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Introduction to statistical pattern
recognition

Overview

Statistical pattern recognition is a term used to cover all stages of an investigation
from problem formulation and data collection through to discrimination and clas-
sification, assessment of results and interpretation. Some of the basic terminology
is introduced and two complementary approaches to discrimination described.

1.1 Statistical pattern recognition

1.1.1 Introduction

This book describes basic pattern recognition procedures, together with practical appli-
cations of the techniques on real-world problems. A strong emphasis is placed on the
statistical theory of discrimination, but clustering also receives some attention. Thus,
the subject matter of this book can be summed up in a single word: ‘classification’,
both supervised (using class information to design a classifier – i.e. discrimination) and
unsupervised (allocating to groups without class information – i.e. clustering).

Pattern recognition as a field of study developed significantly in the 1960s. It was
very much an interdisciplinary subject, covering developments in the areas of statis-
tics, engineering, artificial intelligence, computer science, psychology and physiology,
among others. Some people entered the field with a real problem to solve. The large
numbers of applications, ranging from the classical ones such as automatic character
recognition and medical diagnosis to the more recent ones in data mining (such as credit
scoring, consumer sales analysis and credit card transaction analysis), have attracted con-
siderable research effort, with many methods developed and advances made. Other re-
searchers were motivated by the development of machines with ‘brain-like’ performance,
that in some way could emulate human performance. There were many over-optimistic
and unrealistic claims made, and to some extent there exist strong parallels with the
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growth of research on knowledge-based systems in the 1970s and neural networks in
the 1980s.

Nevertheless, within these areas significant progress has been made, particularly where
the domain overlaps with probability and statistics, and within recent years there have
been many exciting new developments, both in methodology and applications. These
build on the solid foundations of earlier research and take advantage of increased compu-
tational resources readily available nowadays. These developments include, for example,
kernel-based methods and Bayesian computational methods.

The topics in this book could easily have been described under the term machine
learning that describes the study of machines that can adapt to their environment and learn
from example. The emphasis in machine learning is perhaps more on computationally
intensive methods and less on a statistical approach, but there is strong overlap between
the research areas of statistical pattern recognition and machine learning.

1.1.2 The basic model

Since many of the techniques we shall describe have been developed over a range of
diverse disciplines, there is naturally a variety of sometimes contradictory terminology.
We shall use the term ‘pattern’ to denote the p-dimensional data vector x D .x1; : : : ; x p/T

of measurements (T denotes vector transpose), whose components xi are measurements of
the features of an object. Thus the features are the variables specified by the investigator
and thought to be important for classification. In discrimination, we assume that there
exist C groups or classes, denoted !1; : : : ; !C , and associated with each pattern x is a
categorical variable z that denotes the class or group membership; that is, if z D i , then
the pattern belongs to !i , i 2 f1; : : : ; Cg.

Examples of patterns are measurements of an acoustic waveform in a speech recogni-
tion problem; measurements on a patient made in order to identify a disease (diagnosis);
measurements on patients in order to predict the likely outcome (prognosis); measure-
ments on weather variables (for forecasting or prediction); and a digitised image for
character recognition. Therefore, we see that the term ‘pattern’, in its technical meaning,
does not necessarily refer to structure within images.

The main topic in this book may be described by a number of terms such as pattern
classifier design or discrimination or allocation rule design. By this we mean specifying
the parameters of a pattern classifier, represented schematically in Figure 1.1, so that it
yields the optimal (in some sense) response for a given pattern. This response is usually
an estimate of the class to which the pattern belongs. We assume that we have a set of
patterns of known class f.xi ; zi /; i D 1; : : : ; ng (the training or design set) that we use
to design the classifier (to set up its internal parameters). Once this has been done, we
may estimate class membership for an unknown pattern x.

The form derived for the pattern classifier depends on a number of different factors. It
depends on the distribution of the training data, and the assumptions made concerning its
distribution. Another important factor is the misclassification cost – the cost of making
an incorrect decision. In many applications misclassification costs are hard to quantify,
being combinations of several contributions such as monetary costs, time and other more
subjective costs. For example, in a medical diagnosis problem, each treatment has dif-
ferent costs associated with it. These relate to the expense of different types of drugs,
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the suffering the patient is subjected to by each course of action and the risk of further
complications.

Figure 1.1 grossly oversimplifies the pattern classification procedure. Data may un-
dergo several separate transformation stages before a final outcome is reached. These
transformations (sometimes termed preprocessing, feature selection or feature extraction)
operate on the data in a way that usually reduces its dimension (reduces the number
of features), removing redundant or irrelevant information, and transforms it to a form
more appropriate for subsequent classification. The term intrinsic dimensionality refers
to the minimum number of variables required to capture the structure within the data.
In the speech recognition example mentioned above, a preprocessing stage may be to
transform the waveform to a frequency representation. This may be processed further
to find formants (peaks in the spectrum). This is a feature extraction process (taking a
possible nonlinear combination of the original variables to form new variables). Feature
selection is the process of selecting a subset of a given set of variables.

Terminology varies between authors. Sometimes the term ‘representation pattern’ is
used for the vector of measurements made on a sensor (for example, optical imager, radar)
with the term ‘feature pattern’ being reserved for the small set of variables obtained by
transformation (by a feature selection or feature extraction process) of the original vector
of measurements. In some problems, measurements may be made directly on the feature
vector itself. In these situations there is no automatic feature selection stage, with the
feature selection being performed by the investigator who ‘knows’ (through experience,
knowledge of previous studies and the problem domain) those variables that are important
for classification. In many cases, however, it will be necessary to perform one or more
transformations of the measured data.

In some pattern classifiers, each of the above stages may be present and identifiable
as separate operations, while in others they may not be. Also, in some classifiers, the
preliminary stages will tend to be problem-specific, as in the speech example. In this book,
we consider feature selection and extraction transformations that are not application-
specific. That is not to say all will be suitable for any given application, however, but
application-specific preprocessing must be left to the investigator.

1.2 Stages in a pattern recognition problem

A pattern recognition investigation may consist of several stages, enumerated below.
Further details are given in Appendix D. Not all stages may be present; some may be
merged together so that the distinction between two operations may not be clear, even if
both are carried out; also, there may be some application-specific data processing that may
not be regarded as one of the stages listed. However, the points below are fairly typical.
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1. Formulation of the problem: gaining a clear understanding of the aims of the investi-
gation and planning the remaining stages.

2. Data collection: making measurements on appropriate variables and recording details
of the data collection procedure (ground truth).

3. Initial examination of the data: checking the data, calculating summary statistics and
producing plots in order to get a feel for the structure.

4. Feature selection or feature extraction: selecting variables from the measured set that
are appropriate for the task. These new variables may be obtained by a linear or
nonlinear transformation of the original set (feature extraction). To some extent, the
division of feature extraction and classification is artificial.

5. Unsupervised pattern classification or clustering. This may be viewed as exploratory
data analysis and it may provide a successful conclusion to a study. On the other hand,
it may be a means of preprocessing the data for a supervised classification procedure.

