
Chapter 1

Relational Database Fundamentals
In This Chapter
� Organizing information

� Defining database

� Defining DBMS

� Comparing database models

� Defining relational database

� Considering the challenges of database design

SQL (pronounced ess-que-ell, not see’qwl) is an industry-standard language
specifically designed to enable people to create databases, add new data

to databases, maintain the data, and retrieve selected parts of the data.
Various kinds of databases exist, each adhering to a different conceptual
model. SQL was originally developed to operate on data in databases that
follow the relational model. Recently, the international SQL standard has
incorporated part of the object model, resulting in hybrid structures called
object-relational databases. In this chapter, I discuss data storage, devote a
section to how the relational model compares with other major models, and
provide a look at the important features of relational databases.

Before I talk about SQL, however, I need to nail down what I mean by the term
database. Its meaning has changed as computers have changed the way people
record and maintain information.

Keeping Track of Things
Today, people use computers to perform many tasks formerly done with
other tools. Computers have replaced typewriters for creating and modifying
documents. They’ve surpassed electromechanical calculators as the best
way to do math. They’ve also replaced millions of pieces of paper, file folders,
and file cabinets as the principal storage medium for important information.
Compared to those old tools, of course, computers do much more, much
faster — and with greater accuracy. These increased benefits do come at a cost,
however. Computer users no longer have direct physical access to their data.

05_04652x ch01.qxp 7/10/06 1:45 PM Page 7

CO
PYRIG

HTED
 M

ATERIA
L

When computers occasionally fail, office workers may wonder whether com-
puterization really improved anything at all. In the old days, a manila file
folder only “crashed” if you dropped it — then you merely knelt down, picked
up the papers, and put them back in the folder. Barring earthquakes or other
major disasters, file cabinets never “went down,” and they never gave you an
error message. A hard drive crash is another matter entirely: You can’t “pick
up” lost bits and bytes. Mechanical, electrical, and human failures can make
your data go away into the Great Beyond, never to return.

Taking the necessary precautions to protect yourself from accidental data
loss allows you to start cashing in on the greater speed and accuracy that
computers provide.

If you’re storing important data, you have four main concerns:

� Storing data needs to be quick and easy, because you’re likely to do it
often.

� The storage medium must be reliable. You don’t want to come back later
and find some (or all) of your data missing.

� Data retrieval needs to be quick and easy, regardless of how many items
you store.

� You need an easy way to separate the exact information that you want
today from the tons of data that you don’t want right now.

State-of-the-art computer databases satisfy these four criteria. If you store
more than a dozen or so data items, you probably want to store those items
in a database.

What Is a Database?
The term database has fallen into loose use lately, losing much of its original
meaning. To some people, a database is any collection of data items (phone
books, laundry lists, parchment scrolls . . . whatever). Other people define
the term more strictly.

In this book, I define a database as a self-describing collection of integrated
records. And yes, that does imply computer technology, complete with lan-
guages such as SQL.

A record is a representation of some physical or conceptual object. Say, for
example, that you want to keep track of a business’s customers. You assign a
record for each customer. Each record has multiple attributes, such as name,
address, and telephone number. Individual names, addresses, and so on are
the data.

8 Part I: Basic Concepts

05_04652x ch01.qxp 7/10/06 1:45 PM Page 8

A database consists of both data and metadata. Metadata is the data that
describes the data’s structure within a database. If you know how your data
is arranged, then you can retrieve it. Because the database contains a descrip-
tion of its own structure, it’s self-describing. The database is integrated because
it includes not only data items but also the relationships among data items.

The database stores metadata in an area called the data dictionary, which
describes the tables, columns, indexes, constraints, and other items that
make up the database.

Because a flat file system (described later in this chapter) has no metadata,
applications written to work with flat files must contain the equivalent of the
metadata as part of the application program.

Database Size and Complexity
Databases come in all sizes, from simple collections of a few records to mam-
moth systems holding millions of records.

