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Elements of Numerical
Optimization

Having outlined the design processes common in much of the aerospace sector and high-
lighted some of the issues that arise when trying to bring together multiple disciplines in a
single computational environment, including the subject of design search and optimization
(DSO), attention is next focused on the subject of formal optimization methods and the
theory underlying them. These increasingly lie at the heart of much computationally based
design, not because designers necessarily believe that such methods can yield truly optimal
designs, or even very good designs, but rather because they provide a systematic framework
for considering some of the many decisions designers are charged with taking. Nonethe-
less, it is helpful when looking at computational approaches to design to have a thorough
understanding of the various classes of optimization methods, where and how they work
and, more importantly, where they are likely to fail.

As has already been noted in the introduction, optimization methods may be classified
according to the types of problems they are designed to deal with. Problems can be clas-
sified according to the nature of the variables the designer is able to control (nonnumeric,
discrete, real valued), the number and type of objectives (one, many, deterministic, prob-
abilistic, static, dynamic), the presence of constraints (none, variable bounds, inequalities,
equalities) and the types of functional relationships involved (linear, nonlinear, discontinu-
ous). Moreover, optimizers can be subclassified according to their general form of approach.
They can be gradient based, rule based (heuristic) or stochastic – often, they will be a subtle
blend of all three. They can work with a single design point at a time or try to advance a
group or “population” of designs. They can be aiming to meet a single objective or to find
a set of designs that together satisfy multiple objectives. In all cases, however, optimization
may be defined as the search for a set of inputs x that minimize (or maximize) the outputs
of a function f (x) subject to constraints gi(x) ≥ 0 and hj (x) = 0.

In essence, this involves trying to identify those regions of the design space (sets of
designer chosen variables) that give the best performance and then in accurately finding
the minimum in any given region. If one thinks of trying to find the lowest point in a
geographical landscape, then this amounts to identifying different river basins and then
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tracking down to the river in the valley bottom and then on to its final destination – in
optimization texts, it is common to refer to such regions as “basins of attraction” since,
if one dropped a ball into such a region, the action of gravity would lead it to the same
point wherever in the basin it started. The search for the best basins is here termed global
optimization, while accurately locating the lowest point within a single basin is referred to
as local optimization. Without wishing to stretch the analogy too far, constraints then act on
the landscape rather like national borders that must not be crossed. It will be obvious that
many searches will thus end where the “river” crosses the border and not at the lowest point
in the basin. Of course, in design, we are often dealing with many more than two variables,
but the analogy holds and we can still define the idea of a basin of attraction in this way.
The aim of optimization is to try and accomplish such searches as quickly as possible in as
robust a fashion as possible, while essentially blindfolded – if we had a map of the design
space showing contours, we would not need to search at all, of course.

Notice that even when dealing with multiple design goals it is usually possible to specify
a single objective in this way, either by weighting together the separate goals in some way,
or by transforming the problem into the search for a Pareto optimal set where the goal is then
formally the production of an appropriately spanning Pareto set (usually one that contains
designs that represent a wide and evenly spread set of alternatives). It is also the case that
suitable goals can often be specified by setting a target performance for some quantity and
then using an optimizer to minimize any deviations from the target. This is often termed
inverse design and has been applied with some success to airfoil optimization where target
pressure distributions are used to drive the optimization process. Note that throughout this
part of the book we will tackle the problem of minimization, since maximization simply
involves a negation of the objective function.

3.1 Single Variable Optimizers – Line Search

We begin this more detailed examination of optimization methods by first considering the
problem of finding an optimal solution to a problem where there is just one real-valued
variable – so-called line search problems. Although rarely of direct interest in design, such
problems illustrate many of the issues involved in search and serve as a useful starting point
for introducing more complex ideas. Moreover, many more sophisticated search methods
use line search techniques as part of their overall strategy. We will leave the issue of dealing
with constraints, other than simple bounds, until we come to multivariable problems.

3.1.1 Unconstrained Optimization with a Single Real Variable

The first problem that arises when carrying out line search of an unbounded domain is
to try and identify if a minimum exists at all. If we have a closed form mathematical
expression for the required objective, this can of course be established by the methods of
differential calculus – the first differential is set equal to zero to identify turning points and
the sign of the second differential checked at these to see if it is positive there (consider
f {x} = x2 − 4x − 1; then, df /dx = 2x − 4 and d2f /dx2 = 2, so there is a minimum at
x = 2). Clearly, in most practical engineering problems, the functional relationship between
variables and goals is not known in closed form and so numerical schemes must be adopted.
In such circumstances, the simplest approach to finding a minimum is to make a simple
step in either positive or negative direction (the choice is arbitrary) and see if the function
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reduces. If it does, one keeps on making steps in the same direction but each time of twice
the length until such time as the function starts to increase, a bound on the variable is
reached or the variable becomes effectively infinite (by virtue of running out of machine
precision). If the initial step results in the function increasing, one simply reverses direction
and keeps searching the other way. Given the doubling of step length at each step, one
can begin with quite small initial moves and yet still reach machine precision remarkably
quickly. Many alternative methods for changing the step size have been proposed and that
adopted in practice will depend on the presence or absence of bounds. If the problem is
bounded, then continuously doubling the step length is clumsy, since it is likely to lead
to unnecessarily coarse steps near the bounds. At the other extreme, using fixed steps may
mean the search is tediously slow. An alternative is to fit the last three points evaluated to a
parabola and then to take a step to the location predicted as the turning point (as indicated
by the parabola’s differential and assuming that it has a minimum in the direction of travel).

As with all numerical approaches to optimization, one must next consider when this
kind of strategy will fail. Simply stepping along a function is only guaranteed to bracket
a minimum if the domain being searched contains a single turning point, as Figure 3.1
makes clear. If there are multiple minima, or even just one minimum, but also an adjacent
maximum (as in the figure), the strategy can fail. This brings us immediately to the idea
of local search versus global search. Local search can be defined as searching a domain
in which there is just a single minimum and no maxima (and its converse when seeking
a maximum) – anything else leads to global search. Thus, we may say that the strategy
of trying to bracket a minimum by taking steps of doubling lengths is a form of local
search since it seeks to locate a single turning point. Starting with a smaller initial step
size, or at a location closer to the minimum, will, of course, tend to bracket the optimum
more accurately. This will also better cope with situations where there are multiple turning
values, although there are still no guarantees that any minima will be found. It turns out
that, even with only one variable, no search method can guarantee to find a minimum in
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Figure 3.1 Attempting to bracket a function with two turning points (solid line) – the *’s
mark the sampled points and the function appears to reduce smoothly to the right (dashed
line).
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the presence of multiple minima and maxima. The best that can be hoped for when dealing
with global search problems is that a method is likely to find a good optimum value.

Assuming, however, that it is possible to bracket the desired minimum (by finding a
triple x1, x2, x3 where f (x2) is less than both f (x1) and f (x3)), the next requirement in
line search is that the bounds enclosing the turning point be squeezed toward the actual
optimum as quickly as possible. This immediately raises issues of accuracy – if a highly
accurate solution is required, it is likely that more steps will be needed, although this is not
always so. Note also, that in the limit, all smooth, continuous functions behave quadratically
at a minimum, and therefore the accuracy with which a minimum can generally be located
is fixed by the square root of the machine precision in use, that is, to about 2 × 10−4 in
single precision and 2 × 10−8 in double precision on 32-bit machines. Next, in keeping
with our classification of optimizers as being gradient based, rule based or stochastic, we
describe methods for homing in on the optimum of all three types.

The simplest scheme that can be adopted is to sample the bracketed interval using a
series of random locations, keeping the best result found at each stage until as many trials as
can be afforded have been made. This approach is easy to program and extremely robust, but
is slow and inefficient – such characteristics are often true of stochastic schemes. It can be
readily improved on by using successive iterations to tighten the bounds for random sampling
on the assumption that there is a single local minimum in the initial bracket (although this
might be argued as shifting the search into the category of heuristic methods). Random one-
dimensional searches should ideally be avoided wherever possible – certainly, they should
not be used if it is believed that the function being dealt with is smooth in the sense of having
a continuous first derivative and it is possible to bracket the desired minimum. Sometimes,
however, even in one dimension, the function being studied may have many optima and the
aim of search is to locate the best of these, that is, global search. In such cases, it turns out
that searches with random elements have an important role to play. We leave discussion of
these methods until dealing with problems in multiple dimensions.

The next simplest class of methods, the rule based or heuristic methods, lead to a more
structured form of sampling that directly seeks to move the bounds together as rapidly as
possible. There are a number of schemes for doing this and all aim to replace one or other
(or both) of the outer bounds with ones closer to the optimum and thus produce a new,
tighter bracketing triplet. The two most important of them are the golden section search
and the Fibonacci search. The fundamental difference between the two is that to carry out
a Fibonacci search one must know the number of iterations to be performed at the outset,
while the golden section search can be carried on until sufficient accuracy in the solution
is achieved. If it can be used, the Fibonacci is the faster of the two but is also the less
certain to yield an answer of given accuracy. This is another common distinction that arises
in search methods – does one have to limit the search by the available time or can one keep
on going until the answer is good enough. In much practical design work, searches will be
limited by time, particularly if the functions being searched are computationally expensive
to deal with. In such circumstances, the ability to use a method that will efficiently complete
in a fixed number of steps can be a real advantage.

The golden section search places the next point to evaluate (3 − √
5)/2(≈0.38197) into

the larger of the two intervals formed by the current triplet (measured from the central point
of the triplet as a fraction of the width of the larger interval). Provided we start with a triplet
where the internal point is 0.38197 times the triplet width from one end, this will mean that
whichever endpoint we give up when forming the new triplet, the remaining three points



ELEMENTS OF NUMERICAL OPTIMIZATION 109

will still have this ratio of spacing. Moreover, the width of the triplet is reduced by the same
amount whichever endpoint is removed, and thus the search progresses at a uniform (linear)
rate. To see this, consider points spaced out at x1 = 0.0, x2 = 0.38197 and x3 = 1.0. With
these spacings, x4 must be placed at 0.61804 (= 0.38197 × (1.0 − 0.38197) + 0.38197)
and the resulting triplet will then be either x1 = 0.0, x2 = 0.38197 and x4 = 0.61804 or
x2 = 0.38197, x4 = 0.61804 and x3 = 1.0. In either case, the triplet is 0.61804 long and
the central point is 0.23607 (= 0.38197 × 0.61804) from one end. Even if the initial triplet
is not spaced out in this fashion, the search rapidly converges to this ratio, which has been
known since ancient times as the “golden section” or “golden mean”, which leads to the
method’s name.

The Fibonacci search proceeds in a similar fashion but operates with a series due to
Leonardo of Pisa (who took the pseudonym Fibonacci). This series is defined as f0 = f1 = 1
and fk = fk−1 + fk−2 for k ≥ 2 (i.e., 1, 1, 2, 3, 5, 8, 13, 21, . . .). To apply the search, the
bounds containing the minimum are specified along with the intended number of divisions,
N . Then the current triplet width is reduced by moving both endpoints toward each other
by the same amount, given by multiplying the starting triplet width by a reduction factor tk
at each step k, that is, the two endpoints are each moved inward by tk × (x2 – x1)/2. The
reduction factor is controlled by the Fibonacci series such that tk = fN+1−k /fN+1, which
ensures that (except for the first division) when moving in each endpoint, one or other or
both will lie at previously calculated interior points; see Figure 3.2 (note that when both
endpoints lie at previously calculated locations this amounts to a null step and the search
immediately proceeds to the next level). The process continues until k = N and it may be
shown that this approach is optimal in the sense that it minimizes the maximum uncertainty
in the location of the minimum being sought. To achieve a given accuracy ε, N should
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Figure 3.2 Steps in a Fibonacci line search of four moves, labeled a, b, c and
d, with triplets of (0/16, 8/16, 16/16), (0/16, 5/16, 8/16), (0/16, 3/16, 5/16) and
(1/16, 2/16, 3/16) – that is, there are four moves, so that N = 4 and the corre-
sponding reductions factors are t1 = f4/f5 = 5/8, t2 = (f3/f5)/(8/16) = (3/8)/(8/16) =
3/4, t3 = (f2/f5)/(5/16) = (2/8)/(5/16) = 4/5, t4 = (f1/f5)/(3/16) = (1/8)/(3/16) =
2/3 – therefore, only five new points are sampled before the final bracket is estab-
lished – those shown filled on the figure.
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be chosen such that 1/fN+1 > ε/(x2 − x1) ≥ 1/fN+2. As already noted for most functions
(certainly those that are smooth in the vicinity of the optimum) the accuracy with which a
turning point can be trapped is limited by the square root of the machine precision (i.e., it
is limited to 2 × 10−4 in single precision) – attempting to converge a solution more closely
than this, by any means, is unlikely to be useful.

An alternative to these two rule-based systems is to fit a simple quadratic polynomial to
the bracketing triple at each step, and then, by taking its differential, calculate the location of
its turning point and place the next point there. This is called inverse parabolic interpolation
and the location of the next point x4 is given by

x4 = x2 − (x2 − x1)
2(f (x2) − f (x3)) − (x2 − x3)

2(f (x2) − f (x1))

2(x2 − x1)(f (x2) − f (x3)) − (x2 − x3)(f (x2) − f (x1))
. (3.1)

This process can easily be mislead if the bracketing interval is wide, and so a number
of schemes have been proposed that seek to combine this formula and the more robust
process of the golden section search – that by Brent is perhaps the most popular (Brent
1973; Press et al. 1986). Brent’s scheme alternates between a golden section search and
parabolic convergence depending on the progress the algorithm is making, and is often used
within multidimensional search methods.

The most sophisticated line searches are gradient-based methods, which work, of course,
by explicitly using the gradients of the function when calculating the next step to take.
Sometimes, the gradients can be found directly (for example, when dealing with closed
form expressions, numerically differentiated simulation codes or adjoint codes) but, more
commonly, they must be found by finite differencing. All such methods are sensitive to
the accuracy of the available gradient information, but where this is of good quality, and
particularly where the underlying function is approximately polynomial in form, they offer
the fastest methods for carrying out line searches. Where they work, they are superlinear in
performance. The degree to which they outperform the linear golden section and Fibonacci
approaches depends on the order of the scheme adopted. The order that can be successfully
adopted, in turn, depends on the quality of the available gradients and the degree to which
the underlying function can be represented by a polynomial – again, we see the trade-off
between robustness and speed.

The most aggressive gradient approach to take is to simply fit a polynomial through
all the available data with appropriate gradients at the points where these are available.
Then, differential calculus may be applied to locate any turning values and to distinguish
between minima, maxima and points of inflexion. Assuming a minimum exists within the
current triple, the next point evaluated is placed at the predicted location. This process can
be iterated with the new points and gradients being added in turn. If all three gradients
are known for the initial bracketing triple, then a fifth-order polynomial can be fitted and
its turning values used. It will be immediately obvious that there are some serious flaws
with such an approach. First, even if all the data is noise free and the quintic is a good
model, the roots of its first differential must be obtained by a root search; secondly, high-
order polynomials are notoriously sensitive to any noise and can become highly oscillatory
and, thirdly, there is no guarantee that a minimum value will exist within the initial bracket
when it is modeled by a quintic. Finally, as extra points are added, the order of the complete
polynomial rapidly rises and all these issues become ever more problematic. It is therefore
normal to take a more conservative approach.

Rather than fit the highest-order polynomial available, one can use a cubic instead. If
the chosen polynomial is to be an interpolator, this requires that a subset of the available
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data be used from the bracketing triple. For a cubic model, one might use the three data
values and the gradient of the central point of the triple to fix the four coefficients. It is
then simple to solve for the roots of the gradient equation (which is of course second order)
and jump to the minimum that must lie within the bracket. This will lead to a new triple
and the process can be repeated, with the gradient being calculated at the central point each
time (or to save time, at one or other end if the gradient is already known there). Note
also, that if one always has gradients available, there is no need to seek a triple to bracket
the minimum – provided the gradients of two adjacent points point toward each other, this
suffices to bracket the turning point. Moreover, a cubic (or Hermitian) interpolant can be
constructed from the two endpoints and their gradients and an iterative scheme constructed
that will be very efficient if the function is smooth and polynomial-like.

An alternative gradient-based scheme is to use the Newton–Raphson approach for find-
ing the zeros of a function to find the zeros of its derivative – this is commonly termed the
secant method. It requires the gradient at the current point and an estimate of the second
derivative. Again, if the minimum is bracketed by a pair of points where both derivatives
are known, then the next location to chose can be based on a forward finite difference of
the derivatives, that is, x3 = x1 − (x2 − x1)df (x1)/dx/{df (x2)/dx − df (x1)/dx}, which,
since df (x2)/dx is positive and df (x1)/dx is negative, always yields a new location within
the initial bracket. Of course, if the second derivative is also known at each point, this
information can be used instead.

It is possible to use gradients in an even more conservative fashion, however. If gradients
are available, then bracketing the minimum does not require that these be known very
accurately; rather, one merely searches for a pair of adjacent points where the sign of the
gradient goes from negative to positive. If one then carries out a series of interval bisections,
keeping the pair of points at each time based only on the signs of the gradients, a more robust,
if slower, search results. This can be particularly advantageous if the derivative information
is noisy. Notice, however, that if the gradients are being found by finite differencing it
hardly makes sense to evaluate four function values (i.e., two closely spaced pairs) in order
to locate the next place to jump to – it is far better to use the golden section or Fibonacci
methods. A slightly more adventurous approach based on triplets is to use a simple straight
line (or secant) extrapolation of the gradient from that at the central point and the lower of
the two edge points and see if this indicates a zero within the triplet. If the zero is within
the triplet, this point is adopted, while if not, a simple bisection of the best pairing is used,
again followed by iteration. This is the approach recommended by Press et al. (1992) for
line searches with gradients.

3.1.2 Optimization with a Single Discrete Variable

Sometimes, when carrying out optimization problems, the free variables that the optimizer
controls are discrete as opposed to being continuous. Such problems obviously arise when
dealing with integer quantities. But they also arise when working with stock sizes of mate-
rials, fittings, screw sizes, and so on. In practice, since when dealing with such discrete
variables no gradient information exists, all these problems are equivalent and optimiz-
ers that work with integers can solve all problems in this class by a simple scaling of
the variables (i.e., we use the integers as indices in a look-up table of the discrete values
being studied). The important point with such discrete problems is that the series of design
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variables be ordered in some way. Therefore, only the problem of optimization with integer
variables is considered further here.