6. Apply discrimination or regression procedures as appropriate. The classifier is de-
signed using a training set of exemplar patterns.

7. Assessment of results. This may involve applying the trained classifier to an indepen-
dent test set of labelled patterns.

8. Interpretation.

The above is necessarily an iterative process: the analysis of the results may pose
further hypotheses that require further data collection. Also, the cycle may be terminated
at different stages: the questions posed may be answered by an initial examination of
the data or it may be discovered that the data cannot answer the initial question and the
problem must be reformulated.

The emphasis of this book is on techniques for performing steps 4, 5 and 6.

1.3 Issues

The main topic that we address in this book concerns classifier design: given a training
set of patterns of known class, we seek to design a classifier that is optimal for the
expected operating conditions (the test conditions).

There are a number of very important points to make about the sentence above,
straightforward as it seems. The first is that we are given a finite design set. If the
classifier is too complex (there are too many free parameters) it may model noise in the
design set. This is an example of over-fitting. If the classifier is not complex enough,
then it may fail to capture structure in the data. An example of this is the fitting of a set
of data points by a polynomial curve. If the degree of the polynomial is too high, then,
although the curve may pass through or close to the data points, thus achieving a low
fitting error, the fitting curve is very variable and models every fluctuation in the data
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(due to noise). If the degree of the polynomial is too low, the fitting error is large and
the underlying variability of the curve is not modelled.

Thus, achieving optimal performance on the design set (in terms of minimising some
error criterion perhaps) is not required: it may be possible, in a classification problem,
to achieve 100% classification accuracy on the design set but the generalisation perfor-
mance – the expected performance on data representative of the true operating conditions
(equivalently, the performance on an infinite test set of which the design set is a sam-
ple) – is poorer than could be achieved by careful design. Choosing the ‘right’ model is
an exercise in model selection.

In practice we usually do not know what is structure and what is noise in the data.
Also, training a classifier (the procedure of determining its parameters) should not be
considered as a separate issue from model selection, but it often is.

A second point about the design of optimal classifiers concerns the word ‘optimal’.
There are several ways of measuring classifier performance, the most common being
error rate, although this has severe limitations. Other measures, based on the closeness
of the estimates of the probabilities of class membership to the true probabilities, may
be more appropriate in many cases. However, many classifier design methods usually
optimise alternative criteria since the desired ones are difficult to optimise directly. For
example, a classifier may be trained by optimising a squared error measure and assessed
using error rate.

Finally, we assume that the training data are representative of the test conditions. If
this is not so, perhaps because the test conditions may be subject to noise not present
in the training data, or there are changes in the population from which the data are
drawn (population drift), then these differences must be taken into account in classifier
design.

1.4 Supervised versus unsupervised

There are two main divisions of classification: supervised classification (or discrimina-
tion) and unsupervised classification (sometimes in the statistics literature simply referred
to as classification or clustering).

In supervised classification we have a set of data samples (each consisting of mea-
surements on a set of variables) with associated labels, the class types. These are used
as exemplars in the classifier design.

Why do we wish to design an automatic means of classifying future data? Cannot
the same method that was used to label the design set be used on the test data? In
some cases this may be possible. However, even if it were possible, in practice we
may wish to develop an automatic method to reduce labour-intensive procedures. In
other cases, it may not be possible for a human to be part of the classification process.
An example of the former is in industrial inspection. A classifier can be trained using
images of components on a production line, each image labelled carefully by an operator.
However, in the practical application we would wish to save a human operator from the
tedious job, and hopefully make it more reliable. An example of the latter reason for
performing a classification automatically is in radar target recognition of objects. For
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vehicle recognition, the data may be gathered by positioning vehicles on a turntable and
making measurements from all aspect angles. In the practical application, a human may
not be able to recognise an object reliably from its radar image, or the process may be
carried out remotely.

In unsupervised classification, the data are not labelled and we seek to find groups in
the data and the features that distinguish one group from another. Clustering techniques,
described further in Chapter 10, can also be used as part of a supervised classification
scheme by defining prototypes. A clustering scheme may be applied to the data for each
class separately and representative samples for each group within the class (the group
means, for example) used as the prototypes for that class.

1.5 Approaches to statistical pattern recognition

The problem we are addressing in this book is primarily one of pattern classifica-
tion. Given a set of measurements obtained through observation and represented as
a pattern vector x, we wish to assign the pattern to one of C possible classes !i ,
i D 1; : : : ; C . A decision rule partitions the measurement space into C regions �i ,
i D 1; : : : ; C . If an observation vector is in �i then it is assumed to belong to class
!i . Each region may be multiply connected – that is, it may be made up of several
disjoint regions. The boundaries between the regions �i are the decision boundaries or
decision surfaces. Generally, it is in regions close to these boundaries that the high-
est proportion of misclassifications occurs. In such situations, we may reject the pat-
tern or withhold a decision until further information is available so that a classification
may be made later. This option is known as the reject option and therefore we have
C C 1 outcomes of a decision rule (the reject option being denoted by !0) in a C-class
problem.

In this section we introduce two approaches to discrimination that will be explored
further in later chapters. The first assumes a knowledge of the underlying class-conditional
probability density functions (the probability density function of the feature vectors for
a given class). Of course, in many applications these will usually be unknown and must
be estimated from a set of correctly classified samples termed the design or training
set. Chapters 2 and 3 describe techniques for estimating the probability density functions
explicitly.

The second approach introduced in this section develops decision rules that use the
data to estimate the decision boundaries directly, without explicit calculation of the
probability density functions. This approach is developed in Chapters 4, 5 and 6 where
specific techniques are described.

1.5.1 Elementary decision theory

Here we introduce an approach to discrimination based on knowledge of the probability
density functions of each class. Familiarity with basic probability theory is assumed.
Some basic definitions are given in Appendix E.
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Bayes decision rule for minimum error

Consider C classes, !1; : : : ; !C , with a priori probabilities (the probabilities of each class
occurring) p.!1/; : : : ; p.!C/, assumed known. If we wish to minimise the probability
of making an error and we have no information regarding an object other than the class
probability distribution then we would assign an object to class ! j if

p.! j / > p.!k/ k D 1; : : : ; C ; k 6D j

This classifies all objects as belonging to one class. For classes with equal probabilities,
patterns are assigned arbitrarily between those classes.

However, we do have an observation vector or measurement vector x and we wish
to assign x to one of the C classes. A decision rule based on probabilities is to assign
x to class ! j if the probability of class ! j given the observation x, p.! j jx/, is greatest
over all classes !1; : : : ; !C . That is, assign x to class ! j if

p.! j jx/ > p.!k jx/ k D 1; : : : ; C ; k 6D j (1.1)

This decision rule partitions the measurement space into C regions �1; : : : ; �C such that
if x 2 � j then x belongs to class ! j .

