
1
Software Evolution

Meir Lehman and Juan C. Fernández-Ramil

This chapter is a revised version of the paper by Lehman MM and Ramil JF, Software
Evolution and Software Evolution Processes, Annals of Software Engineering, special
issue on Software Process-based Software Engineering, vol. 14, 2002, pp. 275–309, with
kind permission of Springer Science and Business Media.

1.1 Introduction
1.1.1 Evolution
Evolution describes a phenomenon that is widespread across many domains. Natural
species, societies, cities, concepts, theories, ideas all evolve over time, each in its own
context. The term reflects a process of progressive, for example beneficial, change in the
attributes of the evolving entity or that of one or more of its constituent elements. What
is accepted as progressive must be determined in each context.

It is also appropriate to apply the term evolution when long-term change trends are
beneficial even though isolated or short sequences of changes may appear degenerative.
Thus it may be regarded as the antithesis of decay. For example, an entity or a collection
of entities may be said to be evolving if their value or fitness is increasing over time;
Individually or collectively they are becoming more meaningful, more complete or more
adapted to a changing environment.

In most situations, evolution results from concurrent changes in several, even many,
of the properties of the evolving entity or collection of entities. Individual changes are
generally small relative to the entity as a whole, but even then their impact may be
significant. In areas such as software, many allegedly independent changes may be imple-
mented in parallel. As changes occur as a part of the overall evolution, properties no
longer appropriate may be removed or may disappear and new properties may emerge.

The evolution phenomena as observed in different domains vary widely. To distinguish
between domains, one may start by classifying them according to their most evident
characteristics. A study of common factors shared by subsets of their entities, distinctions
between them and their individual evolutionary patterns may suggest specific relationships

Software Evolution and Feedback: Theory and Practice Nazim H. Madhavji, Juan C. Fernández-Ramil and Dewayne E. Perry
 2006 John Wiley & Sons, Ltd

8 Software Evolution and Feedback: Theory and Practice

between evolution and other properties and indicate how individual patterns and trends
are driven, directed and even controlled.

One could, perhaps, increase understanding of software evolution by studying instances
of the phenomenon in other domains. The discussion here is, however, limited to the
computing and software fields.

1.1.2 Interpretation of the Term Evolution in the Context of Software
The term evolution in the context of software may be interpreted in two distinct ways,
discussed more fully in Chapter 16 [Lehman and Ramil 2001b]. The most widespread
view is that the important evolution issues in software engineering are those that concern
the means whereby it may be directed, implemented and controlled. Matters deserving
attention and the investment of resources relate to methods, tools and activities whereby
software and the systems it controls may be implemented from conception to realisation
and usage, and then evolved to adapt it to changing operational environments. One is
seeking continuing satisfactory execution with maximum confidence in the results at
minimum cost and delay in a changing world.

Means include mechanisms and tools whereby evolution may be achieved according to
plan in a systematic and controlled manner. The focus of this approach, termed the verbal
approach, is on the how of software evolution. Work addressing these issues has been
widely presented and discussed, for example, at a series of meetings titled Principles of
Software Evolution (e.g. IWPSE 2004).

An alternative approach may also be taken. This less common, but equally, important
view seeks an understanding of the nature of the evolution phenomenon, what drives it,
its impact, and so on. It is a nounal view investigating the what and why of evolution.
Far fewer investigators (e.g. Lehman et al. 1969–2002, Chong Hok Yuen 1981, Kemerer
and Slaughter 1999, Antón and Potts 2001, Nanda and Madhavji 2002, Capiluppi et al.
2004) have adopted it. It is driven by the realisation that more insight into and better
understanding of the evolution phenomenon must lead to improved methods and tools for
its planning, management and implementation. It will, for example, help identify areas in
which research effort is most likely to yield significant benefit. The need for understanding
and its significance will become clearer when the nature of, at least, the industrial soft-
ware evolution process as a multi-loop, multi-level, multi-agent feedback system (Lehman
1994) is appreciated. Failure to fully appreciate that fact and its consequences can result
in unexpected, even anti-intuitive responses when software is executed and used.