There are two fundamentally different approaches to the problem of integer optimization.
The first is to work directly in integer arithmetic while the second is to assume that the
design variables are actually continuous and simply to round to the nearest integer when
evaluating the objective function (or constraints). Methods that work with integers can be
constructed from those already described in a number of cases, albeit they may work rather
less efficiently. If a global search in a multimodal space is being performed, some form of
stochastic or exhaustive search over the integers being dealt with will be required – these
are dealt with later. Conversely, if a local search is being conducted then, as before, the first
goal is to find a bracketing triple that captures the optimum being sought. For example, it is
easy to devise a one-dimensional bracketing routine equivalent to that already described for
continuous variables: all that is required is that the first step taken be an integer one – when
this is doubled, this will still of course result in an integer value and so such a search will
naturally work with integers.

Having bracketed the desired minimum with a triplet, methods must then be devised to
reduce the bracket to trap the optimum. Here, in some sense, the integer problem is easier
than the real-valued one as no issues of accuracy and round-off arise. The simplest, wholly
integer strategy that can be proposed is to bisect the larger gap of the bracket (allowing
for the fact that this region will from time to time contain an even number of points and
thus cannot be exactly bisected and either the point to the right or left of the center must
be taken, usually alternately). Then, the bracket triple is reduced by rejecting one or other
endpoints. This process is carried out until there are no more points left in the bracket at
which time the value with lowest objective becomes the optimum value. This search can
be refined by not simply bisecting the larger gap in the bracket at each step, but by instead
using the point closest to the golden section search value. This is equivalent to using a true
golden section search and rounding the new value to the nearest integer quantity at each
iteration.

The Fibonacci search is rather better suited to integer problems than both of these meth-
ods as, with a little adaptation, it may be directly applied without rounding; see Figure 3.3.
We first identify the pair of Fibonacci numbers that span the total integer gap between the
upper and lower limits of the triplet to be searched (i.e., the width of the triplet) – in the
figure, the initial bracket is 18-units wide and so the pair of Fibonacci numbers that span
this range are 13 and 21. We then move the limit farthest from the initial inner point of
the triple inward so that the remaining enclosed interval width to be searched is an exact
Fibonacci number (i.e., here, we move the point at 18 inward to 13) – if this triplet does
not bracket the minimum, we take the triplet formed from the original inner point, the new
endpoint and the new endpoint’s previous position and repeat the process of reducing to the
nearest Fibonacci number until we do have a triplet that brackets the minimum and has a
length equal to one of the Fibonacci numbers. Once the triplet is an exact Fibonacci number
in width, we simply move both bounds inward in a sequence of Fibonacci numbers until
we reach unity and hence identify the location of the minimum – here, 5, 3, 2 and 1 (we
start with largest number that will fit twice into the interval remaining after making the first
move).

Polynomial-based and gradient-based searches can only be applied to integer problems
if the fiction of a continuous model is assumed as part of the search, i.e., that variable
values between the integers can be accommodated by the search. As already noted, the
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Figure 3.3 Steps in a Fibonacci integer search of five moves, an initial move to reduce
the interval to a Fibonacci number followed by those labeled a, b, c and d, with triplets of
(0, 8, 18), (0, 8, 13), (0, 5, 8), (0, 3, 5) and (1, 2, 3) – therefore, only six new points are
sampled before the final bracket is established – those shown filled on the figure.

simplest way to do this is to proceed as for a continuous variable and then to round to
the nearest integer value when calculating the objective and constraints. It is also some-
times possible to treat the whole problem as being continuous, including the calculation of
the objective and any constraints and just to round the final design to the nearest whole
number – such approaches can be effective when dealing with stock sizes of materials. For
example, if the search is to find the thickness of a plate that minimizes a stress, this can be
treated as a continuous problem. Then, the final design can be selected from the available
stock sizes by rounding up. In fact, in many engineering design processes, the designer is
often required to work with available materials and fittings, and so, even if most of this
work is treated as continuous, it is quite common to then round to the nearest acceptable
component or stock size. If rounding is used for each change of variable, however, care
must be taken with gradient-based routines as they can be misled by the fictional gradients
being used – this can often make them no faster than the Fibonacci approach or, worse,
sometimes this means they become trapped in loops that fail to converge. Again a trade-off
between speed and robustness must be made.

3.1.3 Optimization with a Single Nonnumeric Variable

Sometimes, searches must be carried out over variables that are not only discontinuous
but not even numeric in nature. The most common such case arises in material selection.
For example, when choosing between metals for a particular role, the designer will be
concerned with weight, strength, ductility, fatigue resistance, weldability, cost, and so on.
There may be a number of alloys that could be used, each with its own particular set of
qualities, and the objective being considered may be calculated by the use of some complex
nonlinear CSM code. The most obvious way to find the optimum material is to try each
one in turn and select the best – such a blind search is bound to locate the optimum in the
end. If a complete search cannot be afforded, then some subset must be examined and the
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search stopped after an appropriate number have been considered – very often, this is done
manually, with the designer running through a range of likely materials until satisfied that a
good choice has been identified. The difficulty here arises in ordering the choice of material
to consider next. Clearly, each could be given an index number and the search performed as
over integers for a finite number of steps, or even using one of the search methods outlined
in the previous section. It is, of course, the lack of any natural ordering between index
number and performance that makes such a search difficult, and even somewhat random.
Unless the designer has a good scheme for ordering the choices to be made when indexing
them, it is likely that an exhaustive search will be as efficient as any other method. Such
observations apply to all problems where simple choices have to be made and where there
is no natural mapping of the choices to a numerical sequence.

3.2 Multivariable Optimizers

When dealing with problems with more than one variable, it is, of course, a perfectly
viable solution to simply apply methods designed for one variable to each dimension in
turn, repeating the searches over the individual variables, until some form of convergence
is reached. Such methods can be effective, particularly in problems with little interaction
between the variables and a single optimum value, although they tend to suffer from conver-
gence problems and find some forms of objective landscapes time consuming to deal with
(narrow valleys that are not aligned with any one variable, for example). Unfortunately,
most of the problems encountered in engineering design exhibit strong coupling between
the variables and multiple optima and so more sophisticated approaches are called for. This
has led to the development of a rich literature of methods aimed at optimization in multiple
dimensions. Here, we will introduce a number of the more established methods and also a
number of hybrid strategies for combining them.

Most of the classical search methods work in a sequential fashion by seeking to find a
series of designs that improve on each other until they reach the nearest optimum design.
This is not true of all methods, however – a pure random search, for example, does not care
in which order points are sampled or if results are improved and is capable of searching
a landscape with multiple optima. Here, we begin by examining those that work in an
essentially sequential fashion, before moving on to those that can search entire landscapes
(i.e., local and global methods, respectively). Note that in some of the classical optimization
literature the term “global convergence” is used to indicate a search that will find its way to
an optimal design wherever it starts from, as opposed to one that will search over multiple
optima.

Local searches have to deal with two fundamental issues: first, they must establish the
direction in which to move and, secondly, the step size to take. These two considerations
are by no means as trivial to deal with as they might seem and very many different ways of
trying to produce robust optimizers that converge efficiently have been produced. Almost
all local search methods seek to move downhill, beginning with large steps and reducing
these as the optimum is approached, so as to avoid overshoot and to ensure convergence.
Global search methods must additionally provide a strategy that enables multiple optima to
be found, usually by being able to jump out of the basin of attraction of one optimal design
and into that of another, even at the expense of an initial worsening of the design.
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We will illustrate these various issues by carrying out searches on a simple test function
proposed some years ago by one of the authors – the “bump” problem. This multidi-
mensional problem is usually defined as a maximization problem but can be set up for
minimization as follows:

Minimize : −abs
(∑n

i=1 cos4(xi) − 2
∏n

i=1 cos2(xi)
)/√∑n

i=1 ix2
i

Subject to :
∏n

i=1 xi > 0.75 and
∑n

i=1 xi < 15n/2

0 ≤ xi ≤ 10, i = 1, 2, . . . , n,

(3.2)

where the xi are the variables (expressed in radians) and n is the number of dimensions. This
function gives a highly bumpy surface where the true global optimum is usually defined by
the product constraint. Figure 3.4 illustrates this problem in two dimensions. When dealing
with optimizers designed to find the nearest optimal design, we start the search at (3.5,
2.5) on this landscape, and see if they can locate the nearest optimum, which is at (3.0871,
1.5173) where the function has a value of −0.26290. When applying global methods, we
start at (5, 5) and try to find the locations of multiple optima. Finally, when using constrained
methods, we try and locate the global constrained optimum at (1.5903, 0.4716) where the
optimum design is defined by the intersection of the objective function surface and the

Figure 3.4 Constrained bump function in two dimensions (plotted in its original maximiza-
tion form).
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product constraint and the function value is 0.36485. All of the search methods discussed
in this section are unconstrained in their basic operation, and so mechanisms have to be
added to them to deal with any constraints in design problems being studied. As many
of these are common to a variety of search methods, they are dealt with in a subsequent
section.

Before examining the search methods in detail, we briefly digress, however, by dis-
cussing a key aspect of the way that searches are actually implemented in practice.

3.2.1 Population versus Single-point Methods

The single variable methods that have been outlined above are all serial in nature, in that
new design points are derived and processed one at a time. This is natural when work-
ing with one variable and it is also the easiest way to understand many search tools but,
increasingly, it is not the most efficient way to proceed in practice. Given that so many
of the analysis tools used in design can be time consuming to run, there is always pres-
sure to speed up any search method that is running large computational analyses. The most
obvious and simple way of doing this is to consider multiple design points in parallel (we
note also that many large analysis codes are themselves capable of parallel operation, and
this fact too can often be exploited). The idea of searching multiple solutions in parallel
leads to the idea of population-based search. Such searches can be very readily mapped
onto clusters of computers with relatively low bandwidth requirements between them, and
computing clusters suitable for this kind of working are increasingly common in design
offices, formed either by linking together the machines of individual designers when they
are not otherwise in use (so-called cycle harvesting) or in the form of dedicated compute
clusters.

The populations of possible designs being examined by a search method can be stepped
forward in many ways: in a gradient-based calculation, they may represent small steps
in each variable direction and be used to establish local slopes by finite differencing; in
a heuristic pattern-based search, multiple searches may be conducted in different areas
of a fitness landscape at the same time; in an evolutionary search, the population may
form a pool of material that is recombined to form the next generation of new designs.
Sometimes, the use of populations fits very naturally into the search and no obvious bot-
tlenecks or difficulties arise (evolutionary searches fall into this category, as do multiple
start hill climbers, and design of experiment based methods), sometimes they can only be
exploited for part of the time (as in the finite differencing of gradients before a pattern
move takes place in a gradient-based search) and sometimes it is barely possible to accom-
modate simultaneous calculations at all (such as in simulated annealing). In fact, when
choosing between alternatives, it turns out that the raw efficiency of a search engine may
well be less important than its ability to be naturally mapped to cluster-based computing
systems.

It goes without saying that to be of practical use in parallel calculations a population-
enabled search must have a mechanism for deploying its activities over the available
computing facilities in a workable fashion – and this often means that issues of job man-
agement form an intrinsic part of the implementation of such methods. In what follows,
however, we will assume that, where needed, a population-based method can deploy its
calculations in an appropriate fashion. Finally, it should be noted that what mostly matters
in design is the elapsed time required to find a worthwhile improvement, including the time
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needed to define and set up the search, that needed to carry it out and that involved in
analyzing results as they become available so as to be able to steer, terminate or restart
the search. Methods that fit naturally with a designer’s way of working and desire to be
involved in the product improvement will obviously be more popular than those that do not.

3.2.2 Gradient-based Methods

We begin our study of multivariable search methods with those that exploit the objective
function gradient since the fundamental difference between multiple variable and single
variable searches is, of course, the need to establish a direction for the next move rather
than just the length of the step to take, that is, one must know which way is down. Given
a suitable direction of search, optimization in multiple dimensions is then, at least con-
ceptually, reduced to a single variable problem: once the direction of move is known, the
relative magnitudes of the input variables can be fixed with respect to each other. An obvi-
ous approach to optimization (and one due to Cauchy) is to use gradient information to
identify the direction of steepest descent and go in that direction.1 Then, a single move or
entire line search is made in that direction. Following this, the direction of steepest descent
is again established and the process repeated. If a line search is used, the new direction of
descent will be at right angles to the previous one (the search will, after all, have reached a
minimum in the desired direction) so that a series of repeated steepest descent line searches
leads to a zigzag path; see Figure 3.5. If a line search is not used, issues then arise as to
how long each step should be in a particular direction – if they are too long, then the best
path may be overshot; conversely, if they are too small, the search will be very slow.

Although steepest descent optimization methods will clearly work, there are rather better
schemes for exploiting gradients: all are based on the idea that, near a minimum, most
functions can be approximated by a quadratic shape, that is, in two dimensions, the objective

f(
x)

x

Start

Figure 3.5 A steepest descent search in a narrow valley.

1We assume that suitable steps are taken to make the required gradients available – in fact, the calculation of
such gradients by finite differencing schemes is by no means trivial and is also often prohibitively expensive if
many variables are involved; conversely, if good quality gradients can be found from efficient adjoint or direct
numerical differentiation methods, this will not be a problem.
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function surface is an ellipsoid bowl and the objective function contours are ellipses. For a
continuous smooth function, this is always true sufficiently close to any minimum (consider a
Taylor series expansion taken about the optimum). Unfortunately, many of the optima being
sought in engineering design are either defined by constraint boundaries or by discontinuities
in their objective functions – this means that many of the gradient-based methods that
give very good performance in theory do much less well in practice. Nonetheless, it is
useful to review their underlying mechanisms as many effective search methods draw on an
understanding of this basic behavior. We leave to Chapter 4 a detailed analysis of methods
for computing the gradients of functions.

Newton’s Method

The simplest way to exploit the structure of a quadratic form is via Newton’s method. In
this, we assume that f (x) ≈ 1/2xTAx + bTx + c where now x is the vector of variables being
searched over and f (x) remains the objective function. A, b and c are unknown coefficients
in the quadratic approximation of the function, A being a positive definite square matrix
known as the Hessian, b a vector and c a constant (it is the positive definiteness of A that
ensures that the function being searched is quadratic and convex, and thus does contain a
minimum – clearly we cannot expect such methods to work where there is no minimum in
the function or where pathologically it is not quadratic, even in the limit as we approach
the optimum). Notice that simple calculus tells us that the elements of the Hessian A are
given by the second differentials of the objective function, that is, Aij = ∂2f/∂xi∂xj and
that the gradient vector is given by Ax + b. At a minimum of f (x), the gradient vector is
of course zero.

Newton’s search method is very similar to that for finding the zero of a function – here,
we are seeking the zero of the gradient, of course. If our function is quadratic and we move
from xi to xi+1, then we can write

f (xi+1) ≈ f (xi ) + (xi+1−xi )
T∇f (xi ) + 1/2(xi+1 − xi )

TA(xi+1 − xi ) (3.3)

or ∇f (xi+1) ≈ ∇f (xi ) + A(xi+1 − xi ). (3.4)

Newton’s method simply involves setting ∇f (xi+1) to zero so that the required step becomes
(xi+1 − xi ) ≈ −A−1∇f (xi ).

In this method, we assume that the Hessian is known everywhere (or can be computed)
and so we can then simply move directly to the minimum of the approximating quadratic
form in one step. If the function is actually quadratic, this will complete the search, and
if not, we simply repeat the process with a new Hessian. This process converges very fast
(quadratically) but relies on the availability of the Hessian. In most practical optimization
work, the Hessian is not available directly and its computation is both expensive and prone
to difficulties. Therefore, a range of methods have been developed that exploit gradient
information and work without the Hessian, or with a series of approximations that converge
toward it.

Conjugate Gradient Methods

Conjugate gradient searches work without the Hessian but try to improve on the behavior of
simple steepest descent methods. The key problem with the steepest descent type approach
is that the direction of steepest gradient rarely points toward the desired minimum, even
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if the function being searched is quadratic (in fact, only if the contours are circular does
this direction always point to the minimum – an extremely unlikely circumstance in real
problems). Conjugate gradient methods are based on the observation that a line through the
minimum of quadratic function cuts all the contours of the objective function at the same
angle. If we restrict our searches to run along such directions, we can, in theory, minimize an
arbitrary quadratic form in the same number of line searches as there are dimensions in the
problem, provided the line search is accurate. In practice, badly scaled problems can impact
on this and, moreover, few real problems are actually quadratic in this way. Nonetheless,
they usually provide a worthwhile improvement on simple steepest descent methods.

To design a conjugate gradient search, we must set out a means to decide on the conjugate
directions and then simply line search down them. The conjugate gradient method starts in
the current direction of steepest descent v0 = −∇f (x0) and searches until the minimum is
found in that direction. Thereafter, it moves in conjugate directions such that each subsequent
direction vector vi obeys the conjugacy condition viAvj = 0. These are found without direct
knowledge of A by use of the recursion formula vi+1 = λvi − ∇f (xi+1), where

λ = ∇f (xi+1)
T∇f (xi+1)/∇f (xi )

T∇f (xi ) or (3.5)

λ = (∇f (xi+1) − ∇f (xi ))
T∇f (xi+1)/∇f (xi )

T∇f (xi ). (3.6)

The first of these two expressions for the factor λ is due to Fletcher and Reeves and is the
original version of the method, while the later is due to Polak and Ribiere and helps the
process deal with functions that are not precisely quadratic in nature. Notice that in this
process there is no attempt to build up a model of the matrix A (requiring storage of the
dimension of the problem size squared) – rather the idea is to be able to identify the next
conjugate direction whenever a line minimization is complete using storage proportional to
the dimension of the problem. The behavior of this kind of search is directly dependent
on the quality of the gradient information being used and the accuracy of the line searches
carried out in each of the conjugate directions.

Conjugate gradient searches are illustrated in Figures 3.6(a) and (b) for both forms of the
recursion formula and with gradients either found by finite differencing or explicitly from
the formulation of the problem itself. In all cases, Brent’s line search is used along each
conjugate direction, the code being taken from the work of Press et al. (1992). Rather coarse
steps are used for the finite differencing schemes to illustrate the effect that inaccuracies in
gradient information can have on the search process, but in fact, the consequences are here
minor, amounting to around 5% more function calls and less than 0.1% error in the final
solution (although this does help distinguish the traces in the figures). Table 3.1 details the
results of these four searches. It is clear from the figures and the table that even though the
function being dealt with here is very smooth and its contours quite close to elliptic, the
recursion formula due to Polak and Ribiere leads to a much more efficient identification of
the true conjugate directions. Further, the use of exact gradient information not only speeds
up the process, but also leads to more accurate answers.