The a posteriori probabilities p.! j jx/ may be expressed in terms of the a priori
probabilities and the class-conditional density functions p.xj!i / using Bayes’ theorem
(see Appendix E) as

p.!i jx/ D p.xj!i /p.!i /

p.x/

and so the decision rule (1.1) may be written: assign x to ! j if

p.xj! j /p.! j / > p.xj!k/p.!k/ k D 1; : : : ; C ; k 6D j (1.2)

This is known as Bayes’ rule for minimum error.
For two classes, the decision rule (1.2) may be written

lr .x/ D p.xj!1/

p.xj!2/
>

p.!2/

p.!1/
implies x 2 class !1

The function lr .x/ is the likelihood ratio. Figures 1.2 and 1.3 give a simple illustration for
a two-class discrimination problem. Class !1 is normally distributed with zero mean and
unit variance, p.xj!1/ D N .xj0; 1/ (see Appendix E). Class !2 is a normal mixture (a
weighted sum of normal densities) p.xj!2/ D 0:6N .xj1; 1/C0:4N .xj�1; 2/. Figure 1.2
plots p.xj!i /p.!i /; i D 1; 2, where the priors are taken to be p.!1/ D 0:5, p.!2/ D 0:5.
Figure 1.3 plots the likelihood ratio lr .x/ and the threshold p.!2/=p.!1/. We see from
this figure that the decision rule (1.2) leads to a disjoint region for class !2.

The fact that the decision rule (1.2) minimises the error may be seen as follows. The
probability of making an error, p.error/, may be expressed as

p.error/ D
CX

iD1

p.errorj!i /p.!i / (1.3)
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where p.errorj!i / is the probability of misclassifying patterns from class !i . This is
given by

p.errorj!i / D
Z
C[�i ]

p.xj!i / dx (1.4)

the integral of the class-conditional density function over C[�i ], the region of measure-
ment space outside �i (C is the complement operator), i.e.

PC
jD1; j 6Di � j . Therefore, we
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may write the probability of misclassifying a pattern as

p.error/ D
CX

iD1

Z
C[�i ]

p.xj!i /p.!i / dx

D
CX

iD1

p.!i /

�
1 �

Z
�i

p.xj!i / dx

�

D 1 �
CX

iD1

p.!i /

Z
�i

p.xj!i / dx (1.5)

from which we see that minimising the probability of making an error is equivalent to
maximising

CX
iD1

p.!i /

Z
�i

p.xj!i / dx (1.6)

the probability of correct classification. Therefore, we wish to choose the regions �i so
that the integral given in (1.6) is a maximum. This is achieved by selecting �i to be
the region for which p.!i /p.xj!i / is the largest over all classes and the probability of
correct classification, c, is

c D
Z

max
i

p.!i /p.xj!i / dx (1.7)

where the integral is over the whole of the measurement space, and the Bayes error is

eB D 1 �
Z

max
i

p.!i /p.xj!i / dx (1.8)

This is illustrated in Figures 1.4 and 1.5. Figure 1.4 plots the two distributions
p.xj!i /; i D 1; 2 (both normal with unit variance and means š0:5), and Figure 1.5
plots the functions p.xj!i /p.!i / where p.!1/ D 0:3, p.!2/ D 0:7. The Bayes deci-
sion boundary is marked with a vertical line at xB . The areas of the hatched regions in
Figure 1.4 represent the probability of error: by equation (1.4), the area of the horizontal
hatching is the probability of classifying a pattern from class 1 as a pattern from class
2 and the area of the vertical hatching the probability of classifying a pattern from class
2 as class 1. The sum of these two areas, weighted by the priors (equation (1.5)), is the
probability of making an error.

Bayes decision rule for minimum error – reject option
As we have stated above, an error or misrecognition occurs when the classifier assigns
a pattern to one class when it actually belongs to another. In this section we consider
the reject option. Usually it is the uncertain classifications which mainly contribute to
the error rate. Therefore, rejecting a pattern (withholding a decision) may lead to a
reduction in the error rate. This rejected pattern may be discarded, or set aside until
further information allows a decision to be made. Although the option to reject may
alleviate or remove the problem of a high misrecognition rate, some otherwise correct
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Figure 1.5 Bayes decision boundary for two normally distributed classes with unequal priors

classifications are also converted into rejects. Here we consider the trade-offs between
error rate and reject rate.

Firstly, we partition the sample space into two complementary regions: R, a reject
region, and A, an acceptance or classification region. These are defined by

R D
n
xj1 � max

i
p.!i jx/ > t/

o
A D

n
xj1 � max

i
p.!i jx/ 
 t/

o
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where t is a threshold. This is illustrated in Figure 1.6 using the same distributions as
those in Figures 1.4 and 1.5. The smaller the value of the threshold t , the larger is the
reject region R. However, if t is chosen such that

1 � t <
1

C

or equivalently,

t >
C � 1

C

where C is the number of classes, then the reject region is empty. This is because the
minimum value which maxi p.!i jx/ can attain is 1=C (since 1 D PC

iD1 p.!i jx/ 

C maxi p.!i jx/), when all classes are equally likely. Therefore, for the reject option to
be activated, we must have t 
 .C � 1/=C .

Thus, if a pattern x lies in the region A, we classify it according to the Bayes rule
for minimum error (equation (1.2)). However, if x lies in the region R, we reject x.

The probability of correct classification, c.t/, is a function of the threshold, t , and is
given by equation (1.7), where now the integral is over the acceptance region, A, only

c.t/ D
Z

A
max

i

ð
p.!i /p.xj!i /

Ł
dx

and the unconditional probability of rejecting a measurement x, r , also a function of the
threshold t , is

r.t/ D
Z

R
p.x/ dx (1.9)
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Therefore, the error rate, e (the probability of accepting a point for classification and
incorrectly classifying it), is

e.t/ D
Z

A
.1 � max

i
p.!i jx//p.x/ dx

D 1 � c.t/ � r.t/

Thus, the error rate and reject rate are inversely related. Chow (1970) derives a simple
functional relationship between e.t/ and r.t/ which we quote here without proof. Know-
ing r.t/ over the complete range of t allows e.t/ to be calculated using the relationship

e.t/ D �
Z t

0
s dr.s/ (1.10)

The above result allows the error rate to be evaluated from the reject function for the
Bayes optimum classifier. The reject function can be calculated using unlabelled data
and a practical application is to problems where labelling of gathered data is costly.

Bayes decision rule for minimum risk
In the previous section, the decision rule selected the class for which the a posteriori
probability, p.! j jx/, was the greatest. This minimised the probability of making an
error. We now consider a somewhat different rule that minimises an expected loss or
risk. This is a very important concept since in many applications the costs associated
with misclassification depend upon the true class of the pattern and the class to which
it is assigned. For example, in a medical diagnosis problem in which a patient has back
pain, it is far worse to classify a patient with severe spinal abnormality as healthy (or
having mild back ache) than the other way round.

