Chapter 1

Welcome to the World
of Ruby on Rails

In This Chapter
Understanding the need for agile software development
Discovering Ruby’s role in agile development
Finding out how Rails fits in

0 nce upon a time, there were three little programmers. The programmers
wrote code for the World Wide Web — code to give users access to a
company’s database.

The first programmer was in a hurry to write her code. She wrote simple
code as quickly as she could. The second programmer wasn’t quite in such a
hurry. She used the traditional Waterfall methodology — a multistep process
involving analysis, design, coding, testing, and deployment. The third pro-
grammer was careful and industrious. She used a heavyweight persistence
framework such as Enterprise JavaBeans. She built her software to cover
every possible contingency and to accommodate any future need.

As you might expect, this story has a big bad wolf. The wolf might have been
a manager, a client paying for the software’s creation, or a customer attempt-
ing to access the company’s Web site. The wolf went in reverse order, visiting
the careful and industrious programmer’s Web site first.

Unfortunately, the wolf couldn’t log onto the industrious programmer’s site.
Instead, he got the message: “This site is under construction.” The careful,
industrious programmer had completed only half of her work. The heavy-
weight persistence framework was difficult to learn and burdensome to use.
Needless, to say, the wolf huffed and he puffed, and he blew the Web site down.

10

Part I: Nuts and Bolts

So the wolf visited the second programmer’s Web site. The site was up and
running, but certain aspects of the site didn’t meet the wolf’s needs. In fol-
lowing the Waterfall methodology, the second programmer had carefully
planned every aspect of the project before beginning to write the code.
But by the time the code was ready for testing, the project’s requirements
had shifted.

The second programmer was aware of her Web site’s deficiencies. Through
extended testing and use, she had learned that the original requirements were
obsolete. But with all the code in place, the second programmer couldn’t
easily make major changes. All she could do was fix bugs and make the

code run a bit faster. She promised that she’d update the requirements for
version 2.0 of the system. But the wolf was impatient. He huffed and he
puffed, and he blew the Web site down.

In desperation, the wolf visited the first programmer’s Web site. She had built
the site quickly and easily, using Ruby on Rails. In fact, her first prototype had
been up and running in two days. Her co-workers had tested the prototype,
critiqued the prototype’s features, and told her what they expected in the
next prototype.

The next prototype was ready sooner than anyone expected. Once again,
co-workers tested the prototype, suggested improvements, and helped the
programmer to refine her evolving requirements.

After several brief rounds of coding and testing, the Web site was ready for
public use. The wolf enjoyed visiting the site because the site’s look and feel
reflected the way it had been designed. The site was nimble, intelligent, and
easy to use. The site did the kinds of things the wolf wanted it to do because
the programmer had gotten feedback on each prototype. Everyone was
happy . .. for a while anyway.

To repay the Ruby on Rails programmer, the wolf offered to repair her
house’s leaking roof. Unfortunately, the wolf had a nasty accident. While he
was working on the roof, he fell into the chimney and landed directly into a
pot of boiling water. Goodbye, wolf!

But the Ruby on Rails programmer was happy. She had created a great Web
site. And with all the time she’d saved using Ruby on Rails, she was able to
climb up to the roof and repair the leak herself.

The end.

Chapter 1: Welcome to the World of Ruby on Rails

The Software Development Process

The world changes quickly. Ten years ago, when I taught programming to
computer professionals, | wore a suit and a tie. Last month I taught the
same course wearing a polo shirt and khakis.

This tendency for things to change goes way back. In the 1960s, programmers
and managers noticed that commercial software tended to be very buggy.
They analyzed large projects created by big businesses. They saw software
development efforts going past deadline and over budget. They saw finished
products that were terribly unreliable. Most computer code was difficult to
test and impossible to maintain.

So they panicked.

They wrote books, magazine articles, and scholarly papers. They theorized.
They devised principles, and they arrived at various conclusions.

After years of theorizing, they founded the discipline known as software
engineering. The goal of software engineering is to discover practices that
help people write good code. As disciplines go, software engineering is pretty
good stuff. Software engineering encourages people to think about the way
they create software. And when people think about the way they work, they
tend to work better.