It should be noted in passing that the code implementations due to Press et al. have been
criticized in some quarters as being rather inefficient and sometimes not completely reli-
able. There are faster implementations but these are usually more complex to code and not
always as robust. To illustrate the speed differences, Table 3.1 also contains results from the
version described by Gilbert and Nocedal (1992), which are available from the web-based
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(b) Polak–Ribiere

Figure 3.6 Conjugate gradient searches.

Table 3.1 Results of conjugate gradient searches on local optimum in the bump function
of (3.2)

Method Gradient Source of Final Objective Number of
Calculation Code Function Value Function Calls

(% of true (gradient calls)
optimal objective)

Fletcher–Reeves Direct Press et al. −0.26201 (99.7) 215 (84)

Gilbert and −0.26289 (100) 99 (99)
Nocedal

Finite Press et al. −0.26106 (99.3) 385 (0)

difference Gilbert and −0.26267 (99.9) 282 (0)
Nocedal

Polak–Ribiere Direct Press et al. −0.26290 (100) 52 (19)

Gilbert and −0.26290 (100) 17 (17)
Nocedal

Finite Press et al. −0.26289 (100) 113 (0)

difference Gilbert and −0.26286 (100) 45 (0)
Nocedal

NEOS service.2 These routines are substantially quicker (particularly when direct gradient
information is available), but also, in our experience, slightly more sensitive to noise and
rounding errors – the main differences stemming from the use of Mor’e and Thuente’s line

2http://www-neos.mcs.anl.gov/neos/
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search (Mor’e and Thuente 1994). The routine also seems not to like the function disconti-
nuities introduced by the one pass external penalty functions often used when constrained
problems are being tackled (see section 3.3.4). In all cases, similar tolerances on the final
solution were specified. Interestingly, the Press et al. code does not invoke the gradient
calculation at every step whereas the Gilbert and Nocedal version does. Choice in these
areas is often a matter of personal preference and experience and we make no particular
recommendation – we would also note that different workers’ implementations of the same
basic approaches often differ in this way.

Quasi-Newton or Variable Metric Methods

Quasi-Newton or variable metric methods also aim to find a local minimum with a minimal
sequence of line searches. They differ from conjugate gradient methods in that they slowly
build up a model of the Hessian matrix A. The extra storage required for most problems
encountered in engineering design is of no great consequence (modern PCs can happily deal
with problems where the Hessian has dimensions in the hundreds with no great difficulty).
There is some evidence that they are faster than conjugate gradient methods but this is
problem specific and also not so overwhelming that it renders conjugate gradient methods
completely obsolete. Again, choice between such approaches often comes down to personal
preference and experience.

The basic idea of quasi-Newton methods is to construct a sequence of matrices that
slowly approximate the inverse of the Hessian (A−1) in the region of the local minimum
with ever greater accuracy. Ideally, this sequence converges to A−1 in as many line searches
as there are dimensions in the problem. Given an approximation to the inverse Hessian
A−1, it is possible to compute the next step in the sequence in the same fashion as a
Newton search, although since we know it is only an approximation, line searches are used
rather than simple moves directly to the presumed optimal location. A key factor in the
practical implementation of this process is that the approximations to the inverse Hessian
are limited to being positive definite throughout, so that the search always moves in a
downhill direction – recall that far from the local minimum, the function being searched
may not behave quadratically and so the actual inverse Hessian at such a point may in fact
point uphill. Even so, it is still possible to make an uphill step by overshooting the minimum
in the current direction. Therefore, when implementing the algorithm, the step sizes must
be limited to avoid overshoot. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) updating
strategy achieves this (Press et al. 1992). Figure 3.7 and Table 3.2 illustrate the process
on the bump problem, c.f., Figures 3.6(a) and (b) and Table 3.1. The results obtained are
essentially identical to those yielded by the Polak–Ribiere conjugate gradient search.

Quasi-Newton routines can suffer from problems if the variables being used are poorly
scaled, as the inverse Hessian approximations can then become singular. By working with
the Cholesky decomposition of the Hessian rather than updates to its inverse, it is possible
to make sure that round-off errors do not lead to such problems and it is also then simple
to ensure that the Hessian is always positive definite – a version of this approach is due to
Spellucci (1996). An alternative is simply to restart the basic quasi-Newton method once it
has finished to see if it can make any further improvement – although untidy, such a simple
strategy is very easy to implement, of course. The results from using Spellucci’s code are
also given in Table 3.2. This works much faster when direct gradients are available but
slightly slower when they are not (although it then returns a slightly more accurate answer).
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Figure 3.7 Broyden–Fletcher–Goldfarb–Shanno quasi-Newton searches.

Table 3.2 Results of quasi-Newton searches on local optimum in the bump function of
(3.2)

Method Gradient Source Final Objective Number of
Calculation of Code Function Value Function Calls

(% of true (gradient
optimal objective) calls)

Broyden– Direct Press et al. −0.26290 (100) 54 (20)
Fletcher– Spellucci −0.26290 (100) 13 (12)
Goldfarb– Finite Press et al. −0.26288 (100) 124 (0)
Shanno– difference Spellucci −0.26290 (100) 157 (0)

This is because it uses a rather complex and accurate six-point method to compute the
gradients numerically when they are not available analytically.

The impact of the large finite difference steps we have used with the Press et al. code (and
thus the less accurate gradients being made available) is more noticeable here – adopting a
more normal step size reduces the function call count by around 30%, although again the
impact on the final results is still less than 0.1%. This sensitivity explains why the Spellucci
code uses the sophisticated approach that it does – since a model of the Hessian is being
slowly constructed in quasi-Newton methods, it is important for efficiency that this is not
corrupted by inaccurate information. Note also that the Spellucci quasi-Newton search with
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direct gradient calculations is clearly the fastest gradient-based method demonstrated of all
those considered here.

It is clear from a study of these methods that computation of the gradients is key to how
well they perform. Effort can be expended to do this highly accurately or, alternatively, more
robust line searches can be used. In either case, the resulting searches are much more costly
than where direct gradient information is available. It is these observations that have lead to
the considerable interest in the development of adjoint and direct numerical differentiation
schemes in many areas of analysis (and which are discussed in Chapter 4).

3.2.3 Noisy/Approximate Function Values

It will be clear from the previous subsections that gradient-based searches can rapidly
identify optima in a fitness landscape with high precision. Although there is some variation
between methods and also some subtleties in the fine workings of these searches, there is
much experience on their use and readily available public domain codes. Of course, these
methods only seek to follow the local gradient to the nearest optimum in the function, and
so, if they are to be used where there are multiple optima, they must be restarted from several
different starting points to try and find these alternative solutions. One great weakness in
gradient-based searches, however, is their rather poor ability to deal with any noise in the
objective function landscape.

Noise in computational methods is rather different from the kind found in ordinary
experimental or in-service testing of products because it is repeatable in nature. When one
carries out multiple wind tunnel tests on the same wing, each result will differ slightly from
the last – this is a commonplace experience, and all practical experimenters will take steps
to deal with the noise, usually by some form of averaging over multiple samples. With
computational models, a rather different scenario arises: repeating a computation multiple
times will (at least should) lead to the same results being returned each time. This does
not mean that such results are free of noise, however: if the solver being used is iterative
in nature or if it requires a discretization scheme, then both of these aspects will influence
any results. When a small adjustment is made to the geometry being considered, then the
convergence process or the discretization may well differ sufficiently for any changes in
the results to be as much due to these sources of inaccuracy as to the altered geometry
itself. If one then systematically plots the variation of some objective function for a fine
grained series of geometry changes, the resulting curves appear to be contaminated with
noise; see Figure 3.8 – the fact that the detail of such a noise landscape is repeatable does
not mitigate the impact it can have on optimization processes, particularly those that make
use of gradients, and most severely, if those gradients are obtained by finite differencing
over short length scales.

To illustrate this fact, the results from the previous two tables may be compared with
those in Table 3.3. Here, the same objective function has been used except that in each
case a small (1%) random element has been added to the function (and where used, the
gradient). The results in the table are averages taken over 100 runs of each search method
with statistically independent noise landscapes in each case. It may be seen that there are two
consequences: first, the methods take many more steps to converge (if they do converge), and
secondly, the locations returned by the optimizers are often significantly in error compared
to the actual optimum. These tests reveal that quasi-Newton methods have greater difficulty
dealing with noise, in that not only do they return poorer results but also sometimes the
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Figure 3.8 An objective function contaminated by discretization noise and the occasional
failed calculation – airfoil section drag computed using a full potential code for variations
in orthogonal shape functions (M = 0.80, t/c = 0.06, Cl = 0.4).

calculations become singular and fail. Note also that the standard deviations in the results
in the table tend to be worse when using finite differences than for the directly evaluated
gradients, although, interestingly, the mean value of the Polak–Ribiere conjugate gradient
search due to Press et al. is in fact slightly better when using finite differences. Recall,
however, that a rather coarse finite difference step length is being used here (0.01) and this
in fact helps when dealing with a noisy function since then the chances of extreme gradients
being calculated are reduced. If a much smaller (and more normal) step length of 1×10−7

is used, the results become much worse for the finite differencing schemes – that for the
Press et al. Polak–Ribiere search drops to an average objective function value of −0.17595
(66.9% of the true value) with a standard deviation of 0.0886 (an order of magnitude
worse) and an average search length of 1,083 calls. Clearly, when dealing with a function
that is not strictly smooth, any gradient-based method must be used with extreme caution.
If finite differencing is to be used, then step lengths must be adopted that are comparable
with the noise content. Note that, again here, we also give results from the Gilbert and
Nocedal conjugate gradient and Spellucci BFGS searches for comparison – they fare less
well as they often fail to converge and give rather poorer results, though they retain their
undoubted speed advantage.
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It is also the case that none of the codes used here has been specifically adapted for
working in noisy landscapes. If the designer knows that the analysis methods in use have
some kind of noise content, then great care should be taken when selecting and using
search engines. Certainly, the methods that are fastest on clean data will rarely prove so
effective when noise is present – they can however sometimes be adapted to cope in these
circumstances (as here, for example, by using larger than normal step sizes when finite
differencing).

3.2.4 Nongradient Algorithms

Because establishing the gradient of the objective function in all directions during a search
can prove difficult, time consuming and sensitive to noise, a variety of search methods have
been developed that work without explicit knowledge of gradients. These methods may be
grouped in a variety of ways and are known by a range of names. Perhaps, the best term
for them collectively is “zeroth order methods” (as opposed to first-order methods, which
draw on the first differential of the function, etc.) although the term “direct search” is also
often used. The most common distinction within these methods is between pattern/direct
searches and stochastic/evolutionary algorithms. This distinction is both historical, in that
pattern/direct search methods were developed first, and also functional since the stochastic
and evolutionary methods are generally aimed at finding multiple optima in a landscape,
while pattern/direct methods tend simply to be trying to find the location of the nearest
optimum without recourse to gradient calculations. In either case, it will be clear that the
problems of obtaining gradients by finite differencing in a noisy landscape are immediately
overcome by simply not carrying out this step. It is also the case that these methods are often
capable of working directly with discrete variable problems since at most stages all that they
need to be able to do is to rank alternative designs. If, however, the problem at hand is
not noisy, gradients can be found relatively easily and only a local search is required, it is
always better to use gradient-based methods, such as the conjugate or quasi-Newton-based
approaches already described. When there are modest amounts of noise or the gradients are
modestly expensive to compute, no clear-cut guidance can be offered and experimentation
with the various alternatives is then well worthwhile.

Pattern or Direct Search

Pattern (or direct) searches all involve some form of algorithm that seeks to improve a
design based on samples in the vicinity of the current point. They work by making a trial
step in some direction and seeing if the resulting design is better than that at the base point.
This comparison does not require knowledge of the gradient or distance between the points,
but simply that the two designs can be correctly ranked. Then, if the new design is an
improvement, the step is captured and a further trial made, usually in the same direction
but perhaps with a different step length. If the trial move does not improve the design, an
alternative direction is chosen and a further trial made. If steps in all directions make the
design worse, the step size is reduced and a further set of explorations made. Sometimes,
the local trials are augmented with longer-range moves in an attempt to speed up the search
process. Usually, these are based on analysis of recent successful samples. In this way, a
series of gradually converging steps is made that tries to greedily capture improvements
on the current situation. This process continues until some minimum length of step fails to
produce an improvement in any direction and it is then assumed that the local optimum has
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been reached. A common feature of these searches is that the directions used in the local
trial span the space being searched, that is, they comprise a set of directions that can be used
to create a vector in any direction. In this way, they offer some guarantees of convergence,
though often these are not as robust as for gradient-based methods.

In general, pattern searches have no way of accepting designs poorer than the current
base point, even if moves in such a direction may ultimately prove to be profitable. It is this
fact that makes these methods suitable only for finding the location of the nearest optimum
and not for global searches over multimodal landscapes. If multiple optima are to be found
with pattern searches, then they must be restarted from various locations so that multiple
basins of attraction can be sampled. Usually, stochastic or evolutionary methods are better
for such tasks, at least to begin with.

To see how pattern searches work, it is useful to review two well-accepted methods.
The most well known methods are probably those due to Hooke and Jeeves (1960) and
Nelder and Mead (1965). This latter search is also commonly referred to as the Simplex
algorithm – not to be confused with the simplex method of linear programming. Both date
from the 1960s and their continued use is testament to their inherent robustness in dealing
with real problems and relative simplicity of programming. The approach due to Hooke and
Jeeves is the earlier, so we begin with a description of their method.

The pattern search of Hooke and Jeeves begins at whatever point the user supplies and
carries out an initial exploratory search by making a step of the given initial step size in
the direction of increasing the first variable. If this improves the design, the base point is
updated and the second variable is tested. If it fails, a negative step in the direction of the
first variable is taken and again this is kept if it helps. If both fail, the second variable is
tested, with any gains being kept, and so on, until all steps of this size have been tested
and any gains made. This sequence of explorations gives a characteristic staircase pattern,
aligned with the coordinate system; see the clusters of points in Figure 3.9.

When all coordinate directions have been tested, a pattern move is made. This involves
changing all variables by the same amount as cumulated over the previous exploratory search
(the diagonal moves in Figure 3.9). If this works, it is kept, while if not, it is abandoned
(this happens twice in the figure, where it overshoots the downhill direction). In either case,
a new exploratory search is made. At the end of the exploration, another pattern move
is made; however, this time if the previous pattern move was successful, the next pattern
move is built from a combination of the just completed exploratory steps and the previous
pattern move, that is, the pattern move becomes bigger after each successful exploratory
search/pattern move combination and slowly aligns itself to the most profitable direction of
move. This allows the search to make larger and larger steps. Conversely, once a pattern
move fails, the search resets and has to start accumulating pattern moves from scratch.
Finally, if none of the exploratory steps yields an improvement, the step size is reduced by
an arbitrary factor and the whole process restarted. This goes on until the minimum step
size is reached. The only parameters needed are the initial and minimum step sizes, the
reduction factor when exploratory moves fail and the total number of steps allowed before
aborting the search. Clearly, a smaller final step size gives a more refined answer, while a
smaller reduction factor tends to slow the search into a more careful process that is more
capable of teasing out fine detail.

It is immediately apparent from studying the figure that the Hooke and Jeeves search
will not initially align itself with the prevailing downhill direction. Rather, a number of
pattern moves have to be made before the method adapts to the local topography. If, while



128 ELEMENTS OF NUMERICAL OPTIMIZATION

1.4

1.6

1.8

2.0

2.2

2.4

x(
2)

2.8 3.0 3.2 3.4

x(1)

0.15

0.25

0.2

0.15

0.1

0.05

0.2

0.2

0.15

0.15

Figure 3.9 The Hooke and Jeeves pattern search in two dimensions.

Table 3.4 Results of pattern searches on local optimum in the bump function of
(3.2) without and with 1% noise (using the code provided by Siddall in both cases)

Method Noise Final Objective Number of
Function Value Function Calls

(% of true optimal objective)

Hooke and Jeeves none −0.26290 (100) 167
1% −0.22757 (86.6) 375

Nelder and Mead none −0.26290 (100) 181
1% −0.25409 (96.6) 149

these moves are made, the local landscape seen by the optimizer changes so that the ideal
search direction swings around, as here, eventually the method starts to run uphill and a new
set of explorations becomes necessary. Thus, it is almost inevitable that such a search will
be slower than those that build models of the gradient landscape. Nonetheless, the search is
robust and quite efficient when compared to other schemes, particularly on noisy landscapes
or those with discontinuities; see Table 3.4, which shows results achieved from the version
of the code provided in Siddall (1982).

The Nelder and Mead simplex search is based around the idea of the simplex, a geo-
metrical shape that has n + 1 vertices in n dimensions (i.e., a triangle in two dimensions
and a tetrahedron in three, etc). Provided a simplex encloses some volume (or area in two
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dimensions), then if one vertex is taken as the origin, the vectors connecting it to the other
vertices span the vector space being searched (i.e., a combination of these vectors, suitably
scaled, will reach any other point in the domain). The basic moves of the algorithm are as
follows:

1. reflection – the vertex where the function is worst is reflected through the face oppo-
site, but the volume of the simplex is maintained;

2. reflection and expansion – the worst vertex is again reflected through the face opposite
but the point is placed further from the face being used for reflection than where it
started with the volume of the simplex being increased;

3. contraction – a vertex is simply pulled toward the face opposite and the volume of
the simplex reduced;

4. multiple contraction – a face is pulled toward the vertex opposite, again reducing the
volume of the simplex.

To decide which step to take next, the algorithm compares the best, next to best and
worst vertices of the simplex to a point opposite the worst point and outside the simplex (the
trial point), labeled b, n, w and r , respectively in Figure 3.10, which illustrates the search
in two dimensions (and where the simplexes are then triangles). The distance the trial point
lies outside the simplex is controlled by a scaling parameter that can be user defined, but is
commonly unity. The following tests are then applied in series:

1. if the objective function at the trial point lies between the best and the next to best,
the trial point is accepted in lieu of the worst, that is, the simplex is reflected;

b

n

w

r

b,b–1

n,r–1

w,n–1

w–1

r

Figure 3.10 The Nelder and Mead simplex method.
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2. if the trial point is better than the current best point, not only is the worst point
replaced by the best but the simplex is expanded in this direction, that is, reflection
and expansion – if the expansion fails, a simple reflection is used instead;

3. if the trial point is poorer than the current worst point, the simplex is contracted such
that a new trial point is found along the line joining the current worst point and the
existing trial point, if this new trial point is better than the worst simplex point, it is
accepted, that is, contraction, while if it is not, all points bar the best are contracted,
that is, multiple contraction;

4. otherwise, the trial point is at least better than the worst, so a new simplex is con-
structed on the basis of this point replacing the worst and in addition a contraction is
also carried out.