There is a view that the term evolution should be restricted to software change
(e.g. Mittermeir 2006). However, under this interpretation, important activities such as
defect fixing, functional extension and restructuring would be implicitly excluded. Other
authors have interpreted evolution as a stage in the operational lifetime of a software
system, intermediate between initial implementation and a stage called servicing (Bennett
and Rajlich 2000, Rajlich and Bennett 2000). These and still other interpretations are
covered by the areas of evolution presented below. They are, therefore, not separately
identified in the present chapter.

1.2 The Evolution of Large Software Systems
1.2.1 Early Work
As stated in Lehman’s first law of software evolution, (Lehman 1974), it is now gen-
erally accepted (e.g. Bennett and Rajlich 2000, Pfleeger 2001, Cook et al. 2006) that

Software Evolution 9

E-type1 software must be continually adapted and changed if it is to remain satisfactory
in use. Universal experience that software requires continual maintenance (as evolution
was then termed) was first publicly discussed at the Garmisch Conference2 (Naur and
Randell 1968) and viewed as a matter of serious concern.

At about that time, Lehman reported on his study of the IBM programming pro-
cess (Lehman 1969), though his report did not become generally available till much
later (Lehman and Belady 1985). Inter alia, the report examined and modelled the con-
tinuing change process being applied to IBM’s OS360-370 operating system. Preliminary
models of that system’s evolution were derived from measures and models of release
properties. Refined versions of these were subsequently proposed as tools for planning,
management and control of sequences of releases (Belady and Lehman 1972, Lehman
1974, 1980).

Recognition of the software process as a feedback system brought the realisation that
the study of the process and its evolution must consider that fact, if more effective
management and process improvement was to be achieved. This observation triggered
an investigation of the phenomenon initially termed Program Growth Dynamics (Belady
and Lehman 1972) and later Program Evolution Dynamics (Lehman 1974). The resultant
study produced not only fundamental insights into the nature and properties of the software
process but also into those of its products. Early studies concentrated on OS360-370
release data; later studies involved other systems (Lehman 1980, Lehman and Belady
1985). All in all, the results of these studies greatly increased understanding of the software
evolution phenomenon and identified practices and tools for its support (Lehman 1980).

1.2.2 Large Programs
Lehman and Belady’s early work on software growth dynamics and evolution concluded
that evolution is intrinsic to large programs. This adjective has been variously interpreted
as applying to programs ranging in size from 50 and 500 thousand of lines of code
(Klocs). Subsequently, Lehman suggested that such an arbitrary boundary was not very
useful in the evolution context. It appeared highly unlikely that one could identify, even
approximately, a single bound over a spectrum of programs such that those on either
side of the divide displayed different properties. Moreover, if size were a major factor in
determining evolutionary properties, one would expect these to change for programs of
different size.

Moreover, it was seen as unlikely that all would appear at around the same loc level,
independently of, for example, application, organisational, managerial, process and com-
putational factors. Any of these might relate to the emergence of disciplined evolutionary
behaviour. As a result of considerations such as these, Lehman suggested that the observed
phenomena were more likely to be linked to properties related to characteristics of software
development, usage and application environments and processes or of their products. He,
therefore proposed that a program should be termed large if ‘. . . it had been developed or
maintained in a management structure involving at least two groups’ (Lehman 1979), that
is, subject to, at least, two levels of direct management. This property appeared sufficient
to explain many of the observed evolution dynamics properties of the systems studied.

1 Defined later in this chapter.
2 See statement by H. R. Gillette in the Garmisch conference report, P. Naur and B. Randell eds. (1968),

p. 111 in the original version.