We make this concept more formal by introducing a loss that is a measure of the cost
of making the decision that a pattern belongs to class !i when the true class is ! j . We
define a loss matrix � with components

½ j i D cost of assigning a pattern x to !i when x 2 ! j

In practice, it may be very difficult to assign costs. In some situations, ½ may be measured
in monetary units that are quantifiable. However, in many situations, costs are a combi-
nation of several different factors measured in different units – money, time, quality of
life. As a consequence, they may be the subjective opinion of an expert. The conditional
risk of assigning a pattern x to class !i is defined as

li .x/ D
CX

jD1

½ j i p.! j jx/

The average risk over region �i is

r i D
Z

�i

li .x/p.x/ dx

D
Z

�i

CX
jD1

½ j i p.! j jx/p.x/ dx
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and the overall expected cost or risk is

r D
CX

iD1

r i D
CX

iD1

Z
�i

CX
jD1

½ j i p.! j jx/p.x/ dx (1.11)

The above expression for the risk will be minimised if the regions �i are chosen such
that if

CX
jD1

½ j i p.! j jx/p.x/ 

CX

jD1

½ jk p.! j jx/p.x/ k D 1; : : : ; C (1.12)

then x 2 �i . This is the Bayes decision rule for minimum risk, with Bayes risk, rŁ,
given by

rŁ D
Z
x

min
iD1;:::;C

CX
jD1

½ j i p.! j jx/p.x/ dx

One special case of the loss matrix � is the equal cost loss matrix for which

½i j D
²

1 i 6D j
0 i D j

Substituting into (1.12) gives the decision rule: assign x to class !i if

CX
jD1

p.! j jx/p.x/ � p.!i jx/p.x/ 

CX

jD1

p.! j jx/p.x/ � p.!k jx/p.x/ k D 1; : : : ; C

that is,
p.xj!i /p.!i / ½ p.xj!k/p.!k/ k D 1; : : : ; C

implies that x 2 class !i ; this is the Bayes rule for minimum error.

Bayes decision rule for minimum risk – reject option
As with the Bayes rule for minimum error, we may also introduce a reject option, by
which the reject region, R, is defined by

R D
n
x

þþþ min
i

li .x/ > t
o

where t is a threshold. The decision is to accept a pattern x and assign it to class !i if

li .x/ D min
j

l j .x/ 
 t

and to reject x if
li .x/ D min

j
l j .x/ > t
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This decision is equivalent to defining a reject region �0 with a constant conditional risk

l0.x/ D t

so that the Bayes decision rule is: assign x to class !i if

li .x/ 
 l j .x/ j D 0; 1; : : : ; C

with Bayes risk

rŁ D
Z

R
tp.x/ dx C

Z
A

min
iD1;:::;C

CX
jD1

½ j i p.! j jx/p.x/ dx (1.13)

Neyman–Pearson decision rule
An alternative to the Bayes decision rules for a two-class problem is the Neyman–Pearson
test. In a two-class problem there are two possible types of error that may be made in
the decision process. We may classify a pattern of class !1 as belonging to class !2 or
a pattern from class !2 as belonging to class !1. Let the probability of these two errors
be ž1 and ž2 respectively, so that

ž1 D
Z

�2

p.xj!1/ dx D error probability of Type I

and

ž2 D
Z

�1

p.xj!2/ dx D error probability of Type II

The Neyman–Pearson decision rule is to minimise the error ž1 subject to ž2 being equal
to a constant, ž0, say.

If class !1 is termed the positive class and class !2 the negative class, then ž1
is referred to as the false negative rate, the proportion of positive samples incorrectly
assigned to the negative class; ž2 is the false positive rate, the proportion of negative
samples classed as positive.

An example of the use of the Neyman–Pearson decision rule is in radar detection
where the problem is to detect a signal in the presence of noise. There are two types of
error that may occur; one is to mistake noise for a signal present. This is called a false
alarm. The second type of error occurs when a signal is actually present but the decision
is made that only noise is present. This is a missed detection. If !1 denotes the signal
class and !2 denotes the noise then ž2 is the probability of false alarm and ž1 is the
probability of missed detection. In many radar applications, a threshold is set to give a
fixed probability of false alarm and therefore the Neyman–Pearson decision rule is the
one usually used.

We seek the minimum of

r D
Z

�2

p.xj!1/ dx C ¼

²Z
�1

p.xj!2/ dx � ž0

¦
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where ¼ is a Lagrange multiplier1 and ž0 is the specified false alarm rate. The equation
may be written

r D .1 � ¼ž0/ C
Z

�1

f¼p.xj!2/ dx � p.xj!1/ dxg

This will be minimised if we choose �1 such that the integrand is negative, i.e.

if ¼p.xj!2/ � p.xj!1/ < 0; then x 2 �1

or, in terms of the likelihood ratio,

if
p.xj!1/

p.xj!2/
> ¼; then x 2 �1 (1.14)

Thus the decision rule depends only on the within-class distributions and ignores the
a priori probabilities.

The threshold ¼ is chosen so that

Z
�1

p.xj!2/ dx D ž0;

the specified false alarm rate. However, in general ¼ cannot be determined analytically
and requires numerical calculation.

Often, the performance of the decision rule is summarised in a receiver operating
characteristic (ROC) curve, which plots the true positive against the false positive (that
is, the probability of detection (1 � ž1 D R

�1
p.xj!1/ dx) against the probability of false

alarm (ž2 D R
�1

p.xj!2/ dx)) as the threshold ¼ is varied. This is illustrated in Figure 1.7
for the univariate case of two normally distributed classes of unit variance and means
separated by a distance, d. All the ROC curves pass through the .0; 0/ and .1; 1/ points
and as the separation increases the curve moves into the top left corner. Ideally, we would
like 100% detection for a 0% false alarm rate; the closer a curve is to this the better.

For the two-class case, the minimum risk decision (see equation (1.12)) defines the
decision rules on the basis of the likelihood ratio (½i i D 0):

if
p.xj!1/

p.xj!2/
>

½21 p.!2/

½12 p.!1/
; then x 2 �1 (1.15)

The threshold defined by the right-hand side will correspond to a particular point on the
ROC curve that depends on the misclassification costs and the prior probabilities.

In practice, precise values for the misclassification costs will be unavailable and we
shall need to assess the performance over a range of expected costs. The use of the
ROC curve as a tool for comparing and assessing classifier performance is discussed in
Chapter 8.

1The method of Lagrange’s undetermined multipliers can be found in most textbooks on mathematical
methods, for example Wylie and Barrett (1995).
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Figure 1.7 Receiver operating characteristic for two univariate normal distributions of unit vari-
ance and separation d; 1 � ž1 D R

�1
p.x j!1/ dx is the true positive (the probability of detection)

and ž2 D R
�1

p.x j!2/ dx is the false positive (the probability of false alarm)

Minimax criterion
The Bayes decision rules rely on a knowledge of both the within-class distributions and
the prior class probabilities. However, situations may arise where the relative frequencies
of new objects to be classified are unknown. In this situation a minimax procedure may
be employed. The name minimax is used to refer to procedures for which either the
maximum expected loss or the maximum of the error probability is a minimum. We shall
limit our discussion below to the two-class problem and the minimum error probability
procedure.