This rather complex series of steps is set out in the original reference and many subsequent
books. It is studied in some detail by Lagarias et al. (1998). The process terminates when
the simplex is reduced to a user set minimum size or the average difference between the
vertex objective function values is below a user-supplied tolerance. To apply the method,
the user must supply the coordinates of the first simplex (usually by making a series of small
deflections to a single starting point) and decide the parameters controlling the expansion and
contraction ratios. Table 3.4 also shows results for using this routine on the bump function
both with and without noise. Figure 3.11 illustrates the search path for the noise-free case.
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Figure 3.11 The Nelder and Mead simplex search in two dimensions.
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The method is reasonably efficient and robust and not surprisingly therefore remains very
popular.

This brief description of two of the oldest pattern or direct searches illustrates two aspects
that are common to all such methods: first, there is a process for making cautious downhill
movements by searching exhaustively across a set of directions that span the search space,
typically with quite modest steps (sometimes referred to as “polling” the search space); and,
secondly, there is some form of acceleration process that seeks to take larger steps when
the previous few moves seem to justify this. The first of these is aimed at ensuring some
form of convergence while the second tries to make the process more efficient by covering
the ground with fewer steps. When designing a pattern search, these two issues must be
borne in mind and suitable strategies implemented to allow the search to switch between
them when needed.

Perhaps, the greatest area for innovation lies in the way that accelerated moves are
made: in this phase, the algorithm is seeking to guess what the surface will be like some
distance beyond what may be justified by a simple linear model using the current local
exploration. A number of ideas have been proposed and some researchers refer to this part
of pattern searches as “the oracle”, indicating the attempt to see into the future! There are
a number of themes that emerge in such exploration systems. One approach is to use as
much of the previous history of the search as possible to build up some approximation
that can used as a surrogate for the real function – this can then be analyzed to locate
interesting places to try. It has one significant drawback – how far back should data be
used in constructing this approximation? If the data used is too far from the current area
of search, it may be misleading, and if it is too recent, it may add very little. The most
common alternative is to scatter a small number of points forward from the current location
and build an approximation that reaches into the search – clearly, for this to differ from
the basic polling search process, it must use larger steps and fewer of them. Again, this
is the drawback – if too few steps are used, the approximation will be poor, and if they
are to close to the current design, the gains will be limited. Formal design of experiment
(DoE) methods can help in planning such moves in that they help maximize the return on
investment in such speculative calculations.

In any work on constructing oracle-like approximations, choice must also be made as
to whether the approximation in use will interpolate the data used or alternatively a lower
order regression model will be adopted. Adaptive step lengths can also be programmed in
so that the algorithm becomes greedier the more successful it is. Provided the search is
always able to fall back on the small step, exhaustive local polling searches using a basis
that spans the space, it should be able to get (near) to the optimal location in the end. It is, of
course, also the case that in much design work an improvement in design is the main goal,
given reasonable amounts of computing effort, rather than a fully converged optimal design,
which may be oversensitive to some of the uncertainties always present in computationally
based performance prediction.

Although pattern searches remain popular, they do have drawbacks, often in terms of
final convergence. For example, it has been demonstrated that the original Nelder and
Mead method can be fooled by some search problems into collapsing its simplexes into
degenerate forms that stall the search. In fact, all pattern search methods can be fooled
by suitably chosen functions that are either discontinuous or have discontinuous gradients
into terminating before finding a local optimum. There are a number of refinements now
available that correct many of these issues, but the basic limitation remains. The work of
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Kolda et al. (2003) shows how far provable convergence can be taken in various forms of
pattern search, for example. Despite such limitations, pattern search methods often work
better in practice than might be expected in theory. Moreover, a simple restart of a pattern
search is often the easiest way to check for convergence. If the method is truly at an optimal
location, the cost of such a restart is typically small compared to the cost of arriving at the
optimum in the first place. Another approach is to take a small random walk in the vicinity
of the final design and see if this helps at all – again, this is easy to program and is usually
of low cost.

It will be apparent from all this that many variants of pattern/direct search exist and
some effort has been directed toward establishing a taxonomy of methods (Kolda et al.
2003). One variant that the authors have found useful for problems with a small amount
of multimodality is the Dynamic Hill Climbing (DHC) method of Yuret and de la Maza
(1993) – this combines pattern search with an automated restart capability that seeks to
identify fresh basins of attraction. Since these restarts are stochastic in nature, it bridges the
division between pattern and stochastic methods that we consider next (and is thus a form
of hybrid search; see later).

Stochastic and Evolutionary Algorithms

The terms stochastic and evolutionary are used to refer to a range of search algorithms
that have two fundamental features in common. First, the methods all make use of random
number sequences in some fashion, so that if a search is repeated from the same starting
point with all parameters set the same, but with a different random number sequence, it
will follow a different trajectory over the fitness landscape in the attempt to locate an
optimal design. Secondly, the methods all seek to find globally, as opposed to locally,
optimal designs. Thus, they are all capable of rejecting a design that is at some minimum
(or maximum) of the objective function in the search for better designs, that is, they are
capable of accepting poorer designs in the search for the best design.

These methods have a number of distinct origins and development histories but can,
nevertheless, be broadly classified by a single taxonomy. The most well known methods
are simulated annealing (SA), genetic algorithms (GA), evolution strategies (ES) and evo-
lutionary programming (EP). We will outline each of these basic approaches in turn before
drawing out their common threads and exploring their relative merits and weaknesses.

Simulated annealing optimization draws its inspiration from the process whereby crys-
talline structures take up minimum energy configurations if cooled sufficiently slowly from
some high temperature. The basic idea is to allow the design to “vibrate” wildly to start with
so that moves can be made in arbitrary directions and then to slowly “cool” the design so that
the moves becomes less arbitrary and more downhill in focus until the design “solidifies”,
hopefully into some minimum energy state. The basic elements of this process are:

1. a scheme for generating (usually random) perturbations to the current design;

2. a temperature schedule that is monitored when taking decisions;

3. a model of the so-called Boltzmann probability distribution P (E) = exp(−dE/kT ),
where T is the temperature, dE is the change in energy and k is Boltzmann’s constant.

At any point in the algorithm, the current objective function value is mapped to an energy
level and compared to the energy level of a proposed change in the design produced using
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the perturbation scheme, that is, dE is calculated. If the perturbed design is an improvement
on the current design, this move is accepted. If it is worse, it may still be accepted but
this decision is made according to the Boltzmann probability, that is, a random number
uniformly distributed between zero and one is drawn and, if exp(−dE/kT ) is greater than
this number, the design is still accepted. To begin with, the temperature T is set high so
that almost all changes are kept. Then, as T is reduced, designs have increasingly to be an
improvement to be used. In this way, the process starts as a simple random walk across
the search space and ends as a greedy downhill search with random moves. This basic
Metropolis algorithm is described by Kirkpatrick et al. (1983).

It is nowadays a commonly accepted practice that the temperature should be reduced
in a logarithmic fashion though this can be done continuously or in a series of steps (the
authors tend to use a fixed number of steps). Also, it is necessary to establish the value for
the “Boltzmann” constant for any particular mapping of objective function to E. This is
most readily achieved by making a few random samples across the search space to establish
the kinds of variation seen when changes are made according to the scheme in use. The
aim is that the initial value of kT should be significantly larger than the typical values of
dE seen (typically, ten times more).

The most difficult aspect of setting up a SA scheme is to decide how to make the
perturbations between designs. These need to be able to span the search space being used
and can come from a variety of mechanisms. One very simple scheme is just to make
random changes to the design variables. Many references describe much more elaborate
approaches that have been tuned to problem-specific features of the landscape.

Genetic Algorithms are based on models of Darwinian evolution, that is, survival of the
fittest. They have been discussed for at least 35 years in the literature but perhaps the most
well known book on the subject is that by Goldberg (1989). The basic idea is that a pool of
solutions, known as the population, is built and analyzed and then used to construct a new,
and hopefully improved, pool by methods that mimic those of natural selection. Key among
these are the ideas of fitness and crossover, that is, designs that are better than the average
are more likely to contribute to the next generation than those that are below average (which
provides the pressure for improvement) and that new designs are produced by combining
ideas from multiple (usually two) “parents” in the population (which provides a mechanism
for exploring the search space and taking successful ideas forward). This process is meant
to mimic the natural process of crossover in the DNA of creatures that are successful in
their environment. Here, the vector of design variables is treated as the genetic material of
the design and it is this that is used when creating new designs. Various forms of encoding
this information are used, of which the most popular are a simple binary mapping and the
use of the real variables directly. There are numerous ways of modeling the selection of
the fittest and for carrying out the “breeding” process of crossover. The simplest would be
roulette wheel sampling whereby a design’s chances of being used for breeding are random
but directly proportional to fitness and one point binary crossover whereby a new design is
created by taking a random length string of information from the leading end of parent one
and simply filling the remaining gaps from the back end of parent two.

There are a number of further features that are found in GAs: mutation is commonly
adopted, whereby small random changes are introduced into designs so that, in theory, all
regions of the search space may be reached by the algorithm. Elitism is also normally used,
whereby the best design encountered so far is guaranteed to survive to the next generation
unaltered, so that the process cannot lose any gains that is has made (this, of course,
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Figure 3.12 Genetic algorithm model and operators.

has no natural equivalent – it amounts to immortality until a creature is killed by a better
one). Inversion or some form of positional mapping is also sometimes used to ensure that
when crossover takes place the location of specific pieces of information in the genetic
makeup can be matched to other, related aspects. The population pool in the method can
vary in size during search and it can be updated gradually or all at one time. In addition,
various methods have been proposed to prevent premature convergence (dominance) of the
population by mediocre designs that arrive early in the search. Most common are various
niche and resource sharing methods that make overly popular designs work harder for their
place in the population. The literature in this field is vast but the interested reader can find
most of the ideas that have proved useful by studying the first five sets of proceedings of
the International Conference on Genetic Algorithms (Belew and Booker 1991; Forrest 1993;
Grefenstette 1985, 1987; Schaffer 1989).

The basic processes involved can be illustrated by considering a simple “vanilla” GA
applied to a two-dimensional problem that uses eight-bit binary encoding. In such a model
each design is mapped into a binary string of 16 digits; see Figure 3.12a. The first eight bits
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are mapped to variable one such that 00000000 equates to the lower bound and 11111111
to the upper, with 256 values in total; and similarly for variable two. If we take two
designs, these may be “crossed” using single-point crossover by randomly selecting a cut
point between 1 and 15, say 5; see the upper part of Figure 3.12(b). Then, we create two
“children” from the two “parents” by forming child one from bits 1–5 of parent one and
6–16 of parent two while child two is formed from the remaining material, that is, bits 1–5
of parent two and bits 6–16 of parent one; see the lower part of Figure 3.12(b). Mutation
can then be added by simply flipping an arbitrary bit in arbitrary children according to
some random number scheme, usually at low probability; see Figure 3.12(c). Provided that
selection for parenthood is linked in some way to the quality of the designs being studied, this
seemingly trivial process yields a powerful search engine capable of locating good designs
in difficult multimodal search spaces. Nonetheless, a vanilla GA such as that just described
is very far from representing the state of the art and will perform poorly when compared
to the much more sophisticated methods now commonly available – its description here is
given just to illustrate the basic process.

Evolution Strategies use evolving populations of solutions in much the same way as
GAs. Their origins lie with a group of German researchers in the 1960s and 1970s (Back
et al. 1991) (i.e., at about the same time as GAs). However, as initially conceived, they
worked without the process of crossover and instead focused on a sophisticated evolving
vector of mutation parameters. Also, they always use a real-valued encoding. The basic idea
was to take a single parent design and make mutations to it that differed in the differing
dimensions of the search. Then, the resulting child would either be adopted irrespective
of any improvements or, alternatively, be compared to the parent and the best taken. In
either case, the mutations adopted in producing the child were encoded into the child along
with the design variables. These were stored as a list of standard deviations and also,
sometimes, as correlations and were then themselves mutated in further operations, that
is, the process evolved a mutation control vector that suited the landscape being searched
at the same time as it evolved a solution to the problem itself. In later developments, a
population-based formulation was introduced that does use a form of crossover and it is in
this form that ESs are normally encountered today. They still maintain relatively complex
mutation strategies as their hallmark, however. The resulting approach still takes one of
two basic forms: with the mutated children automatically replacing their parents, a so-
called (µ, λ)-ES, or with the next generation being selected from the combined parents and
children, a (µ + λ)-ES. In the latter case, if the best parent is better than the best child, it is
commonly preserved unchanged (elitism). The best of the solutions is remembered at each
pass to ensure that the final result is the best solution of all, irrespective of the selection
mechanism.

Crossover can be discrete or intermediate on both the design vector and the mutation
control vector. In some versions, the mutations introduced are correlated between the dif-
ferent search dimensions so that the search is better able to traverse long narrow valleys
that are inclined to the search axes. The breeding of new children can be discrete and then
individual design vector values are taken from either parent randomly or intermediate and
the values are then the average of those of the parents. Separate controls for the breeding
of the design vector and the mutation standard deviations are commonly available so that
these can use different approaches.
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In their simplest form, the mutations are controlled by vectors of standard deviations
which evolve with the various population members. Each element in the design vector is
changed by the addition of a random number with this standard deviation scaled to the
range of the variable. The rate at which the standard deviations change is controlled by
a parameter of the method, �σ such that σ NEXT

i = σ PREV
i exp(N (0, �σ )), where the σis

are the individual standard deviations and N (0, �σ) is a random number with zero mean
and �σ standard deviation. The σis are normally restricted to be less than some threshold
(say 0.1) so that the changes to the design vector (in a nondimensional unit hypercube) do
not simply push the vector to its extreme values. The initial values of the σis are user set,
typically at 0.025. Since successful children will owe their success, at least in part, to their
own vector of mutation controls, the process produces an adaptive mutation mechanism
capable of rapidly traversing the design space where needed and also of teasing out fine
detail near optimal locations. Because a population of designs is used, the method is capable
of searching multiple areas of a landscape in parallel.

In EP algorithms (Fogel 1993), evolution is carried out by forming a mutated child from
each parent in a population with mutation related to the objective function so that successful
ideas are mutated less. The objective functions of the children are then calculated and a
stochastic ranking process used to select the next parents from the combined set of parents
and children. The best of the solutions is kept unchanged at each pass to ensure that only
improvements are allowed. The mutation is controlled by a parameter that sets the order of
the variation in the amount of mutation with ranking. A value of one gives a linear change,
two a quadratic, and so on (only positive values being allowed). In all cases, the best parent
is not mutated and almost all bits in the worst are changed.

The stochastic process for deciding which elements survive involves jousting each mem-
ber against a tournament of other members selected at random (including possibly itself)
with a score being allocated for the number of members in the tournament worse than the
case being examined. Having scored all members of both parent and child generations, the
best half are kept to form the next set of parents. The average number of solutions in the
tournament is set by a second parameter. An elitist trap ensures that the best of all always
survives.

In EP, the variables in the problem are typically discretized in binary arithmetic so that
all ones (1111. . .) again would represent an upper bound and all zeros (0000. . .) the lower
bound. The total number of binary digits used to model a given design vector (the word
length) is the sum over each variable of this array – the longer the word length, the greater
the possible precision but the larger the search space. The algorithm works by forming a
given number of random guesses and then attempting to improve on them, maintaining a
population of best guesses as the process continues.

A number of common threads can be drawn out from these four methods:

1. a population of parent designs is used to produce a population of children that inherit
some of their characteristics (these populations may comprise only a single member
as in SA);

2. the mechanisms by which new designs are produced are stochastic in nature so that
multiple statistically independent runs of the search will give different results and
therefore averaging will be needed when assessing a method;



ELEMENTS OF NUMERICAL OPTIMIZATION 137

3. if there are multiple parents, they may be combined to produce children that inherit
some of their characteristics from each parent;

4. all children have some finite probability of undergoing a random mutation that allows
the search to reach all parts of the search space;

5. the probability rates that control the process by which changes are made may be
fixed, vary according to some preordained schedule or be adapted by the search itself
depending on the local landscape;

6. a method is incorporated to record the best design seen so far, as the search can both
cause the designs to improve and deteriorate;

7. some form of encoding may be used to provide the material that the search actually
works with; and

8. a number of user set parameters must be controlled to use the methods.

Finally, it should be noted that no guarantees of ultimate convergence can be provided with
evolutionary algorithms (EAs) and they are commonly slow at resolving precise optima,
particularly when compared to gradient-based methods.

Figures 3.13(a–d) show the points evaluated by a variant of each search method on the
bump test function with the best of generation/annealing temperature points linked by a line
(the codes are from the Options search package3). In all cases, 500 evaluations have been
allowed – such methods traditionally continue until told to stop rather than examining the
current best solution, since they are always trying to find new basins of attraction that have
yet to be explored. It is immediately apparent from the figures that all the methods search
across the whole space and none get bogged down on the nearest local minimum, instead
moving from local optimum to local optimum in the search for the globally best design.
All correctly identify the best basin of attraction, and Table 3.5 shows how good the final
values are when compared to the true optimum of −0.68002 in this unconstrained space,
when averaged over 100 independent runs.

There is little to choose between the methods except that the ES method occasionally
seems to get trapped in a slightly suboptimal basin. The performance of these methods on
harder problems with more dimensions and more local optima is of course not easy to predict
from such a simple trial. In almost all cases, careful tuning of a method to a landscape will
significantly improve performance. Moreover, when dealing with global search methods like
these, a trade-off must be made between speed of improvement in designs, quality of final
design returned and robustness against varying random number sequences. Usually, a robust
and fast improving process is most useful in the context of aerospace design, rather than
one that occasionally does very well but often fails or a very slow and painstaking search
that yields the best performance but only at very great computational expense. Another
important feature is the extent to which parallel computation can be invoked. Clearly, with
a population-based method that builds new generations in a stepwise fashion, an entire

3http://www.soton.ac.uk/∼ajk/options/welcome.html
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(a) Genetic algorithm

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

0.1

0.1
0.1

0.1

0.1

0.10.1

0.1

0.30.2
0.4 0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.20.30.40.5
0.1

0.2

x(1)

x(
2)

(b) Simulated annealing
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(c) Evolution strategy
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(d) Evolutionary programming

Figure 3.13 Evolutionary algorithm search traces on bump problem, (3.2), without con-
straints.

generation of calculations may be carried out simultaneously – such calculations can often
readily be mapped onto the individual processors of a large cluster. The fact that SA does
not readily allow this is one of the key drawbacks of the method.

