSM signaling stack.

The nanokernel is the initial handler for all interrupts. It then passes
the majority of them to the variant layer for dispatch. It also provides
simple timing functions, such as the nanokernel timer (NTimer) API,
which gives a callback after a specified number of ticks, and the sleep API
(NKern::Sleep), which makes the current thread wait for a specified
number of ticks.

The simple synchronization objects I mentioned earlier are the nano-
kernel mutex (NFastMutex) and the nanokernel semaphore (NFast-
Semaphore). Both of these forbid more than one thread from waiting
on them.

Finally, the nanokernel provides deferred function calls (DFCs) and the
oddly named immediate deferred function calls (IDFCs). If you want to
find out more about these, then please turn to Chapter 6, Interrupts and
Exceptions.

An important difference in EKA2 from EKA1 that should be noted is
that neither the nanokernel nor the Symbian OS kernel link to the user
library, EUSER. Instead, the nanokernel uses its own library of utility
functions, and makes these available to the rest of the kernel, and device
drivers too.

Another key difference from EKA1, somewhat related to the one I
have just discussed, is that EKA2 does not support a kernel-side leaving
mechanism. This means that errors are reported by returning an error
code – or panicking the thread.

The majority of the time, the nanokernel is preemptible. Usually it
runs unlocked and with interrupts enabled, but we do have to prevent



SYMBIAN OS DESIGN 7

other threads from running in a few sections of code, such as thread state
changes and access to the ready list. We designed these critical sections
to be as short as possible and to have bounded execution times, the
goal being to maintain deterministic real-time performance. We protect
the critical sections in the nanokernel by disabling preemption – this is
possible because these sections are very short. In general, we use a mutex
known as the system lock to protect critical code in the Symbian OS
kernel and memory model, but the only place where the nanokernel uses
this lock is to protect the scheduler’s address space switch hook on the
moving memory model.

What are the limitations on the nanokernel? The main one to note
is that it does not do any dynamic memory allocation; that is, it can’t
allocate or free memory. In all of the nanokernel’s operations, it assumes
that memory has been preallocated by other parts of the operating system.

1.3.2.2 Symbian OS kernel

The Symbian OS kernel provides the kernel functionality needed by
Symbian OS, building on the simple threads and services provided by the
nanokernel to provide more complex objects, such as user-mode threads,
processes, reference-counted objects and handles, dynamically loaded
libraries, inter-thread communication and more.

These objects also include a range of more sophisticated synchro-
nization objects: Symbian OS semaphores and mutexes. Symbian OS
semaphores are standard counting semaphores which support multiple
waiting threads and which release waiting threads in priority order. Sym-
bian OS mutexes are fully nestable (a thread can hold several mutexes at
once, and can hold the same mutex multiple times). They also support
priority inheritance: the holding thread inherits the priority of the highest
priority waiting thread, if that is higher than its usual priority.

In contrast to the nanokernel, the Symbian OS kernel does allow
dynamic memory allocation. It provides a kernel memory allocator – the
kernel heap, which uses low-level memory services provided by an entity
known as the memory model. The Symbian OS is completely MMU
agnostic – we isolate all assumptions about memory to the memory
model, which I describe in more detail in the next section.

The Symbian OS kernel is fully preemptible: an interrupt can cause
it to reschedule at any point in its execution, even in the middle of a
context switch. This means that the Symbian OS kernel can have no effect
whatsoever on thread latency.

We use system lock mutex, provided by the nanokernel, to protect the
most fundamental parts of the Symbian OS kernel, such as:

(i) The state of DThread objects. When Symbian OS threads interact
with semaphores and mutexes, they undergo state transitions that
are protected by the system lock



8 INTRODUCING EKA2

(ii) The state of most Symbian OS synchronization objects: IPC (servers
and sessions), semaphores, mutexes, message queues, publish and
subscribe properties

(iii) Handle arrays are valid for reading (but not writing) when the system
lock is held. All the executive functions that take a handle hold the
system lock while translating it – see Chapter 5, Kernel Services, for
more on this subject.