A personal database is designed for use by a single person on a single com-
puter. Such a database usually has a rather simple structure and a relatively
small size. A departmental or workgroup database is used by the members of a
single department or workgroup within an organization. This type of database
is generally larger than a personal database and is necessarily more complex;
such a database must handle multiple users trying to access the same data at
the same time. An enterprise database can be huge. Enterprise databases may
model the critical information flow of entire large organizations.

What Is a Database Management System?
Glad you asked. A database management system (DBMS) is a set of programs
used to define, administer, and process databases and their associated appli-
cations. The database being managed is, in essence, a structure that you
build to hold valuable data. A DBMS is the tool you use to build that structure
and operate on the data contained within the database.

You can find many DBMS programs on the market today. Some run only on
mainframe computers, some only on minicomputers, and some only on per-
sonal computers. A strong trend, however, is for such products to work on
multiple platforms or on networks that contain all three classes of machines.

A DBMS that runs on platforms of multiple classes, large and small, is called
scalable.

9Chapter 1: Relational Database Fundamentals

05_04652x ch01.qxp 7/10/06 1:45 PM Page 9

Whatever the size of the computer that hosts the database — and regardless
of whether the machine is connected to a network — the flow of information
between database and user is always the same. Figure 1-1 shows that the user
communicates with the database through the DBMS. The DBMS masks the phys-
ical details of the database storage so that the application only has to concern
itself with the logical characteristics of the data, not how the data is stored.

Flat Files
Where structured data is concerned, the flat file is as simple as it gets. No, a
flat file isn’t a folder that’s been squashed under a stack of books. Flat files
are so called because they have minimal structure. If they were buildings,
they’d barely stick up from the ground. A flat file is simply a collection of data

Application
Program

User
User

Interface

DBMS Database

Figure 1-1:
A block

diagram of
a DBMS-

based
information

system.

10 Part I: Basic Concepts

The value is not in the data, but in the structure
Years ago, some clever person calculated that if
you reduce human beings to their components
of carbon, hydrogen, oxygen, and nitrogen
atoms (plus traces of others), they would be
worth only 97 cents. However droll this assess-
ment, it’s misleading. People aren’t composed
of mere isolated collections of atoms. Our atoms
combine into enzymes, proteins, hormones, and
many other substances that would cost millions

of dollars per ounce on the pharmaceutical
market. The precise structure of these combi-
nations of atoms is what gives them greater
value. By analogy, database structure makes
possible the interpretation of seemingly mean-
ingless data. The structure brings to the surface
patterns, trends, and tendencies in the data.
Unstructured data — like uncombined atoms —
has little or no value.

05_04652x ch01.qxp 7/10/06 1:45 PM Page 10

records, one after another, in a specified format — the data, the whole data,
and nothing but the data — in effect, a list. In computer terms, a flat file is
simple. Because the file doesn’t store structural information (metadata), its
overhead (stuff in the file that is not data) is minimal.

Say that you want to keep track of the names and addresses of your company’s
customers in a flat file system. The system may have a structure something
like this:

Harold Percival26262 S. Howards Mill Rd Westminster CA92683
Jerry Appel 32323 S. River Lane Rd Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette St Garden GroveCA92643
Michael Pens 77730 S. New Era Rd Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Dr Stanton CA92610
Linda Smith 444 S.E. Seventh St Costa Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Dr Stanton CA92610
Jed Style 3535 Randall St Santa Ana CA92705

As you can see, the file contains nothing but data. Each field has a fixed
length (the Name field, for example, is always exactly 15 characters long), and
no structure separates one field from another. The person who created the
database assigned field positions and lengths. Any program using this file
must “know” how each field was assigned, because that information is not
contained in the database itself.

Such low overhead means that operating on flat files can be very fast. On the
minus side, however, application programs must include logic that manipu-
lates the file’s data at a very low level of complexity. The application must
know exactly where and how the file stores its data. Thus, for small systems,
flat files work fine. The larger a system is, however, the more cumbersome a
flat file system becomes.