One important common feature of the stochastic methods that make use of encoding
schemes is that these can very easily be mapped onto discrete or integer optimization
problems. For example, it is very easy to arrange for a binary encoding to map onto a list
of items rather than to real numbers – in fact, this is probably a more natural use of such
schemes. Even simulated annealing can be used in this way if a binary encoding scheme is
used to generate the perturbations needed to move from design to design.
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Table 3.5 Results of evolutionary searches on global optimization of the
bump function of (3.2) averaged over 100 independent runs using 500 evalu-
ations in each case (using the code provided by Keane in all cases)

Method Average % of True Standard Deviation in
Result Optimum Final Objective

(−0.68002) Function Value

GA −0.61606 90.6 0.0751
SA −0.61896 91.0 0.1128
ES −0.52065 76.6 0.1117
EP −0.58528 86.1 0.0831

3.2.5 Termination and Convergence Aspects

In all search methods, some mechanism must be put in place to terminate the process.
When engaged on local search, it is normal to terminate when the current design cannot be
improved upon in the local vicinity, that is, an optimum has been located. For global search,
no such simple test can be made, since there is always the possibility that a basin remains
to be found that, if searched, will contain a better design. In the first case, the search is
said to be converged, while in the second, it must be terminated using some more complex
criterion. These two issues are, of course, related. Moreover, if the cost of evaluations is
high, then it may well be necessary to terminate even a local search well before it is fully
converged. We are thus always concerned with the rate of improvement of a search with
each new evaluation.

In the classical gradient search literature, this rate of improvement is often described as
being linear, quadratic or superlinear, depending on an analysis of the underlying algorithm.
Formally, a search is said to be linear if, in the limit as the iteration count goes to infinity, the
rate of improvement tends to some fixed constant that is less than unity, that is, if |f (xi+1) −
f (x∗)|/|f (xi) − f (x∗)| = δ < 1, where f (x∗) is the final optimal objective function value.
If the ratio tends in the limit to zero, the search is said to be superlinear, while if |f (xi+1) −
f (x∗)|/|f (xi) − f (x∗)|2 = δ, the search is said to be quadratic. For example, the series 0.1,
0.01, 0.001, . . . exhibits linear convergence, 1/i! = 1, 1/2, 1/6, 1/24, 1/125, . . . is superlinear
and 0.1, 0.01, 0.0001, 0.000000001, . . . is quadratic.

Ideally, we would wish all searches to be superlinear or quadratic if possible. Newton’s
method is quadratically convergent if started sufficiently close to the optimum location.
Conjugate gradient and quasi-Newton searches are always at least linear and can approach
quadratic convergence. It is much more difficult to classify the speed of pattern and stochastic
searches. Fortunately, when carrying out real design work, a steady series of improvements
is usually considered enough! Nonetheless, faster searches are generally better than slower
ones and so we normally seek a steep gradient in the search history. Note also that the
accuracy with which an optimal design can be identified is limited to the square root of the
machine precision (and not the full precision), so it is never worth searching beyond this
limit – again, in real design work, such accuracy is rarely warranted since manufacturing
constraints will limit the precision that can be achieved in any final product.

When carrying out global searches, where there are presumed to be several local optima,
a range of other features must be considered when comparing search methods. Consider a
graph that shows the variation of objective function with iteration count for a collection of
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Figure 3.14 Search histories for a range of different search methods (+ – repeated
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algorithm).

different search methods, such as Figure 3.14. A number of features can be observed in this
plot. Obviously, the gradient tells us something about the convergence rate of the search
at any point. However, this is nonuniform in these traces and clearly goes through various
phases – this is to be expected if some of the time a search is attempting to identify new
basins of attraction and sometimes it is rapidly converging to the best point in a newly located
basin. Moreover, even if new basins can be regularly located, there will be no guarantee
that each new basin will contain a design that improves on the best so far. Sometimes, by
chance, or because the starting design is quite good, no basins beyond that first searched will
contain better designs. Whatever the circumstances, the designer must make some decision
on when to terminate a search and this cannot be based on local convergence criteria alone.
The four most common approaches are:

1. to terminate the search after a fixed number of iterations;

2. to terminate the search after a fixed elapsed time;

3. to terminate the search after a fixed number of iterations have produced no further
improvement in the global optimum; or

4. to terminate the search after a fixed number of distinct basins of attraction have been
located and searched.
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The last of these is only viable if the designer has some good understanding of the likely
number of basins in the problem being dealt with, though this is often possible when dealing
with variants on a familiar problem.

Given a termination criterion, it is then possible to try and rank different global search
methods; see again Figure 3.14. Here, we see that one search exhibits very good initial speed
but then slows down and is finally overtaken (simulated annealing), one that is slower but
continues to steadily improve throughout (genetic algorithm), a third that works in cycles,
with significant periods where it is searching inferior basins (dynamic hill climbing – a
multistart method) and a fourth that appears to make no progress to begin with but which
gets going some distance into the search (a Hooke and Jeeves pattern search with evolving
penalty). The methods can be ranked in a number of ways:

1. by the steepness of the initial gradient (useful if the function evaluation cost is high
and a simple improvement in design is all that is needed);

2. whether the ultimate design has a very good objective function (good if the function
cost is low or if a specific and demanding performance target must be met); or

3. if the area below the trace curve is low (important when one is trying to balance time
and quality in some way – N.B., it should be high for maximization, of course).

In addition, a number of other factors may be of interest, such as the volume of the search
space traversed. Consider a narrow cylindrical pipe placed around the search path as it
traverses the design space or small spheres placed around each new trial point – these
represent the volume explored in some sense. The repeatability of the search will also be of
interest if it is started from alternative initial designs or if used with differing random number
sequences – this is particularly important for stochastic search methods. Ideally, a global
search should explore the design space reasonably well within the limits of the available
computing budget and also be reasonably robust to starting conditions and random number
sequences. Depending on the circumstances, however, a search that is usually not very good
at getting high-quality designs but occasionally does really well may be useful – this may
be thought equivalent to having a temperamental star player on the team who can sometimes
score in unexpected circumstances. Such players can be very useful at times even if they
spend many games on the substitutes’ bench! Again, we offer no clear-cut recommendation
on how to rank search methods – we merely observe that many approaches are possible and
the designer should keep an open mind as to how to make rational choices.

3.3 Constrained Optimization

In almost all practical design work, the problems being dealt with are subject to a variety
of constraints. Such constraints are defined in many ways and restrict the freedom of the
designer to arbitrarily choose dimensions, materials, and so on, that might otherwise lead to
the best performance, lightest weight, lowest cost, and so on. It is also the case that many
classical optimization problems are similarly constrained and this has led to the development
of many ways of trying to satisfy constraints while carrying out optimization. More formally,
we can recall our definition of the optimization problem as the requirement to minimize the
function f (x) subject to multiple inequality constraints gi(x) ≥ 0 and equality constraints
hj (x) = 0. Note that in many real design problems the number of constraints may be very
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large, for example, in stress analysis we may require that the Von Mises stress be less than
some design stress at every node in a finite element mesh containing hundreds of thousands
of elements.

A key issue in dealing with constraints during design is the tolerance with which they
must be met. When examining the mathematical subtleties of a method’s convergence, we
may wish to satisfy constraints to within machine precision, but this is never required in
practical design work. In many cases, slight violation of a constraint may be permissible
if some other benefit is achieved by doing so – it is rare for anything in design work to
be so completely black and white that a change in the last significant digit in a quantity
renders a design unacceptable. Moreover, it is also arguable if equality constraints ever
occur for continuous variables in design – rather, such constraints can usually be regarded
as a tightly bound pair of inequality constraints and this is often how they must be treated
in practice. Nonetheless, in this section on constraints, we deal with the formal problem and
the methods that have been devised to deal with them – we simply urge the reader to keep
in mind that in practical work things are never so simple.

3.3.1 Problem Transformations

The most common way of dealing with constraints is to attempt to recast the problem into
one without constraints by some suitable transformation. The simplest example of this is
where there is an algebraic equality constraint that may be used to eliminate one of the
variables in the design vector. So, for example, consider trying to minimize the surface area
of a rectangular box where the volume is to be held fixed. If the sides have lengths L, B and
H , then it is clear that the total surface area A is 2(L × B + L × H + B × H), while the
volume V is just L × B × H . If the volume is given, then we may use this equality constraint
to eliminate the variable H by setting it equal to V/(L × B) and so the objective function
then becomes 2(L × B + (L + B) × V/(L × B)), that is, a function of two variables and
the constraint limit (the value V ), rather than three variables. Whenever such changes may
be made, this should automatically be done before starting to carry out any optimization.
Moreover, even when dealing with inequality constraints, such a transformation may still
be possible: if an inequality is not active at the location of the optimum being sought, it
can be ignored; if it is active, it can be replaced with an equality. Thus, if knowledge of
which constraints will be active can be found, these constraints can be eliminated similarly,
if simple enough.

Usually, however, the constraints being dealt with will result from some complex PDE
solver that cannot be so easily substituted for. Even when this is the case, equality constraints
can sometimes still usefully be removed by identifying a single variable that dominates the
constraint and then solving an “inner loop” that attempts to find the value of the key design
variable that satisfies the constraint by direct root searching. A classical example of this
occurs in wing design – it is common in such problems to require that the wing produce a
specified amount of lift while the angle of attack is one of the variables open to the designer.
If the overall aim is to change wing shape so as to minimize drag while holding lift fixed, this
can best be done by using two or three solves to identify the desired angle of attack for any
given geometry rather than simply leaving the angle of attack as one of a number of design
variables and attempting to impose a lift equality constraint on the search process. This
substitution works because we know, a priori, that angle of attack directly controls lift and,
moreover, that the relationship between the two is often very simple (approximately linear).
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3.3.2 Lagrangian Multipliers

Normally, it is not possible to simply remove constraints by direct substitution; other
methods must be adopted. The classical approach to the problem is to use Lagrangian
multipliers. If we initially restrict our analysis to equality constraints, then we may substi-
tute f (x) − ∑

λjhj (x) for the original constrained function. Here, the λj are the so-called
Lagrangian multipliers and the modified function is referred to as the Lagrangian function
(or simply the “Lagrangian” in much of the work in this field). If we now find a solution
such that the gradients of the Lagrangian all go to zero at the same time as the constraints are
satisfied, the final result will minimize the original problem (there are a number of further
requirements such as the functions being differentiable, linear independence of constraint
gradients, the Hessian of the Lagrangian being positive definite, and so on, the so-called
Karush–Kuhn–Tucker (KKT) conditions, but we omit discussions of these here for clar-
ity – see Boggs and Tolle (1989, 1995) for more complete details). The inclusion of the
multipliers increases the problem dimensions, since they must be chosen as well as the
design variables, but it also turns the optimization problem into the solution of a set of
coupled (nonlinear) equations.

A simple example will illustrate the multiplier idea. Let the objective function being
minimized f (x) be just x2 and the equality constraint be x = 1. It is obvious that the function
has a minimum of 1 at x = 1 (no other value of x satisfies the constraint). The equivalent
Lagrangian function with multiplier, f ′(x), is x2 − λ (x − 1), where the equality constraint
has been set up such that it equals zero, as required in our formulation. Figure 3.15 shows
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Figure 3.15 Plots of the Lagrangian function for various values of the Lagrangian multiplier
(that shown dotted is for λ = 2).
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a series of curves of this function for differing values of λ. Of these, the curve for λ = 2
is the one that has zero gradient (its minimum) at x = 1 and thus satisfies the constraint,
that is, minimizing x2 − 2(x − 1) minimizes the original objective function and satisfies
the equality constraint. When dealing with arbitrary functions, one must simultaneously
seek zeros of all the gradients of f ′(x) and search over all the λs for values that meet the
constraints.

Now, consider the situation where we have a single inequality constraint, for example,
x ≥ 1. It will be obvious that the solution to this problem is also at x = 1 and again the
objective function is just 1. To deal with this problem using Lagrangian multipliers, we
must introduce the idea of slack variables to convert the inequality constraint to an equality
constraint. Thus, if we have constraints gi(x) ≥ 0, we can write them as gi(x) − a2

i = 0,
where ai is a slack variable and then, proceeding as before, the Lagrangian becomes f (x) −∑

λjhj (x) − ∑
λi[gi(x) − a2

i ]. This of course introduces a further set of variables and so
now we must, in principle, search over the xs, λs and the as. To obtain equations for
the as, we just differentiate the Lagrangian with respect to these as and equate to zero,
yielding 2λiai = 0, so that at the minima either λi = 0 or ai = 0. In the first case, the
constraint has no effect (because it is not active at the minima), while in the second it has
been reduced to a simple equality constraint. This is perhaps best seen as a rather involved
mathematical way of saying that the inactive inequality constraints should be ignored and
the active ones treated simply as equalities – hardly an astounding revelation. Nonetheless,
in practice, it means that while searching for the Lagrangian multipliers that satisfy the
constraints one must also work out which inequality constraints are active and only satisfy
those that are – again something that is more difficult to do in practice than to write down.
In our example, the inequality is always active and so the solution is as before and the
curves of the Lagrangian remain the same.

Consider next our two-dimensional bumpy test function. Here, we have (cos4x1 +
cos4 x2 − 2 cos2 x1 cos2 x2)/(x

2
1 + 2x2

2 ) subject to x1x2 > 0.75 and x1 + x2 < 15. So, adding
slack variables a1 and a2 and multipliers λ1 and λ2, the Lagrangian becomes (cos4x1+
cos4x2 − 2 cos2 x1 cos2 x2)/(x

2
1 + 2 x2

2 ) − λ1 (x1x2 − 0.75 − a2
1) − λ2 (x1 + x2 − 15 − a2

2).
We can then study this new function for arbitrary values of the multipliers and slack vari-
ables. To use it to solve our optimization problem, we must identify which of the two
inequality constraints will be active at the minimum being sought – let us arbitrarily deal
with the product constraint and assume that it is active: remember in the interior space
neither constraint is active and so the problem reverts to an unconstrained one as far as
local search is concerned. To set the product constraint alone as active, we set a1 and a2

both to zero along with λ2 and just search for λ1, x and y. Remember that our requirement
for a minimum is that the gradients of the Lagrangian with respect to x and y both be
zero and that simultaneously the product constraint be satisfied as an equality, that is, three
conditions for the three unknowns.

Figures 3.16(a–c) show plots of the gradients and the constraint line for three different
values of λ1 and it is clear that in the third of these, when λ1 is equal to 0.5332, a solution
of (1.60086, 0.46850) solves the system of equations (in the first figure the contours of
zero gradient do not cross, while in the second they cross multiple times but away from the
constraint line). Figures 3.17 and 3.18 show a plot of the original and Lagrangian functions,
respectively, with this optimum position marked. It is clear that the minimum is correctly
located and that in Lagrangian space it lies at a saddle point and not a minimum (i.e., a
simple minimization of the augmented function will not locate the desired optimum – we
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(b) λ1 = 0.3
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Figure 3.16 Contour lines for gradients of the Lagrangian (dotted with respect to x1, dashed
with respect to x2) and the equality constraint x1x2 = 0.75. The square marker indicates the
position of the constrained local minimum.

require only that the Hessian of the Lagrangian be positive definite, that is, a stationary
point in the Lagrangian – this means that minimization of the Lagrangian will not solve
the original problem and is a key weakness of methods that exploit the KKT conditions
directly in this way). This process can be repeated for the other local optima on the product
constraint and, by setting λ1 to be zero and λ2 nonzero, those on the summation constraint
can also be found. The only other possibility is where the constraint lines cross so that both
might be active at a minimum. Here, this lies outside the range of interest and so is not
considered further.
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Figure 3.17 Contour lines of the Lagrangian (dotted) for λ1 = 0.5332 and the equality
constraint x1x2 = 0.75. The square marker indicates the position of the constrained local
minimum.

3.3.3 Feasible Directions Method

It will be clear that methods based on Lagrangian multipliers are designed to explore along
active constraint boundaries. By contrast, the feasible directions method (Zoutendijk 1960)
aims to stay as far away as possible from the boundaries formed by constraints. Clearly, this
approach is only applicable to inequality constraints, but as has already been noted, these are
usually in the majority in design work. The basic philosophy is to start at an active boundary
and follow a “best” direction into the feasible region of the search space. There are two
criteria used to select the best feasible direction. First is the obvious desire to improve the
objective function as rapidly as possible, that is, to follow steepest descent downhill. This
is, however, balanced with a desire to keep as far away as possible from the constraint
boundaries. To do this, the quantity β is maximized subject to – sTDgi({x}) + θiβ ≤ 0 for
each active constraint, sTDf (x) + β ≤ 0 and |si | ≤ 1, where s is the vector that defines the
direction to be taken and the θi are positive so-called push-off factors. The push-off factors
determine how far the search will move away from the constraint boundaries. Again, these
are problem dependent and are generally larger the more highly nonlinear the constraint is.
The key to this approach is that the maximization problem thus defined is linear and so can
be solved using linear programming methods which are extremely rapid and robust.

Once the search direction s has been fixed, we carry out a one-dimensional search in
this direction either until a minimum has been found or a constraint has been violated. In
the first case, we then revert to an unconstrained search as we are in the interior of the
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Figure 3.18 Contour lines of the original function and the constraint x1x2 = 0.75. The
square marker indicates the position of the constrained local minimum.

feasible region. In the second, we repeat the calculation of the feasible direction and iterate
the procedure. This basic approach is used in the popular Conmin program.4 In its basic
form, it can become inefficient when searching into a shallow bowl on a constraint surface,
since moving away from the boundary is then counterproductive.

3.3.4 Penalty Function Methods

It will be clear by now that there are no universally efficient and robust schemes for dealing
with constraints in design search problems. Perhaps, not surprisingly, a large number of
essentially heuristic approaches have therefore been developed that can be called upon
depending on the case in hand. One such class revolves around the concept of penalty
functions, which are somewhat related to Lagrangian multipliers. The simplest pure penalty
approach that can be applied, the so-called one pass external function, is to just add a
very large constant to the objective function value whenever any constraint is violated (or
if we are maximizing to just subtract this): that is, fp(x) = f (x) + P if any constraint is
violated, otherwise fp(x) = f (x). Then, the penalized function is searched instead of the
original objective. Provided the penalty added (P ) is very much larger than the function
being dealt with, this will create a severe cliff in the objective function landscape that will
tend to make search methods reject infeasible designs. This approach is “external” because
it is only applied in the infeasible regions of the search space and “one pass” because it is

4http://www.vrand.com
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immediately severe enough to ensure rejection of any infeasible designs. Although simple
to apply, the approach suffers from a number of drawbacks:

1. The slope of the objective function surface will not in general point toward feasible
space in the infeasible region so that if the search starts from, or falls into, the
infeasible region it will be unlikely to recover from this.