Consider the Bayes rule for minimum error. The decision regions �1 and �2 are
defined by

p.xj!1/p.!1/ > p.xj!2/p.!2/ implies x 2 �1 (1.16)

and the Bayes minimum error, eB , is

eB D p.!2/

Z
�1

p.xj!2/ dx C p.!1/

Z
�2

p.xj!1/ dx (1.17)

where p.!2/ D 1 � p.!1/.
For fixed decision regions �1 and �2, eB is a linear function of p.!1/ (we denote

this function QeB) attaining its maximum on the region [0; 1] either at p.!1/ D 0 or
p.!1/ D 1. However, since the regions �1 and �2 are also dependent on p.!1/ through
the Bayes decision criterion (1.16), the dependency of eB on p.!1/ is more complex,
and not necessarily monotonic.

If �1 and �2 are fixed (determined according to (1.16) for some specified p.!i /),
the error given by (1.17) will only be the Bayes minimum error for a particular value
of p.!1/, say pŁ

1 (see Figure 1.8). For other values of p.!1/, the error given by (1.17)
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must be greater than the minimum error. Therefore, the optimum curve touches the line
at a tangent at pŁ

1 and is concave down at that point.

The minimax procedure aims to choose the partition �1, �2, or equivalently the
value of p.!1/ so that the maximum error (on a test set in which the values of p.!i /

are unknown) is minimised. For example, in the figure, if the partition were chosen to
correspond to the value pŁ

1 of p.!1/, then the maximum error which could occur would
be a value of b if p.!1/ were actually equal to unity. The minimax procedure aims to
minimise this maximum value, i.e. minimise

maxf QeB.0/; QeB.1/g

or minimise

max

²Z
�2

p.xj!1/ dx;

Z
�1

p.xj!2/ dx

¦

This is a minimum when

Z
�2

p.xj!1/ dx D
Z

�1

p.xj!2/ dx (1.18)

which is when a D b in Figure 1.8 and the line QeB.p.!1// is horizontal and touches the
Bayes minimum error curve at its peak value.

Therefore, we choose the regions �1 and �2 so that the probabilities of the two types
of error are the same. The minimax solution may be criticised as being over-pessimistic
since it is a Bayes solution with respect to the least favourable prior distribution. The

0.0

Bayes minimum error, eB

a

b

p(w1) 1.0p1
*

error, eB, for fixed
decision regions

~

Figure 1.8 Minimax illustration
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strategy may also be applied to minimising the maximum risk. In this case, the risk isZ
�1

[½11 p.!1jx/ C ½21 p.!2jx/]p.x/ dx C
Z

�2

[½12 p.!1jx/ C ½22 p.!2jx/]p.x/ dx

D p.!1/

�
½11 C .½12 � ½11/

Z
�2

p.xj!1/ dx

½

C p.!2/

�
½22 C .½21 � ½22/

Z
�1

p.xj!2/ dx

½

and the boundary must therefore satisfy

½11 � ½22 C .½12 � ½11/

Z
�2

p.xj!1/ dx � .½21 � ½22/

Z
�1

p.xj!2/ dx D 0

For ½11 D ½22 and ½21 D ½12, this reduces to condition (1.18).

Discussion
In this section we have introduced a decision-theoretic approach to classifying patterns.
This divides up the measurement space into decision regions and we have looked at
various strategies for obtaining the decision boundaries. The optimum rule in the sense
of minimising the error is the Bayes decision rule for minimum error. Introducing the
costs of making incorrect decisions leads to the Bayes rule for minimum risk. The theory
developed assumes that the a priori distributions and the class-conditional distributions
are known. In a real-world task, this is unlikely to be so. Therefore approximations must
be made based on the data available. We consider techniques for estimating distribu-
tions in Chapters 2 and 3. Two alternatives to the Bayesian decision rule have also been
described, namely the Neyman–Pearson decision rule (commonly used in signal process-
ing applications) and the minimax rule. Both require knowledge of the class-conditional
probability density functions. The receiver operating characteristic curve characterises
the performance of a rule over a range of thresholds of the likelihood ratio.

We have seen that the error rate plays an important part in decision-making and
classifier performance assessment. Consequently, estimation of error rates is a problem
of great interest in statistical pattern recognition. For given fixed decision regions, we
may calculate the probability of error using (1.5). If these decision regions are chosen
according to the Bayes decision rule (1.2), then the error is the Bayes error rate or
optimal error rate. However, regardless of how the decision regions are chosen, the error
rate may be regarded as a measure of a given decision rule’s performance.

The Bayes error rate (1.5) requires complete knowledge of the class-conditional den-
sity functions. In a particular situation, these may not be known and a classifier may
be designed on the basis of a training set of samples. Given this training set, we may
choose to form estimates of the distributions (using some of the techniques discussed
in Chapters 2 and 3) and thus, with these estimates, use the Bayes decision rule and
estimate the error according to (1.5).

However, even with accurate estimates of the distributions, evaluation of the error
requires an integral over a multidimensional space and may prove a formidable task.
An alternative approach is to obtain bounds on the optimal error rate or distribution-free
estimates. Further discussion of methods of error rate estimation is given in Chapter 8.
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1.5.2 Discriminant functions

In the previous subsection, classification was achieved by applying the Bayesian decision
rule. This requires knowledge of the class-conditional density functions, p.xj!i / (such
as normal distributions whose parameters are estimated from the data – see Chapter 2),
or nonparametric density estimation methods (such as kernel density estimation – see
Chapter 3). Here, instead of making assumptions about p.xj!i /, we make assumptions
about the forms of the discriminant functions.

A discriminant function is a function of the pattern x that leads to a classification rule.
For example, in a two-class problem, a discriminant function h.x/ is a function for which

h.x/ > k ) x 2 !1

< k ) x 2 !2
(1.19)

for constant k. In the case of equality (h.x/ D k), the pattern x may be assigned arbitrarily
to one of the two classes. An optimal discriminant function for the two-class case is

h.x/ D p.xj!1/

p.xj!2/

with k D p.!2/=p.!1/. Discriminant functions are not unique. If f is a monotonic
function then

g.x/ D f .h.x// > k0 ) x 2 !1

g.x/ D f .h.x// < k0 ) x 2 !2

where k0 D f .k/ leads to the same decision as (1.19).
In the C-group case we define C discriminant functions gi .x/ such that

gi .x/ > g j .x/ ) x 2 !i j D 1; : : : ; C ; j 6D i

That is, a pattern is assigned to the class with the largest discriminant. Of course, for
two classes, a single discriminant function

h.x/ D g1.x/ � g2.x/

with k D 0 reduces to the two-class case given by (1.19).
Again, we may define an optimal discriminant function as

gi .x/ D p.xj!i /p.!i /

leading to the Bayes decision rule, but as we showed for the two-class case, there are
other discriminant functions that lead to the same decision.

The essential difference between the approach of the previous subsection and the
discriminant function approach described here is that the form of the discriminant function
is specified and is not imposed by the underlying distribution. The choice of discriminant
function may depend on prior knowledge about the patterns to be classified or may be a
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particular functional form whose parameters are adjusted by a training procedure. Many
different forms of discriminant function have been considered in the literature, varying
in complexity from the linear discriminant function (in which g is a linear combination
of the xi ) to multiparameter nonlinear functions such as the multilayer perceptron.

