
2
Fundamentals of Java ME MIDP

Programming

In Chapter 1, we examined the core Mobile Information Device Profile
(MIDP) functionality and outlined the CLDC and MIDP classes that form
the development environment. In this chapter, we discuss the basic
concepts of the MIDP application model, its component pieces and how
they fit together to create a fully functional mobile application.

The goal of this chapter is to build a baseline of information to be
used in the rest of the book, such as a basic knowledge of application
development in MIDP, the MIDP application model, commonly used
packages and classes, the packaging and deployment model, and an
overview of some the most important optional APIs. The information
presented here is also useful for the Symbian OS Java ME certification
exam.

We then look at a basic application example which summarizes the
process of creating a mobile application from end to end, and how to run
it on an emulator and on a real device based on Symbian OS.

If you are an experienced Java ME developer and familiar with MIDP
development, you may want to only browse quickly through this chapter,
before you move on to Chapter 3, where we explore Java ME on Symbian
smartphones specifically.

2.1 Introduction to MIDP

There are three types of component (see Section 1.5) that make up
the Java ME environment for mobile devices such as mobile phones:
configurations, profiles and optional packages.

28 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

Symbian OS

CLDC/CDC

MIDP

JS
R

-120

JS
R

-135

JS
R

-82

JS
R

-184

JS
R

-75

...

Figure 2.1 Basic Java Micro Edition environment architecture

Figure 2.1 summarizes the architecture of the Java ME environment.
Note that Symbian OS is not a mandatory part of the Java ME environment,
but we will consider it to be so for the scope of this book.

The MIDP application model defines what a MIDlet is, how it is
packaged, and how it should behave with respect to the sometimes
constrained resources of an MIDP device. MIDP provides an application
framework for mobile devices based on configurations such as CLDC and
CDC.

It also defines how multiple MIDlets can be packaged together as a
suite, using a single distribution file called a Java Archive (JAR). Each
MIDlet suite JAR file must be accompanied by a descriptor file called the
JAD file, which allows the Application Management Software (AMS) on
the device to identify what it is about to install.

2.2 Using MIDlets

A MIDlet is an application that executes under the MIDP. Unlike a desktop
Java application, a MIDlet does not have a main method; instead, every
such application must extend the javax.microedition.midlet.
MIDlet class and provide meaningful implementations for its lifecycle
methods. MIDlets are controlled and managed by the AMS, part of the
device’s operating environment. They are initialized by the AMS and then
guided by it through the various changes of state of the application. We
look briefly at these states next.

2.2.1 MIDlet States

A state is designed to ensure that the behavior of an application is
consistent with the expectations of the end users and device manufacturer.
Initialization of the application should be short; it should be possible to
put an application in a non-active state; and it should also be possible to

USING MIDLETS 29

new()
Paused AMS calls startAPP()

AMS calls pauseAPP()

Destroyed

destroyApp()destroyApp()

Active

Figure 2.2 MIDlet states

destroy an application at any time. Once a MIDlet has been instantiated,
it resides in one of three possible states (see Figure 2.2):

• PAUSED

The MIDlet has been initialized but is in a dormant state. This state is
entered in one of four ways:

• after the MIDlet has been instantiated; if an exception occurs, the
DESTROYED state is entered

• from the ACTIVE state, if the AMS calls the pauseApp() method

• from the ACTIVE state, if the startApp() method has been
called but an exception has been thrown

• from the ACTIVE state, if the notifyPaused()method has been
invoked and successfully returned.

During normal execution, a MIDlet may move to the PAUSED state a
few times. It happens, for example, if another application is brought
to the foreground or an incoming call or SMS message arrives. In
these cases, the MIDlet is not active and users do not interact with it.
It is, therefore, good practice to release shared resources, such as I/O
and network connections, and to stop any running threads and other
lengthy operations, so that they do not consume memory, processing
resources, and battery power unnecessarily.

• ACTIVE

The MIDlet is functioning normally. This state is entered after the AMS
has called the startApp() method. The startApp() method can
be called on more than one occasion during the MIDlet lifecycle.
When a MIDlet is in the PAUSED state, it can request to be moved
into the ACTIVE state by calling the startApp() method.

30 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

• DESTROYED

The MIDlet has released all resources and terminated. This state,
which can only be entered once, can be entered when the destroy-
App(boolean unconditional) method is called by the AMS
and returns successfully. If the unconditional argument is false, a
MIDletStateChangedExceptionmay be thrown and the MIDlet
will not move to the DESTROYED state. Otherwise, the destroy-
App() implementation should release all resources and terminate any
running threads, so as to guarantee that no resources remain blocked
or using memory after the MIDlet has ceased to execute.

The MIDlet also enters the DESTROYED state when the notify-
Destroyed() method successfully returns; the application should
release all resources and terminate any running threads prior to calling
notify-Destroyed().

2.2.2 Developing a MIDlet

Once the source code has been written, we are ready to compile, pre-
verify and package the MIDlet into a suite for deployment to a target
device or a device emulator.

In this section, we create our first MIDlet in a simple but complete
example of MIDlet creation, building, packaging and execution. We use
a tool called the Java Wireless Toolkit (WTK) which provides a GUI
that wraps the functionality of the command-line tool chain: compiler,
pre-verifier and packaging tool.

The WTK (see Figure 2.3) was created by Sun to facilitate MIDP
development. It can be obtained free of charge from Sun’s website
(java.sun.com/products/sjwtoolkit/download.html).

The WTK offers the developer support in the following areas:

• Building and packaging: You write the source code using your favorite
text editor and the WTK takes care of compiling it, pre-verifying the
class files, and packaging the resulting MIDlet suite

• Running and monitoring: You can directly run applications on the
available mobile phone emulators or install them in a process emu-
lating that of a real device. Your MIDlets can be analyzed by the
memory monitor, network monitor and method profiler provided by
the WTK.

• MIDlet signing: A GUI facilitates the process of signing MIDlets,
creating new key stores and key pairs, and assigning them to different
security domains for testing with the different API permission sets
associated with those domains.

USING MIDLETS 31

Figure 2.3 Java Wireless Toolkit

• Example applications: The Wireless Toolkit comes with several
example applications you can use to learn more about programming
with MIDP and many optional API packages.

At the time of writing, the WTK is available in production
releases for Microsoft Windows XP and Linux-x86 (tested with
Ubuntu 6.x). For development, you also require the Java 2 Stan-
dard Edition (Java SE) SDK of at least version 1.5.0, available from
java.sun.com/javase/downloads/index.html .

Check the WTK documentation, installed by default at C:\WTK2.5.2\
index.html, for more details on how to use the WTK’s facilities for
developing MIDlets. Be sure to have installed both the Java SDK and the
WTK before trying out our example code.

2.2.3 Creating and Running a MIDlet using the WTK

Now that we are all set with the basic tool, let’s create our first MIDlet.
The first thing we do is to create a project within the WTK for our new
application:

1. Go to Start Menu, Programs, Sun Java Wireless Toolkit for CLDC.

2. Choose Wireless Toolkit and click to start it up.

3. Click on New Project. . . and enter Hello World into the Project
Name field and example.HelloWorldMIDlet into the MIDlet
Class Name field.

32 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

4. Click on the Create Project button. In the following screen, change
the Target Platform to JTWI and click OK.

Your project is now created, so it’s time to write our first MIDlet
application. Open a text editor and type in the following code:

package example;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Form;
import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
public class HelloWorldMIDlet extends MIDlet {
private Form form = null;

public HelloWorldMIDlet() {
form = new Form("HelloWorld Form");
form.append("Hello, World!");
form.append("This is my first MIDlet!");

}
public void destroyApp(boolean arg0) throws MIDletStateChangeException {}
public void pauseApp() {}
public void startApp() throws MIDletStateChangeException {

Display.getDisplay(this).setCurrent(form);
}

}

In the constructor, we create a new Form object and append some
text strings to it. Don’t worry about the details of the Form class. For now
it’s enough to know that Form is a UI class that can be used to group
small numbers of other UI components. In the startApp() method, we
use the Display class to define the form as the current UI component
being displayed on the screen.

Build your MIDlet with the following steps:

1. Save the file, with the name HelloWorldMIDlet.java, in the
source code folder created by your installation of the Wireless Toolk-
it. Usually its path is <home>\j2mewtk\2.5.2\apps\Hello-
World\src\example, where <home> is your home directory. In
Windows XP systems, this value can be found in the USERPROFILE
environment variable; in Linux, it is the same as the home folder.
You must save the .java file in the src\example folder because
this MIDlet is in the example package.

2. Switch back to the WTK main window and click Build. The WTK
compiles and pre-verifies the HelloWorldMIDlet class, which is
then ready to be executed.

3. Click on Run. You are presented with a list of MIDlets from the
packaged suite, which are ready to be run. As our test suite only has
one MIDlet, click on its name and it is executed on the mobile phone
emulator (see Figure 2.4).

USING MIDLETS 33

Figure 2.4 Running the HelloWorld MIDlet

2.2.4 Packaging a MIDlet

Following the above steps is sufficient to build simple MIDlets for running
in the emulator. However, if you are developing a more sophisticated
MIDlet that contains many classes, images, application parameters, and
so on, you need to package your MIDlet into a MIDlet suite.

Packaging creates a JAR file containing all your class and resource files
(such as images and sounds) and the application descriptor (JAD) file,
which notifies the AMS of the contents of the JAR file.

The following attributes must be included in a JAD file:

• MIDlet-Name: the name of the suite that identifies the MIDlets to
the user

• MIDlet-Version: the version number of the MIDlet suite; this is
used by the AMS to identify whether this version of the MIDlet suite
is already installed or whether it is an upgrade, and communicate this
information to the user

• MIDlet-Vendor: the organization that provides the MIDlet suite

• MIDlet-Jar-URL: the URL from which the JAR file can be loaded,
as an absolute or relative URL; the context for relative URLs is the
place from where the JAD file was loaded

• MIDlet-Jar-Size: the number of bytes in the JAR file.

34 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

The following attributes are optional but are often useful and should be
included:

• MIDlet-n: the name, icon and class of the nth MIDlet in the JAR
file (separated by commas); the lowest value of n must be 1 and all
following values must be consecutive; the name is used to identify the
MIDlet to the user and must not be null; the icon refers to a PNG file
in the resource directory and may be omitted; the class parameter is
the name of the class extending the MIDlet class

• MIDlet-Description: a description of the MIDlet suite

• MicroEdition-Configuration: the Java ME configuration re-
quired, in the same format as the microedition.configuration
system property, for example, ‘CLDC-1.0’

• MicroEdition-Profile: the Java ME profiles required, in the
same format as the microedition.profiles system property,
that is ‘MIDP-1 0’ or ‘MIDP-2.0’; if the value of the attribute is ‘MIDP-
2.0’, the target device must implement the MIDP profile otherwise the
installation will fail; MIDlets compiled against MIDP 1.0 will install
successfully on a device implementing MIDP 2.0.

The following is the JAD file for our HelloWorld application:

MIDlet-1: HelloWorldMIDlet,,example.HelloWorldMIDlet
MIDlet-Description: Example MIDP MIDlet
MIDlet-Jar-Size: 1042
MIDlet-Jar-URL: HelloWorld.jar
MIDlet-Name: HelloWorld Midlet Suite
MIDlet-Vendor: Midlet Suite Vendor
MIDlet-Version: 1.0.0
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.0

You can automate the task of creating the JAD file by clicking
Package/Create Package in the WTK menu. The WTK creates Hel-
loWorld.jar and HelloWorld.jad in the bin folder of your project
root. You can use Windows Explorer to browse to that folder and check
that the package files have been correctly created. You can open the JAD
file with a standard text editor to inspect its contents. Double-clicking the
JAD file executes your application in the emulator (see Figure 2.4).

2.3 MIDP Graphical User Interfaces API

In this section, we take a look at the main APIs provided by the MIDP
profile for GUI application development. Designing a user interface

MIDP GRAPHICAL USER INTERFACES API 35

for Java ME applications on mobile devices is quite a challenging task,
because MIDP’s flexibility allows it to be used in hundreds of different
device models, with different form factors, hardware, screen sizes and
input methods. Such wide availability makes Java ME applications attrac-
tive to a range of users (enterprises, gamers, and casual users), all of
whom need to be considered when creating effective UIs for MIDlets.

There are many differences (see Table 2.1) between the hardware and
software environments in which Java originated (desktop computers) and
the ones found in mobile devices, such as Symbian smartphones.

Table 2.1 Differences between Java environments

Environment Windows, Linux and
Mac OS Personal
Computers

Typical Symbian
smartphone

Screen 1024 × 768 or bigger 240 × 320

Landscape orientation 352 × 416

800 × 352

176 × 208

Landscape or portrait orien-
tation

Input method QWERTY keyboard Numerical keypad

Mouse QWERTY keyboard

Touch screen (with stylus)

Touch screen (with fingers)

Display colors 16 bit and higher, usually
32 or 64 bit

16 bit (top phones)

Processing power
and memory

1 GHZ+/512 MB RAM + Around 350 MHz

These differences (and the many others that exist) make it inappropriate
to port Swing or AWT toolkits directly to mobile devices. They would
suffer from poor performance (due to slower processors and smaller
memory), usability problems (there cannot be multiple windows on a
mobile phone) and poor input mechanism compatibility, as this varies
greatly among devices.

2.3.1 LCDUI Model for User Interfaces

The LCDUI toolkit is a set of features for the implementation of user
interfaces especially for MIDP-based devices. LCDUI is a generic set of
UI components split into two categories, high-level and low-level.

36 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

The high-level UI components’ main characteristics are a consistent
API and leaving the actual UI layout and appearance to be implemented
by the device environment itself. Developers can write their code against
a single set of classes and objects and trust they will appear consistently in
all devices implementing that set. This approach ensures that high-level
UI components are portable across devices, appearing on the screen in a
manner that is consistent with the device’s form factor, screen size and
input methods. The downside is that little control is left in the developers’
hands, and some important things, such as fonts, colors and component
positioning, can only be hinted at by the developer – the implementation
is free to follow those hints or not.

The low-level set of UI components consists of the Canvas class, the
GameCanvas subclass and the associated Graphics class. They provide
fine-grained, pixel-by-pixel control of layout, colors, component place-
ment, etc. The downside of using the low-level set is that the developer
must implement basic UI controls (dialogs, text input fields, forms), since
the Canvas is simply a blank canvas which can be drawn upon. The
CustomItem class of the javax.microedition.lcdui package can
be thought of as belonging to the low-level UI set, as it provides only
basic drawing functionalities, allowing developers to specify layout and
positioning of controls very precisely. However, as custom items are only
used within Forms they are discussed in Section 2.3.2.