2. There is a severe discontinuity in the shape of the penalized objective at the constraint
boundary and so any final design that lies on the boundary is very hard to converge
to with precision, especially using efficient gradient-descent methods such as those
already described (and, commonly, many optima in design are defined by constraint
boundaries).

3. It takes no account of the number of constraint violations at any infeasible point.

Because of these limitations, a number of modifications have been proposed. First, a sepa-
rate penalty may be applied for each violated constraint. Additionally, the penalty may be
multiplied by the degree of violation of the constraint, and thirdly, some modification of the
penalty may be made in the feasible region of the search near the boundary (the so-called
interior space). None of these changes is as simple as might at first be supposed.

Consider first adding a penalty for each violated constraint: fp(x) = f (x) + mP , where
m is the number of violated constraints – this has the benefit of making the penalty more
severe when multiple constraints are violated. Care must be taken, however, to ensure
that the combined effect does not cause machine overflow. More importantly, it will be
clear that this approach adds more cliffs to the landscape – now, there are cliffs along
each constraint boundary so that the infeasible region may be riddled with them. The more
discontinuities present in the objective function space, the harder it is to search, particularly
with gradient-based methods.

Scaling the total penalty by multiplying by the degree of infeasibility is another pos-
sibility but can again lead to machine overflow. Now, fp(x) = f (x) + ∑

P 〈|gi(x)|〉 +∑
P 〈|hj (x)|〉, where the angle brackets 〈.〉 are taken to be zero if the constraint is sat-

isfied but return the argument value otherwise. In addition, if the desire is to cause the
objective function surface to point back toward feasibility, then knowledge is required of
how rapidly the constraint function varies in the infeasible region as compared to the objec-
tive function. If multiple infeasible constraints are to be dealt with in this fashion, they
will need normalizing together so that their relative scales are appropriate. Consider dealing
with a stress infeasibility in Pascals and a weight limit in metric tonnes – such elements
will commonly be six orders of magnitude different before scaling. If individual constraint
scaling is to be carried out, we need a separate Pi and Pj for each inequality and equality
constraint, respectively: fp(x) = f (x) + ∑

Pi〈|gi(x)|〉 + ∑
Pj 〈|hj (x)|〉. Finding appropri-

ate values for all these penalties requires knowledge of the problem being dealt with, which
may not be immediately obvious – in such cases, much trial and error may be needed before
appropriate values are found.

Providing an interior component for a penalty function is even harder. The aim of such
a function is, in some sense, to “warn” the search engine of an approaching constraint
boundary so that action can be taken before the search stumbles over the cliff. Typically,
this requires yet a further set of scaled penalties Si , so that fp(x) = f (x) + ∑

Pi〈|gi(x)|〉 +∑
Pj 〈|hj (x)|〉 + ∑

Si/g
s
i (x), where the superscript s indicates a satisfied inequality con-
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straint. Since the interior inequality constraint penalty goes to infinity at the boundary (where
gi(x) goes to zero) and decreases as the constraint is increasingly satisfied (positive), this
provides a shoulder on the feasible side of the function. However, in common with all
interior penalties, this potentially changes the location of the true objective away from the
boundary into the feasible region. Now, this may be desirable in design contexts, where a
design that is on the brink of violating a constraint is normally highly undesirable, but again
it introduces another complexity.

Thus far, all of the penalties mentioned have been defined only in terms of the design
variables in use. It is also possible to make any penalty vary depending on the stage of
the search, the idea being that penalties may usefully be weakened at the beginning of an
optimization run when the search engine is exploring the landscape, provided that suitably
severe penalties are applied at the end before the final optimum is returned. This leads to
the idea of Sequential Unconstrained Minimization Techniques (SUMT), where a series of
searches is carried out with ever more severe penalties, that is, the Pi , Pj and Si all become
functions of the search progress. Typically, the P values start small and increase while the
S values start large and tend to zero. To see this, consider Figure 3.19 (after Siddall (1982)
Fig. 6.27), where a single inequality constraint is shown in a two-dimensional problem and
the final optimal design is defined by the constraint location. It is clear from the cross
section that the penalized objective evolves as the constraints change so that initially a
search approaching the boundary from either side sees only a gentle distortion to the search
surface but finally this ends up looking identical to the cliff of a simple one pass exterior
penalty. A number of variants on these themes have been proposed, and they are more fully
explained by Siddall (1982) but it remains the case that the best choice will be problem
specific and often therefore a matter of taste and experience.
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Figure 3.19 Evolution of a penalty function in a Sequential Unconstrained Minimization
Technique (SUMT).
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3.3.5 Combined Lagrangian and Penalty Function Methods

Since many penalty functions introduce discontinuities which make search with efficient gra-
dient descent methods difficult, a potentially attractive approach is to combine a penalty with
the method of Lagrange multipliers. Again, we consider just the case of active constraints
(i.e., equalities). Now, our modified function becomes f (x) − ∑

λjhj (x) + c
∑

hj (x)2,
where c is some large, but not infinite penalty – this model is therefore amenable to search
by gradient-based methods provided the original objective and constraint functions are them-
selves smooth, that is, we have the smoothness of the Lagrangian approach combined with
the applicability of unconstrained search tools of simple penalty methods. To proceed, we
minimize this augmented function with arbitrary initial multipliers but then update the mul-
tipliers as λk+1

j = λk
j − 2ckhj (x)k , where the superscript or subscript k indicates the major

iteration count. Moreover, we also double the penalty ck at every major iteration, although,
it in fact only needs to be large enough to ensure that the Lagrangian has a minimum
at the desired solution rather than a stationary point (N.B., if ck becomes too large, the
problem may become ill-conditioned). If this process is started sufficiently close to an opti-
mum with sufficiently large initial penalty, a sequence of searches rapidly converges to
the desired minimum using only unconstrained (potentially gradient based) methods. Now,
while this still requires some experimentation, it can be simply used alongside any of the
unconstrained searches already outlined. Table 3.6 shows the results achieved if we fol-
low this approach on our bumpy test function with a Polak–Ribiere conjugate gradient
method.

3.3.6 Sequential Quadratic Programming

As has already been noted, the minimum of our constrained function does not lie at a
minimum of the Lagrangian, only at a stationary point where its Hessian is positive definite.
The most obvious approach to exploiting this fact is simply to apply Newton’s method to

Table 3.6 Results of a search with combined Lagrangian
multipliers and penalty function on the bump function of (3.2)

Major x1 x2 h(x)

Iteration (k)

1 2.0 1.0 1.25
2 1.599091 0.4656781 −0.0053383
3 1.600862 0.4685018 0.0000067
4 1.600861 0.4684972 −0.0000011
5 1.600861 0.4684978 −0.0000001

Major λ c Penalized f (x)

Iteration (k) Lagrangian

1 0.0 50 78.11924 0.005757
2 0.00028665 100 −0.36640314 0.36782957
3 0.5341084 200 −0.36497975 0.36497616
4 0.5327684 400 −0.36497975 0.36498033
5 0.5332084 −0.36497975 0.36497982
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search for the appropriate solution to the equations of the multipliers and gradients, but this
fails if the search is started too far from the optimum being sought. The minimum does,
however, lie at a minimum of the Lagrangian in the subspace of vectors orthogonal to the
gradients of the active constraints. This result is the basis for a class of methods known
as Sequential Quadratic Programming (SQP) (Boggs and Tolle 1995). In SQP, a quadratic
(convex) approximation to the Lagrangian with linear constraints is used, in some form, in
an iterative search for the multiplier and variable values that satisfy the KKT conditions.
At each step of this search, the quadratic optimization subproblem is efficiently solved
using methods like those already discussed (typically quasi-Newton) and the values of the
xs and λs updated until the correct solution is obtained. Ongoing research has provided
many sophisticated codes in this class. These are all somewhat complex, and so a detailed
exposition of their workings lies outside the scope of this text. Nonetheless, it will be clear
that such methods have to allow for the fact that as the design variables change it may well
be the case that the list of active inequality constraints also changes, so that some of λs
then need setting to zero while others are made nonzero. SQP methods also assume that
the functions and constraints being searched have continuous values and derivatives, and so
on, and so will not work well when there are function discontinuities – a situation that is
encountered all too often in design. Nonetheless, they remain among the most powerful tools
for solving local constrained optimization problems that are continuous; see for example
Lawrence and Tits (2001).

3.3.7 Chromosome Repair

So far, all of the constraint-handling mechanisms that have been described have been
designed with traditional sequential optimizers in mind. Moreover, all have aimed at trans-
forming the original objective function, either by eliminating constraints and thus changing
the input vector to the objective calculation or by adding some terms to the function actually
being searched. It is, however, possible to tackle constraints via the mechanism of repair – a
solution is said to be repaired when the resulting objective function value is replaced by
that of a nearby feasible solution. In the context of evolutionary computing, where such
mechanisms are popular and there are some biological analogies, this is commonly referred
to as “chromosome repair” since it is the chromosome that encodes the infeasible point
that is being repaired. Of course, repairing a design can be a difficult and costly business
and one that involves searching for a feasible (if not optimal) solution. The methods used
to do this are essentially exactly the same as in any other search process except that now
the objective is the feasibility of the solution rather than its quality and such a search is,
by definition, not constrained further. Here, we assume that some mechanism is available
to make the repair and restrict our discussion to what a search algorithm might do with a
repaired solution. This depends very much on how the search itself works.

After repair, we have a modified objective function value and also the coordinates of
the nearby feasible location where this applies. The simplest thing to do with this modified
function is to use it to replace the original objective and continue searching. It will be imme-
diately clear, however, that as one traverses down a vector normal to a constraint boundary
the most likely neighboring repair location will not change and so the updated objective
function would then become constant in some sense, that is, the objective function surface
would be flat in the infeasible region and the search would have no way of knowing that a
constraint had been violated. Now, this may not matter if a stochastic or population-based
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method is being used, since the next move will not be looking at the local gradient. Con-
versely, any downhill method is likely to become confused in such circumstances. In the
evolutionary search literature, such an approach is termed Baldwinian learning (Baldwin
1896; Hinton and Nowlan 1987).

The alternative approach is to use both the function and variable values of the nearby
feasible solution. This modifies the current design vector and so is not suitable for use
in any sequential search process where the search is trying to unfold some strategy that
guides the sequence of moves being taken: it would amount to having two people trying to
steer a vehicle at the same time. This does not matter, however, in evolutionary or stochastic
methods where the choice of the next design vector is anyway subject to random moves – the
repair process can be seen as merely adding a further mutation to the design over and above
that caused by the search algorithm itself. In the evolutionary search literature, this is termed
Lamarckian learning after the early naturalist, Jean-Baptiste Lamarck (Gould 1980).

Since Baldwinian learning can confuse a gradient-based search and Lamarckian learning
is incompatible with any form of directed search, it is no surprise that neither method finds
much popularity in sequential search applications. When it comes to evolutionary search,
they are more useful but still not simple to implement. Moreover, since the repair process
may itself be expensive, most workers tend to prefer the Lamarckian approach, which keeps
hold of all the information gleaned in making the repair. There is some evidence to show
that such a process helps evolutionary methods when applied to any local improvement
process (repair is just one of many ways that a design might be locally improved during an
evolutionary search) (Ong and Keane 2004). Even so, the evidence is thus far not compelling
enough to make the idea widely popular.

3.4 Metamodels and Response Surface Methods

One of the key factors in any optimization process is the cost of evaluating the objective
function(s) and any constraints. In test work dealing with simple mathematical expressions
this is not an issue, but in design activities, the function evaluation costs may well be
measured in hours or even days and so steps must always be taken to minimize the number
of function calls being used. Ideally, any mitigating strategies should work irrespective of
the dimensions of the problem. One very important way of trying to do this is via the
concept of response surface, surrogate or metamodels. In these, a small number of full
function (or constraint) evaluations are used to seed a database/curve-fitting process, which
is then interrogated in lieu of the full function whenever further information about the nature
of the problem is needed by the optimization process.

At its simplest, such metamodeling is just the use of linear regression through existing
calculations when results are needed for which the full simulations have not been run.
Of course, it is unlikely that the original set of calculations will be sufficiently close to
the desired optimal designs by chance, especially when working in many dimensions, so
some kind of updating or refinement scheme is commonly used with such models. Updating
enables the database and curve fit to be improved in an iterative way by selective addition of
further full calculations. Figure 3.20 illustrates such a scheme. In this section, we introduce
the basic ideas behind this way of working since they are key to many practical design
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Figure 3.20 Simple serial response surface method with updating.

approaches – a much more extensive treatment is provided in Chapters 5, 6 and 7. We
would note in passing that the idea of slowly building an internal model of the unknown
function is similar in spirit to the gradient-based methods that build local approximations to
the Hessian of a function – the main difference here is the explicit treatment of the model
and the fact that in many cases they are built to span much wider regions of the search
space.

There are a significant number of important decisions that a user must make when
following a metamodel-based search procedure:

1. How should the initial database be seeded with design calculations – will this be a
regular grid, random or should some more formal DoE approach be used?

2. Should the initial calculations be restricted to some local region of the search space
surrounding the current best design or should they attempt to span a much larger
range of possible configurations?

3. Can the initial set of calculations be run in parallel?

4. What kind of curve fit, metamodel or response surface should be used to represent
the data found by expensive calculation?

5. What will we do if some of the calculations fail, either because of computing issues or
because the underlying PDE cannot be solved for certain combinations of parameters?
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6. Is it possible to obtain gradient information directly at reasonable cost via use of
perturbation techniques or adjoint solvers and, if so, will these be used in building
the metamodel?

7. Is one model enough or should multiple models be built with one for each function
or constraint being dealt with?

8. If multiple models are to be built can they be correlated in some sense?

9. Should the model(s) strictly interpolate the data or is regression better?

10. Will the model(s) need some extensive tuning or training process to get the best from
the data?

11. What methods should be used to search the resulting surface(s)?

12. Having searched the metamodel, should a fresh full calculation be performed and the
database and curve fit updated?

13. If updates are to be performed, should any search on the surface(s) aim simply to
find the best predicted design or should some allowance be made for improving the
coverage of the database to reduce modeling errors, and so on?

14. If updates are to be performed, could multiple updates be run in parallel and, if so,
how should these multiple points be selected?

15. If an update scheme is to be used, what criteria will be used to terminate the process?

Answering all these questions for any particular design problem so as to provide a robust
and efficient search process requires considerable experience and insight.

3.4.1 Global versus Local Metamodels

At the time of writing, there are two very popular general metamodeling approaches. The
first is to begin with a formal DoE spanning the whole search space, carry out these runs
in parallel and then to build and tune a global response surface model using radial basis
function or Kriging methods. This model is then updated at the most promising locations
found by extensive searches on the metamodel, often using some formal criterion such as
expectation of improvement to balance improvements and model uncertainty – this approach
is illustrated in Figure 3.21 (Jones et al. 1998).

In the second approach, a local model is constructed around the current design location,
probably using an orthogonal array or part-factorial design. The results are then fitted with
a simple second-order (or even first-order) regression equation. This is searched to move in
a downhill direction up to some amount determined by a trust region limit. The model is
then updated with additional full calculations, discarding those results that lie furthest from
the current location. The process is repeated until it converges on an optimum (Alexandrov
et al. 1998b; Conn et al. 2000; Toropov et al. 1999). Such an approach can be provably
convergent, at least to a local optimum of the full function, something which is not possible
with global models.
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Figure 3.21 Improved response surface method calculation, allowing for parallel DoE-based
calculations, RSM tuning and database update.

The choice between these two types of strategy depends largely on the goals of the
designer. If an existing design is to be exploited and tuned to yield maximum performance
without radical redesign, the trust region approach has much to commend it. Conversely,
if the team is unsure where they might go and radical alternatives are required, the global
strategy can be very effective. Moreover, as problem dimensions rise, the ability to con-
struct any kind of accurate surrogate rapidly diminishes – one need only consider how the
number of vertices of the search space bounding box rises with the power of the number
of dimensions to realize just how little data a few hundred points represent when searching
even a ten-dimensional search space.

3.4.2 Metamodeling Tools

Assuming that a surrogate approach is to be used, we next set out some of the most popular
tools needed to construct a good-quality search process. We begin by noting that there are
very many DoE methods available in the literature and the suitability of any particular one
depends on both the problem to be modeled and also the class of curve fit to be used.
Among the most popular are

1. pure random sequences (completely unbiased but fail to exploit the fact that we expect
limited curvature in response surfaces, since we are commonly modeling physical
systems);

2. full factorial designs (usually far too expensive in more than a few dimensions, also
fail to study the interior of the design space well as they tend to focus on the extremes);
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3. face centered cubic or central composite designs (cover more of the interior than full
factorial but are even more expensive);

4. part-factorial designs (allow for limited computational budget but again do not cover
the design space well);

5. orthogonal array designs, including Plackett and Burman, Box-Benken and Taguchi
designs (reasonable coverage but designs tend to fix the number of trials to be used
and also each variable is often restricted in the number of values it can take);

6. Sobol sequence and LPτ designs (allow arbitrary and extensible designs but have
some limitations in coverage); and

7. Latin hypercubes of various kinds (not easily extensible but easy to design with good
coverage over arbitrary dimensions).

Having run the DoE calculations, almost always in parallel, a curve fit of some kind
must next be applied. In the majority of cases, the data available is not spread out on
some regular grid and so the procedure used must allow for arbitrary point spacing. Those
currently popular in the literature include

1. linear, quadratic and higher-order forms of polynomial regression;

2. cubic (or other forms of) splines, commonly assembled as a patchwork that spans the
design space and having some form of smoothness between patches;

3. Shepard interpolating functions;

4. radial basis function models with various kernels (which are most commonly used to
interpolate the data, but which can be set up to carry out regression in various ways
and also can have secondary tuning parameters);

5. Kriging and its derivatives (which generally need the tuning of multiple hyperparam-
eters that control curvature and possibly the degree of regression – this can be very
expensive on large data sets in many dimensions);

6. support vector machines (which allow a number of differing models to be com-
bined with key subsets of the data – the so-called support vectors – so that problems
with many dimensions and large amounts of data can be handled with reasonable
efficiency);

7. neural networks (which have a long history in function matching and prediction but
which need extensive training and validation and which are also generally difficult to
interpret); and

8. genetic programming (which can be used to design arbitrary functional forms to
approximate given data, but which are again expensive to tune and validate).