But in the 1970s, software engineering focused on methodologies. A methodol-
ogy is a prescribed set of practices. Do this, then do that, and finally, do the
other thing. When you’re finished, you have a big software system. But do
you have a useful software system?

In 1979, worked briefly for a company in Milwaukee. On the day I arrived,
the team manager pointed to the team’s methodology books. The books con-
sisted of two monstrous volumes. Together the volumes consumed about six
inches of bookshelf. I remember the team manager’s words as he pointed a
second time to the books. “That’s what we use around here. Those are the
practices that we follow.”

I spent several months working for that company. In all those months, no one
ever mentioned the methodology books again. I would have cracked the books
open out of curiosity. But unfortunately, excessive dust makes me sneeze.
Had I found anyone on the team who knew the methodology, I probably

11

12

Part I: Nuts and Bolts

would have learned how ponderous the methodology can be. No one wanted
to wade through hundreds of pages of principles, rules, and flow diagrams.
And if anyone did, they’d read about rigid systems — systems that encourage
programmers to follow fixed procedures — systems that don’t encourage
programmers to listen, to adjust, or to change.

Agility

In 2001, a group of practitioners created the Manifesto for Agile Software
Development (www.agilemanifesto.org). The Manifesto’s signatories
turned their backs on the methodologies of the past. Instead, they favored a
nimble approach. Their principles put “individuals and interactions over
processes and tools,” and put “responding to change over following a plan.”
Best of all, they declared that “Simplicity — the art of maximizing the
amount of work not done — is essential.” According to these practitioners,
the proof of the pudding is in the result. A process that doesn’t end in a
worthwhile result is a bad process, even if it’s an orderly, well-established
process.

The Agile Manifesto’s signatories aren’t opposed to the discipline of software
engineering. On the contrary, they believe firmly in the science of software
development. But they don’t believe in unnecessary paperwork, required
checklists, and mandatory diagrams. In other words, they don’t like horse
puckey.

Databases and the World Wide Web

By 2001, many businesses faced an enormous problem. Computers were no
longer islands unto themselves. Customers visited Web sites, ordered goods,
read headlines, updated records, posted comments, and downloaded songs.
At one end was a Web browser; at the other end was a database. In between
was lots of network plumbing. The problem was to move data from the browser
to the database, and from the database to the browser. The movement must
be efficient, reliable, and secure.

Imagine millions of people working on the same problem — moving data
between a Web browser and a database. If everyone works independently,
then millions of people duplicate each others’ efforts. Instead of working
independently, why not have people build on other people’s work? Create a
software framework for connecting Web browsers to databases. Provide hooks
into the software so that people can customize the framework’s behavior.

An online order system uses the framework one way, and a social networking
site uses the framework in its own, completely different way.

Chapter 1: Welcome to the World of Ruby on Rails

Throwing frameworks at the problem

By 2004, there wasn’t just one framework for solving the Web/database prob-
lem. There were dozens of frameworks. New frameworks, with names such
as Enterprise JavaBeans, Spring, Hibernate, and .NET, tackled pieces of the
problem.

But most of the aforementioned frameworks had a serious deficiency. They
didn’t lend themselves to agile software development. Software created with
one of these frameworks was fairly rigid. Planning was essential. Changes
were costly.

What the world needed was a different framework — a framework for agile
developers. The world needed a language that didn’t put programmers in
a box. The world needed software that could shift with a user’s shifting
needs. Let the major corporations use the older, heavyweight frameworks.
An entrepreneurial company thrives with a more versatile framework.

A small-to-medium-size company needs Ruby on Rails.

Along Comes Ruby on Rails

Think about your native language — the language you speak at home. Divide
the language into two styles. You use one style when you speak to a close
friend. (“Hi, buddy.”) You use another, more formal style when you write to a
potential employer (“Dear Sir or Madam . . .”).