Discrimination may also be viewed as a problem in regression (see Section 1.6) in
which the dependent variable, y, is a class indicator and the regressors are the pattern
vectors. Many discriminant function models lead to estimates of E[yjx], which is the
aim of regression analysis (though in regression y is not necessarily a class indicator).
Thus, many of the techniques we shall discuss for optimising discriminant functions
apply equally well to regression problems. Indeed, as we find with feature extraction in
Chapter 9 and also clustering in Chapter 10, similar techniques have been developed
under different names in the pattern recognition and statistics literature.

Linear discriminant functions
First of all, let us consider the family of discriminant functions that are linear combina-
tions of the components of x D .x1; : : : ; x p/T ,

g.x/ D wT x C w0 D
pX

iD1

wi xi C w0 (1.20)

This is a linear discriminant function, a complete specification of which is achieved
by prescribing the weight vector w and threshold weight w0. Equation (1.20) is the
equation of a hyperplane with unit normal in the direction of w and a perpendicular
distance jw0j=jwj from the origin. The value of the discriminant function for a pattern x

is a measure of the perpendicular distance from the hyperplane (see Figure 1.9).
A linear discriminant function can arise through assumptions of normal distributions

for the class densities, with equal covariance matrices (see Chapter 2). Alternatively,

origin hyperplane, g = 0g < 0

g > 0

g(x)

Figure 1.9 Geometry of linear discriminant function given by equation (1.20)
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without making distributional assumptions, we may require the form of the discriminant
function to be linear and determine its parameters (see Chapter 4).

A pattern classifier employing linear discriminant functions is termed a linear machine
(Nilsson, 1965), an important special case of which is the minimum-distance classifier
or nearest-neighbour rule. Suppose we are given a set of prototype points p1; : : : ; pC ,
one for each of the C classes !1; : : : ; !C . The minimum-distance classifier assigns a
pattern x to the class !i associated with the nearest point pi . For each point, the squared
Euclidean distance is

jx � pi j2 D xT x � 2xT pi C pT
i pi

and minimum-distance classification is achieved by comparing the expressions xT pi �
1
2pT

i pi and selecting the largest value. Thus, the linear discriminant function is

gi .x/ D wT
i x C wi0

where
wi D pi

wi0 D � 1
2 jpi j2

Therefore, the minimum-distance classifier is a linear machine. If the prototype points,
pi , are the class means, then we have the nearest class mean classifier. Decision re-
gions for a minimum-distance classifier are illustrated in Figure 1.10. Each boundary is
the perpendicular bisector of the lines joining the prototype points of regions that are
contiguous. Also, note from the figure that the decision regions are convex (that is, two
arbitrary points lying in the region can be joined by a straight line that lies entirely within
the region). In fact, decision regions of a linear machine are always convex. Thus, the
two class problems, illustrated in Figure 1.11, although separable, cannot be separated by
a linear machine. Two generalisations that overcome this difficulty are piecewise linear
discriminant functions and generalised linear discriminant functions.

Piecewise linear discriminant functions
This is a generalisation of the minimum-distance classifier to the situation in which
there is more than one prototype per class. Suppose there are ni prototypes in class !i ,
p1

i ; : : : ; p
ni
i ; i D 1; : : : ; C . We define the discriminant function for class !i to be

gi .x/ D max
jD1;:::;ni

g j
i .x/

where g j
i is a subsidiary discriminant function, which is linear and is given by

g j
i .x/ D xT p

j
i � 1

2p
j
i

T
p

j
i j D 1; : : : ; ni ; i D 1; : : : ; C

A pattern x is assigned to the class for which gi .x/ is largest; that is, to the class of
the nearest prototype vector. This partitions the space into

PC
iD1 ni regions known as
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Figure 1.11 Groups not separable by a linear discriminant

the Dirichlet tessellation of the space. When each pattern in the training set is taken as
a prototype vector, then we have the nearest-neighbour decision rule of Chapter 3. This
discriminant function generates a piecewise linear decision boundary (see Figure 1.12).

Rather than using the complete design set as prototypes, we may use a subset.
Methods of reducing the number of prototype vectors (edit and condense) are described
in Chapter 3, along with the nearest-neighbour algorithm. Clustering schemes may also
be employed.

Generalised linear discriminant function

A generalised linear discriminant function, also termed a phi machine (Nilsson, 1965),
is a discriminant function of the form

g.x/ D wT φ C w0

where φ D .�1.x/; : : : ; φD.x//T is a vector function of x. If D D p, the number of
variables, and �i .x/ D xi , then we have a linear discriminant function.

The discriminant function is linear in the functions �i , not in the original measure-
ments xi . As an example, consider the two-class problem of Figure 1.13. A linear dis-
criminant function will not separate the classes, even though they are separable. However,
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Figure 1.12 Dirichlet tessellation (comprising nearest-neighbour regions for a set of prototypes)
and the decision boundary (thick lines) for two classes
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Figure 1.13 Nonlinear transformation of variables may permit linear discrimination

if we make the transformation

�1.x/ D x2
1

�2.x/ D x2

then the classes can be separated in the �-space by a straight line. Similarly, disjoint
classes can be transformed into a �-space in which a linear discriminant function could
separate the classes (provided that they are separable in the original space).

The problem, therefore, is simple. Make a good choice for the functions �i .x/, then
use a linear discriminant function to separate the classes. But, how do we choose �i ?
Specific examples are shown in Table 1.1.

Clearly there is a problem in that as the number of functions that are used as a basis
set increases, so does the number of parameters that must be determined using the limited
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Table 1.1 Discriminant functions, �

Discriminant Mathematical form, �i .x/
function

linear �i .x/ D xi , i D 1; : : : ; p

quadratic �i .x/ D xl1
k1

xl2
k2

, i D 1; : : : ; .p C 1/.p C 2/=2 � 1

l1; l2 D 0 or 1; k1; k2 D 1; : : : ; p l1, l2 not both zero

¹th-order polynomial �i .x/ D xl1
k1

: : : xl¹
k¹

, i D 1; : : : ;

 
p C ¹

¹

!
� 1

l1; : : : ; l¹ D 0 or 1; k1; : : : ; k¹ D 1; : : : ; p

li not all zero

radial basis function �i .x/ D �.jx � vi j/ for centre vi and function �

multilayer perceptron �i .x/ D f .xT vi Cvi0/ for direction vi and offset vi0.
f is the logistic function, f .z/ D 1=.1 C exp.�z//

training set. A complete quadratic discriminant function requires D D .p C 1/.p C 2/=2
terms and so for C classes there are C.p C 1/.p C 2/=2 parameters to estimate. We may
need to apply a constraint or ‘regularise’ the model to ensure that there is no over-fitting.

An alternative to having a set of different functions is to have a set of functions of
the same parametric form, but which differ in the values of the parameters they take,

�i .x/ D �.x; vi /

where vi is a set of parameters. Different models arise depending on the way the variable
x and the parameters v are combined. If

�.x; v/ D �.jx � vj/

that is, � is a function only of the magnitude of the difference between the pattern x and
the weight vector v, then the resulting discriminant function is known as a radial basis
function . On the other hand, if � is a function of the scalar product of the two vectors

�.x; v/ D �.xT v C v0/

then the discriminant function is known as a multilayer perceptron. It is also a model
known as projection pursuit. Both the radial basis function and the multilayer perceptron
models can be used in regression.