Constructing such models always requires some computational effort and several of them
require that the curve fit be tuned to match the data. This involves selecting various control
or hyperparameters that govern things like the degree of regression and the amount of
curvature. This can represent a real bottleneck in the search process since this is difficult
to parallelize and can involve significant computing resources as the number of data points
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and dimensions rises – this is why the use of support vector approaches is of interest since
they offer the prospect of affordable training on large data sets.

Typically, tuning (training) involves the use of a metric that measures the goodness
of fit of the model combined with its ability to predict results at points where no data is
available. For example, in Kriging, the so-called likelihood is maximized, while in neural
networks it is common to reserve part of the data outside of the main training process to
provide a validation set. Perhaps the most generally applicable metric is leave-out-one cross-
validation, where a single element is removed from the training set, and its results predicted
from the rest with the current hyperparameters. This is then repeated for all elements in the
data and the average or variance used to provide a measure of quality. If this is used during
training, it can, however, add to the computational expense.

Once an acceptable model is built, it should normally be refined by adding further
expensive results in key locations. There is no hard and fast rule as to how much effort
should be expended on the initial data set as compared to that on updating but, in the authors
experience, a 50:50 split is often a safe basis to work on, although reserving as little as
5% of the available budget for update computations can sometimes work while there are
other cases where using more than 75% of the effort on updating yields the best results.
There are two main issues that bear on this choice: first, is the underlying function highly
multimodal or not? – if it is, then more effort should go into updating; secondly, can updates
be done in parallel or only serially? – if updates are only added one at a time while the
initial DoE was done in parallel, then few updates will be possible. Interestingly, this latter
point is more likely to be driven by the metric being used to judge the metamodel than
the available hardware – to update in parallel, one needs to be able to identify groups of
points that all merit further investigation at the same time – if the metric in use only offers
a simplistic return, it may be difficult to decide where to add the extra points efficiently.
This is where metrics such as expected improvement can help as they tend by their nature
to be multimodal and so a suitable multistart hill climbing strategy can then often identify
tens of update points for subsequent calculation from a single metamodel. The authors find
Yuret’s Dynamic Hill Climbing method ideal in this role (Yuret and de la Maza 1993), as
are population-based searches which have niche forming capabilities (Goldberg 1989).

3.4.3 Simple RSM Examples

Figures 3.22, 3.23 and 3.24 show the evolution of a Kriging model on the bump problem
already discussed as the number of data points is increased and the metamodel rebuilt and
retuned. In this example, 100 points are used in the initial search and three sets of 10
updates are added to refine the surface. These are simply aimed at finding the best point in
the search space and it can be seen that the area containing the global optimum is much
better defined in the final result. Note that the area containing the optimum has to be in
the original sample for the update policy to refine it – as this cannot usually be guaranteed,
it is useful to include some kind of error metric in the update so as to continue sampling
regions where little data is available, if such a strongly multimodal problem is to be dealt
with in this way.

Figure 3.25 shows a trust region search carried on the bump function. In this search, a
small local DoE of nine points is placed in the square region between (2,1) and (4,3) and
then used to construct a linear plus squared term regression model. This is then searched
within a unit square trust region based around the best point in the DoE. The best result
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Figure 3.22 Bump function showing location of initial DoE of 100 LPτ points (points
marked with an “*” are infeasible).

found in the search is then reevaluated using the true function and used to replace the oldest
point in the DoE. This update process is carried out 15 times with a slowly decreasing trust
region size, each time centered on the endpoint of the last search and, as can be seen from
the figure, this converges to the nearby local optimum, using 24 (= 9 + 15) calls of the
expensive function in all. Obviously, such an approach can become very confused if the
trust region used encompasses many local optima and the search will then meander around
aimlessly until the trust region size aligns with the local basin of attraction size. In many
cases, particularly where there is little multimodality but significant noise, this proves to be
a very effective means of proceeding.

3.5 Combined Approaches – Hybrid Searches,
Metaheuristics

Given all the preceding ideas on how to perform optimization, it will be no surprise that
many researchers have tried to combine the best aspects of these various methods into ever
more powerful search engines. Before discussing such combined or “hybrid” searches, it is
worth pointing out the “no free lunch” theorems of search (Wolpert and Macready 1997).
These theorems essentially state that if a search method is improved for any one class
of problem it will equivalently perform worse on some other class of problem and that,
averaged over all classes of problems, it is impossible to outperform a random walk. Now,
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Figure 3.23 RSM of bump function showing search traces for three searches using Dynamic
Hill Climbing (DHC) with parallel updates between them (straight lines between crosses
link the minima located by each major iteration of the DHC search).

although this result might seem to make pointless much of what has gone before, it should
be recalled that the problems being tackled in aerospace design all tend to share some
common features and it is the exploitation of this key fact that allows systematic search to
be performed. We know, for example, that small changes in the parameters of a design, in
general, do not lead to random and violent changes in performance, i.e., that the models
we use in design exhibit certain properties of smoothness and consistency, at least in broad
terms. It is these features that systematic search exploit. Nonetheless, the no free lunch idea
should caution us against any idea that we can make a perfect search engine – all we can
in fact do is use our knowledge of the problem in hand to better adapt or tune our search
to a particular problem, accepting that this will inevitably make the search less general
purpose in nature, or, conversely, that by attempting to make a search treat a wider range
of problems it will tend to work less well on any one task.

Despite this fundamental limit to what may be achieved, researchers continue to build
interesting new methods and to try and ascertain what problems they may tackle well. Hybrid
searches fit naturally into this approach to search. If one knows that certain features of a
gradient-based method work well, but that its limitations for global search are an issue, it is
natural to try and combine such methods with a global method such as a genetic algorithm.
This leads to an approach currently popular in the evolutionary search community. Since
evolutionary methods typically are built around a number of operators that are based on
natural selection (such as mutation, crossover, selection and inversion), it is relatively easy
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Figure 3.24 Final updated RSM of bump function after 30 updates – the best result found
is marked by a triangle at (1.5659, 0.4792) where the estimated function value is 0.3602
and the true value is 0.3633, compare the exact solution of 0.3650 at (1.6009, 0.4685).

to add to this mix, ideas coming from the classical search literature such as gradient-based
approaches. In such schemes, some (possibly all) members of a population are selected for
improvement using, for example, a quasi-Newton method (which might possibly not be
fully converged) and any gains used as another operator in the search mixture.

If another search is added into the inner workings of a main search engine, we think of
the result as a hybrid search. Alternatively, we might simply choose to interleave, possibly
partially converged, searches with one another by having some kind of control script that
the combined process follows. This we would term a metaheuristic, especially if the logic
followed makes decisions based on how the process has proceeded thus far. Of course,
there are no real hard and fast boundaries between these two logics – the main difference
is really in how they appear to the user – hybrid searches usually come boxed up and
appear as a new search type to the designer while metaheuristics tend to appear as a
scripting process where the user is fully exposed to, and can alter, the logic at play. In
fact, the response surface methods already set out may be regarded as a special case of
metaheuristics, spanning DoE-based search and whatever method is used to search the
resulting metamodel.

To illustrate these ideas, we describe two approaches familiar to the authors – we would
stress, however, that it is extremely straightforward to create new combinations of methods
and the no free lunch theorems do not allow one to say if any one is better than another
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Figure 3.25 Trust region search with linear plus squared term regression model taken over
nine points updated 15 times.

without first stating the problem class being tackled – here, we describe these combinations
just to give a taste of what may be done. We would further note that combinations of
optimizers can also be effective when dealing with multidisciplinary problems, a topic we
return to in Chapter 9.

3.5.1 Glossy – A Hybrid Search Template

Glossy is a hybrid search template that allows for search time division between exploration
and exploitation (Sóbester and Keane 2002). The basic idea is illustrated in Figure 3.26 – an
initial population is divided between a global optimizer and a local one. Typically, the global
method is a genetic algorithm and the local method is a gradient-based search such as the
BFGS quasi-Newton method. The GA subpopulation is then iterated in the normal way
for a set number of generations. At the same time, each individual in the BFGS popula-
tion is improved using a traditional BFGS algorithm but only for as many downhill steps
as the number of generations used in the GA. It is further assumed that each downhill
search and each member of the GA is evaluated on its own dedicated processor so that
all these process run concurrently and finish at the same time. Then, an exchange is car-
ried out between the two subpopulations and at the same time the relative sizes of the
subpopulations are updated. The searches are then started again and this procedure cycled
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GLOSSY (GA-BFGS) We start with a randomly generated population (each circle
represents one individual, the color of the circle indicates the objective value of the
individual – the lighter the color, the better the objective value)…
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…and so on, sequence 2 continues, until…
Generation 4

…and sequence 3 begins.

…and allocate the individuals into two populations where they will undergo a
sequence of local exploitation and a sequence of global exploration respectively.
The population sizes (4 and 4 in this case) and the sequence lengths (SL=2 and
SG=4 in our example) are set in advance.

End of sequence 2. We perform the second reallocation step. Let us suppose that
the efficiency of the GA has diminished slightly, so the performance ratio (and thus
the population size ratio for the next sequence) is 5/3. Therefore, the Global
Population now has to concede one individual to the global one. The individual with
the highest objective value will migrate (the rationale being that the best individuals
are likely to be in promising basins of attraction, i.e., they are worth improving locally)

End of the first sequence. We perform the first reallocation step. The populations
will be resized according to the average objective value improvement per
evaluation achieved during the last sequence.
In this case the improvement calculated for the GA, was, say, three times higher
than that achieved by BFGS. Thus, the ratio of the sizes of the two populations for
the next sequence will be three. Therefore, the Local Population has to relinquish
two individuals to the global one. Those two that have achieved the least
improvement during the last sequence (individuals 1 and 4 in this case) will migrate.
Those that have improved well locally are allowed to continue in the local population.

Figure 3.26 The Glossy template (from Sóbester and Keane; reprinted by permission of the
American Institute of Aeronautics and Astronautics, Inc.).
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through until a suitable termination criterion is met. This strategy allows the GA to carry
out global search and the BFGS to locally improve some designs, which can then be fed
back to the GA to seed further global searches. At the same time, other globally improved
points are handed back for local BFGS refinement. The changing size of the subpopulations
allows the search to adapt to the progress made, becoming either more global or more
local as the situation demands. Note that since the locally improved designs are returned
directly to the GA population this is termed meta-Lamarckian learning in some parts of the
literature.

3.5.2 Metaheuristics – Search Workflows

As already noted, metaheuristics are typically sequences of commands that invoke various
search methods in an adaptive way depending on the progress of the search. They are
typically written or adapted by the designer to suit the problem in hand using a general
purpose workflow/scripting language such as Matlab or Python, or the language provided
in a commercial search tool such as the multidisciplinary optimization language (MDOL)
system in iSIGHT or even using operating system shell scripts, and so on. The key
distinction over hybrid searches being the great flexibility this affords and its control by the
designers themselves rather than via reliance on a programming team, etc.

The Geodise5 toolkit is an example of this way of working. Geodise provides a
series of commands in the Matlab environment that may be combined together however
the user chooses to create a search workflow. It offers a range of individual search
engines, DoE methods and metamodeling capabilities that can be used in concert with
those already provided by the main Matlab libraries (or, indeed, any other third party
library). Figure 3.27 provides a snippet of Matlab code that invokes this toolkit to carry out
a sequence of gradient-based searches on a quadratic metamodel constructed by repeated
sampling of the problem space. In this way, a simplistic trust region search can be
constructed and the code given here is, in fact, that used to provide Figure 3.25 in the
previous section.

It will be clear from examining this example that there is no easy distinction between
a workflow language and the direct programming of an optimizer – the characteristic we
look for when making the division is the use of existing multidimensional searches as
building blocks by the end users themselves. Of course, it is a relatively trivial mat-
ter to subsequently box up such metacode to form new black-box methods for others
to use. In fact, it is often the case that the distinction between classifications says as
much about the expertise of the user as it does about the code – a skilled user who is
happy to open up and change a Fortran or C code library might justifiably claim that
the library provided the ingredients of a metaheuristic approach, while those less skilled
would view any combinations worked in such a way as hybrids. We do not wish to labor
this point – just to make clear that it is often worthwhile combining the search ingre-
dients to hand in new ways to exploit any known features of the current problem, and
that this will be most easily done using a metaheuristic scheme. This approach underpins
much of the authors’ current work in developing searches for the new problems that they
encounter.

5http://www.geodise.org
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% trust region search
%
% DoE struct holds information for the actual function
% meta struct holds information for the meta-model
% DoE rslt holds the results from calls to the actual function
% meta rslt holds the result from searches on the meta-model
% update pt is used to hold the update points as they are calculated
% trust sc is the scaling factor for reducing the trust region on each loop
% trust wd is the current semi-width of the trust region
%
% define initial structures to define problem to be searched
%
DoE struct=createbumpstruct;
meta struct=createbumpstruct;
%
% initial DoE details
%
DoE struct.OMETHD=2.8; DoE struct.OLEVEL=0;
DoE struct.VARS=[2,2]; DoE struct.LVARS=[2,1];
DoE struct.UVARS=[4,3]; DoE struct.MC TYPE=2;
%
% build initial DoE
%
DoE struct.NITERS=9;
DoE rslt = OptionsMatlab(DoE struct);
n data pts = DoE rslt.OBJTRC.NCALLS;
%
% set up trust region controls and initial trust region meta model
%
trust sc=0.9; trust wd=0.5;
meta struct.OLEVEL=0; meta struct.VARS=DoE rslt.VARS;
meta struct.LVARS=[2,1]; meta struct.UVARS=[4,3];
%
% loop through trust region update as many times as desired
%
for (ii = 1:15)
%
% build and search regression meta model from the current data set
%
meta struct.OBJMOD=3.3; meta struct.OMETHD=1.8;
meta struct.OVR MAND=1; meta struct.NITERS=500;
meta rslt=OptionsMatlab(meta struct,DoE rslt);
%
% update trust region around best point but of reduced size
%
trust wd=trust wd*trust sc;
meta struct.LVARS=meta rslt.VARS-trust wd;

Figure 3.27 Matlab workflow for a trust region search using the Geodise toolkit
(http://www.geodise.org).
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meta struct.UVARS=meta rslt.VARS+trust wd;
%
% evaluate best point
%
DoE struct.OMETHD=0.0;
DoE struct.VARS=meta rslt.VARS;
update pt = OptionsMatlab(DoE struct);
%
% add result to data set, eliminating the oldest point
%
DoE rslt.OBJTRC.VARS(:,1)=[];
DoE rslt.OBJTRC.VARS(:,n data pts)=update pt.VARS;
DoE rslt.OBJTRC.OBJFUN(1)=[];
DoE rslt.OBJTRC.OBJFUN(n data pts)=update pt.OBJFN;
%
%echo latest result and loop
%
update pt.VARS update pt.OBJFN
meta struct.VARS=update pt.VARS;
end

Figure 3.27 Continued

3.6 Multiobjective Optimization
Having set out a series of methods that may be used to identify single objectives, albeit ones
limited by the action of constraints, we next turn to methods that directly address problems
where there are multiple and conflicting goals. This is very common in design work, since
engineering design almost always tensions cost against performance, even if there is only a
single performance metric to be optimized. Usually, the design team will have a considerable
number of goals and also some flexibility and/or uncertainty in how to interpret these.

Formally, when a search process has multiple conflicting goals, it is no longer possible
to objectively define an optimal design without at the same time also specifying some form
of weighting or preference scheme between them: recall that our fundamental definition of
search requires the ability to rank competing designs. If we have two goals and some designs
are better when measured against the first than the second, while others are the reverse, then it
will not be possible to say which is best overall without making further choices. Sometimes,
it is possible to directly specify a weighting (function) between the goals and so combine
the figures of merit from the various objectives into a single number. When this is possible,
our problem of course reduces directly to single value optimization and all the techniques
already set out may be applied. Unfortunately, in many cases, such a weighting cannot be
derived until such time as the best competing designs have been arrived at – this leads to
the requirement for methods of identifying the possible candidates from which to select the
so-called Pareto set, or front, already mentioned in earlier sections. We recall that this is the
set of designs whose members are such that improving any one goal function of a member
will cause some other goal function to deteriorate. However, before considering methods
that work explicitly with multiple goals, we first consider formal schemes for identifying
suitable weights that return our problem to that of single objective optimization.
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We note also that, as when dealing with constraints, it is always wise to normalize all the
goals being dealt with so that they have similar numerical magnitudes before starting any
comparative work. This leads to better conditioned problems and prevents large numbers
driving out good ones. We remember also that many design preferences are specified in the
form of constraints, i.e., that characteristic A be greater than some limit or perhaps less than
characteristic B, for example.

3.6.1 Multiobjective Weight Assignment Techniques
When a design team has multiple goals and the aim is to try and derive a single objective
function that adequately represents all their intentions, the problem being tackled is often
rather subjective. This is, however, an issue that is familiar to anyone who has ever purchased
a house, an automobile, a boat, a computer, and so on: there will be a variety of different
designs to choose from and a range of things that make up the ideal. These will often be in
tension – the location of a house and its price are an obvious example – a property in a good
location will command a high price. It is thus a very natural human activity to try and weigh
up the pros and cons of any such purchase – we implicitly carry out some kind of balancing
process. Moreover, our weightings often change as we learn more about the alternatives on
offer. Multiobjective weight assignment techniques aim to provide a framework that renders
this kind of process more repeatable and justifiable – they are, however, not amenable to
very rigorous scientific analysis in the way that the equations of flow over a body are.
Nonetheless, there is some evidence that a formalized approach leads to better designs (Sen
and Yang 1998).

The basis of all weight assignment methods is an attempt to elicit information from the
design team about their preferences. The most basic approach is direct weight assignment.
In direct assignment, the team chooses a numerical scale, typically containing five or ten
points, and then places adjective descriptions on this scale such as “extremely important”,
“important”, “average”, “unimportant” and “extremely unimportant”. Each goal is then con-
sidered in turn against the adjectives and the appropriate weight chosen from the scale. This
can be done by the team collectively, or each member asked to make a ranking and then
average values taken. Often, the weighted goals, or perhaps their squares, are then simply
added together to generate the required combined goal function. Although this may sound
trivial, the fact that an explicit process is used tends to ensure that all team members views’
are canvassed and that added thought is given to the ranking process. This approach tends
to perform best when there are relatively few goals to be satisfied. It does not, however,
give any guidance on what the function used to combine the individually weighted goals
together should be, an issue we return to later on.