Talking to a close friend is an agile activity. You listen intently, but occasion-
ally you interrupt. If your friend says something intriguing, you take time out
to ask for more details. You don’t try to impress your friend. You tune care-
fully to your friend’s mood, and the friend tunes to your mood.

In contrast, writing a business cover letter is not an agile activity. You don’t
get feedback as you write the letter. You try to guess what the potential
employer wants you to say, but you can never be sure. You use a formal
writing style in case the employer is a stodgy old coot.

Now imagine using a formal style to speak to your friend. “If you have any
questions about our next meeting at Kelly’s Tavern, please don’t hesitate to
call me at the phone number on this napkin. I look forward to hearing from
you soon. Yours truly, et cetera, et cetera.” Using formal language with your
friend would slow the conversation to a crawl. You wouldn’t pop your eyes
open when you heard some juicy gossip. Instead, you’d plan each sentence
carefully. You'd think about subject/verb agreement, hoping you didn’t offend
your friend with an awkward phrase or with some inappropriate slang.

13

14

Part I: Nuts and Bolts

Language isn’t a neutral medium of expression. Language influences the
nature of the message. A free-flowing style encourages free-flowing thought.
In the same way, a flexible programming language complements an agile soft-
ware development process.

Why Ruby?

Ruby is a computer programming language. You might be familiar with Basic,
Java, C++, or some other programming language. In certain ways, all these
languages are the same. They all provide ways for you to give instructions to
a computer. “Move this value from that memory location to that other location
on your hard drive.” A computer language is a way of expressing instructions
in a precise, unambiguous manner.

What makes Ruby different from so many other computer programming lan-
guages? In what way does Ruby support agile development?

Here’s the answer: Ruby is a dynamically typed, interpreted, reflective,
object-oriented language. That’s a great answer, but what does it mean?

Ruby is dynamically typed

In many languages, you have to declare each variable’s type. You write

int date;
date = 25092006;

The first line tells the computer that the date must store an integer — a whole
number — a number without a decimal point — a number like 25092006.
Later in the same program, you might write

date = "September 25, 2006";

But the computer refuses to accept this new line of code. The computer flags
this line with an error message. The value "September 25, 2006" isn’t an
integer. (In fact, “September 25, 2006” isn’t a number.) And because of the
int date; line, the non-Ruby program expects date to store an integer.

The word int stands for a type of value. In a statically typed language, a vari-
able’s type doesn’t change.

In contrast, Ruby is dynamically typed. The following lines form a complete,
valid Ruby program:

25092006
"September 25, 2006"

date
date

Chapter 1: Welcome to the World of Ruby on Rails

(Yes, this program doesn’t do anything useful, but it’s a program nevertheless.)

Ruby’s variables can change from being integers to being decimal values, and
then to being strings or arrays. They change easily, without any complicated
programming techniques. This flexibility makes Ruby a good language for
agile software development.

Ruby is interpreted

Many commonly used programming languages are compiled. When the com-
puter compiles a program, the computer translates the program into a very
detailed set of instructions (a set more detailed than the set that the pro-
grammer originally writes).

So picture yourself developing code in a compiled language. First you write
the code. Then you compile the code. Then you run the code. The code doesn’t
run exactly the way you want it to run, so you modify the code. Then you
compile again. And then you run the code again. This cycle takes place hun-
dreds of times a day. “Modify, compile, run.” You get tired of saying it inside
your head.

In contrast to the compiled languages, Ruby is interpreted. An interpreted lan-
guage bypasses the compilation step. You write the code, and then you run
the code. Of course you don't like the results. (That’s a given.) So you modify
and rerun the code. The whole cycle is much shorter. A piece of software (the
Ruby interpreter) examines your code and executes that code without delay.

Which is better — compiled code or interpreted code? Believe it or not, the
answer depends on your point of view. A computer executes compiled code
faster than interpreted code. But as computer processing power becomes
cheaper, the speed of execution is no longer such an important issue.

So step back from the processing speed issue and think about the speed of
software development. With a compiled language, each modify-compile-run
cycle is three steps long, compared with the two-step modify-run cycle in an
interpreted language such as Ruby. But what’s the big deal? How long can an
extra compilation step possibly take?