10 Software Evolution and Feedback: Theory and Practice

This definition followed from the recognition of the fact that development by an indi-
vidual or small group subject to the direct control of a single individual, is quite different
to one in which there are two or more management levels. When a single manager is
in day-to-day control the focus of goals and activities will be a matter of ongoing dis-
cussion and decision within the group, subject to a final approval by the manager. With
two or more groups and managers at two or more levels of management, each level, each
manager, each group will develop its individual goals, understanding, language, interpre-
tations etc. Communication between the members of any individual group will tend to
be continual and informal. Between groups and levels it will tend to be discontinuous
and more formal. This will cause divergence of the terminologies, technologies, interpre-
tations, goals, and so on as perceived and applied in and by the separate groups. Such
divergence is clearly a major source of the ‘large program problem’ (Brooks 1975) and
that problem, in turn, appears to be one of the drivers of software evolution. It must also
be recognised that in cooperative multi-group activity, it is human nature for individual
groups and their managers to seek to optimise their own immediate results, overlooking
or ignoring the impact on other groups and on the overall, long-term consequence.

Furthermore, programs developed by the joint effort of multiple groups are functionally
rich and structurally complex. Their effective development and use requires the application
and integration of many skills and approaches and communication between participants.
It was thought at one time (Lehman 1979) that the resultant activities will favour the
emergence of evolutionary characteristics associated with programs that have traditionally
been termed large. This further supported the above definition of largeness. However, the
latter was still considered unsatisfying as a complete explanation for the intrinsic need
for software evolution.

1.3 Program Classification
1.3.1 The SPE Program Classification Schema

Despite the revised definition, the concept of largeness appeared unsatisfactory as the
fundamental basis for a study of software evolution. To address these concerns, a program
classification scheme, not involving a concept of size was proposed. Initially, this defined
programs of types S, P and E (Lehman 1980, 1982, Pfleeger 2001) as discussed below.
The third is the most closely related to a discussion of software evolution. Though not
a defining property of the phenomenon, it has been shown as inevitable for that class of
program if users are to remain satisfied with the results of its use. Subsequently, it was
realised that the classification is equally relevant to computer applications, application
domains, application and computing systems and so on (Lehman 1991).

1.3.2 S -type Applications and Software

1.3.2.1 Definition

A program is defined as being of type S if it can be shown that it satisfies the necessary and
sufficient condition that it is correct in the full mathematical sense relative to a pre-stated
formal specification (Lehman 1980, 1982). Thus a demonstration, by means of proof for
example, that it satisfies the specification (Hoare 1969, 1971), suffices for contractual
completion and program acceptance. Where it is possible, for example with the excep-
tion of systems where decidability issues arise (Apt and Kozen 1986), demonstration of

Software Evolution 11

correctness is also a matter of mathematical skill and the availability of appropriate tools.
The proof demonstrates that program properties satisfy the specification in its entirety.
Such verification suffices for program acceptability if the specification is satisfactory to
intended users and meets their requirements. That is, the specification will have been
validated and accepted. Completion of verification then justifies contractual acceptance
of the program.

The definition assumes implicitly that a specification can be predetermined before devel-
opment begins and that, once fixed, learning during the course of the subsequent process
is restricted to determination of methods of solution and the choice of a best method
(in the context of constraints applying in the solution domain). Implementation is driven
purely by the implementers’ knowledge, understanding and experience.

The designation S was applied to S-type systems to indicate the role played by the
specification in determining product properties.

1.3.2.2 Validation

The above implies that verification with respect to the specification completes the S-type
development process. If satisfaction of the specification by the final program product
is (contractually) accepted as sufficient by both developer and client, verification leads
directly to acceptance. Practical application of the S-type development process, however,
requires that the specification is valid in the context of its intented use. Validation of a
specification is, in general, nontrivial.

1.3.2.3 The S -type in a Changing Domain

Even if initially satisfactory, changes in the use of an S-type program or in its operational
environments or circumstances can cause it to become unsatisfactory. In this event, the
specification, the problem or both must be revised. By definition, this means that a new
program based on a new specification is being implemented. However, the new derivation
is likely to be based on previous versions of the specification and program, that is, the latter
are modified rather than recreated. Conceptually, however, evolution of S-type programs
is restricted to the initial development. It consists of a discrete sequence of processes each
of which includes specification revision, program derivation and verification.