The Event Model

The javax.microedition.lcdui package implements an event
model that runs across both the high- and low-level APIs. It handles
such things as user interaction and calls to redraw the display. The
implementation is notified of such an event and responds by making a
corresponding call back to the MIDlet. There are four types of UI event:

• events that represent abstract commands that are part of the high-level
API; the Back, Select, Exit, Cancel commands seen in Symbian OS
devices generally fit this category

• low-level events that represent single key presses or releases or pointer
events

• calls to the paint() method of the Canvas class

• calls to an object’s run() method.

Callbacks are serialized and never occur in parallel. More specifically,
a new callback never starts while another is running; this is true even
when there is a series of events to be processed. In this case, the callbacks
are processed as soon as possible after the last UI callback has returned.
The implementation also guarantees that a call to run(), requested by

MIDP GRAPHICAL USER INTERFACES API 37

a call to callSerially(), is made after any pending repaint()
requests have been satisfied. There is, however, one exception to this
rule: when the Canvas.serviceRepaints()method is called by the
MIDlet, it causes the Canvas.paint() method to be invoked by the
implementation and then waits for it to complete. This occurs whenever
the serviceRepaints() method is called, regardless of where the
method was called from, even if that source was an event callback itself.

The Command Class

Abstract commands are used to avoid having to implement concrete
command buttons; semantic representations are used instead. The com-
mands are attached to displayable objects, such as high-level List or
Form objects or low-level Canvas objects. The addCommand()method
attaches a command to the displayable object. The command speci-
fies the label, type and priority. The CommandListener interface then
implements the actual semantics of the command. The native style of the
device may prioritize where certain commands appear on the UI. For
example, Exit is always placed above the right softkey on Nokia devices.
There are also some device-provided operations that help contribute
towards the operation of the high-level API. For example, screen objects,
such as List and ChoiceGroup, have built-in events that return user
input to the application for processing.

2.3.2 LCDUI High-Level API: Screen Objects

Alert, List, TextBox, and Form objects are all derived from Screen,
itself derived from Displayable. Screen objects are high-level UI
components that can be displayed. They provide a complete user
interface, of which the specific look and feel is determined by the
implementation. Only one Screen-derived object can be displayed at a
time. Developers can control which Screen is displayed by using the
setCurrent() method of the Display class.

This section describes the high-level API classes in a succinct manner,
rather than going into every detail. To find a complete description of each
featured class, please check the MIDP documentation.

Alert Object

An Alert object shows a message to the user, waits for a certain
period and then disappears, at which point the next displayable object
is shown. An Alert object is a way of informing the user of any errors
or exceptional conditions. It may be used by the developer to inform the
user that:

• an error or other condition has been reached

38 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

• a user action has been completed successfully

• an event for which the user has previously requested notification has
been completed.

To emphasize these states to the user, the AlertType can be set to
convey the context or importance of the message. For each use case
described above, there’s a relevant type, such as ALARM, CONFIRMA-
TION, ERROR and INFO. These are differentiated by titles at the top of
the alert screen, icons drawn on the alert, and the sound played when it
is displayed.

List Object

A List object is a screen object that contains a list of choices for the user
and is, therefore, ideal for implementing choice-based menus, which are
the core user interface of most mobile devices.

TextBox Object

A TextBox is a Screen object that allows the user to enter and edit text
in a separate space away from the form. It is a Displayable object and
can be displayed on the screen in its own right. Its maximum size can be
set at creation, but the number of characters displayed at any one time is
unrelated to this size and is determined by the device itself.

Form Object

A Form object is designed to contain a small number of closely-related
user interface elements. Those elements are, in general, subclasses of the
Item class and we shall investigate them in more detail below. The Form
object manages the traversal, scrolling and layout of the items.

Items enclosed within a form may be edited using the append(),
delete(), insert() and set() methods. They are referred to by
their indexes, starting at zero and ending with size()-1. Items are
organized via a layout policy that is based around rows. The rows
typically relate to the width of the screen and are constant throughout.
Forms grow vertically and a scroll bar is introduced as required. If a form
becomes too large, it may be better for the developer to create another
screen. Users can interact with a Form and a CommandListener can
be attached to capture this input using the setCommandListener()
method. An individual Item can be given an ItemCommandListener,
if a more contextual approach is required by the UI.

MIDP GRAPHICAL USER INTERFACES API 39

Item Class

This is the superclass for all items that can be added to a Form.
Every Item has a label, which is a string. This label is displayed by
the implementation as near as possible to the Item, either on the
same horizontal row or above. When an Item is created, by default
it is not owned by any container and does not have a Command or
ItemCommandListener. However, default commands can be attached
to an Item, using the setDefaultCommand() method, which makes
the user interface more intuitive for the user. A user can then use a
standard gesture, such as pressing a dedicated selection key or tapping on
the item with a pointer. Symbian devices support these interfaces through
S60 and UIQ, respectively.

The following types are derived from Item.

ChoiceGroup

A group of selectable objects may be used to capture single or multiple
choices in a Form. It is a subclass of Item and most of its methods are
implemented via the Choice interface.

A ChoiceGroup has similar features to a List object, but it’s meant to
be placed in a Form, not used as a standalone Screen object. Its type can
be either EXCLUSIVE (to capture one option from the group) or MULTIPLE
(to capture many selections). As usual with high-level UI components,
developers don’t have control over the graphical representation of a
ChoiceGroup. Usually, though, one of EXCLUSIVE type is shown as a
list of radio buttons, while the MULTIPLE type is rendered as a list of
checkboxes.

CustomItem

CustomItem operates in a similar way to Canvas: the developer can
specify precisely what content appears where within its area. Some of
the standard items may not give quite the required functionality, so it
may be better to define home-made ones instead. The drawback to this
approach is that, as well as having to draw all the contents using the
item’s paint() method, the developer has to process and manage all
events, such as user input, through keyPressed(). Custom items may
interact with either keypad- or pointer-based devices. Both are optional
within the specification and the underlying implementation will signal to
the item which has been implemented.
CustomItem also inherits from Item, therefore inheriting the get-

MinContentWidth() and getPrefContentHeight() methods,
which help the implementation to determine the best fit of items within

40 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

the screen layout. If the CustomItem is too large for the screen dimen-
sions, it resizes itself to within those preferred, minimum dimensions
and the CustomItem is notified via sizeChanged() and paint()
methods.

Additionally, the developer can use the Display.getColor(int)
and Font.getFont(int) methods to determine the underlying prop-
erties for items already displayed in the form of which the CustomItem
is a part, to ensure that a consistent appearance is maintained.

DateField

This is an editable component that may be placed upon a Form to capture
and display date and time (calendar) values. The item can be added to the
form with or without an initial value. If the value is not set, a call to the
getDate() method returns NULL. The field can handle DATE values,
TIME values, and DATE TIME values.

ImageItem

The ImageItem is a reference to a mutable or immutable image that
can be displayed on a Form. We look at the Image object in detail in
Section 2.3.4. Suffice to say that the Image is retrieved from the MIDlet
suite’s JAR file in order to be displayed upon the form. This is performed
by calling the following method, in this case from the root directory:

Image image = Image.createImage("/myImage.png");

An ImageItem can be rendered in various modes, such as PLAIN,
HYPERLINK, or BUTTON. Please check the MIDP documentation for
more details.

Gauge

This component provides a visual representation of an integer value,
usually formatted as a bar graph. Gauges are used either for specifying a
value between zero and a maximum value, or as a progress or activity
monitor.

Spacer

This blank, non-interactive item with a definable minimum size is used
for allocating flexible amounts of space between items on a form and
gives the developer much more control over the appearance of a form.
The minimum width and height for each spacer can be defined to provide
space between items within a row or between rows of items on the form.

MIDP GRAPHICAL USER INTERFACES API 41

StringItem

This is a display-only item that can contain a string and the user can-
not edit the contents. Both the label and content of the StringItem
can, however, be changed by the application. As with ImageItem, its
appearance can be specified at creation as one of PLAIN, HYPERLINK or
BUTTON. The developer is able to set the text, using the setText()
method, and its appearance, using setFont().

TextField

A TextField is an editable text component that may be placed in a
Form. It can be given an initial piece of text to display. It has a maxi-
mum size, set by setSize(int size), and an input mask, which can
be set when the item is constructed. An input mask is used to ensure
that end users enter the correct data, which can reduce user frustra-
tion. The following masks can be used: ANY, EMAILADDR, NUMERIC,
PHONENUMBER, URL, and DECIMAL. These constraints can be set
using the setConstraints() method and retrieved using getCon-
straints(). The constraint settings should be used in conjunction
with the following set of modifier flags using the bit-wise AND (&)
operator: PASSWORD, SENSITIVE, UNEDITABLE, NON PREDICTIVE,
INITIAL CAPS WORD, INITIAL CAPS SENTENCE.

Ticker

This implements a ticker-tape object – a piece of text that runs continu-
ously across the display. The direction and speed of the text is determined
by the device. The ticker scrolls continuously and there is no interface to
stop and start it. The implementation may pause it when there has been a
period of inactivity on the device, in which case the ticker resumes when
the user recommences interaction with the device.

2.3.3 LCDUI Interfaces

The user interface package, javax.microedition.lcdui, provides
four interfaces that are available to both the high- and low-level APIs:

• Choice defines an API for user-interface components, such as List
and ChoiceGroup. The contents of these components are repre-
sented by strings and images which provide a defined number of
choices for the user. The user’s input can be one or more choices and
they are returned to the application upon selection.

• CommandListener is used by applications that need to receive
high-level events from the implementation; the listener is attached to

42 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

a displayable object within the application using the addCommand()
method.

• ItemCommandListener is a listener type for receiving notification
of commands that have been invoked on Item objects. This provides
the mechanism for associating commands with specific Form items,
thus contextualizing user input and actions according to the current
active item on the form, making it more intuitive.

• ItemStateListener is used by applications that need to receive
events that indicate changes in the internal state of the interactive items
within a form; for example, a notification is sent to the application
when the set of selected values within a ChoiceGroup changes.

2.3.4 LCDUI Low-Level API: Canvas

The low-level API allows developers to have total control of how the
user interface looks and how components are rendered on the screen.
Canvas, the main base class for low-level UI programming, is used
to exercise such fine-grained control. An application should subclass
Canvas to create a new displayable screen object. As it is displayable,
it can be used as the current display for an application just like the
high-level components. Therefore a MIDlet application can have a user
interface with, for example, List, Form and Canvas objects, which can
be displayed one at a time to provide the application functionality to the
users.
Canvas is commonly used by game developers when creating sprite

animation and it also forms the basis of GameCanvas, which is part
of the Game API (see Section 2.3.6). Canvas can be used in normal
mode, which allows title and softkey labels to be displayed, and full-
screen mode, where Canvas takes up as much of the display as the
implementation allows. In either mode, the dimensions of the Canvas
can be accessed using the getWidth() and getHeight() methods.

Graphics are drawn to the screen by implementing code in the abstract
paint() method. This method must be present in the subclass and
is called as part of the event model. The event model provides a
series of user-input methods such as keyPressed() and pointer-
Pressed(), depending upon the device’s data input implementation.
The paint(Graphics g)method passes in a Graphics object, which
is used to draw to the display.

The Graphics object provides a simple 2D, geometric-rendering
capability, which can be used to draw strings, characters, images, shapes,
etc. For more details, please check the MIDP documentation.

Such methods as keyPressed() and pointerPressed() repre-
sent the interface methods for the CommandListener. When a key is
pressed, it returns a key code to the command listener. These key codes are

MIDP GRAPHICAL USER INTERFACES API 43

mapped to keys on the keypad. The key code values are unique for each
hardware key, unless keys are obvious synonyms for one another. These
codes are equal to the Unicode encoding for the character representing
the key. Examples of these are KEY NUM0, KEY NUM1, KEY STAR, and
KEY POUND. The problem with these key codes is that they are not
necessarily portable across devices: other keys may be present on the
keypad and may form a distinct list from those described previously. It is
therefore better, and more portable, to use game actions instead. Each key
code can be mapped to a game action using the getGameAction(int
keyCode) method. This translates the key code into constants such as
LEFT, RIGHT, FIRE, GAME A and GAME B. Codes can be translated back
to key codes by using getKeyCode(int gameAction). Apart from
making the application portable across devices, these game actions are
mapped in such a way as to suit gamers. For example, the LEFT, RIGHT,
UP and DOWN game actions might be mapped to the 4, 6, 2 and 8 keys
on the keypad, making game-play instantly intuitive.

A simple Canvas class might look like this:

import javax.microedition.lcdui.*;
public class SimpleCanvas extends Canvas {

public void paint(Graphics g) {
// set color context to be black
g.setColor(255, 255, 255);
// draw a black filled rectangle
g.fillRect(0, 0, getWidth(), getHeight());
// set color context to be white
g.setColor(0, 0, 0);
// draw a string in the top left corner of the display
g.drawString("This is some white text", 0, 0, g.TOP | g.LEFT);

}
}

2.3.5 Putting It All Together: UIExampleMIDlet

We use our new knowledge of the high- and low-level APIs to build
a showcase of most LCDUI components: Form, Item (ImageItem,
StringItem, ChoiceGroup, DateField and Gauge), Ticker,
List, TextBox, and Canvas. We also use the Command class and
its notification interface, CommandListener, to show how you can
handle these abstract events to produce concrete behavior in your appli-
cation.

The application also shows how to build a menu using Commands and
how to create high- and low-level UI components and switch between
them, emulating what we would have in a real-world application. For
the sake of simplicity and readability, we skip some code sections which
are common knowledge among Java programmers, such as the list of
imported packages and empty method implementations. This allows us

44 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

to focus instead on the behavior of the UI components we have described
in so much detail.

To get started, open the WTK and create a new project, called UIExam-
pleMIDlet. Our application has two classes in the example package:
UIExampleMIDlet (the main class) and MenuCanvas.