Using a database instead of a flat file system eliminates duplication of effort.
Although database files themselves may have more overhead, the applica-
tions can be more portable across various hardware platforms and operating
systems. A database also makes writing application programs easier because
the programmer doesn’t need to know the physical details of where and how
the data is stored.

Databases eliminate duplication of effort, because the DBMS handles the
data-manipulation details. Applications written to operate on flat files must
include those details in the application code. If multiple applications all
access the same flat file data, these applications must all (redundantly)
include that data manipulation code. By using a DBMS, you don’t need to
include such code in the applications at all.

11Chapter 1: Relational Database Fundamentals

05_04652x ch01.qxp 7/10/06 1:45 PM Page 11

Clearly, if a flat file-based application includes data-manipulation code that
only runs on a particular hardware platform, then migrating the application
to a new platform is a headache waiting to happen. You have to change all
the hardware-specific code — and that’s just for openers. Migrating a similar
DBMS-based application to another platform is much simpler — fewer com-
plicated steps, fewer aspirin consumed.

Database Models
Different as databases may be in size, they are generally always structured
according to one of three database models:

� Relational: Nowadays, new installations of database management sys-
tems are almost exclusively of the relational type. Organizations that
already have a major investment in hierarchical or network technology
may add to the existing model, but groups that have no need to maintain
compatibility with so-called legacy systems nearly always choose the
relational model for their databases.

� Hierarchical: Hierarchical databases are aptly named because they have
a simple hierarchical structure that allows fast data access. They suffer
from redundancy problems and their structural inflexibility makes data-
base modification difficult.

� Network: Network databases have minimal redundancy but pay for that
advantage with structural complexity.

The first databases to see wide use were large organizational databases that
today would be called enterprise databases, built according to either the
hierarchical or the network model. Systems built according to the relational
model followed several years later. SQL is a strictly modern language; it applies
only to the relational model and its descendant, the object-relational model.
So here’s where this book says, “So long, it’s been good to know ya,” to the
hierarchical and network models.

New database management systems that are not based on the relational
model probably conform to the newer object model or the hybrid object-
relational model.

Relational model
Dr. E. F. Codd of IBM first formulated the relational database model in 1970,
and this model started appearing in products about a decade later. Ironically,
IBM did not deliver the first relational DBMS. That distinction went to a small
start-up company, which named its product Oracle.

12 Part I: Basic Concepts

05_04652x ch01.qxp 7/10/06 1:45 PM Page 12

Relational databases have replaced earlier database types because relational
databases have valuable attributes that distinguish them as superior. Probably
the most important of these attributes is that relational databases enable you
to change the database structure without making changes to applications
that were based on the old structures. Suppose, for example, that you add
one or more new columns to a database table. You don’t need to change any
previously written applications that will continue to process that table unless
you alter one or more of the columns used by those applications.

Of course, if you remove a column that an existing application references,
you experience problems no matter what database model you follow. One of
the best ways to make a database application crash is to ask it to retrieve a
kind of data that your database doesn’t contain.

Why relational is better
In applications written with DBMSs that follow the hierarchical or network
model, database structure is hard-coded into the application. That is, the
application is dependent on the specific physical implementation of the
database. If you add a new attribute to the database, you must change your
application to accommodate the change, whether or not the application uses
the new attribute.

Relational databases offer structural flexibility; applications written for those
databases are easier to maintain than similar applications written for hierar-
chical or network databases. That same structural flexibility enables you to
retrieve combinations of data that you may not have anticipated needing at
the time of the database’s design.

Components of a relational database
Relational databases gain their flexibility because their data resides in tables
that are largely independent of each other. You can add, delete, or change
data in a table without affecting the data in the other tables, provided that
the affected table is not a parent of any of the other tables. (Parent-child table
relationships are explained in Chapter 5, and no, they don’t have anything to
do with discussing allowances over dinner.) In this section, I show what these
tables consist of and how they relate to the other parts of a relational database.