1.3.2.4 Formal Specification

Application of the S-type concept is limited to formally specifiable problems. It also
requires that a procedure for computation of the solution is known or can be developed
within budgetary and time constraints. In other words, there are four conditions that the
S-type program must satisfy in order to be legitimately termed as such. First, the problem
can be rigorously, that is, formally, stated. Second, the problem must be solvable algorith-
mically. Third, it must be feasible to prove that the program is correct with respect to the
formal specification. Last, but not least, the specification must be complete, that is, final
for the moment (see Section 1.3.2.3), in terms of the stakeholders’ current requirements. It
must explicitly state all functional and nonfunctional requirements of concern to the stake-
holders and, in particular, clients and users. Nonfunctional requirements include the range
and precision of variables, maximum storage space, execution time limits, and so on.

12 Software Evolution and Feedback: Theory and Practice

1.3.2.5 The S -type in Practice

S-type domains are exemplified by, though not restricted to, those in which it is required
to compute values of mathematical functions or formally defined transformations as, for
example, in program compilers or proof procedures. This is so because in these domains
the development process may be followed in its purest form. Its use in other domains
is more limited, but nevertheless retains both theoretical and practical importance. Its
theoretical importance arises from the fact that the S-type represents an ideal, specification-
driven, development process where the developers exercise maximum intellectual control
on the program properties of interest. One example of its practical importance is briefly
discussed in Section 1.3.3.2. In the vast majority of domains, however, the S-type program
process cannot be implemented for a variety of reasons: The most common, the difficulty
of creating a formal specification which is complete and final, in the sense implied above.
It is then that the E-type discussed below becomes relevant.

1.3.3 E-type Applications and Software

1.3.3.1 Definition

Type E programs were originally defined as ‘programs that mechanise a human or soci-
etal activity’ (Lehman 1980). The definition was subsequently amended to include all
programs that ‘operate in or address a problem or activity of the real world’.

A key property of the type is that the system becomes an integral part of the domains
within which it operates and that it addresses. It must reflect within itself all those proper-
ties of the domains that in any way affect the outcome of computations. Thus, to remain
satisfactory as applications, domains and their properties change, E-type programs must
be continually changed and updated. They must be Evolved. Software evolution is a
direct consequence and reflection of ongoing changes in a dynamic real world. Operating
systems, databases, transaction systems, control systems are all instances of the type, even
though they may include elements that are of type S in isolation.

1.3.3.2 S -Type Programs in the Real World

S-type elements can also contribute greatly to an E-type system despite the fact that
it is addressing a real-world application. Given the appropriate circumstances, their use
can provide important quality and evolvability benefits. Once embedded, they will, of
course be subject to all the evolutionary pressures that the host system is subject to,
even though shielded by other system elements. As the latter are changed to reflect an
evolving application, changing application and operational domains (hard and soft) under
which it operates, the S-type program will also require adaptation by changes to its
specification and, possibly, its interfaces. One cannot always expect it to remain static,
a matter that is particularly important in considering component-based architectures and
the use of components typically termed Commercial Off-The-Shelf (COTS) (Lehman and
Ramil 2000b).

1.3.3.3 Domain and System Bounds

The number of properties of an E-type application and of the domains in which it is
developed, evolved, operated, executed and used is unbounded. Clearly they cannot be

Software Evolution 13

explicitly identified, enumerated or uniquely defined. Hence, selection of those to be
reflected in the system requires abstraction. Properties and behaviours considered irrele-
vant in the circumstances or to domains of interest will be discarded. Their exclusion may
be explicit or implicit, conscious or unconscious, by commission or omission, recorded or
unrecorded, momentarily valid or invalid. Those excluded will be unbounded in number
since only a bounded number can be addressed and adopted. Moreover, each exclusion
involves at least one assumption3. To complicate matters, the practical bounds of the many
domains involved will, in general, be fuzzy and will change as knowledge and deeper
understanding of the application, operational domains and acceptable solutions accumulate
during development and as the intended application and the operational domains evolve.
As discussed in the next section, feedback plays a central role in this process.