The answer is that compilation can slow you down. Compilation can be time
consuming, especially on a very large, complex project. Even a two-second com-
pilation can be annoying if you perform the cycle several hundred times a day.

But aside from the time factor, the compilation step distances the programmer
from the run of a program. Imagine writing a program in a compiled language,
say in C++. The computer compiles your program to get a more detailed set
of instructions. This detailed set of instructions isn’t the same as your origi-
nal program. It’s a translation of your instructions. Instead of executing your
program, the computer executes a translation.

15

10

Part I: Nuts and Bolts

|
Figure 1-1:
A run of the
code in
Listing 1-1.
|

Little to nothing gets lost in translation. But the fact that the computer doesn’t
run your original code makes a difference in the way you think about the
development cycle. The immediate, hands-on feeling of an interpreted lan-
guage gives an extra lift to the agile development mindset.

Ruby is reflective

A Ruby program can reflect upon its own code, like a philosopher reflecting
on his or her own life. More specifically, a Ruby program can turn a string of
characters into executable code and can do this somersault during the run of
a program. Listing 1-1 contains an example:

Listing 1-1: Defining a Database Table

print "Enter some text: "
STDOUT. flush

text_input = gets

puts

print "You entered: "
print text_input
puts

print "Maybe you entered some Ruby code!\n"

print "I'll try to execute the text that you entered.\n"
print "The result of executing your text is "

eval text_input

Figures 1-1 and 1-2 show two different runs of the code in Listing 1-1. In each
run the code prompts you to type some text. Ruby does two things with
whatever text you type:

v Ruby echoes the text (displays the text a second time on the screen).
v Ruby interprets your text as Ruby code and executes the code if possible.
The second step (reinterpreting text as code) is difficult to do in other pro-

gramming languages. Ruby makes it easy to reinterpret text as code, and this
ease makes life better for computer programmers.

Problems | Rl | &l Console i1 Tasks | RegExp
<terminated> reflect.rb [Ruby Application] Ruby C:iruby\bin\ruby.ex
Enter some text: x = 10; print x

You entered: x = 10; print x

Maybe you entered some Ruby code!
I'll try to execute the text that you entered.
The result of executing your text is 10

|
Figure 1-2:
Running the
code with
more com-
plicated
input.
|

Chapter 1: Welcome to the World of Ruby on Rails

Problems | RI| & Console 7 . Tasks| RegExp i
<terminated> reflect.rb [Ruby Application] Ruby C:irubylbin\ruby.exe : reflect.rb

Enter some text: prod = 1; S.times { |x| print prod *= x + 1, ' ' }
You entered: prod = 1; S.times { |x| print prod *=x + 1, ' " }

Maybe you entered some Ruby code!

I'll try to execute the text that vou entered.

The result of executing your text is 1 2 & 24 120

Ruby is object-oriented

I describe object-oriented programming (OOP) in Chapter 6. So I don’t want
to spoil the fun in this chapter. But to give you a preview, object-oriented pro-
gramming centers around nouns, not verbs. With object-oriented program-
ming, you begin by defining nouns. Each account has a name and a balance.
Each customer has a name, an address, and one or more accounts.

After describing the nouns, you start applying verbs. Create a new account
for a particular customer. Display the account’s balance. And so on.

Since the late 1980s, most commonly used programming languages have
been object oriented. So I can’t claim that Ruby is special this way. But
Ruby’s object-oriented style is more free-form than its equivalent in other
languages. Again, for more details on object-oriented programming in Ruby,
see Chapter 6.

Why Rails?

Rails is an add-on to the Ruby programming language. This add-on contains a
library full of Ruby code, scripts for generating parts of applications, and a
lot more.

The name Ruby on Rails is an inside joke. Since the year 2000, teams of

Java programmers have been using a framework named Struts. The Struts
framework addresses many of the problems described in this chapter —
Web development, databases, and other such things. But the word strut
means something in the construction industry. (A strut is a horizontal brace,
and a sturdy one at that.) Well, a rail is also a kind of horizontal brace.