1.3.2.3 Memory model

In EKA2, we confine our assumptions about the memory architecture of
the ASIC to one module, the memory model. Thus the memory model
encapsulates significant MMU differences, such as whether a cache is
virtually tagged or physically tagged, and indeed, whether there is an
MMU at all. In EKA1, assumptions about memory and the MMU were
spread throughout the operating system, making it difficult to produce
a mobile phone based on an ASIC without an MMU, for example. This
has become much easier with the advent of EKA2, since the memory
model allows you to model memory in different ways, and to change that
decision relatively easily.

Symbian currently provides four different memory models:

1. Direct (no MMU)

2. Moving (similar to EKA1)

3. Multiple (used for ASICs with physically tagged caches such as Intel
X86 and later ARM cores)

4. Emulator (used by the Symbian OS emulator that runs on Windows).

The memory model provides low-level memory management services,
such as a per-process address space and memory mapping. It performs
the context switch when asked to do so by the scheduler and is involved
in inter-process data transfer.

The memory model also helps in the creation of processes as an
instantiation of an executable image loaded by the file server, and takes
part in making inter-process data transfers.

If you are interested in finding out more about the memory model, turn
to Chapter 7, Memory Models.

1.3.2.4 Personality layer

We designed the nanokernel to provide just enough functionality to
run a GSM signaling stack. The idea behind this was to allow mobile
phone manufacturers to run both their signaling stacks and their personal
information management (PIM) software on a single processor, providing
considerable cost savings over the usual two-processor solution.



SYMBIAN OS DESIGN 9

Most mobile phone manufacturers have written their signaling stacks
for existing RTOSes such as Nucleus or µITRON. These signaling stacks
represent a considerable investment in time and money, and it would be
very time-consuming for the mobile phone manufacturers to port them
to the nanokernel – not to mention the increase in defects that would
probably ensue from such an exercise.

Because of this, we designed the nanokernel to allow third parties
to write personality layers. A personality layer is an emulation layer
over the nanokernel that provides the RTOS API to client software. The
personality layer would translate an RTOS call into a call (or calls) to
the nanokernel to achieve the same ends. In this way, we allow source
code written for that RTOS to run under Symbian OS with little or no
modification.

For a more detailed description of personality layers, and the nanoker-
nel design decisions that support them, turn to Chapter 17, Real Time.

1.3.2.5 ASSP/variant extension

Typically, the CPU and the majority of hardware peripherals on mobile
devices are implemented on a semiconductor device integrated circuit
commonly referred to as an ASSP (Application-Specific Standard Product).
To reduce both the bill of materials and the size of a phone, it is becom-
ing common to add an increasing number of components to the ASSP.
This might include stacking RAM and flash components on the same
silicon package, or incorporating components into the silicon layout; for
example, a DSP (digital signal processor) for audio/video processing, ded-
icated graphics processors and telephony baseband processors running
GSM or CDMA communication stacks.

We refer to any hardware components outside the ASSP as variant-
specific components. These typically include components such as flash
and RAM storage technology, display devices, baseband and Bluetooth
units. They are typically interfaced to the processor over semiconductor-
vendor-specific buses and interconnect, or more standard communica-
tions lines such as USB and serial UARTs. ASSPs also tend to provide
configurable GPIO (general purpose I/O) lines for custom functions such
as MMC card detect and touch-screen pen down interrupt lines.

So, in Symbian OS, the ASSP/variant extension provides the hardware-
dependent services required by the kernel – for example, timer tick
interrupts and real-time clock access. In the days of EKA1, we built
the ASSP into the kernel, and the separate variant layer described in the
next section was mandatory. This made for unnecessary re-compilation of
the kernel when porting to a new ASSP, so in EKA2 we have completely
separated the ASSP from the kernel. Of course, this means that if you are
porting EKA2, you no longer need to recompile the kernel every time you
tweak your hardware.