Holidays bring families together
At holiday time, many of my relatives come to my house and sit down at my
table. Databases have relations, too, but each of their relations has its own
table. A relational database is made up of one or more relations.

13Chapter 1: Relational Database Fundamentals

05_04652x ch01.qxp 7/10/06 1:45 PM Page 13

A relation is a two-dimensional array of rows and columns, containing single-
valued entries and no duplicate rows. Each cell in the array can have only
one value, and no two rows may be identical.

Most people are familiar with two-dimensional arrays of rows and columns,
in the form of electronic spreadsheets such as Microsoft Excel. The offensive
statistics listed on the back of a major-league baseball player’s baseball card
are another example of such an array. On the baseball card are columns for
year, team, games played, at-bats, hits, runs scored, runs batted in, doubles,
triples, home runs, bases on balls, steals, and batting average. A row covers
each year that the player has played in the Major Leagues. You can also store
this data in a relation (a table), which has the same basic structure. Figure 1-2
shows a relational database table holding the offensive statistics for a single
major-league player. In practice, such a table would hold the statistics for an
entire team or perhaps the whole league.

Columns in the array are self-consistent, in that a column has the same mean-
ing in every row. If a column contains a player’s last name in one row, the
column must contain a player’s last name in all rows. The order in which the
rows and columns appear in the array has no significance. As far as the DBMS
is concerned, it doesn’t matter which column is first, which is next, and which
is last. The same is true of rows. The DBMS processes the table the same way
regardless of the organization.

Every column in a database table embodies a single attribute of the table, just
like that baseball card. The column’s meaning is the same for every row of the
table. A table may, for example, contain the names, addresses, and telephone
numbers of all an organization’s customers. Each row in the table (also called
a record, or a tuple) holds the data for a single customer. Each column holds a
single attribute, such as customer number, customer name, customer street,
customer city, customer state, customer postal code, or customer telephone
number. Figure 1-3 shows some of the rows and columns of such a table.

The relations in a database model correspond to tables in a database based
on the model. Try to say that ten times fast.

Roberts
Roberts
Roberts

1988
1989
1990

Padres
Padres
Padres

5
117
149

9
329
556

3
99

172

 0
15
36

0
8
3

0
3
9

.333

.301

.309

Year
At
BatPlayer Team Game Hits

1
81

104

Runs

0
25
44

RBI 2B 3B HR

 1
49
55

Walk

 0
21
46

Steals
Bat.
Avg.

Figure 1-2:
A table

showing a
baseball
player’s

offensive
statistics.

14 Part I: Basic Concepts

05_04652x ch01.qxp 7/10/06 1:45 PM Page 14

Enjoy the view
One of my favorite views is of the Yosemite Valley from the mouth of the
Wawona Tunnel, late on a spring afternoon. Golden light bathes the sheer
face of El Capitan, Half Dome glistens in the distance, and Bridal Veil Falls
forms a silver cascade of sparkling water, while a trace of wispy clouds
weaves a tapestry across the sky. Databases have views as well — even if
they’re not quite that picturesque. The beauty of database views is their
sheer usefulness when you’re working with your data.

Tables can contain many columns and rows. Sometimes all of that data
interests you, and sometimes it doesn’t. Only some columns of a table may
interest you, or perhaps you want to see only rows that satisfy a certain con-
dition. Some columns of one table and some other columns of a related table
may interest you. To eliminate data that isn’t relevant to your current needs,
you can create a view. A view is a subset of a database that an application can
process. It may contain parts of one or more tables.

Views are sometimes called virtual tables. To the application or the user, views
behave the same as tables. Views, however, have no independent existence.
Views allow you to look at data, but views are not part of the data.

ColumnsRow

Figure 1-3:
Each data-

base row
contains a

record; each
database

column
holds a

single
attribute.