UIExampleMIDlet Class

Class UIExampleMIDlet
package example;
/*
Import list omitted for readability
*/
public class UIExampleMIDlet extends MIDlet implements CommandListener {
private Form form = null;
private List list = null;
private TextBox textBox = null;
private Canvas canvas = null;
private TextField textField = null;
private DateField dateField = null;
private Alert alert = null;
private ChoiceGroup choiceGroup = null;
private StringItem stringItem = null;
private Image image = null;
private ImageItem imageItem = null;
private Command backCommand = null;
private Command exitCommand = null;
private Ticker ticker = null;
private Gauge gauge = null;

public UIExampleMIDlet() throws IOException {
// creating commands
backCommand = new Command("Back",Command.BACK,0);
exitCommand = new Command("Exit",Command.EXIT,0);

// creating Form and its items
form = new Form("My Form");
textField = new TextField("MyTextField","",20,TextField.ANY);
dateField = new DateField("MyDateField",DateField.DATE_TIME);

stringItem = new StringItem("MyStringItem","My value");
choiceGroup = new ChoiceGroup("MyChoiceGroup",Choice.MULTIPLE,

new String[] {"Value 1","Value 2","Value 3"}, null);
image = Image.createImage("/test.png");
imageItem = new ImageItem("MyImage",image,ImageItem.LAYOUT_CENTER,

"No Images");
gauge = new Gauge("My Gauge",true,100,1);

form.append(textField);
form.append(dateField);
form.append(stringItem);
form.append(imageItem);
form.append(choiceGroup);
form.append(gauge);
form.addCommand(backCommand);
form.setCommandListener(this);

MIDP GRAPHICAL USER INTERFACES API 45

// creating List
list = new List("MyList",Choice.IMPLICIT,

new String[] {"List item 1","List item 2",
"List item 3"},null);

list.addCommand(backCommand);
list.setCommandListener(this);

// creating textBox
textBox = new TextBox("MyTextBox","",256,TextField.ANY);
textBox.addCommand(backCommand);
textBox.setCommandListener(this);

// creating main canvas
canvas = new MenuCanvas();
canvas.addCommand(exitCommand);
canvas.setCommandListener(this);
// creating ticket
ticker = new Ticker("My ticker is running....");
canvas.setTicker(ticker);

// creating alert
alert = new Alert("Message","This is a message!",null,AlertType.INFO);

}

public void commandAction(Command c, Displayable d) {
if(c == exitCommand) {
notifyDestroyed();

}

if(c == backCommand) {
setDisplayable(canvas);

}

if(d == canvas) {
if(c.getLabel().equals("Form")) {

setDisplayable(form);
}
else if(c.getLabel().equals("List")) {

setDisplayable(list);
}
else if(c.getLabel().equals("TextBox")) {

setDisplayable(textBox);
}
else if(c.getLabel().equals("Canvas")) {

setDisplayable(canvas);
}
else if(c.getLabel().equals("Alert")) {

setDisplayable(alert);
}

}
}

private void setDisplayable(Displayable d) {
Display.getDisplay(this).setCurrent(d);

}
protected void startApp() throws MIDletStateChangeException {

setDisplayable(canvas);
}

46 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException {

// empty implementation, as there are no resources to be released
}
protected void pauseApp() {

// empty implementation, as there are no resources to be released
}

}

All of our instance variables, references to the UI components in our
application, are declared and initialized to NULL. In the class construc-
tor, we assign each variable to a newly-created object of the proper
class. First, we create a couple of commands (Back and Exit) that will
be used to handle the high-level user actions defined by the device
implementation, assigned to the UI components and passed to us via the
commandAction(Command, Displayable) method:

backCommand = new Command("Back",Command.BACK,0);
exitCommand = new Command("Exit",Command.EXIT,0);

Following this, we begin to create the actual UI components. For
example, let’s see how a new Form object is constructed:

form = new Form("My Form");
textField = new TextField("MyTextField","",20,TextField.ANY);
dateField = new DateField("MyDateField",DateField.DATE_TIME);
stringItem = new StringItem("MyStringItem","My value");
choiceGroup = new ChoiceGroup("MyChoiceGroup",Choice.MULTIPLE,

new String[] {"Value 1","Value 2","Value 3"}, null);
image = Image.createImage("/test.png");
imageItem = new ImageItem("MyImage",image,ImageItem.LAYOUT_CENTER,

"No Images");
gauge = new Gauge("My Gauge",true,100,1);

form.append(textField);
form.append(dateField);
form.append(stringItem);
form.append(imageItem);
form.append(choiceGroup);
form.append(gauge);
form.addCommand(backCommand);
form.setCommandListener(this);

As outlined before, a Form is a flexible UI component that can hold
other components, instances of the Item class, and show them on the
screen. Users expect Form components to present information that is
related in meaning, such as settings for an application. Doing otherwise
can be confusing and result in bad user interaction with the application.

After instantiating a Form, we create its items (textField, date-
Field, stringItem,choiceGroup,imageItem and Gauge) and use

MIDP GRAPHICAL USER INTERFACES API 47

the Form.append() method to add them to the Form components list.
They are then displayed with the Form. One important detail: the Image
object we use to create the ImageItem retrieves a PNG image from the
root of the JAR file. In order to replicate this behavior in your own project,
just copy a file called test.png to the res folder of the project.

After creating and appending the items, we add the Back command to
the Form; the emulator’s implementation maps it to one of the softkeys.
Finally, we set the CommandListener to be our own MIDlet, which
implements the commandAction() method (defined in the Command-
Listener interface) to handle user actions.

The rest of the constructor creates the other UI components, adds the
Back command to them and sets the MIDlet itself as their event listener.
The following lines create an instance of MenuCanvas and add the Exit
command to it:

canvas = new MenuCanvas();
canvas.addCommand(exitCommand);
canvas.setCommandListener(this);

This canvas is the main screen for our application.
The commandAction() method reacts to the events of the Back and

Exit buttons and the MenuCanvas, changing screens according to the
user’s choices. The startApp() method simply sets the MenuCanvas
instance as the main display, using the setDisplayable() utility.

MenuCanvas Class

package example;
import javax.microedition.lcdui.Canvas;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.Graphics;
public class MenuCanvas extends Canvas {
private Command[] options = new Command[] {

new Command("Form",Command.OK,1),
new Command("List",Command.OK,2),
new Command("Canvas",Command.OK,3),
new Command("TextBox",Command.OK,4),
new Command("Alert",Command.OK,4)

};

public MenuCanvas() {
for(int i=0;i<options.length;i++) {
this.addCommand(options[i]);

}
}

protected void paint(Graphics g) {
g.setColor(0,0,0);
g.fillRect(0,0,getWidth(),getHeight());

48 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

g.setColor(255,255,255);
g.drawString("This is a canvas.",0,0,Graphics.TOP | Graphics.LEFT);
g.drawString("Check Options menu",0,20, Graphics.TOP | Graphics.LEFT);
g.drawString("for more UI components",0,40,

Graphics.TOP | Graphics.LEFT);
}

}

The options instance variable holds an array of Commands which
serves as the main menu of the application. Each command has a label, a
positioning guide (Command.OK) and a priority value. In the constructor,
we loop through the array, adding all the commands to the Canvas
so they are displayed on the screen. The abstract paint(Graphics)
method is implemented so that the Canvas can be drawn upon, using
the Graphics object passed in as a parameter. In this case, we set
the context color to black, paint a screen-sized rectangle, set the color
to white and draw some strings to instruct the user how to use the
application.

Save UIExampleMIDlet in a file called UIExampleMIDlet.java
and MenuCanvas in a file called MenuCanvas.java in your project’s
src/example folder, then build and package the project using the WTK.
Figure 2.5 shows the application running on the WTK emulator.

(a) (b)

Figure 2.5 UIExampleMIDlet application running on the WTK emulator: a) the Menu-
Canvas and b) the Form

MIDP GRAPHICAL USER INTERFACES API 49

2.3.6 Game API

The MIDP specification supports easy game development through the use
of the javax.microedition.lcdui.game package. It contains the
following classes:

• GameCanvas

• LayerManager

• Layer

• Sprite

• TiledLayer.

The aim of the API is to facilitate richer gaming content through a set
of APIs that provides useful functionality.

GameCanvas

A basic game user interface class that extends javax.microedition.
lcdui.Canvas, GameCanvas provides an offscreen buffer as part of
the implementation even if the underlying device doesn’t support double
buffering. The Graphics object obtained from the getGraphics()
method is used to draw to the screen buffer. The contents of the screen
buffer can then be rendered to the display synchronously by calling the
flushGraphics() method. The GameCanvas class also provides the
ability to query key states and return an integer value in which each bit
represents the state of a specific key on the device:

public int getKeyStates();

If the bit representing a key is set to 1, then this key has been pressed
at least once since the last invocation of the method. The returned integer
can be ANDed against a set of predefined constants, each representing
a specific key, by having the appropriate bit set (support for the last four
values is optional).

We use the GameCanvas class members that describe key presses
(e.g., GameCanvas.FIRE_PRESSED) to ascertain the state of a key in
the manner shown below:

if (getKeyStates() & Game.Canvas.FIRE_PRESSED != 0) {
// FIRE key is down or has been pressed - take appropriate action

}

50 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

TiledLayer

The abstract Layer class is the parent class of TiledLayer and Sprite.
A TiledLayer consists of a grid of cells each of which can be filled
with an image tile. An instance of TiledLayer is created by invoking
the constructor:

public TiledLayer(int columns, int rows, Image image, int tileWidth,
int tileHeight);

The columns and rows arguments represent the number of columns
and rows in the grid. The tileWidth and tileHeight arguments
represent the width and height of a single tile in pixels. The image
argument represents the image used to create the set of tiles that populate
the TiledLayer. Naturally, the dimension of the image in pixels must
be an integral multiple of the dimension of an individual tile. The use of
TiledLayer is best illustrated with an example.

One of the principal uses of TiledLayer is the creation of large
scrolling backgrounds from relatively few tiles. Consider the example
in Figure 2.6, which shows a big set of tiles of equal dimensions that
we can arrange in different ways to create a TiledLayer background
using selected tiles. You can for example reuse tile 1 to create a large
lake or tiles 1, 5 and 16 to create a strip of land surrounded by a small

Figure 2.6 Image for use by a TiledLayer

MIDP GRAPHICAL USER INTERFACES API 51

Figure 2.7 Image split into 135 tiles

lake. The dimensions of the image are 360 × 315 pixels and each tile’s
dimension is 24 × 35 pixels; that gives us a total of 135 tiles which can
be treated as a 15 × 9 array (see Figure 2.7) and manipulated to create
our background.

We put TiledLayer scrolling backgrounds into use later on, with a
LayerManagerDemo example.

Sprite

A Sprite is a basic visual element suitable for creating animations and
consists of an image composed of several smaller images (frames). The
Sprite can be rendered as one of the frames. By rendering different
frames in a sequence, a Sprite provides animation. Let us consider a
simple example. Figure 2.8 consists of 12 frames of the same width and
height. By displaying some of the frames in a sequence, we can produce
an animation.

Here’s how to create and animate a sprite based on the image in
Figure 2.8. The code is abbreviated for clarity and we will see a more
complete example in the LayerManagerDemo MIDlet:

52 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

// create image for sprite
Image image = Image.createImage("/example_sprite.png");
// create and position sprite
guy = new Sprite(image, SPRITE_WIDTH, SPRITE_HEIGHT);
guy.setPosition(spritePositionX, spritePositionY);
// paint sprite on the screen
public void paint(Graphics g) {
g.setColor(255, 255, 255);
g.fillRect(0, 0, getWidth(), getHeight());
guy.paint(g);

}
// loop through all the frames
while (running) {
repaint();
guy.nextFrame();
...

}

Figure 2.8 A Sprite image consisting of 12 frames

In addition to various transformations such as rotation and mirroring,
the Sprite class also provides collision detection, which is essential
for games as it allows the developer to detect when the sprite collides
with another element and prevent the hero from crossing a solid wall or
obstacle. Both pixel-level and bounding-rectangle collisions are available.

LayerManager

As the name implies, the LayerManager manages a series of Layer
objects. Sprite and TiledLayer both extend Layer. More specif-
ically, a LayerManager controls the rendering of Layer objects. It
maintains an ordered list so that they are rendered according to their
z-values (in standard computer graphics terminology). We add a Layer
to the list using the method:

public void append(Layer l);

The first layer appended has index zero and the lowest z-value – that is,
it appears closest to the user (viewer). Subsequent layers have successively

MIDP GRAPHICAL USER INTERFACES API 53

greater z-values and indices. Alternatively, we can add a layer at a specific
index using the method:

public void insert(Layer l, int index);

To remove a layer from the list we use the method:

public void remove(Layer l);

We position a layer in the LayerManager ’s coordinate system using
the setPosition() method. The contents of LayerManager are not
rendered in their entirety; instead, a view window is rendered using the
paint() method of the LayerManager:

public void paint(Graphics g, int x, int y);

The x and y arguments are used to position the view window on
the displayable object (Canvas or GameCanvas) upon which the Lay-
erManager is rendered. The size of the view window is set using this
method:

public void setViewWindow(int x, int y, int width, int height);

The x and y values determine the position of the top left corner of
the rectangular view window in the coordinate system of the Layer-
Manager. The width and height arguments determine the width and
height of the view window and are usually set to a size appropriate for the
device’s screen. By varying the x and y coordinates we can pan through
the contents of the LayerManager.

LayerManagerDemo Example

Our LayerManagerDemo example summarizes all Game API concepts
seen so far. It illustrates the use of a Sprite (for animating the hero),
a TiledLayer (for background construction), a LayerManager (for
scrolling the background), and a GameCanvas (for drawing it all). The
source code is too large to be included in this book, so it is available for
download from the website. We highlight here some parts that show how
to use the Game API components.

In the constructor, we load the image resources used by our Tiled-
Layer and the Sprite (see Figures 2.6 and 2.8, respectively). We
create our game hero, using the Sprite constructor, then set the frame
sequence, which allows us to loop only to the frames that interest us. In

54 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

this case, we want the hero to walk downwards, so we choose to use
only frames 6, 7 and 8:

guy = new Sprite(guyImage,SPRITE_WIDTH,SPRITE_HEIGHT);
guy.setFrameSequence(new int[] {6,7,8});

We then create the background for the game scene, by constructing a
new TiledLayer from the source image (see Figure 2.9), and use the
fillLayer() method and the cells array to create a terrain over which
our hero will walk.

Figure 2.9 Background image for the LayerManagerDemo MIDlet

We create a LayerManager to manage both the background Tiled-
Layer and the Sprite (both inherit from Layer). We append the
Sprite then the background layer, to ensure that the hero is shown
over the background and not the other way around, since the hero has a
smaller z-index. This is how it’s done in code:

// creating LayerManager
manager = new LayerManager();
manager.append(guy);
manager.append(background);
manager.setViewWindow(0,0,SCREEN_WIDTH,SCREEN_HEIGHT);

We also set the view window to match the size of the screen so we
can see it in its entirety, and not just a portion of it. Try playing with the
values for the view window and you get partial views of the background

MIDP GRAPHICAL USER INTERFACES API 55

that you can use for other games ideas. The last line of code in the
constructor just sets the GameCanvas to be in full-screen mode.