10 INTRODUCING EKA2

1.3.2.6 Variant

In EKA2, we don’t insist that you make a division between the ASSP and
the variant, as we do in EKA1. You may provide one single variant DLL if
you wish. Nevertheless, if you were porting the OS to a family of similar
ASICs, you would probably choose to split it, putting the generic code for
the family of ASICs in the ASSP extension, and the code for a particular
ASIC in the variant DLL. For example, within Symbian, the Intel SA1100
ASSP has two variants, Brutus and Assabet.

1.3.2.7 Device drivers

On Symbian OS, you use device drivers to control peripherals: drivers
provide the interface between those peripherals and the rest of Sym-
bian OS. If you want, you may split your device driver in a similar
way to the ASSP and variant, providing a hardware-independent logical
device driver, or LDD, and a hardware-dependent physical device driver,
or PDD.

Device drivers may run in the client thread or in a kernel thread:
our new multi-threaded kernel design makes porting device drivers to
Symbian OS from other operating systems much easier.

Symbian provides standard LDDs for a wide range of peripheral types
(such as media devices, the USB controller and serial communications
devices) – nevertheless, phone manufacturers will often develop their
own interfaces for custom hardware.

Device drivers have changed considerably from EKA1 to EKA2. See
Chapter 12, Drivers and Extensions, for more details.

1.3.2.8 Extensions

Extensions are merely device drivers that the kernel automatically starts
at boot-time, so you can think of them as a way to extend the kernel’s
functionality. For example, the crash debugger is a kernel extension,
allowing you to include it or exclude it from a ROM as you wish, without
having to recompile the kernel.

The variant and the ASSP that I discussed earlier are important exten-
sions that the kernel loads quite early in the boot process. After this, the
kernel continues to boot until it finally starts the scheduler and enters
the supervisor thread, which initializes all remaining kernel extensions.
Extensions loaded at this late stage are not critical to the operation of
the kernel itself, but are typically used to perform early initialization of
hardware components and to provide permanently available services for
devices such as the LCD, DMA, I2C and peripheral bus controllers.

The final kernel extension to be initialized is the EXSTART extension,
which is responsible for loading the file server. I discuss system boot in
more detail in Chapter 16, Boot Processes.



SYMBIAN OS DESIGN 11

1.3.2.9 EUSER

The user library, EUSER, provides three main types of function to its
clients:

1. Class library methods that execute entirely user-side, such as most
methods in the array and descriptor classes (descriptors are the
Symbian OS version of strings)

2. Access to kernel functions requiring the kernel to make privileged
accesses on behalf of the user thread, such as checking the time or
locale settings

3. Access to kernel functions requiring the kernel to manipulate its own
memory on behalf of a user thread, such as process creation or
loading a library.

Every Symbian OS thread gains its access to kernel services through the
EUSER library. It is this interface that we have largely maintained between
EKA1 and EKA2, resulting in minimal disruption to application authors.

1.3.2.10 File server

The file server is a user-mode server that allows user-mode threads to
manipulate drives, directories and files. Please turn to Chapter 9, The File
Server, for more details.

1.3.2.11 Window server

The window server is a user-mode server that shares the screen, keyboard
and pointer between all Symbian OS applications. See Chapter 11, The
Window Server, for more details.

1.3.2.12 Software layering

We can also consider the architecture of Symbian OS from a software
layering perspective, as shown in Figure 1.2.

If you are familiar with EKA1, you will notice that the layering of EKA2
is a little different. Nonetheless, there are strong similarities, as we move
down from the most generic, independent layer, in which code is shared
between all platforms, to the most specific variant layer, in which code
is written for a particular ASIC on a particular development board or in a
particular mobile phone.

We call the top four software layers ‘‘the kernel layer’’, and the bottom
two, ‘‘the peripheral layer’’. These last form a key part of the board
support package that a phone manufacturer implements when porting
Symbian OS to new hardware. This also comprises the bootstrap and
device drivers and extensions.



12 INTRODUCING EKA2

NKern

Memory Model

Memory Model

Memory Model

NKern Symbian OS Kernel

Symbian OS Kernel

ASSP DLL

Variant DLL

Independent

Platform

Model

CPU

ASSP

Variant

Figure 1.2 Kernel layering

The independent layer makes up about 60% of the kernel source
code. It provides the basic building blocks of the nanokernel and the
Symbian OS kernel – nanothreads, threads, processes, chunks, client-
server and more. These base classes are derived in lower layers to
provide implementations for the particular hardware on which Symbian
OS is running.