15Chapter 1: Relational Database Fundamentals

05_04652x ch01.qxp 7/10/06 1:45 PM Page 15

Say, for example, that you’re working with a database that has a CUSTOMER
table and an INVOICE table. The CUSTOMER table has the columns
CustomerID, FirstName, LastName, Street, City, State, Zipcode, and
Phone. The INVOICE table has the columns InvoiceNumber, CustomerID,
Date, TotalSale, TotalRemitted, and FormOfPayment.

A national sales manager wants to look at a screen that contains only the
customer’s first name, last name, and telephone number. Creating from the
CUSTOMER table a view that contains only those three columns enables the
manager to view what he or she needs without having to see all the unwanted
data in the other columns. Figure 1-4 shows the derivation of the national
sales manager’s view.

A branch manager may want to look at the names and phone numbers of all
customers whose zip codes fall between 90000 and 93999 (southern and cen-
tral California). A view that places a restriction on the rows it retrieves, as
well as the columns it displays, does the job. Figure 1-5 shows the sources for
the branch manager’s view’s columns.

The accounts payable manager may want to look at customer names from
the CUSTOMER table and Date, TotalSale, TotalRemitted, and
FormOfPayment from the INVOICE table, where TotalRemitted is less
than TotalSale. The latter would be the case if full payment hasn’t yet
been made. This need requires a view that draws from both tables. Figure 1-6
shows data flowing into the accounts payable manager’s view from both the
CUSTOMER and INVOICE tables.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

SALES_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

Figure 1-4:
The sales

manager’s
view derives

from the
CUSTOMER

table.

16 Part I: Basic Concepts

05_04652x ch01.qxp 7/10/06 1:45 PM Page 16

Views are useful because they enable you to extract and format database
data without physically altering the stored data. Chapter 6 illustrates how
to create a view by using SQL.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

FirstName
LastName
Date
Total Sale
TotalRemitted
FormOfPayment

ACCTS_PAY View

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

TotalRemitted < TotalSale
Figure 1-6:

The
accounts

payable
manager’s

view draws
from two

tables.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

BRANCH_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

Zipcode > = 90000 AND Zipcode < = 93999

Figure 1-5:
The branch
manager’s

view
includes

only certain
rows from

the
CUSTOMER

table.

17Chapter 1: Relational Database Fundamentals

05_04652x ch01.qxp 7/10/06 1:45 PM Page 17

Schemas, domains, and constraints
A database is more than a collection of tables. Additional structures, on
several levels, help to maintain the data’s integrity. A database’s schema pro-
vides an overall organization to the tables. The domain of a table column tells
you what values you may store in the column. You can apply constraints to a
database table to prevent anyone (including yourself) from storing invalid
data in the table.

Schemas
The structure of an entire database is its schema, or conceptual view. This
structure is sometimes also called the complete logical view of the database.
The schema is metadata — as such, it’s part of the database. The metadata
itself, which describes the database’s structure, is stored in tables that are
just like the tables that store the regular data. Even metadata is data; that’s
the beauty of it.

Domains
An attribute of a relation (that is, a column of a table) can assume some finite
number of values. The set of all such values is the domain of the attribute.

Say, for example, that you’re an automobile dealer who handles the newly
introduced Curarri GT 4000 sports coupe. You keep track of the cars you have
in stock in a database table that you name INVENTORY. You name one of the
table columns Color, which holds the exterior color of each car. The GT 4000
comes in only four colors: blazing crimson, midnight black, snowflake white,
and metallic gray. Those four colors are the domain of the Color attribute.

Constraints
Constraints are an important, although often overlooked, component of a
database. Constraints are rules that determine what values the table attrib-
utes can assume.

By applying tight constraints to a column, you can prevent people from
entering invalid data into that column. Of course, every value that is legiti-
mately in the domain of the column must satisfy all the column’s constraints.
As I mention in the preceding section, a column’s domain is the set of all values
that the column can contain. A constraint is a restriction on what a column
may contain. The characteristics of a table column, plus the constraints that
apply to that column, determine the column’s domain. By applying constraints,
you can prevent users from entering data into a column that falls outside the
column’s domain.