Since your animation runs permanently, it’s good practice to put it
in another thread, so we don’t block the current thread, which serves
UI application requests. This frees the application to continue processing
events. To do this, we make our GameCanvas Runnable, implement the
game animation loop within the run() method, and use the start()
and stop() methods to start and stop the animation:

public void start() {
running = true;
Thread t = new Thread(this);
t.start();

}

public void stop() {
running = false;

}

Using t.start() triggers the run()method, which is then responsi-
ble for the game animation. This includes managing background scrolling,
animating the sprite, drawing everything to the screen, and resetting the
background scrolling when needed, so our hero won’t fall off the screen:

public void run() {
Graphics graphics = this.getGraphics();
// graphics.setColor(255, 255, 255);

while(running) {
layerY -= 1;
background.setPosition(0,layerY);
guy.setPosition(getWidth()/2 - guy.getWidth()/2,

getHeight()/2 - guy.getHeight()/2);
manager.paint(graphics,0,0);
flushGraphics();
guy.nextFrame();

try {
Thread.sleep(20);

}
catch(InterruptedException e) {
break;

}

if(layerY == -(background.getHeight() / 2)) {
layerY = 0;

}
}

}

The source code, JAR and JAD files for the LayerManagerDemo
MIDlet are available from the book’s website.1 I strongly encourage you

1 developer.symbian.com/javameonsymbianos

56 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

Figure 2.10 LayerManagerDemo MIDlet

to at least run the example application with the WTK emulator (see
Figure 2.10) so you can see for yourself how these techniques combine
to generate the illusion of motion that is the basis of all games and get
motivated to create your own games using this skeleton code.

This concludes our introduction to the Game API of MIDP 2.0. We
come back to this subject in much more detail in Chapter 8, where
you develop a full, multimedia-rich game application expanded to allow
multiple player, interconnected gaming.

2.4 Non-GUI APIs in MIDP

In this section, we cover in more detail the MIDP APIs not related to
GUI development. Focus here is given to the persistent data, Media,
Networking and Push Registry APIs.

2.4.1 Record Management System

MIDP provides a simple record-based persistent storage mechanism
known as the Record Management System (RMS). It’s a package that

NON-GUI APIS IN MIDP 57

allows the MIDlet application to store persistent data within a controlled
environment, while maintaining system security. It provides a simple,
non-volatile data store for MIDlets while they are not running. The classes
making up the RMS are contained in the javax.microedition.rms
package.

Essentially, the RMS is a very small, basic database. It stores binary
data in a Record within a RecordStore. MIDlets can add, remove
and update the records in a RecordStore. The persistent data storage
location is implementation-dependent and is not exposed to the MIDlet. A
RecordStore is, by default, accessible across all MIDlets within a suite,
and MIDP extends access to MIDlets with the correct access permissions
from other MIDlet suites. When the parent MIDlet suite is removed from
the device, its record stores are also removed, regardless of whether a
MIDlet in another suite is making use of them.

Here is a short example of how to use RMS for writing and reading
persistent data from the device:

// saving data to RMS
public int saveToStore(byte[] data) {
int recordID = 0;
try {

RecordStore store = RecordStore.openRecordStore("ImageStore", true);
recordID = store.addRecord(data, 0, data.length);
store.closeRecordStore();

}
catch(RecordStoreException rse) {

rse.printStackTrace();
}
return recordID;

}
// reading data from RMS
public byte[] loadFromStore(String storeName, int recordID) {
byte[] data = null;
try {

RecordStore store = RecordStore.openRecordStore("ImageStore", false);
data = store.getRecord(recordID);
store.closeRecordStore();

}
catch(RecordStoreException rse) {

rse.printStackTrace();
}
return data;

}

For more about RMS, including searching and sorting records in a
RecordStore, refer to the MIDP documentation. Also download the
RMSWriter and RMSReader example applications from this book’s
website; they provide a fairly complete example of how to write, read
and share RecordStores.

58 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

2.4.2 Media API

MIDP includes the Media API which provides limited, audio-only mul-
timedia. It is a subset of the optional and much richer JSR-135 Mobile
Media API, which currently ships on most Symbian OS phones.

The MIDP Media API provides support for tone generation and audio
playback of WAV files if the latter is supported by the underlying hard-
ware. Since MIDP is targeted at the widest possible range of devices, not
just feature-rich smartphones, the aim of the Media API is to provide a
lowest common denominator of functionality suitable for the capabilities
of all MIDP devices. However, with the wide availability of JSR-135
MMAPI on Symbian OS devices, we look at both the Media and Mobile
Media APIs in detail later in this chapter, as the latter is much richer in
functionality and provides additional opportunities for development of
media-centric Java applications.

2.4.3 Networking – Generic Connection Framework

CLDC has defined a streamlined approach to networking, known as the
Generic Connection Framework (GCF). The framework seeks to provide
a consistent interface for every network connection between the MIDP
classes and the underlying network protocols. It doesn’t matter what
kind of connection is being opened; the interface remains the same.
For instance, if you’re opening a socket or an HTTP connection, you
are still going to use the same Connector.open() method. MIDP has
support for many protocols, although HTTP and HTTPS are mandatory.
Java ME on Symbian OS also supports other optional protocols, such as
sockets, server sockets and datagrams. Due to the implications of the
MIDP security model on networking APIs, these are discussed in more
detail in Section 2.6.

2.4.4 Push Registry

The Push Registry API allows MIDlets to be launched in response to
incoming network connections. Many applications, particularly mes-
saging applications, need to be continuously listening for incoming
messages. To achieve this in the past, a Java application would have had
to be continually running in the background. Although the listening Java
application may itself be small, it would still require an instance of the
virtual machine to be running, thus appropriating some of the mobile
phone’s scarce resources. The JSR-118 group recognized the need for an
alternative, more resource-effective solution for MIDP and so introduced
the Push Registry. The Push Registry API is also affected by MIDP 2.0’s
security model, therefore we discuss it in Section 2.7.

MIDP SECURITY MODEL 59

2.5 MIDP Security Model

The MIDP security model is built on two concepts:

• Trusted MIDlet suites are those whose origin and integrity can be
trusted by the device on the basis of some objective criterion.

• Protected APIs are APIs to which access is restricted, with the level
of access being determined by the permissions (Allowed or User)
allocated to the API.

A protection domain defines a set of permissions which grant, or
potentially grant, access to an associated set of protected APIs. An installed
MIDlet suite is bound to a protection domain, thereby determining its
access to protected APIs.

An MIDP device must support at least one protection domain, the
untrusted domain, and may support several protection domains, although
a given MIDlet suite can only be bound to one protection domain.
The set of protection domains supported by an implementation defines
the security policy. If installed, an unsigned MIDlet suite is always
bound to the untrusted domain, in which access to protected APIs may
be denied or require explicit user permission. Since a requirement of
the MIDP specification is that a MIDlet suite written to the MIDP 1.0
specification runs unaltered in an MIDP environment, MIDP 1.0 MIDlets
are automatically treated as untrusted.

2.5.1 The X.509 PKI

The mechanism for identifying and verifying that a signed MIDlet suite
should be bound to a trusted domain is not mandated by the MIDP
specification but is left to the manufacturer of the device and other
stakeholders with an interest in the security of the device, for example,
network operators. The specification does, however, define how the
X.509 Public Key Infrastructure (PKI) can be used to identify and verify a
signed MIDlet suite.

The PKI is a system for managing the creation and distribution of
digital certificates. At the heart of the PKI lies the system of public
key cryptography. Public key cryptography involves the creation of a
key pair consisting of a private key and a public key. The creator of
the key pair keeps the private key secret, but can freely distribute the
public key. Public and private key pairs have two principal uses: they
enable secure communication using cryptography and authentication
using digital signatures. In the first case, someone wishing to communicate
with the holder of the private key uses the public key to encrypt the
communication. The encrypted communication is secure since it can
only be decrypted by the holder of the private key.

60 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

In the current context, however, we are more interested in the second
use of public–private key pairs: enabling authentication using digital
signatures. A digital signature is an electronic analogy of a conventional
signature. It authenticates the source of the document and verifies that
the document has not been tampered with in transit. Signing a document
is a two-stage process: a message digest is created that is a unique
representation of the contents of the document; the message digest is then
encrypted using the private key of the sender (see Figure 2.11).

Message Message digest

RSA
cryptographic

process

Digital
signature

Sender's

Hash function
(MD5)

Figure 2.11 Encryption process in a nutshell

The receiver of the document then uses the public key of the sender
to decrypt the message digest, creates a digest of the received contents,
and checks that it matches the decrypted digest that accompanied the
document. Hence, a digital signature is used to verify that a document was
sent by the holder of the private key, not some third party masquerading
as the sender, and that the contents have not been tampered with in
transit. This raises the issue of key management and how the receiver of
a public key can verify the source of the public key. For instance, if I
receive a digitally signed JAR file, I need the public key of the signer to
verify the signature, but how do I verify the source of the public key? The
public key itself is just a series of numbers, with no clue as to the identity
of the owner. I need to have confidence that a public key purporting
to belong to a legitimate organization does in fact originate from that
organization and has not been distributed by an impostor, enabling the
impostor to masquerade as the legitimate organization, signing files using
the private key of a bogus key pair. The solution is to distribute the public
key in the form of a certificate from a trusted certificate authority (CA).

A certificate authority distributes a certificate that contains details of a
person’s or organization’s identity, the public key belonging to that person
or organization, and the identity of the issuing CA. The CA vouches that
the public key contained in the certificate does indeed belong to the
person or organization identified on the certificate. To verify that the

MIDP SECURITY MODEL 61

certificate was issued by the CA, the certificate is digitally signed by the
CA using its private key. The format of certificates used in X509.PKI is
known as the X509 format.

Of course, this raises the question of how the recipient of the certificate
verifies the digital signature contained therein. This is resolved using root
certificates or root keys. The root certificate contains details of the identity
of the CA and the public key of the CA (the root key) and is signed by the
CA itself (self-signed). For mobile phones that support one or more trusted
protection domains, one or more certificates ship with the device, placed
on the phone by the manufacturer or embedded in the WIM/SIM card by
the network operator. Each certificate is associated with a trusted protec-
tion domain, so that a signed MIDlet that is authenticated against a cer-
tificate is bound to the protection domain associated with that certificate.

2.5.2 Certification Paths

In practice, the authentication of a signed file using the root certificate
may be more complex than the simplified approach described above.
The PKI allows for a hierarchy of certificate authorities (see Figure 2.12)

Root CA
(Trust Anchor)

Operator 2
CA

Operator 1
CA

Manufacturer
1 CA

ISV 1 ISV 2 ISV 3 ISV 4 ISV 5 ISV 6

Trust Anchor’s Certificate

Figure 2.12 Applications from a variety of independent software vendors (ISVs) signed by
various CAs and authenticated by a single trust root

62 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

whose validity can be traced back to a root certification authority, the
uppermost CA in the hierarchy, also known as the trust anchor. In this
case the root certificate on the device (the trust root) belongs to the root
certification authority in the hierarchy (the trust anchor) which directly
or indirectly validates all the other CAs in the certification path. The
certificate supplied with the signed JAR file does not need to be validated
(signed) by the trust anchor whose certificate is supplied with the device,
as long as a valid certification path can be established between the
certificate accompanying the signed JAR file and the root CA. It is not
actually necessary for a device to have various self-signed top-level
certificates from CAs, manufacturers and operators installed. In practice,
it only needs access to one or more certificates which are known to be
trustworthy, for example, because they are in ROM or secure storage on
a WIM/SIM, or because the user has decided that they are.

These certificates act as trust roots. If the authentication of an arbitrary
certificate chains back to a trust root known to the device, and the trust
root is also identified as being suitable for authenticating certificates
being used for a given purpose, for example, code-signing, website
identification, and so on, then the arbitrary certificate is considered to
have been authenticated.

2.5.3 Signing a MIDlet Suite

To sign a MIDlet suite, a supplier must create a public–private key
pair and sign the MIDlet JAR file with the private key. The JAR file is
signed using the RSA-SHA1 algorithm. The resulting signature is encoded
in Base64 format and inserted into the application descriptor as the
following attribute:

MIDlet-Jar-RSA-SHA1: <base64 encoding of JAR signature>

The supplier must obtain a suitable MIDlet suite code-signing certifi-
cate from an appropriate source, for example, the developer program of
a device manufacturer or network operator, containing the identity of the
supplier and the supplier’s public key. The certificate is incorporated into
the MIDlet suite’s application descriptor (JAD) file.

In the case of a certification path, we need to include all the necessary
certificates required to validate the JAR file. Furthermore, a MIDlet suite
may include several certification paths in the application descriptor file
(if, for example, the MIDlet suite supplier wishes to target several device
types, each with a different root certificate). In Figure 2.13, we need
to include certificates containing the public keys belonging to CA 1,

MIDP SECURITY MODEL 63

CA 1's public key
1683975610743

CA 2's public key
2092657883565

Supplier's public key
096365829672

Signed:
Root CA

<793639120>

Signed:
CA 1

<135932516>

Signed:
CA 2

<803457622>
jar file

<169032678>

Figure 2.13 Certification path

CA 2 and the Supplier. The root certification authority’s certificate (the
root certificate) is available on the device. Using the root certification
authority’s public key, we can validate CA 1’s public key. This is then
used to validate CA 2’s public key, which is then used to validate the
Supplier’s public key. The Supplier’s public key is then used to verify the
origin and integrity of the JAR file. The MIDP specification defines an
application descriptor attribute of the following format:

MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>

Here <n> represents the certification path and has a value of 1 for the
first certification path, with each additional certification path adding 1 to
the previous value (i.e. 1, 2, 3, . . .). There may be several certification
paths, each leading to a different root CA. <m> has a value of 1 for the cer-
tificate belonging to the signer of the JAR file and a value 1 greater than the
previous value for each intermediate certificate in the certification path.

For the example shown in Figure 2.13, with just one certification path,
the relevant descriptor attribute entries would have the following content:

MIDlet-Certificate-1-1: <base64 encoding of Supplier’s certificate>
MIDlet-Certificate-1-2: <base64 encoding of CA 2’s certificate>
MIDlet-Certificate-1-3: <base64 encoding of CA 1’s certificate>

2.5.4 Authenticating a Signed MIDlet Suite

Before a MIDlet suite is installed, the Application Management Software
(AMS) checks for the presence of the MIDlet-Jar-RSA-SHA1 attribute
in the application descriptor and, if it is present, attempts to authenticate
the JAR file by verifying the signer certificate. If it is not possible to
successfully authenticate a signed MIDlet suite, it is not installed. If the
MIDlet suite descriptor file does not include the MIDlet-Jar-RSA-
SHA1 attribute, then the MIDlet can only be installed as untrusted.