1.3.4 P-type Situations and Software

A further class, type P , was also defined (Lehman 1980). The type was conceived as
addressing problems that appear to be fully specifiable but where the users’ concern is
with the correctness of the results of execution in the domains where they are to be
used rather than being relative to a specification. Such programs will clearly satisfy the
definition of one or other of the other types. Hence, in the context of the present dis-
cussion, their separate classification is redundant. However Cook et al. have recently
proposed a redefinition of the type P , conceptually faithful to the initial description
of the classification, but making the type P distinct from the other two types (Cook
et al. 2006).

1.4 The Inevitability of Evolution
The intrinsic evolutionary nature of real-world computer usage (Lehman 1991) and,
hence, of E-type software was recognised long ago (e.g. Lehman 1980, Lehman and
Belady 1985, Lehman 1991, 1994). Continual correction, adaptation, enhancement and
extension of any system operating in the real world was clearly necessary to ensure that
it adequately reflected the state at the time of execution of all application and domain
properties which influenced the real-world outcome of the problem being solved or the
application being supported. It was also self evident that such change or evolution must
be planned, directed and managed.

Information on the evolution of a variety of systems of differing sizes, from differ-
ent application areas, developed in significantly different industrial organisations and
with distinct user populations has been acquired over many years (e.g. Lehman and
Parr 1976, Lehman and Belady 1985, FEAST 2001). From the very start the study
demonstrated that software evolution is a phenomenon that can be observed, measured
and analysed (Lehman 1980), with feedback playing a major role in determining the
behaviour (Belady and Lehman 1972). A more complete picture and wider implications
became clear over a longer period (Lehman 1994).

Figure 1.1 is the original example of supporting evidence showing a steady OS/360-370
growth trend with a superimposed ripple. The latter was interpreted as indicating feedback
stabilisation and constituted the source of the suggestion that feedback plays a major role

3 See Chapter 16 (Lehman and Ramil 2001b) in this book for a further discussion on the topic of assumptions.

14 Software Evolution and Feedback: Theory and Practice

OS/360-370
Size in modules over releases

and linear growth trend

0
1 6 11 16 21 26

1

2

3

4

5

6

7 Size
relative
to RSN 1

RSN

Figure 1.1 The growth of OS/360-370 over releases as a function of release sequence num-
ber (RSN)

in controlling software growth. The growth pattern following the release with sequence
number 20 reinforced this conclusion being typical of the behaviour of a system4 with
excessive positive feedback. The excessive feedback here was reflected by a growth rate
from RSN 20 to RSN 21, more than three times as great as any previously observed.
Similar behaviour was also observed in the other systems studied (FEAST 2001), though
with differences in detail.

All in all, the observations and measurements over the years on many systems confirm
and advance the 1971 hypothesis (Belady and Lehman 1972) that in the long term ‘. . .
the rate of growth of a system is self-regulatory, despite the fact that over the years many
different causes control the selection of work implemented in each release, budgets vary,
number of users reporting faults or desiring new function change, economic conditions
vary and management attitudes towards system enhancement, frequency of releases and
improving methodology and tool support all change’.

The feedback observation was formalised in the FEAST (F eedback, Evolution And
Software T echnology) hypothesis (Lehman 1994, FEAST 2001). This states that, in gen-
eral and certainly for mature5 processes, software evolution processes are multi-agent,
multi-level, multi-loop feedback systems. They must be seen and treated as such if sus-
tained improvement is to be achieved. Implications of the hypothesis have been discussed
in a number of publications (FEAST 2001).

1.5 Levels of Software-Related Evolution
Evolution phenomena in software-related domains are not confined to programs and
related artefacts such as specifications, designs and documentation. Applications, defi-
nitions, goals, paradigms, algorithms, languages, usage practices, the sub-processes and
processes of software evolution and so on, also evolve. These evolving entities interact,
impact and affect one another. If their evolution is to be disciplined, the respective evo-
lution processes must be planned, driven and controlled. To be mastered, they must be
understood and mastered individually and jointly.