In these latter examples, the discriminant function is no longer linear in the parameters.
Specific forms for � for radial basis functions and for the multilayer perceptron models
will be given in Chapters 5 and 6.

Summary
In a multiclass problem, a pattern x is assigned to the class for which the discriminant
function is the largest. A linear discriminant function divides the feature space by a



Multiple regression 25

hyperplane whose orientation is determined by the weight vector w and distance from the
origin by the weight threshold w0. The decision regions produced by linear discriminant
functions are convex.

A piecewise linear discriminant function permits non-convex and disjoint decision
regions. Special cases are the nearest-neighbour and nearest class mean classifier.

A generalised linear discriminant function, with fixed functions �i , is linear in its
parameters. It permits non-convex and multiply connected decision regions (for suitable
choices of �i ). Radial basis functions and multilayer perceptrons can be regarded as
generalised linear discriminant functions with flexible functions �i whose parameters
must be determined or specified using the training set.

The Bayes decision rule is optimal (in the sense of minimising classification error)
and with sufficient flexibility in our discriminant functions we ought to be able to achieve
optimal performance in principle. However, we are limited by a finite number of training
samples and also, once we start to consider parametric forms for the �i , we lose the
simplicity and ease of computation of the linear functions.

1.6 Multiple regression

Many of the techniques and procedures described within this book are also relevant to
problems in regression, the process of investigating the relationship between a depen-
dent (or response) variable Y and independent (or predictor) variables X1; : : : ; X p; a
regression function expresses the expected value of Y in terms of X1; : : : ; X p and model
parameters. Regression is an important part of statistical pattern recognition and, although
the emphasis of the book is on discrimination, practical illustrations are sometimes given
on problems of a regression nature.

The discrimination problem itself is one in which we are attempting to predict the
values of one variable (the class variable) given measurements made on a set of indepen-
dent variables (the pattern vector, x). In this case, the response variable is categorical.
Posing the discrimination problem as one in regression is discussed in Chapter 4.

Regression analysis is concerned with predicting the mean value of the response
variable given measurements on the predictor variables and assumes a model of the form

E[yjx]
4D
Z

yp.yjx/ dy D f .x; θ/

where f is a (possibly nonlinear) function of the measurements x and θ , a set of param-
eters of f . For example,

f .x; θ/ D �0 C θT x

where θ D .�1; : : : ; �p/T , is a model that is linear in the parameters and the variables.
The model

f .x; θ/ D �0 C θT φ.x/

where θ D .�1; : : : ; �D/T and φ D .�1.x/; : : : ; �D.x//T is a vector of nonlinear func-
tions of x, is linear in the parameters but nonlinear in the variables. Linear regression
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Figure 1.14 Population regression line (solid line) with representation of spread of conditional
distribution (dotted lines) for normally distributed error terms, with variance depending on x

refers to a regression model that is linear in the parameters, but not necessarily in the
variables.

Figure 1.14 shows a regression summary for some hypothetical data. For each value
of x , there is a population of y values that varies with x . The solid line connecting the
conditional means, E[yjx], is the regression line. The dotted lines either side represent
the spread of the conditional distribution (š1 standard deviation from the mean).

It is assumed that the difference (commonly referred to as an error or residual), ži ,
between the measurement on the response variable and its predicted value conditional
on the measurements on the predictors,

ži D yi � E[yjxi ]

is an unobservable random variable. A normal model for the errors (see Appendix E) is
often assumed,

p.ž/ D 1p
2³¦

exp

�
�1

2

ž2

¦ 2

�

That is,

p.yi jxi ; θ/ D 1p
2³¦

exp

�
� 1

2¦ 2
.yi � f .xi ; θ//2

�

Given a set of data f.yi ; xi /; i D 1; : : : ; ng, the maximum likelihood estimate of
the model parameters (the value of the parameters for which the data are ‘most likely’,
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discussed further in Appendix B), θ , is that for which

p.f.yi ; xi /gjθ/

is a maximum. Assuming independent samples, this amounts to determining the value of
θ for which the commonly used least squares error,

nX
iD1

.yi � f .xi ; θ//2 (1.21)

is a minimum (see the exercises at the end of the chapter).
For the linear model, procedures for estimating the parameters are described in

Chapter 4.

1.7 Outline of book

The aim in writing this volume is to provide a comprehensive account of statistical pattern
recognition techniques with emphasis on methods and algorithms for discrimination and
classification. In recent years there have been many developments in multivariate analysis
techniques, particularly in nonparametric methods for discrimination and classification.
These are described in this book as extensions to the basic methodology developed over
the years.

This chapter has presented some basic approaches to statistical pattern recognition.
Supplementary material on probability theory and data analysis can be found in the
appendices.

A road map to the book is given in Figure 1.15, which describes the basic pattern
recognition cycle. The numbers in the figure refer to chapters and appendices of this
book.

Chapters 2 and 3 describe basic approaches to supervised classification via Bayes’
rule and estimation of the class-conditional densities. Chapter 2 considers normal-based
models. Chapter 3 addresses nonparametric approaches to density estimation.

Chapters 4–7 take a discriminant function approach to supervised classification.
Chapter 4 describes algorithms for linear discriminant functions. Chapter 5 considers
kernel-based approaches for constructing nonlinear discriminant functions, namely radial
basis functions and support vector machine methods. Chapter 6 describes alternative,
projection-based methods, including the multilayer perceptron neural network. Chapter 7
describes tree-based approaches.

Chapter 8 addresses the important topic of performance assessment: how good is
your designed classifier and how well does it compare with competing techniques? Can
improvement be achieved with an ensemble of classifiers?

Chapters 9 and 10 consider techniques that may form part of an exploratory data
analysis. Chapter 9 describes methods of feature selection and extraction, both linear and
nonlinear. Chapter 10 addresses unsupervised classification or clustering.

Finally, Chapter 11 covers additional topics on pattern recognition including model
selection.
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Figure 1.15 The pattern recognition cycle; numbers in parentheses refer to chapters and appen-
dices of this book

1.8 Notes and references

There was a growth of interest in techniques for automatic pattern recognition in the 1960s.
Many books appeared in the early 1970s, some of which are still very relevant today and
have been revised and reissued. More recently, there has been another flurry of books on
pattern recognition, particularly incorporating developments in neural network methods.