64 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

2.5.5 Authorization Model

A signed MIDlet suite containing MIDlets which access protected APIs
must explicitly request the required permissions. The MIDP specification
defines two new attributes, MIDlet-Permissions and MIDlet-
Permissions-Opt, for this purpose. Critical permissions (those that
are required for MIDP access to protected APIs that are essential to the
operation of MIDlets) must be listed under the MIDlet-Permissions
attribute. Non-critical permissions (those required to access protected
APIs without which the MIDlets can run in a restricted mode) should be
listed under the MIDlet-Permissions-Opt attribute.

The MIDlet-Permissions and MIDlet-Permissions-Opt at-
tributes may appear in the JAD file or the manifest of a signed MIDlet
suite, or in both, in which case their respective values in each must
be identical, but only the values in the manifest are ‘protected’ by the
signature of the JAR file.

It is important to note that a MIDlet suite that has been installed
as trusted is not granted any permission it has not explicitly requested
in either the MIDlet-Permissions or MIDlet-Permissions-Opt
attributes, irrespective of whether it would be granted were it to be
requested.

The naming scheme for permissions is similar to that for Java package
names. The exact name of a permission to access an API or function is
defined in the specification for that API. For instance, an entry requesting
permission to open HTTP and secure HTTP connections would be as
follows:

MIDlet-Permissions: javax.microedition.io.Connector.http,
javax.microedition.io.Connector.https

The successful authorization of a trusted MIDlet suite requires that the
requested critical permissions are recognized by the device (for instance,
in the case of optional APIs) and are granted, or potentially granted, in
the protection domain to which the MIDlet suite would be bound, were
it to be installed. If either of these requirements cannot be satisfied, the
MIDlet suite is not installed.

2.5.6 Protection Domains

A protection domain is a set of permissions determining access to pro-
tected APIs or functions. A permission is either Allowed, in which case
MIDlets in MIDlet suites bound to this protection domain have automatic
access to this API, or User, in which case permission to access the pro-
tected API or function is requested from the user, who can then grant or

MIDP SECURITY MODEL 65

deny access. In the case of User permissions, there are three interaction
modes:

• Blanket – as long as the MIDlet suite is installed, it has this permis-
sion unless the user explicitly revokes it.

• Session – user authorization is requested the first time the API is
invoked and it is in force while the MIDlet is running.

• Oneshot – user authorization is requested each time the API is
invoked.

The protection domains for a given device are defined in a security
policy file. A sample security policy file is shown below:

alias: net_access
javax.microedition.io.Connector.http,
javax.microedition.io.Connector.https,
javax.microedition.io.Connector.datagram,
javax.microedition.io.Connector.datagramreceiver,
javax.microedition.io.Connector.socket,
javax.microedition.io.Connector.serversocket,
javax.microedition.io.Connector.ssl
domain: Untrusted
session (oneshot): net_access
oneshot (oneshot): javax.microedition.io.Connector.sms.send
oneshot (oneshot): javax.microedition.io.Connector.sms.receive
session (oneshot): javax.microedition.io.PushRegistry
domain: Symbian
allow: net_access
allow: javax.microedition.io.Connector.sms.send
allow: javax.microedition.io.Connector.sms.receive
allow: javax.microedition.io.PushRegistry

User permissions may offer several interaction modes, the user being
able to select the level of access. For instance, the following line indicates
that the API or functions defined under the net_access alias have User
permission with either session or oneshot interaction modes, the
latter being the default:

session (oneshot): net_access

2.5.7 The Security Model in Practice

In this section, we go through the steps involved in producing a signed
MIDlet suite. We shall illustrate this process using the tools provided by
the WTK. The basic steps in producing a signed MIDlet suite are listed
below:

1. Obtain (or generate) a public–private key pair.

66 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

2. Associate the key pair with a code-signing certificate from a recom-
mended CA.

3. Sign the MIDlet suite and incorporate the certificate into the JAD file.

To sign a MIDlet suite, the supplier of the suite needs to obtain a
public–private key pair either by generating a new key pair or importing
an existing key pair. The WTK provides tools for doing this; they can be
accessed by opening your project and choosing the Project/Sign option
from the main panel. Clicking the Sign button brings up the panel shown
in Figure 2.14. To generate the key pair, click on Keystore, then New
Key Pair, enter the appropriate details and click the Create button (see
Figure 2.15).

Figure 2.14 Sign MIDlet Suite view of the WTK

A new key pair is generated and added to the WTK key store. The
newly-generated public key is incorporated into a self-signed certificate.
We use this to obtain a suitable MIDlet suite code-signing certificate from
an appropriate source (such as a recommended Certification Authority,
for instance, Verisign or Thawte) that can be authenticated by a root
certificate that ships with the device or is contained in the WIM/SIM
card. Application developers and suppliers should contact the relevant
developer program of the device manufacturer or network operator to
ascertain the appropriate CA.

We can then generate a Certificate Signing Request (CSR) using our self-
signed certificate and the Generate CSR option in the WTK (Figure 2.16).
This generates a file containing the CSR that can be saved to a convenient
location. The contents of the CSR can then be copied into an email to the
recommended CA, requesting a code-signing certificate.

MIDP SECURITY MODEL 67

Figure 2.15 Creating a new key pair

Figure 2.16 Generating a Certificate Signing Request

When we have received the certificate from the recommended CA,
we need to associate this with our key pair. The Import Certificate option
of the WTK associates the certificate with our key pair, identified by its
alias and held in the key store. If the public key that we provided in the
CSR, and now contained in the certificate, matches the public key of the
key pair held in the key store, we should be notified accordingly and are
now ready to sign our MIDlet suite. To sign the MIDlet suite we simply
select Sign MIDlet Suite from the Action menu and choose the JAD file

68 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

belonging to the MIDlet suite we wish to sign. The MIDlet suite is now
ready for deployment on the target device.

The WTK also offers additional functionality to test out signed MIDlet
suites. There is a default trusted key pair (and an associated root certificate)
that can be used to install and bind a signed MIDlet suite to a trusted
protection domain within the emulator environment. This then allows
MIDlets in the signed suite to run within the WTK environment as trusted
without obtaining and importing a certificate from a CA. This feature is
particularly useful for ensuring that the appropriate permissions to access
protected APIs have been requested in the JAD file. It is important to
remember that this feature of the WTK only works in the test environment.
For real devices, you must sign your MIDlet suite with a valid certificate
received from a Trusted CA.

2.5.8 Untrusted MIDlets

An untrusted MIDlet suite is an unsigned MIDlet suite. It is, there-
fore, installed and bound to the untrusted protection domain. Untrusted
MIDlets execute within a restricted environment where access to pro-
tected APIs or functions may be prohibited or allowed only with explicit
user permission, depending on the security policy in force on the device.
To ensure compatibility with MIDlets developed according to the MIDP
1.0 specification, the MIDP specification demands that the untrusted
domain must allow unrestricted access to the following APIs:

• javax.microedition.rms

• javax.microedition.midlet

• javax.microedition.lcdui

• javax.microedition.lcdui.game

• javax.microedition.media

• javax.microedition.media.control

Furthermore, the specification requires that the following APIs can be
accessed with explicit permission of the user:

• javax.microedition.io.HttpConnection

• javax.microedition.io.HttpsConnection

The full list of permissions for the untrusted domain is device-specific,
however the MIDP specification does provide a Recommended Security
Policy Document for GSM/UMTS Compliant Devices as an addendum
(with some clarifications added in the JTWI Final Release Policy for

NETWORKING AND GENERAL CONNECTION FRAMEWORK 69

Untrusted MIDlet Suites). Finally, if a signed MIDlet fails authentication
or authorization, it does not run as an untrusted MIDlet, but rather is not
installed by the AMS. For more information on the security model, see
the MIDP specification.

2.5.9 Recommended Security Policy

The Recommended Security Policy defines a set of three protection
domains (Manufacturer, Operator and Trusted Third Party) to which
trusted MIDlet suites can be bound (and which a compliant device may
support).

For a trusted domain to be enabled, there must be a certificate on
the device, or on a WIM/SIM, identified as a trust root for MIDlet
suites in that domain, i.e. if a signed MIDlet suite can be authenticated
using that trust root it will be bound to that domain. For example,
to enable the Manufacturer protection domain, the manufacturer must
place a certificate on the device. This is identified as the trust root for
the Manufacturer domain. A signed MIDlet suite will be bound to the
Operator domain if it can be authenticated using a certificate found on
the WIM/SIM and identified as a trust root for the Operator domain. A
signed MIDlet suite will be bound to the Trusted Third Party protection
domain if it can be authenticated using a certificate found on the device
or on a WIM/SIM and identified as a trust root for the Trusted Third Party
protection domain. Verisign and Thawte code-signing certificates usually
fit the latter situation.

As already mentioned, the recommended security policy is not a
mandatory requirement for an MIDP 2.0-compliant device. An imple-
mentation does not have to support the RSP in order to install signed
MIDlet suites; it simply has to implement the MIDP security model and
support at least one trusted protection domain.

2.6 Networking and General Connection Framework

Now that we have considered in detail the MIDP Security Model, let’s
learn more about the networking APIs in the specification, provided
through the Generic Connection Framework (GCF).

Symbian’s implementation of MIDP complies with the specification,
providing implementations of the following protocols:

• HTTP

• HTTPS

• Sockets

70 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

• Server sockets

• Secure sockets

• Datagrams

• Serial port access.

In the remainder of this chapter, we focus on the networking protocols
from the GCF. The local connectivity protocol (serial port access) is similar
in nature to the network protocols, but its connection string depends on
the target handset model, therefore you must study it separately.

2.6.1 HTTP and HTTPS Support

To open an HTTP connection we use the Connector.open() method
with a URL of the form www.myserver.com. Code to open an Http-
Connection and obtain an InputStream would look something like
this:

try{
String url = "www.myserver.com";
HttpConnection conn = (HttpConnection)Connector.open(url);
InputStream is = conn.openInputStream();
...
conn.close()

}
catch(IOException ioe){...}

Under the MIDP security model, untrusted MIDlets can open an HTTP
connection only with explicit user confirmation. Signed MIDlets that
require access to an HTTP connection must explicitly request permission:

MIDlet-Permissions: javax.microedition.io.Connector.http, ...

Opening an HTTPS connection follows the same pattern as a normal
HTTP connection, with the exception that we pass in a connection
URL of the form https://www.mysecureserver.com and cast the returned
instance to an HttpsConnection object, as in the following example:

try{
String url = "https://www.mysecureserver.com";
HttpsConnection hc = (HttpsConnection)Connector.open(url);
InputStream is = hc.openInputStream();
...
hc.close()

NETWORKING AND GENERAL CONNECTION FRAMEWORK 71

...
}
catch(IOException ioe){...}

The security policy related to access permissions by trusted and
untrusted MIDlets is the same as the one for HTTP connections, except
that the permission setting has a different name:

MIDlet-Permissions: javax.microedition.io.Connector.https, ...

2.6.2 Socket and Server Socket Support

MIDP makes support for socket connections a recommended practice.
Socket connections come in two forms: client connections, in which a
socket connection is opened to another host; and server connections in
which the system listens on a particular port for incoming connections
from other hosts. The connections are specified using Universal Resource
Identifiers (URI). You should be familiar with the syntax of a URI from web
browsing. They have the format <string1>://<string2> where
<string1> identifies the communication protocol to be used (e.g.,
http) and <string2> provides specific details about the connection.
The protocol may be one of those supported by the Generic Connection
Framework (see Section 2.5.2).

To open a client socket connection to another host, we pass a URI of
the following form to the connector’s open() method:

socket://www.symbian.com:5000

The host may be specified as a fully qualified hostname or IP address
and the port number refers to the connection endpoint on the remote
peer. Some sample code is shown below:

SocketConnection sc = null;
OutputStream out = null;
try{
sc = (SocketConnection)Connector.open ("socket://200.251.191.10:7900");
...
out = c.openOutputStream();
...

}
catch(IOException ioe){...}

A server socket connection is used to listen for inbound socket con-
nections. To obtain a server socket connection, we can pass a URI in
either of the following forms to the connector’s open() method:

72 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

socket://:79
socket://

In the first case, the system listens for incoming connections on port
79 (of the local host). In the latter case, the system allocates an available
port for the incoming connections.

ServerSocketConnection ssc = null;
InputStream is = null;
try{
ssc = (ServerSocketConnection)Connector.open("socket://:1234");
SocketConnection sc = (SocketConnection)ssc.acceptAndOpen();
...
is = sc.openInputStream();
...

}
catch(IOException ioe){...}

The ServerSocketConnectioninterface extends the Stream-
ConnectionNotifier interface. To obtain a connection object for an
incoming connection the acceptAndOpen() method must be called
on the ServerSocketConnection instance. An inbound socket con-
nection results in the call to the acceptAndOpen() method, returning
a StreamConnection object which can be cast to a SocketConnec-
tion as desired.

A signed MIDlet suite containing MIDlets which open socket connec-
tions must explicitly request the appropriate permissions:

MIDlet-Permissions: javax.microedition.io.Connector.socket,
javax.microedition.io.Connector.serversocket, ...

If the protection domain to which the signed MIDlet suite would be
bound grants, or potentially grants, these permissions, then the MIDlet
suite is installed and the MIDlets it contains will be able to open
socket connections. This can be done either automatically or with user
permission, depending upon the security policy in effect on the device
for the protection domain to which the MIDlet suite has been bound.

Whether MIDlets in untrusted MIDlet suites can open socket connec-
tions depends on the security policy relating to the untrusted domain in
force on the device.

2.6.3 Secure Socket Support

Secure socket connections are client socket connections over SSL. To
open a secure socket connection we pass in a hostname (or IP address)

NETWORKING AND GENERAL CONNECTION FRAMEWORK 73

and port number to the connector’s open() method using the following
URI syntax:

ssl://hostname:port

We can then use the secure socket connection in the same manner as
a normal socket connection, for example:

try{
SecureConnection sc = (SecureConnection)

Connector.open("ssl://www.secureserver.com:443");
...
OutputStream out = sc.openOutputStream();
...
InputStream in = sc.openInputStream();
...

}
catch(IOException ioe){...}

A signed MIDlet suite that contains MIDlets which open secure con-
nections must explicitly request permission:

MIDlet-Permissions: javax.microedition.io.Connector.ssl, ...

If the protection domain to which the signed MIDlet suite would be
bound grants, or potentially grants, this permission, the MIDlet suite can
be installed and the MIDlets it contains will be able to open secure
connections. This can be done automatically or with user permission,
depending on the security policy in effect. Whether untrusted MIDlets
can open secure connections depends on the permissions granted in the
untrusted protection domain.