18 Part I: Basic Concepts

05_04652x ch01.qxp 7/10/06 1:45 PM Page 18

In the auto dealership example, you can constrain the database to accept
only those four values in the Color column. If a data entry operator then
tries to enter in the Color column a value of, for example, forest green,
the system refuses to accept the entry. Data entry can’t proceed until the
operator enters a valid value into the Color field.

You may wonder what happens when the Curarri AutoWerks decides to offer
a forest green version of the GT5000 as a mid-year option. The answer is
(drum roll, please) job security for database maintenance programmers.
This kind of thing happens all the time and requires updates to the database
structure. Only people who know how to modify the database structure
(such as you) will be able to prevent a major snafu.

The object model challenges
the relational model
The relational model has been fantastically successful in a wide variety of
application areas. However, it is not free of its share of issues. The limitations
have been made more visible by the rise in popularity of object-oriented pro-
gramming languages such as C++, Java, and C#. Such languages are capable
of handling more complex problems than traditional languages due to their
advanced features, such as user-extensible type systems, encapsulation,
inheritance, dynamic binding of methods, complex and composite objects,
and object identity.

I am not going to explain all that jargon in this book (although I do touch on
some of these terms later). Suffice it to say that the classic relational model
doesn’t mesh well with many of these features. As a result, database manage-
ment systems based on the object model have been developed and are
available on the market. As yet, their market share is relatively small.

The object-relational model
Database designers, like everyone else, are constantly searching for the best
of all possible worlds. They mused, “Wouldn’t it be great if we could have the
advantages of an object-oriented database system, and still retain compatibil-
ity with the relational system that we have come to know and love?” This
kind of thinking led to the hybrid object-relational model. Object-relational
DBMSs extend the relational model to include support for object-oriented
data modeling. Object-oriented features have been added to the international

19Chapter 1: Relational Database Fundamentals

05_04652x ch01.qxp 7/10/06 1:45 PM Page 19

SQL standard, allowing relational DBMS vendors to transform their products
into object-relational DBMSs, while retaining compatibility with the standard.
Thus, whereas the SQL-92 standard describes a purely relational database
model, SQL:1999 describes an object-relational database model. SQL:2003 has
even more object-oriented features. The SQL/XML:2005 update to the stan-
dard, as the name implies, is primarily concerned with XML rather than
object orientation.

In this book, I describe ISO/IEC international standard SQL. This is primarily
a relational database model. I also include the object-oriented extensions to
the standard that were introduced in SQL:1999, and the additional extensions
included in SQL:2003. The object-oriented features of the new standard allow
developers to apply SQL databases to problems that are too complex to
address with the older, purely relational, paradigm.

Database Design Considerations
A database is a representation of a physical or conceptual structure, such as
an organization, an automobile assembly, or the performance statistics of all
the major-league baseball clubs. The accuracy of the representation depends
on the level of detail of the database design. The amount of effort that you
put into database design should depend on the type of information you want
to get out of the database. Too much detail is a waste of effort, time, and hard
drive space. Too little detail may render the database worthless.

Decide how much detail you need now and how much you may need in the
future — and then provide exactly that level of detail in your design (no more
and no less). But don’t be surprised if you have to adjust the design eventu-
ally to meet changing real-world needs.

Today’s database management systems, complete with attractive graphical
user interfaces and intuitive design tools, can give the would-be database
designer a false sense of security. These systems make designing a database
seem comparable to building a spreadsheet or engaging in some other rela-
tively straightforward task. No such luck. Database design is difficult. If you
do it incorrectly, you get a database that becomes gradually more corrupt as
time goes on. Often the problem doesn’t turn up until after you devote a great
deal of effort to data entry. By the time you know that you have a problem,
it’s already serious. In many cases, the only solution is to completely redesign
the database and reenter all the data. The up side is that by the time you finish
your second version of the same database you realize how much better you’ve
gotten at it.

20 Part I: Basic Concepts

05_04652x ch01.qxp 7/10/06 1:45 PM Page 20