4 In general, a feedback system is a system in which the output modifies its input.
5 For a discussion of the process maturity concept and its practical assessment see Paulk et al. (1993)

and Zahran (1997).

Software Evolution 15

In the first instance, however, one must focus on individual aspects. The consequences
of interactions between the various levels of evolution require more insight than is
presently available. It is mentioned here only in passing, even though it is a topic that
requires further investigation.

Further discussion of software evolution is ordered by a simple classification scheme
summarised below and discussed in more detail in the following sections:

I. The development process implements a new program or software system or applies
changes to an existing system. On the basis of some identified need or desire, it
yields a new artefact. The stimuli and feedback mechanisms that drive and direct
this process yield gradual evolution of the application and its implementing system
to adapt them to a changing environment with changing needs, opportunities and
desires.

At the start of an E-type system development, knowledge and understanding of
the details of the application to be supported or the problem to be solved and of
approaches and methods for their solution are often undefined, even arbitrary (Turski
1981). The relative benefits of alternatives often cannot be established except through
trials. Results of the latter are unlikely to be comprehensive or conclusive. The devel-
opment process is a learning process in many dimensions that includes both the matter
being addressed and the manner in which it is addressed. Feedback from development,
change experience and evaluation of results drive the evolution process.

II. At a somewhat higher level, consider a sequence of versions, releases or upgrades
of a program or software system each of which is the output of such a process. These
incorporate changes that rectify or remove defects, implement desired improvements
or extensions to system functionality, performance, quality and so on. These are made
available to users by means of what is commonly termed a release process (Basili
et al. 1996).

Generally intended to produce improvements to the program, the release process
is often referred to as program maintenance. Over the years, however, it has been
recognised that the term is inappropriate, even misleading, in the software context.
After all, in other contexts, the term describes an activity that, in general, rectifies
aging, wear, tear and other deterioration that has developed in an artefact. The purpose
is to return the latter as closely as possible to a former, even pristine, state. But
software as such is not subject to wear and tear. In itself, it does not deteriorate. The
deterioration that software users and others sense is due to changes in its environment,
in the purpose for which it was acquired, the properties of the application, those of
the operational domains and the emergence of competitive products. Deterioration
or misbehaviour can often be associated with assumptions implicitly or explicitly
reflected in the software. These would have become invalid as a result of such external
changes.

Thus one must accept that in the software context, the term maintenance is incom-
patible with common usage. What happens with software is that it is changed or
adapted to maintain it satisfactorily in changed domains and under new circum-
stances as judged by stakeholders such as users. Software is evolved to maintain
embedded assumptions and its compatibility valid with respect to the world as it
is now. Only in this sense, is the use of the term maintenance appropriate in the
software context.

16 Software Evolution and Feedback: Theory and Practice

III. The areas supported by E-type software also evolve. Activities in these may range
from pure computation to embedded computers to cooperative computer-supported
integrated human-machine activity. We refer to such activities generically as applica-
tion areas. Introduction to use of successive software versions by the user community
as in II inevitably changes the activity supported. It also changes the operational
domain. Changes may be driven and include needs, opportunities, functionality, pro-
cedures and so on. In general, they require further changes to the system to achieve
satisfactory operation. Installation and operation of an E-type system, drives an
unending process of joint system and application evolution.

IV. The process of software evolution also evolves. The term refers to the aggregate of
all activities involved in implementing evolution in any of the above levels. It is
variously estimated that between 60 and 95% of lifetime expenditure on a software
system is incurred after first release (Pigoski 1996), that is, in area II evolution (can
even exceed 95% in, for example, defence applications). Hence, there is good reason
to improve the process of evolution, to achieve lower costs, improved quality and
faster response to user needs for change and so on.

Human dependence on computers and on the software that gives them functional
and computational power is increasing at ever growing rates. Process improvement is
also essential to reduce societal exposure to the consequences of high costs, computer
malfunction and delays in adaptation to changing circumstances. All these and many
other causes demand improvement of the means whereby evolution is achieved. And
the improvement achieved must produce gains in areas such as quality, cost and
response times in meeting the needs of the application areas and domains concerned.
The process evolves, driven by experience and technological advances.