2.6.4 Datagram Support

Symbian’s MIDP implementation includes support for sending and receiv-
ing UDP datagrams. A datagram connection can be opened in client or
server mode. Client mode is for sending datagrams to a remote device.
To open a client-mode datagram connection we use the following URI
format:

datagram://localhost:1234

Here the port number indicates the port on the target device to which
the datagram will be sent. Sample code for sending a datagram is shown
below:

String message = "Hello!";

74 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

byte[] payload = message.toString();
try{
UDPDatagramConnection conn = null;
conn = (UDPDatagramConnection)

Connector.open("datagram://localhost:1234");
Datagram datagram = conn.newDatagram(payload, payload.length);
conn.send(datagram);

}
catch(IOException ioe){...}

Server mode connections are for receiving (and replying to) incoming
datagrams. To open a datagram connection in server mode, we use a URI
of the following form:

datagram://:1234

The port number in this case refers to the port on which the local
device is listening for incoming datagrams. Sample code for receiving
incoming datagrams is given below:

try{
UDPDatagramConnection dconn = null;
dconn = (UDPDatagramConnection)Connector.open("datagram://:1234");
Datagram dg = dconn.newDatagram(300);
while(true){

dconn.receive(dg);
byte[] data = dg.getData();
...

}
}
catch(IOException ioe){...}

A signed MIDlet suite which contains MIDlets that open datagram
connections must explicitly request permission to open client connections
or server connections:

MIDlet-Permissions: javax.microedition.io.Connector.datagram,
javax.microedition.io.Connector.datagramreceiver, ...

If the protection domain to which the signed MIDlet suite would
be bound grants, or potentially grants, the requested permissions, the
MIDlet suite can be installed and the MIDlets it contains will be able to
open datagram connections. This can be done automatically or with user
permission, depending on the security policy in effect. Whether untrusted
MIDlets can open datagram connections depends on permissions granted
to MIDlet suites bound to the untrusted protection domain.

NETWORKING AND GENERAL CONNECTION FRAMEWORK 75

2.6.5 Security Policy for Network Connections

The connections discussed above are part of the Net Access function
group (see the RSP addendum to the MIDP specification). On the Nokia
N95, for example, an untrusted MIDlet can access the Net Access function
group with User permission (explicit confirmation required from the user).
Figure 2.17 shows an example of an unsigned MIDlet, Google’s Gmail,
and the available permission options on a Nokia N95. This policy varies
from licensee to licensee so you must check with the manufacturer of
your target devices which settings apply for existing security domains.

Figure 2.17 Permission options for an unsigned MIDlet on a Nokia N95

2.6.6 NetworkDemo MIDlet

We finish this section with a simple example using MIDP’s javax.
microedition.io.HttpConnection to interrogate a web server.
The NetworkDemo MIDlet connects to a web server via HttpConnec-
tion, and reads and displays all the headers and the first 256 characters
of the response itself. Let’s take a look at the core network function-
ality exploited in this MIDlet. The connection work is all done in the
ClientConnection class:

public class ClientConnection extends Thread {
private static final int TEXT_FIELD_SIZE = 256;
private NetworkDemoMIDlet midlet = null;
private String url = null;

76 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

public ClientConnection(NetworkDemoMIDlet midlet) {
this.midlet = midlet;

}
public void sendMessage(String url) {

this.url = url;
start();

}
public void run() {

try{
HttpConnection conn = (HttpConnection)Connector.open(url);
int responseCode = conn.getResponseCode();

midlet.append("Response code","" + responseCode);
int i = 0;
String headerKey = null;
while((headerKey = conn.getHeaderFieldKey(i++)) != null) {

midlet.append(headerKey,conn.getHeaderField(headerKey));
}

InputStream in = conn.openInputStream();
StringBuffer buffer = new StringBuffer(TEXT_FIELD_SIZE);
int ch;
int read = 0;

while ((ch = in.read()) != -1 && read < TEXT_FIELD_SIZE) {
buffer.append((char)ch);
read++;

}

midlet.append("HTML Response" ,buffer.toString());
conn.close();
conn = null;

}
catch(Exception e){
e.printStackTrace();

}
}

}

The url parameter of the sendMessage()method has the following
form:

http://www.symbian.com:80

The sendMessage() method creates a request and then starts a
new Thread to create the connection, send the request and read the
response. Let us look at the contents of the thread’s run() method in
more detail:

HttpConnection conn = (HttpConnection)Connector.open(url);
int responseCode = conn.getResponseCode();
midlet.append("Response code","" + responseCode);
int i = 0;

NETWORKING AND GENERAL CONNECTION FRAMEWORK 77

String headerKey = null;
while((headerKey = conn.getHeaderFieldKey(i++)) != null) {
midlet.append(headerKey,conn.getHeaderField(headerKey));

}

An HttpConnection is opened using the URI given by the user and
is used first to retrieve the HTTP response code (200, in case of success).
We also loop through the HTTP response methods until they are all read
and append them to the MIDlet’s Form object as a StringItem.

Having read the HTTP readers, it is time to read the actual HTML
content. We open an InputStream from the HttpConnection, start
reading the input and save it to a StringBuffer of TEXT FIELD SIZE
length. Once we reach this value in number of bytes read, we leave the
loop, as we don’t want to pollute the user’s screen with too much raw
HTML.

InputStream in = conn.openInputStream();
StringBuffer buffer = new StringBuffer(TEXT_FIELD_SIZE);
int ch;
int read = 0;
while ((ch = in.read()) != -1 && read < TEXT_FIELD_SIZE) {
buffer.append((char)ch);
read++;

}

After reading TEXT FIELD SIZE bytes of HTML, we append them to the
MIDlet’s Form so they can be shown on the screen along with all the
other information we retrieved. Figure 2.18 shows the NetworkDemo
MIDlet running on a Nokia N95. The full source code, JAD and JAR
files for the NetworkDemo MIDlet are available for download from this
book’s website.

(b) (c)(a)

Figure 2.18 NetworkDemo MIDlet running on a Nokia N95: a) connecting to the URL,
b) receiving the headers, and c) reading the HTML

78 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

2.7 Using the Push Registry

The Push Registry API is encapsulated in the javax.microedition.
io.PushRegistry class. It maintains a list of inbound connections
that have been previously registered by installed MIDlets. A MIDlet
registers an incoming connection with the push registry either statically at
installation via an entry in the JAD file or dynamically (programmatically)
via the registerConnection() method.

When a MIDlet is running, it handles all the incoming connections
(whether registered with the push registry or not). When the MIDlet is
not running, the AMS launches the MIDlet in response to an incoming
connection previously registered by it, by invoking the startApp()
method. The AMS then hands off the connection to the MIDlet which
is responsible for opening the appropriate connection and handling the
communication. In the case of static registration, the MIDlet registers
its interest in incoming connections in the JAD file, in the following
format:

MIDlet-Push-<n>: <ConnectionURL>, <MIDletClassName>, <AllowedSender>

The <ConnectionURL> field specifies the protocol and port for the
connection end point in the same URI syntax used by the argument
to the Connector.open() method that is used by the MIDlet to
process the incoming connection. Examples of <ConnectionURL>

entries might be:

sms://:1234
socket://:1234

The <MIDletClassName> field contains the package-qualified
name of the class that extends javax.microedition.midlet.MID-
let. This would be the name of the MIDlet class as listed in the
application descriptor or manifest file under the MIDlet-<n> entry.
The <AllowedSender> field acts as a filter indicating that the AMS
should only respond to incoming connections from a specific sender.
For the SMS protocol, the <AllowedSender> entry is the phone
number of the required sender. For a server socket connection end-
point, the <AllowedSender> entry would be an IP address (in both
cases, note that the sender port number is not included in the filter). The
<AllowedSender> syntax supports two wildcard characters: * matches
any string including an empty string and ? matches any character. Hence
the following would be valid entries for the <AllowedSender> field:

USING THE PUSH REGISTRY 79

*
129.70.40.*
129.70.40.23?

The first entry indicates any IP address, the second entry allows the
last three digits of the IP address to take any value, while the last entry
allows only the last digit to have any value. So the full entry for the
MIDlet-Push-<n> attribute in a JAD file may look something like this:

MIDlet-Push-1: sms://:1234, com.symbian.devnet.ChatMIDlet, *
MIDlet-Push-2: socket://:3000, com.symbian.devnet.ChatMIDlet, 129.70.40.*

If the request for a static connection registration cannot be fulfilled
then the AMS must not install the MIDlet. Examples of when a registration
request might fail include the requested protocol not being supported
by the device, or the requested port number being already allocated to
another application.

To register a dynamic connection with the AMS we use the static
registerConnection() method of PushRegistry:

PushRegistry.registerConnection("sms://:1234",
"com.symbian.devnet.ChatMIDlet", "*");

The arguments take precisely the same format as those used to make up
the MIDlet-Push-<n> entry in a JAD or manifest. Upon registration,
the dynamic connection behaves in an identical manner to a static
connection registered via the application descriptor. To un-register a
dynamic connection, the static Boolean unregisterConnection()
method of PushRegistry is used:

boolean result = PushRegistry.unregisterConnection(("sms://:1234");

If the dynamic connection is successfully unregistered, a value of
true is returned. The AMS responds to input activity on a registered
connection by launching the corresponding MIDlet (assuming that the
MIDlet is not already running). The MIDlet responds to the incoming
connection by launching a thread to handle the incoming data in the
startApp() method. Using a separate thread is recommended practice
for avoiding conflicts between blocking I/O operations and normal user
interaction events. For a MIDlet registered for incoming SMS messages,
the startApp() method might look something like this:

80 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

public void startApp() {
// List of active connections.
String[] connections = PushRegistry.listConnections(true);
for (int i=0; i < connections.length; i++) {

if(connections[i].equals("sms://:1234")){
new Thread(){

public void run(){
Receiver.openReceiver();

}
}.start();

}
}
...

}

One other use of the push registry should be mentioned before we
leave this topic. The PushRegistry class provides a method which
allows a running MIDlet to register itself or another MIDlet in the same
suite for activation at a given time:

public static long registerAlarm(String midlet, long time)

The midlet argument is the class name of the MIDlet to be launched
at the time specified by the time argument. The launch time is specified
in milliseconds since January 1, 1970, 00:00:00 GMT. The push registry
may contain only one outstanding activation time entry per MIDlet in
each installed MIDlet suite. If a previous activation entry is registered, it
is replaced by the current invocation and the previous value is returned.
If no previous wakeup time has been set, zero is returned.

The PushRegistry is a protected API; a signed MIDlet suite which
registers connections statically or contains MIDlets which register con-
nections or alarms must explicitly request permission:

MIDlet-Permissions: javax.microedition.io.PushRegistry, ...

Note that a signed MIDlet suite must also explicitly request the per-
missions necessary to open the connection types of any connections it
wishes to register. If the protection domain to which the signed MIDlet
suite would be bound grants, or potentially grants, the requested permis-
sion, the MIDlet suite can be installed and the MIDlets it contains can
register and deregister connections and alarms, either automatically or
with user permission, depending on the security policy in effect.

Untrusted MIDlets do not require a MIDlet-Permissions entry.
Whether access is granted to the Push Registry API depends on the
security policy for the untrusted protection domain in effect on the
device.

MIDP AND THE JTWI 81

On the Nokia N95, untrusted MIDlet suites can use the Push Registry
APIs (Application Auto-Start function group) with user permission. The
default User permission is set to Session (‘Ask first time’). It can be
changed to ‘Not allowed’ or ‘Ask every time’.

2.8 MIDP and the JTWI

The Java Technology for the Wireless Industry (JTWI) initiative is part of the
Java Community Process (JSR-185) and its expert group has as its goal the
task of defining an industry-standard Java platform for mobile phones, by
reducing the need for proprietary APIs and providing a clear specification
that phone manufacturers, network operators and developers can target.
The JTWI specification concerns three main areas:

• It provides a minimum set of APIs (JSRs) that a compliant device
should support.

• It defines which optional features within these component JSRs must
be implemented on a JTWI-compliant device.

• It provides clarification of component JSR specifications, where appro-
priate.

2.8.1 Component JSRs of the JTWI

The JTWI defines three categories of JSR that fall under the specification:
mandatory, conditionally required and minimum configuration. The fol-
lowing mandatory JSRs must be implemented as part of a Java platform
that is compliant with JTWI:

• MIDP (JSR-118)

• Wireless Messaging API (JSR-120).

The Mobile Media API (JSR-135) is conditionally required in the JTWI.
It must be present if the device exposes multimedia APIs (e.g., audio
or video playback or recording) to Java applications. The minimum
configuration required for JTWI compliance is CLDC 1.0 (JSR-30). Since
CLDC 1.1 is a superset of CLDC 1.0 it may be used instead, in which case
it supersedes the requirement for CLDC 1.0. Today most of the Symbian
OS devices in the market support CLDC 1.1.

2.8.2 JTWI Specification Requirements

As mentioned earlier, the JTWI specification makes additional require-
ments on the implementation of the component JSRs. For full details,

82 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

consult the JTWI specification available from the Java Community Process
(JCP) website (http://jcp.org).

• CLDC 1.0/1.1 must allow a MIDlet suite to create a minimum of 10
running threads and must support Unicode characters.

• MIDP 2.0 must allow creation of at least five independent record
stores, must support the JPEG image format and must provide a
mechanism for selecting a phone number from the device’s phone-
book when the user is editing a TextField or TextBox with the
PHONENUMBER constraint.

• GSM/UMTS phones must support SMS protocol push handling within
the Push Registry.

• MMA must support MIDI playback (with volume control), JPEG encod-
ing for video snapshots and the Tone Sequence file format.

The JTWI specification also clarifies aspects of the MIDP recommended
security policy for GSM/UMTS devices relating to untrusted domains.

2.8.3 Symbian and the JTWI

Symbian supports and endorses the efforts of the JTWI and is a member
of the JSR-185 expert group. Releases of Symbian OS from version 9.1
provide implementations of the mandatory JSRs (Wireless Messaging API
and Mobile Media API) and configurations (CLDC 1.0/1.1 and MIDP 2.0)
specified by the JTWI. They also provide many other JSR implementations,
about which you can find information on Symbian’s website.

In 2003, JTWI was still in its draft phase, therefore only a couple of
Symbian OS phones supported it, and only partially. At the time of writing
(2008), the vast majority of Symbian devices supports the full range of
JTWI specification plus many optional APIs. Developers can therefore rely
on JSR-185 support on Symbian devices for their JTWI-based applications.