And like Ruby, the word Rail begins with the letter R. Thus the name

Ruby on Rails.

In spite of the name Ruby on Rails, you don’t add Ruby on top of Rails. Rather,
the Rails framework is an add-on to the Ruby programming language.

17

18

Part I: Nuts and Bolts

The following fact might not surprise you at all. What separates Rails from
Struts and other frameworks is agility. Other frameworks used to solve the Web/
database problem are heavy and rigid. Development in these other frameworks
is slow and formal. In comparison, Rails is lightweight and nimble.

Author and practitioner Curt Hibbs claims that you can write a Rails applica-
tion in one-tenth the time it takes to write the same application using a
heavyweight framework. Many people challenge this claim, but the fact that
Hibbs is willing to make the claim says something important about Rails.

Rails is built on two solid principles: convention over configuration, and
Don’t Repeat Yourself (DRY).

Convention over configuration

A Web application consists of many parts, and you can go crazy connecting
all the parts. Take one small example. You have a variable named picture
in a computer program, and you have a column named image in a database
table. The computer program fetches data from the image table column and
stores this data in the picture variable. Then the program performs some
acrobatics with the picture variable’s data. (For example, the program dis-
plays the picture’s bits on a Web page.)

One way to deal with an application’s parts is to pretend that names like
picture and image bear little relation to one another. A programmer stitches
together the application’s parts using a configuration file. The configuration
file encodes facts such as “variable picture reads data from column image,”
“variable quotation reads data from column stock_value,” and “variable
comment_by_expert reads data from column quotation.” How confusing!

With dozens of names to encode at many levels of an application, program-
mers spend hours writing configuration files and specifying complex chains
of names. In the end, errors creep into the system, and programmers spend
more hours chasing bugs.

Rails shuns configuration in favor of naming conventions. In Rails, a variable
named image matches automatically with a column of the same name in the
database table. A variable named Photo matches automatically with a table
named photos. And a variable named Person matches automatically with a
table named people. (Yes, Rails understands plurals!)

In Rails, most configuration files are completely unnecessary. You can create
configuration information if you want to break Ruby’s naming conventions.
But if you're lucky, you seldom find it necessary to break Ruby’s naming
conventions.

Chapter 1: Welcome to the World of Ruby on Rails ’ 9

Don’t Repeat Yourself (DRY)

Another important Rails principle is to avoid duplicating information. A tradi-
tional program contains code describing database tables. The code tells the
rest of the program about the structure of the tables. Only after this descrip-
tive code is in place can the rest of the program read data from the database.

But in some sense, the description of a database is redundant. A program can
examine a database and automatically deduce the structure of the database’s
tables. Any descriptive code simply repeats the obvious. “Hey, everyone.
There’s a gorilla in the room. And there’s an image column in the photos
database table.” So what else is new?

In computer programming, repetition is bad. For one thing, repetition of infor-
mation can lead to errors. If the description of a database is inaccurate, the
program containing the description doesn’t work. (My HMO asks for my
address on every claim form. But my address hasn’t changed in the past ten
years. Occasionally, the folks who process the claim forms copy my address
incorrectly. They mail a reimbursement check to the wrong house. Then [make
ten phone calls to straighten things out. That’s a danger of having more than
one copy of a certain piece of information.)

Aside from the risk of error, the duplication of information means more

work for everyone. With traditional database programming, you must track
every decision carefully. If you add a column to a database table, you must
update the description of the database in the code. The updating can be
time-consuming, and it discourages agility. Also, if each change to a database
table requires you to dive into your code, you're less likely to make changes.
If you avoid changes, you might not be responding to your customer’s ever-
changing needs.

Let’s Get Going

You can read this chapter’s lofty paragraphs until you develop a throbbing
headache. But the meaning behind these paragraphs might be somewhat elu-
sive. Do you feel different when you switch from C++ or Java to programming
in Ruby? Does Rails really speed up the development cycle? Can you create
an application in the time it takes to find a Starbucks in Manhattan? If you
find these questions intriguing, please read on.

20 Part I: Nuts and Bolts