A very good introduction is provided by the book of Hand (1981a). Perhaps a lit-
tle out of date now, it provides nevertheless a very readable account of techniques for
discrimination and classification written from a statistical point of view and is to be
recommended. Two of the main textbooks on statistical pattern recognition are those by
Fukunaga (1990) and Devijver and Kittler (1982). Written perhaps with an engineering
emphasis, Fukunaga’s book provides a comprehensive account of the most important
aspects of pattern recognition, with many examples, computer projects and problems.
Devijver and Kittler’s book covers the nearest-neighbour decision rule and feature selec-
tion and extraction in some detail, though not at the neglect of other important areas of
statistical pattern recognition. It contains detailed mathematical accounts of techniques
and algorithms, treating some areas in depth.
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Another important textbook is that by Duda et al. (2001). Recently revised, this
presents a thorough account of the main topics in pattern recognition, covering many
recent developments. Other books that are an important source of reference material
are those by Young and Calvert (1974), Tou and Gonzales (1974) and Chen (1973).
Also, good accounts are given by Andrews (1972), a more mathematical treatment, and
Therrien (1989), an undergraduate text.

Recently, there have been several books that describe the developments in pattern
recognition that have taken place over the last decade, particularly the ‘neural network’
aspects, relating these to the more traditional methods. A comprehensive treatment of
neural networks is provided by Haykin (1994). Bishop (1995) provides an excellent
introduction to neural network methods from a statistical pattern recognition perspective.
Ripley’s (1996) account provides a thorough description of pattern recognition from
within a statistical framework. It includes neural network methods, approaches developed
in the field of machine learning, recent advances in statistical techniques as well as
development of more traditional pattern recognition methods and gives valuable insights
into many techniques gained from practical experience. Hastie et al. (2001) provide
a thorough description of modern techniques in pattern recognition. Other books that
deserve a mention are those by Schalkoff (1992) and Pao (1989).

Hand (1997) gives a short introduction to pattern recognition techniques and the
central ideas in discrimination and places emphasis on the comparison and assessment
of classifiers.

A more specialised treatment of discriminant analysis and pattern recognition is the
book by McLachlan (1992a). This is a very good book. It is not an introductory textbook,
but provides a thorough account of recent advances and sophisticated developments
in discriminant analysis. Written from a statistical perspective, the book is a valuable
guide to theoretical and practical work on statistical pattern recognition and is to be
recommended for researchers in the field.

Comparative treatments of pattern recognition techniques (statistical, neural and ma-
chine learning methods) are provided in the volume edited by Michie et al. (1994) who
report on the outcome of the Statlog project. Technical descriptions of the methods are
given, together with the results of applying those techniques to a wide range of prob-
lems. This volume provides the most extensive comparative study available. More than
20 different classification procedures were considered for about 20 data sets.

The book by Watanabe (1985), unlike the books above, is not an account of statis-
tical methods of discrimination, though some are included. Rather, it considers a wider
perspective of human cognition and learning. There are many other books in this latter
area. Indeed, in the early days of pattern recognition, many of the meetings and confer-
ences covered the humanistic and biological side of pattern recognition in addition to the
mechanical aspects. Although these non-mechanical aspects are beyond the scope of this
book, the monograph by Watanabe provides one unifying treatment that we recommend
for background reading.

There are many other books on pattern recognition. Some of those treating more
specific parts (such as clustering) are cited in the appropriate chapter of this book. In
addition, most textbooks on multivariate analysis devote some attention to discrimination
and classification. These provide a valuable source of reference and are cited elsewhere
in the book.
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The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

Exercises

In some of the exercises, it will be necessary to generate samples from a multivariate
density with mean µ and covariance matrix 	. Many computer packages offer routines
for this. However, it is a simple matter to generate samples from a normal distribution
with unit variance and zero mean (for example, Press et al., 1992). Given a vector Y i

of such samples, then the vector U�1=2Y i C µ has the required distribution, where U

is the matrix of eigenvectors of the covariance matrix and �1=2 is the diagonal matrix
whose diagonal elements are the square roots of the corresponding eigenvalues (see
Appendix C).

1. Consider two multivariate normally distributed classes,

p.xj!i / D 1

.2³/p=2j	i j1=2
exp

²
�1

2
.x � µi /

T 	�1
i .x � µi /

¦

with means µ1 and µ2 and equal covariance matrices, 	1 D 	2 D 	. Show that
the logarithm of the likelihood ratio is linear in the feature vector x. What is the
equation of the decision boundary?

2. Determine the equation of the decision boundary for the more general case of 	1 D
Þ	2, for scalar Þ (normally distributed classes as in Exercise 1). In particular, for
two univariate distributions, N .0; 1/ and N .1; 1=4/, show that one of the decision
regions is bounded and determine its extent.

3. For the distributions in Exercise 1, determine the equation of the minimum risk
decision boundary for the loss matrix

� D
�

0 2
1 0

�

4. Consider two multivariate normally distributed classes (!2 with mean .�1; 0/T and
!1 with mean .1; 0/T , and identity covariance matrix). For a given threshold ¼

(see equation (1.14)) on the likelihood ratio, determine the regions �1 and �2 in a
Neyman–Pearson rule.

5. Consider three bivariate normal distributions, !1, !2, !3 with identity covariance
matrices and means .�2; 0/T , .0; 0/T and .0; 2/T . Show that the decision boundaries
are piecewise linear. Now define a class A as the mixture of !1 and !3,

pA.x/ D 0:5p.xj!1/ C 0:5p.xj!3/

and class B as bivariate normal with identity covariance matrix and mean .a; b/T ,
for some a, b. What is the equation of the Bayes decision boundary? Under what
conditions is it piecewise linear?
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6. Consider two uniform distributions with equal priors

p.x j!1/ D
²

1 when 0 
 x 
 1
0 otherwise

p.x j!2/ D
(

1
2 when 1

2 
 x 
 5
2

0 otherwise

Show that the reject function is given by

r.t/ D
(

3
8 when 0 
 t 
 1

3

0 when 1
3 < t 
 1

Hence calculate the error rate by integrating (1.10).

7. Reject option. Consider two classes, each normally distributed with means x D 1
and x D �1 and unit variances; p.!1/ D p.!2/ D 0:5. Generate a test set and use it
(without using class labels) to estimate the reject rate as a function of the threshold
t . Hence, estimate the error rate for no rejection. Compare with the estimate based
on a labelled version of the test set. Comment on the use of this procedure when the
true distributions are unknown and the densities have to be estimated.

8. The area of a sphere of radius r in p dimensions, Sp, is

Sp D 2³
p
2 r p�1

0.p=2/

where 0 is the gamma function (0.1=2/ D ³1=2, 0.1/ D 1, 0.xC1/ D x0.x/). Show
that the probability of a sample, x, drawn from a zero-mean normal distribution with
covariance matrix ¦ 2I (I is the identity matrix) and having jxj 
 R is

Z R

0
Sp.r/

1

.2³¦ 2/p=2
exp

�
� r2

2¦ 2

�
dr

Evaluate this numerically for R D 2¦ and for p D 1; : : : ; 10. What do the results
tell you about the distribution of normal samples in high-dimensional spaces?

9. In a two-class problem, let the cost of misclassifying a class !1 pattern be C1 and
the cost of misclassifying a class !2 pattern be C2. Show that the point on the ROC
curve that minimises the risk has gradient

C2 p.!2/

C1 p.!1/

10. Show that under the assumption of normally distributed residuals, the maximum
likelihood solution for the parameters of a linear model is equivalent to minimising
the sum-square error (1.21).