2.9 Mobile Media API

The Media API is fairly limited, giving support only to basic audio
types. Smartphones these days have many more multimedia capabilities.
Therefore it is necessary to expose all this multimedia functionality, such
as tone generation, photo capture, and video playback and capture, to Java
ME applications, so developers can create truly compelling multimedia
applications attractive to end users.

This was achieved through the creation of JSR-135 – Mobile Media
API (MMAPI). MMAPI is indicated for a JTWI-compliant device. Note that

MOBILE MEDIA API 83

it does not form part of the MIDP 2.0 specification; its specification in
JSR-135 is presided over by an expert group.

Due to the wide scope encompassed by the word ‘multimedia’, MMAPI
is very flexible and modular; it supports many different devices with
different multimedia capabilities in a simple, understandable way for the
developer. There are essentially three media types which can be handled
within the framework: audio, video and generated tones. Any or all of
these may be supported in a particular MMAPI implementation. Three
tasks can be performed in relation to audio and video:

• playing – stored video or audio content is recovered from a file at a
specified URI (or perhaps stored locally) and displayed onscreen or
sent to a speaker

• capturing – a video or audio stream is obtained directly from hardware
(camera or microphone) associated with the device

• recording – video or audio content which is being played or captured
is sent to a specified URI or cached locally and made available for
’re-playing’.

Implementations are not required to support all three tasks, although
clearly it is not possible to support recording without supporting either
playing or capturing. Further, in the context of a mobile phone, there
is little point in supporting capture without the ability to play. So the
practical options for audio and video are:

• only playing is supported

• playing and capturing are supported, but not recording

• playing and recording are supported, but not capturing

• all three are supported.

As we shall see, Symbian OS phones typically support all three
functions. There are further choices in terms of supported formats and the
ability to manipulate data streams or playback.

2.9.1 MMAPI Architecture

At the heart of MMAPI is the concept of a media player. Players are
obtained from a factory or manager which also serves to associate them
with a particular media stream. While the player allows basic start
and stop capability for the playback, fine-grained manipulation, such as
capturing and recording, is achieved through various kinds of controls,
which are typically obtained from a player. Also of interest is the concept

84 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

of a player listener, which allows you to track the progress of players
being initialized, started or stopped.

The following classes or interfaces embody the above basic concepts
and are the fundamental elements of the core package javax.micro-
edition.media:

• Player

• Manager

• Control

• PlayerListener.

In fact, of these only Manager is a concrete class; the others are all
interfaces. The Control interface exists merely as a marker for the set of
(more concrete) sub-interfaces which are defined in the related package
javax.microedition.media.control. The functionality provided
by the latter is so diverse that nothing is in common, and the Control
interface, remarkably, defines no methods!

MMAPI also allows you the flexibility to define your own protocols for
downloading or obtaining the media content to be played. This involves
defining concrete implementations of the abstract DataSource class. As
this is a specialist topic beyond the scope of this chapter, we shall not
say anything further. The MMAPI specification document contains further
details.

2.9.2 Obtaining Media Content

The elements of the Mobile Media API work together as shown in
Figure 2.19 (the PlayerListener has been omitted and we shall
return to it in a later section).

A Player is typically created using the following factory method of
the javax.microedition.media.Manager class:

public static Player createPlayer(String locator)

The method’s argument is a media locator, a string representing a URI
that provides details about the media content being obtained. The details
are specified using the well-documented Augmented Backus–Naur For-
mat (ABNF) syntax. Table 2.2 lists some examples. MMAPI supports both
communication and local protocols, which allow retrieval of the desired
media from its source.

There are other variants of the createPlayer() method that take
different parameters, such as an InputStream and a MIME type (for
media stored locally) or a custom DataSource implemented by the

MOBILE MEDIA API 85

creates

gets
control

Manager

createPlayer(source DataSource) Player

DataSource

<<Interface>>
Controllable

Player Control

Figure 2.19 The basic architecture of the Mobile Media API

Table 2.2 Examples of Media Locator

Locator Purpose Examples

capture:// Retrieving live media
data from hardware

capture://audio – captures microphone
audio

capture://video – captures camera output

capture://audio video – captures audio
and video simultaneously (for some devices,
only capture://video is necessary)

device:// Configuring players for
tone sequences or MIDI
data

device://tone – tone device
device://midi – midi device

rtsp://
rtp://

Media streaming, where
playback starts before
download is complete

rtsp://streamer.whyy.org/encoder/
live.rm

http:// Fetching media stored on
a web server

http://www.yourhost.com/myfile.mp3

86 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

developer. Please refer to the SDK documentation for more details on
obtaining media using the player creation methods of the Manager class.

2.9.3 Playing Media Content

Because of the complexity of what a Player does, there are necessarily
several stages (or states) it has to go through before it can play (see
Figure 2.20). As we have just seen, the first stage is the creation of a
Player object via the Manager factory class. This involves the creation
of a DataSource object, which provides a standard interface to the
media content. Unless you are working with a custom DataSource,
the creation is done on your behalf. It’s worth noticing that creating the
Player object does not initialize the data transfer, which begins at the
next stage.

UNREALIZED REALIZED

CLOSED
close() close()

close()close()

prefetch()realize()

deallocate() deallocate() stop()

start()

PREFETCHED STARTED

Figure 2.20 Lifecycle of a Player object

On creation, the Player is in the UNREALIZED state. Calling the
realize() method causes the Player to initiate data transfer, for
example, communicating with a server or a file system. Peer classes to
marshal the data on the native side are typically instantiated at this point.
When this method returns, the player is in the REALIZED state. Calling
prefetch() causes the Player to acquire the scarce and exclusive
resources it needs to play the media, such as access to the phone’s
audio device. It may have to wait for another application to release these
resources before it can move to the PREFETCHED state. Once in this
state, the Player is ready to start. A call to its start() method initiates
playing and moves it on to the STARTED state. In order to interrogate the
state of the Player, the getState() method of the Player class is
provided.

In many cases, of course, clients of MMAPI will not be interested in
the fine distinctions of which resources are acquired by which methods.
The good news is that you are free to ignore them if you wish: a call to
start() on a Player in any state other than CLOSED results in any

MOBILE MEDIA API 87

intermediate calls needed to realize() or prefetch() being made
implicitly. Of course, the price you pay is less fine-grained control of
exception handling.

The matching methods to stop the Player are close(), deal-
locate() and stop(). As with the start() method, the close()
method encompasses the other two, so they need not be invoked on a
Player directly. You should be aware, however, that reaching the end
of the media results in the Player returning to the PREFETCHED state, as
though the stop() method had been called. The good thing about this
is that you can then conveniently replay the media by calling start()
again. However, you must call the close()method explicitly to recover
all the resources associated with realization and prefetching and to set to
NULL all references to your Player so the garbage collector can dispose
of it. (You do want to dispose of it, since a closed Player cannot be
reused!)

In playing media content, it is often useful to work with one or more
Control objects that allow you to control media processing. They are
obtained from an implementer of the Controllable interface, in most
cases a Player, using one of the following methods:

Control getControl(String controlType);
Control[] getControls();

A media player of a given type may support a variety of controls. The
string passed in determines the name of the interface implemented by
the returned control, which is typically one of the pre-defined types in
the javax.microedition.media.control subpackage:

• FramePositioningControl

• GUIControl

• MetaDataControl

• MIDIControl

• PitchControl

• RateControl

• TempoControl

• RecordControl

• StopTimeControl

• ToneControl

• VideoControl

• VolumeControl.

88 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

If the type of control you want is not available, a NULL value is
returned (which you should always check for). You will also need to cast
the control appropriately before using it:

VolumeControl volC = (VolumeControl) player.getControl("VolumeControl");
if (volC != null)
volC.setVolume(50);

The availability of support for controls depends on a number of fac-
tors, such as the media type and the phone model. Only ToneControl
and VolumeControl are available as part of the MIDP audio subset.
The remainder are specific to MMAPI. You can check which controls
are supported by a certain Player by calling its getControls()
method, which returns an array containing all available controls. You
can then use instanceof to ascertain whether the control you want is
available:

Control[] controls = player.getControls();
for (int i = 0; i < controls.length; i++) {
if (controls[i] instanceof VolumeControl) {

VolumeControl volC = (VolumeControl) controls[i]
volC.setVolume(50);

}
if (controls[i] instanceof VideoControl) {

VideoControl vidC = (VideoControl) controls[i]
vidC.setDisplayFullScreen(true);

}
}
// allow controls to be garbage collected
controls = null;

Note that getControl() and getControls() cannot be invoked
on a Player in the UNREALIZED or CLOSED states; doing so will cause
an IllegalStateException to be thrown.

Aside from using a Player, there is a further option to play simple
tones or tone sequences directly using the static Manager.playTone()
method. However, you normally want the additional flexibility provided
by working with a Player (configured for tones) and a ToneControl
(see Section 2.9.8).

The PlayerListener interface provides a playerUpdate() me-
thod for receiving asynchronous events from a Player. Any user-defined
class may implement this interface and then register the PlayerLis-
tener using the addPlayerListener() method. The PlayerLis-
tener listens for a range of standard pre-defined events including
STARTED, STOPPED and END OF MEDIA. For a list of all the standard
events refer to the MMAPI specification.

MOBILE MEDIA API 89

2.9.4 Working with Audio Content

In this section, we demonstrate how to play audio files with code from a
simple Audio Player MIDlet. We focus on the actual MMAPI code used
to play the audio file.

// code abbreviated for clarity
public void run(){
try {

player = Manager.createPlayer(url);
player.addPlayerListener(controller);
player.realize();
player.prefetch();
volumeControl = (VolumeControl)player.getControl("VolumeControl");

if (volumeControl != null) {
volumeControl.setLevel(50);

}
else {

controller.removeVolumeControl();
}
startPlayer();

}
catch (IOException ioe) {

// catch exception connecting to the resource
}
catch (MediaException me) {

// unable to create player for given MIME type
}

}

A Player is created and a PlayerListener is registered with it.
The controller reference serves two purposes: to facilitate callbacks to
the UI indicating the progress of the initialization (this has been omitted
for clarity); and to act as the PlayerListener which will be notified
of Player events. The Player is then moved through its states. In this
example, we obtain a VolumeControl (if the implementation supports
this feature) although it is not essential for simple audio playback. The
volume range provided is from 0–100. Here we set the volume level
midway and start the Player so the audio file content can be heard from
the phone’s speakers.

Closing the player is a straightforward task:

public void closePlayer(){
if (player != null){

player.close();
}
player = null;
volumeControl = null;

}

90 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

Now let us consider the playerUpdate() method mandated by the
PlayerListener interface:

public void playerUpdate(Player p, String event, Object eventData) {
if (event == PlayerListener.STARTED) {

// react to the Player being started
}
else if (event == PlayerListener.END_OF_MEDIA){

// react to reaching the end of media.
}
else if (event == PlayerListener.VOLUME_CHANGED) {

// react to volume being changed
}

}

In this example, three types of PlayerListener event are pro-
cessed: STARTED, END OF MEDIA and VOLUME CHANGED. For a
complete list of events supported by PlayerListener, please check its
documentation.

The full source code and JAR and JAD files for the Audio Player MIDlet
can be downloaded from this book’s website.

2.9.5 Working with Video Content

We now illustrate how to play a video with code highlights taken from
a simple Video Player MIDlet (see Figure 2.21). The architecture of the
Video Player MIDlet is very similar to that of the Audio Player. The

Figure 2.21 Video Player MIDlet running on a Nokia S60 device

MOBILE MEDIA API 91

VideoCanvas renders the video playback and the other classes fulfill
very similar roles to their equivalents in the Audio Player MIDlet.

The resource file name is tested to ascertain its format (MPEG for the
WTK emulator and 3GPP for real phones) and the appropriate MIME
type. A new thread is then launched to perform the essential initialization
required to play the video content. The run() method, mandated by the
Runnable interface, contains the initialization of the Player:

public void run(){
try {

InputStream in = getClass().getResourceAsStream("/"+ resource);
player = Manager.createPlayer(in, mimeType);
player.addPlayerListener(controller);
player.realize();
player.prefetch();
videoControl = (VideoControl)player.getControl("VideoControl");
if (videoControl != null) {
videoControl.initDisplayMode(
videoControl.USE_DIRECT_VIDEO, canvas);
int cHeight = canvas.getHeight();
int cWidth = canvas.getWidth();
videoControl.setDisplaySize(cWidth, cHeight);
videoControl.setVisible(true);
startPlayer();

}
else {
controller.showAlert("Error!", "Unable to get Video Control");
closePlayer();

}
}
catch (IOException ioe) {

controller.showAlert("Unable to access resource", ioe.getMessage());
closePlayer();

}
catch (MediaException me) {

controller.showAlert("Unable to create player",
me.getMessage());
closePlayer();

}
}

An InputStream is obtained from the resource file and is used to
create the Player instance. A PlayerListener (the controller) is reg-
istered with the Player in order to receive callbacks. The prefetch()
and realize() methods are then called on the Player instance.
Once the player is in the PREFETCHED state, we are ready to render
the video content. First we must obtain a VideoControl by calling
getControl() on the Player and casting it down appropriately.

The initDisplayMode() method is used to initialize the video
mode that determines how the video is displayed. This method takes
an integer mode value as its first argument with one of two predefined
values: USE GUI PRIMITIVE or USE DIRECT VIDEO. In the case of MIDP

92 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

implementations (supporting the LCDUI), USE GUI PRIMITIVE results in
an instance of a javax.microedition.lcdui.Item being returned,
and it can be added to a Form in the same way as any other Item subclass.
USE DIRECT VIDEO mode can only be used with implementations that
support the LCDUI (such as Symbian OS) and a second argument of
type javax.microedition.lcdui.Canvas (or a subclass) must be
supplied. This is the approach adopted in the example code above.
Methods of VideoControl can be used to manipulate the size and the
location of the video with respect to the canvas where it is displayed.
Since we are using direct video as the display mode, it is necessary
to call setVisible(true) in order for the video to be displayed.
Finally, we start the rendering of the video with the startPlayer()
method.

The other methods of the VideoPlayer class are the same as their
namesakes in the AudioPlayer class of the Audio Player MIDlet.

The VideoCanvas class, where the video is shown, is very simple,
as the MMAPI implementation takes care of rendering the video file
correctly on the canvas:

public class VideoCanvas extends Canvas{
// code omitted for brevity

// Paints background color
public void paint(Graphics g){

g.setColor(128, 128, 128);
g.fillRect(0, 0, getWidth(), getHeight());

}
}

The important point to note is that the paint() method plays no part
in rendering the video. This is performed directly by the VideoControl.
The full source code and JAR and JAD files for the Video Player MIDlet
can be downloaded from this book’s website.