The platform layer is concerned with executable images – whether
Symbian OS is running on the emulator or real hardware – hence its
alternative name of the image layer. Only the memory model has code
at this level, and it provides two implementations, EPOC for device
hardware and WIN32 for the emulator.

The model layer is all about the organization of per-process memory,
and again only the memory model has code at this level. The mem-
ory model provides four different implementations – moving, multiple,
direct and emulator. I will discuss these in more depth in Chapter 7,
Memory Models.

The CPU layer is for code that differs according to the processor that
Symbian OS is running on; this is where assembler code belongs. The
nanokernel, memory model and Symbian OS kernel all have code in
this layer. At the time of writing, Symbian provides three possible CPU
layers – X86 (a port to PC hardware), ARM (mobile phones) and Win32
(for the emulator).

The CPU layer of the memory model has code that is CPU- and
MMU-specific, as well as specific to the type of memory model. The
nanokernel’s CPU layer contains most of the knowledge of the core CPU
architecture – how exceptions and interrupts are handled, which registers
need to be saved on a context switch and so on. A good proportion of
the code in the CPU layer of the Symbian OS kernel is independent layer
functionality that has been assembler-coded for improved performance.



SYMBIAN OS DESIGN 13

The variant layer provides the hardware-specific implementation of the
control functions expected by the nanokernel and the Symbian OS kernel.
As I mentioned earlier, the phone manufacturer can choose whether to
split this layer into an ASSP and a variant when porting to new hardware.

This variant layer can also provide hardware-specific implementations
of hardware abstraction layer (HAL) functions, although these may equally
be implemented in the kernel itself or in extensions.

In Chapter 5, Kernel Services, I will explain what services each layer
exposes to the other layers.

1.3.3 Design solutions

Now I’m going to talk about the design decisions that we took for EKA2,
and how they helped us to achieve the goals that we had set ourselves.

1.3.3.1 Multi-threaded preemptible kernel

To decrease thread latency, we chose to make EKA2 multi-threaded,
allowing the preemption of low-priority kernel operations by high-
priority ones.

EKA2 has five threads, and they are:

1. The null thread – idles the CPU, de-fragments RAM. This is also
known as the idle thread

2. The supervisor thread – cleans up killed threads and processes, pro-
vides asynchronous object deletion

3. DFC thread 0 – runs DFCs for general device drivers, such as comms,
keyboard and digitizer

4. DFC thread 1 – runs the nanokernel’s timer queue

5. Timer thread – runs Symbian OS relative and absolute timers
(After(), At()).

I’ll describe the purpose of these five threads in more detail in Chapter 3,
Threads, Processes and Libraries.

The multi-threaded nature of the kernel also helped us to achieve
another of our goals – making life easier for device driver writers. You
often want to port a device driver from another operating system, but
the single-threaded device driver model of EKA1 meant that porting a
multi-threaded device driver was not a simple task – you usually had to
redesign the driver from scratch. In EKA2, device drivers can make use
of DFC thread 0, or can even create threads of their own if they wish.
Device driver designs from other operating systems can be re-used and
porting is now much simpler.



14 INTRODUCING EKA2

1.3.3.2 Nanokernel

We chose to have a separate nanokernel, because it has several advan-
tages:

1. Very low and predictable interrupt and thread latencies. This is
because only the nanokernel disables either interrupts or reschedul-
ing. (There are a handful of exceptions to this, but they are not
important here.) The vast majority of the Symbian OS kernel, and the
memory model, run with both interrupts and preemption enabled.
Because the nanokernel provides only a small selection of primi-
tives, it is easy to determine the longest period for which we disable
interrupts or rescheduling

2. Simpler and better emulation. The Symbian OS emulator running
under Windows has far more code in common with a real device,
which means that the emulation is more faithful than that obtained
with the EKA1 emulator

3. Support for single-core phones. The nanokernel allows you to run an
RTOS and its GSM signaling stack alongside Symbian OS and its PIM
software. For more detail see Section 1.3.2.4.