A slightly more complex way of eliciting and scoring preference information is the
eigenvector method. In this approach, each pair of goals is ranked by stating a preference
ratio, that is, if goal i is three times more important than goal j , we set the preference pij

equal to three. Then, if goal j is twice as important as goal k, we get pjk equal to two. Note
that for consistency this would lead us to assume that pik was six, that is, three times two.
However, if all pair-wise comparisons are made and there are many goals, such consistency
is rarely achieved. In any case, having made all the pair-wise comparisons, a preference
matrix P with a leading diagonal of ones can then be assembled. In the eigenvector scheme,
we then seek the eigenvector w that satisfies Pw = λmaxw, where λmax is the maximum
eigenvalue of the preference matrix. If the matrix is not completely consistent, it is still
possible to seek a solution to this equation and also to gain a measure of any inconsistency
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by comparing the eigenvalue to the number of goals, since, for a self consistent matrix, the
largest eigenvalue is always equal to the number of goals; see, for example, Saaty (1988).
The eigenvector resulting from solution of this equation provides the weighting we seek
between the goals. By way of example, consider a case where there are three goals and we
assign scores to the matrix P as follows:

P =

 1 3 6

1/3 1 2
1/6 1/2 1




that is, goal one is three times as important as goal two and goal two is twice as important
as goal three. It is easy to show that the largest eigenvalue of this matrix is three and the
equivalent eigenvector, which produces the desired weighting, is {0.667, 0.222, 0.111}T. The
fact that the eigenvector is here equal to the number of goals indicates that the preference
matrix is fully consistent. This approach works well for moderate numbers of goals (less
than say 10) and copes well with moderate levels of inconsistency.

When the number of goals becomes large, the rapidly expanding number of pair-wise
comparisons needed makes the eigenvector approach difficult to support. It is also difficult
to maintain sufficient self consistency with very many pair-wise inputs. Consequently, a
number of alternative schemes have been developed that permit incomplete information
input and also iteration to improve consistency; see Sen and Yang (1998) for further details.
There are also schemes that allow progressive articulation of preference information; see,
for example, Benayoun et al. (1971).

3.6.2 Methods for Combining Goal Functions, Fuzzy Logic
and Physical Programming

Even when the design team can assign suitable weights to each competing objective, this
still leaves the issue of how the weighted terms should be combined. Most often, it is
assumed that a simple sum is appropriate. However, there are many problems where such
an approach would not lead to all possible Pareto designs being identified, even if every
linear combination of weights were tried in turn. This is because, for some problems, the
Pareto front is nonconvex; see, for example, Figure 3.28. The region in this figure between
points A and B is such that, for any point on this part of the front, a simple weighted sum
of the two goals can always be improved on by designs at either end whatever the chosen
weights. To see this, we note that for any relative weighting between two design goals w

all designs lying on the line of constant wx + y in Figure 3.28 have the same combined
objective when using a simple sum. For one particular design to be best for a given weight,
the Pareto front at this point must be tangent to the equivalent weighting line – in the convex
region, we cannot construct a tangent line that lies wholly to the left and below the Pareto
front, that is, there is always some other design that, for that combination of weights, will
lie outside of the convex region.

Since we know that all points on the Pareto front may be of interest to the designer (since
each represents a solution that is nondominated), this fundamental limitation of a weighted
sum of goal functions has led a number of researchers to consider more complex schemes.
These range from the use of simple positive powers of each objective through to fuzzy
logic and physical programming models. The basic idea is this: by combining our goals
using some more complex function, the lines of constant combined objective in plots like
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Figure 3.28 A Pareto front with a convex region and line indicating designs with equal
combined objective under simple summation of weighted goals.

Figure 3.28 become curves. Provided the functions we use have sufficient curvature in this
plot to touch the Pareto front tangentially at all points, given the correct choice of weights,
the function in use can then overcome the problems of convexity. So, if we take the sum of
squares for example, a contour of constant combined objective is then an ellipse – it will
be obvious that such a shape will satisfy our tangency requirement for many convex Pareto
fronts, but by no means all such possibilities. One can respond to this problem by using ever
more complex functions, of course. However, they rapidly lose any physical meaning to the
designer and this has led to the fuzzy logic and physical programming approaches, among
others. In these, an attempt is made to capture the design team’s subjective information and
combine it in a nonlinear fashion at the same time, hopefully overcoming convexity while
still retaining understanding of the formulation.

In the fuzzy logic approach (Ross 2004), a series of membership functions are generated
that quantify the designer’s linguistic expressions of preference. For example, if the designer
believes that a goal must be at least five and preferably ten, but values over ten offer no
further benefit, then a function such as that in Figure 3.29 might be used. Note that the
shape of the function that translates the goal value to its utility is here piecewise linear but
this is an arbitrary choice: a sigmoid function would just as well suffice. Similar functions
are provided for all goals (and usually also all constraints), always mapping these into a
scale from zero to one. The resulting utilities are then combined in some way. Typically,
they might be summed and divided by the total number of functions, a product taken or
simply the lowest overall used. In all cases, the resulting overall objective function still runs
between zero and one and an optimization process can be used on the result. Note that this
function will have many sharp ridges if piecewise linear membership functions are used
or if a simple minimum selection process is used to combine them. Although it allows a
more complex definition of the combined objective than simple weights, there is still no
guarantee that all parts of the Pareto front will be reached by any subsequent search.

Physical programming (Messac 1996) is another method that seeks to use designer
preferences to construct an aggregate goal function. It is again based on a series of linguistic
statements that the design team may use to rank their preferences. Goals and constraints



ELEMENTS OF NUMERICAL OPTIMIZATION 169

5 10Goal value

1

0

M
em

be
rs

hi
p

Figure 3.29 Simple fuzzy logic membership function.

are defined to be either hard (with rigid boundaries) or soft. When soft, the degree of
acceptability is broken down between highly desirable, desirable, tolerable, undesirable,
highly undesirable and unacceptable. Moreover, moving one goal across a given region
is considered better than moving all the remaining goals across the next better region, for
example, moving one across the tolerable region is better than moving all across the desirable
region. In this way, the scheme aims to eliminate the worst features in a design. A principal
motivation of the approach is to reduce the amount of time designers use studying aggregate
goals with different sets of weightings, although designers may still wish to reassign what
they mean by each of the linguistic definitions, of course.

In all cases, once a weighting and form of combined goal function has been decided, a
single objective problem can then be tackled. If the outcome of a search with the chosen
weights and function leads to designs that the team find inconsistent with their intuitive
preferences, either the weight assignment process can then be iterated in light of these views
or a different approach to constructing the combined goal function used. Sometimes, this
may involve adding or removing preference information or goals. Commonly, such iteration
is reduced when the more complex methods of weight assignment have been adopted, since
the design team’s preferences should then have been satisfied in as far as they have been
articulated in the modeling.

3.6.3 Pareto Set Algorithms

Often, it is not possible or desirable to assign weights and combine functions before seeking
promising designs – the designers may wish to “know what is out there” and actively seek
a solution that is counterintuitive in the hope that this may lead to a gain in market share
or a step forward in performance. In such circumstances, the Pareto solution set, or at least
some approximation to it, must be sought.

The most obvious way to construct a Pareto set is to simply use a direct search to work
through the various combinations of weights in a linear sum over the given objectives.
Such an approach suffers from the obvious drawback that, when there are many objectives,
there will be many weights to set and so building a reasonable Pareto set may be slow.
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Also, it will not be clear, a priori, whether identifying designs that are optimal with one set
of weights will be much harder than designs with other combinations – we already know
that convex regions of the front cannot be found in this way – if a thorough survey over
all possible weights is desired, this will further increase the cost of search. The desire to
be able to efficiently construct Pareto sets, including designs lying in convex regions of
the front, has lead to an entire subspecialization in the field of optimization research. It is
also an area where much progress has been made using population-based methods, for the
obvious reason that such methods work with sets of designs in the first place.

Perhaps, the best way to understand methods that aim to construct a Pareto set is to
observe that, when constructing the front, the real goal is a well-balanced set of solutions,
that is, one characterized by the members of the set being uniformly distributed along the
front. Then, given that the designer chooses the number of members in the set, i.e., the
granularity of the solution, it is the function of the search to place these points evenly along
the front. Therefore, building Pareto fronts usually consists of two phases: first, a set of
nondominated points must be found, and secondly, these must be spaced out evenly. One
effective way of doing this is via an archive of nondominated points (Knowles and Corne
1999). As the search proceeds, if any design is identified that is currently nondominated, it is
placed in an archive of fixed size – the size being defined a priori to reflect the granularity
required. Then, as new nondominated points are found, these are added to the archive
until such time as it is full. Existing points in the archive are pruned if the new points
dominate them, of course. Thereafter, all new points are compared to the archived set and
only added if either a) they dominate an existing point or b) they increase the uniformity of
coverage of the set, that is, they reduce crowding and so spread out the solutions along the
emerging Pareto front – with the crowded members being the target for pruning to maintain
the set size. A number of crowding measures can be used in this role – for example, if e

is the normalized Euclidean distance in the objective function space between members of
the archive, then the authors find a useful crowding metric to be 1/

∑
e, where the sum is

limited to the nearest 5% of solutions in the front (the normalization is achieved by dividing
each objective function by the maximum range of function values seen in that direction).

The archive approach to locating the Pareto front additionally requires a way of gen-
erating new nondominated points as efficiently as possible. Since the archive represents a
useful store of material about good designs, it is quite common in Pareto set construction
to try to extract information from this set when seeking new points. The genetic algorithm
operation of crossover forms a good way of doing this as does the mutation of existing
nondominated points to form the starting points for downhill or other forms of searches.
Another approach is to construct a pseudoobjective function and employ a single objective
function optimizer to improve it. The aim of the pseudoobjective is to score the latest design
indirectly by whether or not it is feasible, dominates the previous solution or is less crowded
than the previous solution. Figure 3.30 is a chunk of pseudocode that implements such an
approach and which can be used to identify Pareto fronts in the Options search package in
conjunction with an evolutionary strategy single objective optimizer.6

An alternative, more direct solution is to treat the generation used in an evolutionary
algorithm as the evolving Pareto set itself and then to rank each member in the set by the
degree to which it dominates other members. By introducing some form of crowding or
niche forming mechanism, such a search will tend to evolve an approximation to the Pareto
front with reasonable coverage. In the nondominated sorting GA of Srinivas and Deb (1995),

6http://www.soton.ac.uk/∼ajk/options/welcome.html
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If(current solution is feasible)then
If(current solution dominates previous solution)then

Q=Q-1
Else

If(current solution is less crowded than previous solution)then
Q=Q-1

Else
Q=Q+1

Endif
Endif

Else
Q=Q+1

Endif

Figure 3.30 Pseudocode for simple objective function when constructing Pareto fronts (Q
is the function minimized by the optimizer – this is set to zero at the beginning of a search
and is nonstationary, and so, this code is only suitable for methods capable of searching
such functions, for example, the evolution strategy approach; the crowding metric is 1/

∑
e,

where the sum is limited to the nearest 5% of solutions).

first the nondominated individuals are collected, given an equal score and placed to one side.
Then, the remaining individuals are processed to find those that dominate this new set to
give a second tier of domination – these are again scored equally but now at reduced value
and again placed to one side, and so on, until the entire population is sorted into a series of
fronts of decreasing rank. Each rank has its score reduced according to a sharing mechanism
that encourages diversity. The final score is then used to drive the selection of new points
by the GA in the normal way. The Multi-Objective Genetic Algorithm (MOGA) method of
Fonseca and Fleming (1995) is another variant on this approach although now the degree
of dominance is used rather than a series of ranks assembled of equal dominance. Its per-
formance is dependent on exactly how the sharing process that spaces points out along
the front is implemented and how well this maps to the difficulty of finding points on any
particular region of the front. In all cases, if a region is difficult to populate with nondom-
inated designs, it is important that the weighting used when assembling new generations
is sufficient to preserve these types of solutions in the population – something the archive
approach does implicitly.

3.6.4 Nash Equilibria

An alternative way to trade off the goals in a multiobjective problem is via the mechanism
of Nash equilibria (Habbal et al. 2003; Sefrioui and Periaux 2000). These are based on a
game player model: each goal in the design problem is given over to a dedicated “player”,
who also has control of some subset of the design variables. Then, each player in turn tries
to optimize their goal using their variables, but subject to the other variables in the problem
being held fixed at the last values determined by the other players. As the players take turns
to improve their own goals, the problem settles into an equilibrium state such that none
can improve on their own target by unilaterally changing their own position. Usually, the
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variables assigned to a particular player are chosen to be those that most strongly correlate
with their goal, although when a single variable strongly affects two goals, an arbitrary choice
has to be made. In addition, a set of initial values has to be chosen to start the game off.

If carried out to complete convergence, playing a Nash game in this way will yield a
result that lies on the Pareto front. Moreover, convergence to a nondominated point is usually
very robust and quite rapid. The process can also be easily parallelized, since each player’s
search process can be handed to a dedicated processor and communication between players
is only needed when each has found its latest optimal solution. Unfortunately, in many
problems, different initial values will lead to different equilibria (i.e., different locations on
the Pareto front), as will different combinations of assignments of the variables to different
players. Nonetheless, such methods have found a good deal of use in economics and they
are beginning to be adopted in aerospace design because of their speed and robustness.

3.7 Robustness

Thus far in this chapter, we have been concerned with tools that may be used to locate the
optima in deterministic functions – the assumption being that such locations gave the ideal
combinations of parameters that we seek in design. In fact, this is very often not so – as
will by now have become clear, many such optima are defined by the actions of constraint
boundaries. To develop a design that sits exactly on the edge of a hard constraint boundary
is rarely what designers wish to do – this would lead to a degree of risk in the performance
of the product that can rarely be justified by any marginal gain that might be attained.
Rather, designers almost always wish their designs to exhibit robustness. Such robustness
must cope with uncertainties coming from many sources: even today, our ability to predict
product behavior at the design stage is by no means exact. Moreover, as-manufactured
products always differ, sometimes substantially, from the nominal specifications. Finally,
the in-service conditions experienced by products can rarely be foreseen with complete
clarity. In consequence, some margin for uncertainty must be made. Thus, we say that
a design whose nominal performance degrades only slightly in the face of uncertainty is
robust, while one that has dramatic falloff in performance lacks robustness and is fragile.
We return to this important topic in much more detail in Chapter 8 – here, we make some
of the more obvious observations.

Given the relationship of robustness to changes in design performance, it will be obvious
that robust designs will lie in smooth, flat regions of the search space. It is therefore often
desirable that an optimizer can not only identify regions of high performance in the search
space but also ones where plateaus of robustness may be found; see Figure 3.31. If the
best design lies on the edge of the search space or where constraints are active, this will
often mean that the way the objective function surface approaches the boundary will be
important – a steep intersection with such a boundary will usually imply a fragile design
(e.g., point (0,80) in Figure 3.31).

Some search methods are intrinsically better able to locate robust designs than others,
while some may be adapted, albeit at extra cost, to yield robust designs. It is also worth
noting that the way that targets are specified can also be used to influence this quality in
design – if a constraint violation is embedded in the objective function rather than treated
explicitly as a hard boundary, this will impact on the way the search proceeds – this can be
an important way of managing the trade-off between nominal performance and robustness.
In many senses, the desire for robustness can be seen as yet a further goal that designers must
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Figure 3.31 A fitness (maximization) landscape the exhibits fragile and robust regions, after
Parmee (1996).

strive for and treated along with any others in a multiobjective framework. It is, however,
often useful to treat robustness and uncertainty separately when carrying out search.

Perhaps, the most obvious way of dealing with robustness is to add artificial noise to the
design vector or the resulting objective or constraints, or all of these, when calculating the
performance of the design. This noise can be set to simulate uncertainty in the design so that
the search engine must directly cope with this when attempting to find good configurations.
Of course, this will mean that repeated calls by the search to the functions being dealt with
will yield different responses – few search methods are able to cope with this directly, but
it is perhaps the most direct way to simulate what actually happens in practice. Noise added
to the design vector represents uncertainty in the as-manufactured product, whereas noise
in the objective and constraint functions represents uncertainty in the operating conditions
and the design team’s representation of the relevant physics.

Some search engines, notably the stochastic search methods (usually with elitism
switched off), can easily be set up to work with this kind of dynamic environment and,
if direct searches are affordable, this way of working has much to commend it. Uncertainty
generated by added noise can also be tolerated by many of the metamodeling approaches,
provided that they include an element of regression in their model building capabilities.
In either case, issues of search termination become more subtle and complex when the
functions being searched are random. Still, using random functions in this way adds only
modestly to the expense of the underlying search. Of course, to do this requires knowledge
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of how large any random perturbations in the design vector and modeling functions should
be and this should be carefully assessed when specifying the problem being tackled – if the
random elements included are unjustifiably large, then very pessimistic designs can result.

A more expensive but more exact way of proceeding is to attempt to sample the uncer-
tainty statistics themselves at each point to be evaluated in the search space. To do this,
the nominal design being evaluated is used to initiate a small random walk. Then the aver-
age, or perhaps worst design found during this walk is returned in place of the nominal
design point. In this way, it is possible to make the search work on a pseudo mean or 95%
confidence limit design so that any final optimal point will exhibit the desired degree of
robustness. However, we have now replaced a single design evaluation with a random walk
of perhaps 10–20 points (this will depend on the number of variables in play and the degree
of accuracy required) – if this can be afforded it will allow significantly greater confidence
to be placed in the final designs produced. An example of this kind of approach is given by
Anthony et al. (2000). A more affordable approach is to combine these ideas – the functions
and variables being treated as random during the search with random walks being added
periodically so that a more precise understanding of the uncertainty is used from time to
time.

The most expensive, but at the same time, most accurate way to deal with uncertainty in
search is to use fully stochastic performance models throughout. Then, instead of working
with deterministic quantities, the whole problem is dealt with in terms of the probability
distribution functions (PDFs) of the inputs and outputs. This way of working is in its infancy
at the time of writing, since stochastic PDE solvers are commonly orders of magnitude
more expensive than their deterministic equivalents (at its most extreme each evaluation
is replaced by a full, multidimensional, large scale Monte Carlo evaluation). It is also
the case that only rarely do designers have sufficient information to construct the input
variable PDFs for working in this way, especially if correlations arise between inputs (and
they commonly do – and are even more commonly ignored in such work). Nonetheless, as
stochastic PDE solvers become more mature it is inevitable that they will be increasingly
used in optimization.