2.9.6 Capturing Images

VideoControl is also used to capture images from a camera. In this
case, rather than specifying a file (and MIME type) as the data source, we
specify capture://video. Other than that, the setting up of the video
player and control proceeds pretty much as in the Video Player MIDlet
in Section 2.9.5.

The following code, which performs the necessary initialization of a
video player and a control, is reproduced from the VideoPlayer class
in the Video Player MIDlet example:

MOBILE MEDIA API 93

// Creates a VideoPlayer and gets an associated VideoControl
public void createPlayer() throws ApplicationException {
try {

player = Manager.createPlayer("capture://video");
player.realize();
// Sets VideoControl to the current display.
videoControl = (VideoControl)(player.getControl("VideoControl"));
if (videoControl == null) {
discardPlayer();

}
else {
videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, canvas);
int cWidth = Canvas.getWidth();
int cHeight = Canvas.getHeight();
int dWidth = 160;
int dHeight = 120;
videoControl.setDisplaySize(dWidth, dHeight);
videoControl.setDisplayLocation((cWidth - dWidth)/2,

(cHeight - dHeight)/2);

By setting the canvas to be the current one in the display, we can use
it as a viewfinder for the camera. When we are ready to take a picture,
we simply call getSnapshot(null) on the VideoControl:

public byte[] takeSnapshot() throws ApplicationException {
byte[] pngImage = null;
if (videoControl == null) {

throw new ApplicationException
("Unable to capture photo: VideoControl null");

}
try {

pngImage = videoControl.getSnapshot(null);
}
catch(MediaException me) {

throw new ApplicationException("Unable to capture photo",me);
}
return pngImage;

}

It should be noted that, if a security policy is in operation, user
permission may be requested through an intermediate dialog, which may
interfere with the photography!

2.9.7 Generating Tones

MMAPI also supports tone generation. Generating a single tone is simply
achieved using the following method of the Manager class:

public static void playTone(int note, int duration, int volume)
throws MediaException

94 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

The note is passed as an integer value in the range 0–127; ToneCon-
trol.C4 = 60 represents middle C. Adding or subtracting 1 increases
or lowers the pitch by a semitone. The duration is specified in milliseconds
and the volume is an integer value on the scale 0–100.

To play a sequence of tones it is more appropriate to create a Player
and use it to obtain a ToneControl:

byte[] toneSequence = { ToneControl.C4, ToneControl.C4 + 2,
ToneControl.c4 + 4, ...};

try{
Player player = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);
player.realize();
ToneControl control = (ToneControl)player.getControl("ToneControl");
control.setSequence(toneSequence);
player.start();

}
catch (IOException ioe) { }
catch (MediaException me) { // handle }

A tone sequence is specified as a list of tone–duration pairs and
user-defined sequence blocks, using ABNF syntax (refer to the MMAPI
specification for more detail). The list is packaged as a byte array and
passed to the ToneControlusing the setSequence()method. To play
the sequence, we simply invoke the start() method of the Player.
A more sophisticated example can be found in the documentation of
ToneControl in the MMAPI specification.

2.9.8 MMAPI on Symbian OS Phones

If you know which of the Symbian OS platforms you are targeting with
a MIDlet, you can craft your code to conform to the cited capabilities.
However, in practice it is more likely that you will want to write portable
code which can run on several or all of the platforms, or indeed on
non-Symbian OS phones with MMAPI capability. In this case, your
applications need to be able to work out the supported capabilities
dynamically and make use of what is available, or fail gracefully (for
example, by removing certain options from menus), if the capability you
want is just not available.

2.9.9 MMAPI and the MIDP Security Model

For reasons of privacy, the following Mobile Media API calls are restricted
under the MIDP security model (see the Mobile Media API Specification
1.1 Maintenance Release at jcp.org):

• RecordControl.setRecordLocation(String locator)

WIRELESS MESSAGING API 95

• RecordControl.setRecordStream(OutputStream
stream)

• VideoControl.getSnapshot(String type).

A signed MIDlet suite which contains MIDlets that make use of these
APIs must explicitly request the appropriate permission in the JAD file or
manifest:

MIDlet-Permissions: javax.microedition.media.control.RecordControl, ...

or:

MIDlet-Permissions:
javax.microedition.media.control.VideoControl. getSnapshot, ...

These protected APIs are part of the Multimedia Recording function
group as defined by the Recommended Security Policy for GSM/UMTS
Compliant Devices addendum to the MIDP specification. It must also be
remembered that if a MIDlet in a signed MIDlet suite makes use of a
protected API of the javax.microedition.io package, for instance
to fetch media content over HTTP, then explicit permission to access that
API must be requested, even if it is fetched implicitly, perhaps by calling:

Manager.createPlayer("http://www.myserver.com/video.3gp")

Whether MIDlets in an untrusted MIDlet suite can use the protected
APIs of the MMAPI depends on the security policy relating to the untrusted
domain in force on the device. Under the JTWI Security Policy for
GSM/UMTS Compliant Devices, MIDlets in an untrusted MIDlet suite
can access the Multimedia Recording function group APIs with explicit
permission from the user. The default user permission setting is oneshot
(ask every time).

2.10 Wireless Messaging API

The Wireless Messaging API (JSR-120) is an optional API targeted at
devices supporting the Generic Connection Framework defined in the
CLDC. The Wireless Messaging API (WMA) specification defines APIs for
sending and receiving SMS messages and receiving CBS messages. At
the time of writing, the current release of the Wireless Messaging API is
version 1.1. This contains minor modifications to the 1.0 specification to
enable the API to be compatible with MIDP 2.0.

96 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

The WMA is a compact API containing just two packages:

• javax.microedition.io contains the platform network inter-
faces modified for use on platforms supporting wireless messaging
connection, in particular an implementation of the Connector class
for creating new MessageConnection objects.

• javax.wireless.messaging defines APIs which allow applica-
tions to send and receive wireless messages. It defines a base interface,
Message, from which BinaryMessage and TextMessage both
derive. It also defines a MessageConnection interface, which pro-
vides the basic functionality for sending and receiving messages, and
a MessageListener interface for listening to incoming messages.

In this section, we consider sending and receiving SMS messages. We
then go on to show how to use the Push Registry API to register an
incoming SMS connection with a MIDlet.

2.10.1 Sending Messages

Sending an SMS message using the WMA could not be simpler, as the
code paragraph below shows:

String address = "sms://+447111222333";
MessageConnection smsconn = null;
try {
smsconn = (MessageConnection)Connector.open(address);
TextMessage txtMessage = (TextMessage)

smsconn.newMessage(MessageConnection.TEXT_MESSAGE);
txtmessage.setPayloadText("Hello World");
smsconn.send(txtMessage);
smsconn.close();
}
catch (Exception e) {

// handle
}

The URL address syntax for a client-mode connection has the following
possible formats:

sms://+447111222333
sms://+447111222333:1234

The first format above is used to open a connection for sending a
normal SMS message, which will be received in an inbox. The second
format is used to open a connection to send an SMS message to a Java
application listening on the specified port.

WIRELESS MESSAGING API 97

2.10.2 Receiving Messages

Receiving a message is, again, straightforward:

MessageConnection smsconn = null;
Message msg = null;
String receivedMessage = null;
String senderAddress = null;
try {
conn = (MessageConnection) Connector.open(("sms://:1234");
msg = smsconn.receive();
...
// get sender’s address for replying
senderAddress = msg.getAddress();
if (msg instanceof TextMessage) {

// extract text message
receivedMessage = ((TextMessage)msg).getPayloadText();
// do something with message
...

}
}
catch (IOException ioe) {
ioe.printStackTrace();

}

We open a server mode MessageConnection by passing in a URL
of the following syntax:

sms://:1234

We retrieve the message by invoking the following method on the
MessageConnection instance.

public Message receive()

The address of the message sender can be obtained using the following
method of the Message interface:

public String getAddress()

A server mode connection can be used to reply to incoming messages,
by making use of the setAddress() method of the Message interface.
In the case of a text message, we cast the Message object appropriately
and then retrieve its contents with the TextMessage interface, using the
method below:

public String getPayloadText()

98 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

If the message is an instance of BinaryMessage, then the corre-
sponding getPayloadData() method returns a byte array. In practice,
of course, we need the receiving application to listen for incoming mes-
sages and invoke the receive() method upon receipt. We achieve
this by implementing a MessageListener interface for notification
of incoming messages. The MessageListener mandates one method,
which is called on registered listeners by the system when an incoming
message arrives:

public void notifyIncomingMessage(MessageConnection conn)

The MessageConnection interface supplies the following method
to register a listener:

public void setMessageListener(MessageListener l)

For more details on the use of the MessageListener interface,
please download the source code, JAD and JAR files for the SMSChat
MIDlet from this book’s website.

2.10.3 WMA and the Push Registry

When implemented in conjunction with MIDP 2.0, the Wireless Messag-
ing API can take advantage of the push registry technology. A MIDlet suite
lists the server connections it wishes to register in its JAD file, or manifest,
by specifying the protocol and port for the connection end point. The
entry has the following format:

MIDlet-Push-<n>: <ConnectionURL>, <MIDletClassName>, <AllowedSender>

In this example, the entry in the JAD file would be as follows:

MIDlet-Push-1: sms://:1234, SMSMIDlet, *

The <AllowedSender> field acts as a filter indicating that the AMS
should only respond to incoming connections from a specific sender.
For the SMS protocol, the <AllowedSender> entry is the phone
number of the required sender (note the sender port number is not
included in the filter). Here the wildcard character ‘*’ indicates ‘respond
to any sender’. The AMS responds to an incoming SMS directed to the
specified MessageConnection by launching the corresponding MIDlet

WIRELESS MESSAGING API 99

(assuming it is not already running). The MIDlet should then respond
by immediately handling the incoming message in the startApp()
method. As before, the message should be processed in a separate thread
to avoid conflicts between blocking I/O operations and normal user
interaction events.

2.10.4 WMA and the MIDP Security Model

A signed MIDlet suite that contains MIDlets which open and use SMS
connections must explicitly request the following permissions:

• javax.microedition.io.Connector.sms – needed to open
an SMS connection

• javax.wireless.messaging.sms.send – needed to send an
SMS

• javax.wireless.messaging.sms.receive – needed to re-
ceive an SMS

MIDlet-Permissions: javax.microedition.io.Connector.sms,
javax.wireless.messaging.sms.send

or:

MIDlet-Permissions: javax.microedition.io.Connector.sms,
javax.wireless.messaging.sms.send,
javax.wireless.messaging.sms.receive

If the protection domain to which the signed MIDlet suite would
be bound grants, or potentially grants, the requested permissions, the
MIDlet suite can be installed and the MIDlets it contains can open
SMS connections and send and receive SMS messages. This can be
done automatically or with explicit user permission, depending upon the
security policy in effect.

Whether MIDlets in untrusted MIDlet suites can access the WMA
depends on the security policy relating to the untrusted domain in
force on the device. In line with the Recommended Security Policy for
GSM/UMTS Compliant Devices addendum to the MIDP specification and
the JTWI Security Policy for GSM/UMTS Compliant Devices, a messaging
function group permission of oneshot requires explicit user permission
to send an SMS message, but allows blanket permission (permission is
granted until the MIDlet suite is uninstalled or the user changes the
function group permission) to receive SMS messages.

100 FUNDAMENTALS OF JAVA ME MIDP PROGRAMMING

2.10.5 WMA on Symbian OS Phones

Most Symbian OS phones in the marketplace today, even older ones such
as the Nokia 3650, implement Wireless Messaging API (JSR-120). WMA
has a new version (defined in JSR-205) available on most modern devices
as well; its main benefit is to add Multimedia Messaging System (MMS)
capabilities to the previous version of WMA. However, we won’t men-
tion it here further since only JSR-120 is mandatory on JTWI-compliant
devices. WMA is a mandatory part of another umbrella specification,
Mobile Service Architecture (JSR-248), which is covered in Chapter 6.

2.11 Symbian OS Java ME Certification

Majinate (www.majinate.com) is a company from the UK which special-
izes in building and testing competence in application development for
Symbian OS. It operates the Accredited Symbian Developer (ASD) pro-
gram on behalf of Symbian and the Accredited S60 Developer program
on behalf of Nokia.

In addition to the certification exams for native application developers,
Majinate also offers a test for Java ME developers working on the Symbian
OS platform. The Symbian OS: J2ME exam covers the Java language
and MIDP application programming concepts. It focuses on features
supported by Symbian OS implementations, with the exam testing the
ability of a developer to address the differences between Symbian and
other Java platforms. Some of the main topics covered are:

• Java language basics

• object-orientation concepts

• package java.lang

• MIDlet deployment and MIDP 2 security model

• MIDlet class and lifecycle

• generic connection framework and networking

• LCDUI GUI applications

• RMS and utilities

• Java ME optional packages (Wireless Messaging and Mobile Media
APIs)

This book and the standard sources (the specifications and their
clarifications) are the key references for this exam. These sources have
guided the creation of the curriculum and database of test questions.

For more details on the Symbian OS J2ME exam, see www.
majinate.com/j2me.php.

SUMMARY 101

2.12 Summary

Most, if not all, Symbian OS devices currently selling in Western markets
support MIDP plus a wide range of optional APIs from the Java ME JSRs,
such as:

• Wireless Messaging API (JSR-120)

• Bluetooth API (JSR-82)

• PIM and FileConnection API (JSR-75)

• Mobile Media API (JSR-135)

• Mobile 3D Graphics (JSR-184).

JSR-120 and JSR-135 have been discussed here. The others are dis-
cussed in the following chapters. The latest generation of Symbian OS
phones, such as Nokia N96 and Sony Ericsson G900, supports MIDP and
the Mobile Service Architecture (JSR-248) APIs.

This is a very different (and much more exciting) picture from the
one we found in 2004, when only two models, Nokia 6600 and Sony
Ericsson P900, supported the MIDP specification. The large installed base
of devices that are enabled by MIDP 2.0+ running on Symbian OS these
days allows developers to create and distribute sophisticated applications
using Java ME APIs to a wide target market.

We have covered the basic operations such as building and packaging
MIDlets using the WTK. We have also had a good look at the APIs
and components (such as LCDUI, RMS and the Game API) of MIDP,
giving you the baseline information that is a prerequisite for reading the
rest of the book, which assumes a certain level of knowledge of Java
programming and specifically Java ME.

Lastly, we have covered the relation between MIDP and the JTWI
specifications and seen how these two work hand in hand to reduce
API fragmentation and provide a solid and consistent environment for
developing applications with multimedia and messaging features, thus
reducing the need to maintain multiple versions of your application.