1.3.3.3 Modularity

The increased modularity of the new kernel makes porting the operating
system to new ASSPs much easier. A large proportion of the processor-
specific code is in the nanokernel, and differences in memory and MMU
are confined to the memory model.

The memory model makes it easy for you to use the direct memory
model in the early stages of a port to a new CPU architecture, changing
to the moving or multiple models later on when you’ve done more
debugging. It allows you to port the OS in smaller, simpler stages.

1.3.3.4 Design limitations

Designing for real-time performance led to a couple of design limitations
on EKA2:

1. To ensure deterministic interrupt latencies, we could not allow an
unlimited number of interrupt service routines to bind to one interrupt
source as was possible in EKA1. Now only one ISR may bind to
an interrupt

2. To ensure bounded context switch times, we had to restrict the
number of chunks in a process to a maximum of 8 – from an unlim-
ited number in EKA1. (A chunk is the Symbian OS object that is
fundamental to memory allocation – for more details see Chapter 7,
Memory Models.)



SYMBIAN OS DESIGN 15

It’s important to note that not all EKA2 services are bounded in time:
for example, the allocation and freeing of memory are potentially
unbounded. This is discussed in Chapter 17, Real Time.

1.3.4 The Symbian OS emulator

1.3.4.1 Design decisions

The emulator has two main uses – developing Symbian OS software and
demonstrating that software.

The first of these use cases makes more demands on kernel services, so
we concentrated on it when we drew up our requirements. At the highest
level, it gave us just a couple of key requirements for the emulator:

1. It needs to support development and debugging using standard tools
on the host platform

2. It should provide as faithful an emulation as possible of Symbian OS
on target hardware.

These requirements seem to conflict, because the first requires the use of
entities in the hosted platform (until now, always Windows) that do not
exist in the same form in the ‘‘real’’ Symbian OS. For example:

1. Source-level debugging requires that the object code is stored in
standard Windows executable files that the Windows debugger can
recognize and that are loaded via the standard Windows loader

2. Debugging multi-threaded software requires that the Windows debug-
ger recognize those threads. This means that we should implement
emulated threads as Windows threads.

In the end, we decided to write the EKA2 emulator as a port of the EKA2
kernel, rather than trying to make the Symbian OS kernel API work over
Win32 APIs. We used Windows as little as possible so as to share the
maximum amount of Symbian OS code (and hence behavior) between
the emulator and real mobile phones.

Indeed, if you look at Figure 1.3 and compare the code that runs on
a real device to the code that runs on the Win32 emulator, you will
find a great deal in common. Both systems contain the same core kernel
code, from the Symbian OS kernel and the nanokernel. At the lower,
architecture-specific, levels of the nanokernel, we have an emulated
‘‘Win32’’ CPU rather than an ARM CPU or an X86 CPU. This means that
the emulator is effectively a port to a different processor. For example, the
emulator has processes and scheduling that are almost identical to those
on a real device.



16 INTRODUCING EKA2

Symbian OS
KERNEL

ARM processor

ARM CPU-specific
nanokernel and

kernel

ARM
MMU-specific

memory model

memory
model

nanokernel

Symbian OS
KERNEL

Host OS:
Windows

emulator-specific
nanokernel and

kernel

emulator-specific
memory model

memory
model

nanokernel

remains
the same

Symbian OS

Windowshardware

software

Figure 1.3 Emulator code re-use

The memory model, however, is completely different on the emulator
and a real mobile phone. On the emulator, it is always the special
emulator memory model, which has knowledge of the different image
files that are loaded to create processes. These are standard Win32 PE EXE
files, and so we satisfy our earlier requirement for source-level debugging.
In theory, this approach could make it easier for us to implement an
emulator on platforms other than Windows.

1.4 Summary

I hope that this chapter has given you a good overview of the history and
design of the Symbian OS kernel. Next I shall look at Symbian OS as a
platform for real device hardware.