V. The software evolution process is a complex multi-loop feedback system6. Achiev-
ing full understanding and mastery of it remains a distant goal. Modelling, using
a variety of approaches, is an essential tool for study, control and improvement of
the process (Potts 1984). Models facilitate reasoning about it, exploration of alter-
natives and assessment of the impact of change, for example. As the process and
understanding of it evolve, so must its models.

1.6 Ab Initio Implementation or Change
1.6.1 Process Steps

Ab initio implementation of a program or changes to an existing program is achieved by
interacting individuals and teams in a series of discrete steps, using a variety of, generally
computer-based tools. Their joint action over a period of weeks, months or even years
produces the desired program or a new version or release of an existing program. The
many steps or stages in such development differ widely. The first published model of
the software process, the Waterfall model (Royce 1970) and its subsequent refinements
(e.g. Boehm 1976, 1988), used terms such as requirements development, specification,
high-level design, detailed design, coding, unit test, integration, system test, documentation
and so on to describe these activities.

6 In a multi-loop feedback system, the inputs are influenced by the outputs by many different routes or
‘loops’.

Software Evolution 17

Their execution is not purely sequential. Overlapping and iteration between steps in
reaction to feedback or changes external to the system are inevitable as, for a variety
of reasons, is repetition. Thus, execution of any step may reveal an error in an earlier
step, suggest an improvement to the detailed design or reveal the impact of an underlying
assumption that requires attention. The latter may relate to the application, a procedure
being implemented, the current realisation, domain characteristics and so on.

Steps will, normally, operate at different conceptual and linguistic levels of abstraction
and will require alternative transformation techniques. Their aggregated impact is that
of a refinement process that systematically transforms an application concept into an
operational software system. Program development was indeed recognised and termed
successive refinement by Wirth (Wirth 1971). Thus even this process may be viewed as
evolutionary because it progressively evolves the application concept to gradually produce
the desired program. At the process level, it is conceptually equivalent to a process known
as the LST transformation.

1.6.2 The LST Paradigm

The LST process, was described by its authors (Lehman et al. 1984) as a sequence of
transformation steps driven by human creative and analytic power and moderated by
developing experience, insight and understanding. At first sight, the paradigm may be
considered abstract and remote from the complex reality of industrial software processes.
This is, however, far from the truth. A brief description will suffice to clarify this in the
context of the practical significance of the SPE classification (described in Section 1.3)
and reveal some issues that emerge during ab initio software development.

LST views each step of the implementation process as the transformation of a specifi-
cation into a model of that specification, in other words, of a design into an implementa-
tion. The transformation steps include verification, a demonstration that the relationship
between the implemented output and the specification is correct in the strict mathematical
sense. In this form, it is, therefore, only applicable to S-type applications where the formal
specification, can be complete and, by definition, express all the properties the program
is required to possess to be deemed satisfactory and acceptable. Only in this context is
mathematical correctness meaningful and relevant.

The paradigm, however, also requires a process of validation – termed beauty contest
in the LST paper – to complete each step. It is needed to confirm (or otherwise) at each
stage of refinement that the process is heading towards a product that will satisfy the
purpose for which it is being developed. The model fails validation if some weakness
or defect is revealed, which implies that the final product is unlikely to be satisfactory
in the context of the intended purpose. Unsatisfactory features may have arisen during
transformation by the introduction of properties undesirable in the context of the intended
purpose though not excluded by the current specification. Such features may even prove
to be incompatible with the purpose, their nonexclusion by the specification reflecting an
oversight or error in the latter.

The source of validation failure must be identified and rectified by modification of the
specification. That is, the previous specification must be replaced by a new one7. When

7 Though, in practice, it may be derived by modification of a previous version.

18 Software Evolution and Feedback: Theory and Practice

both verification and validation are successful, the new model becomes the specification
of the next transformational refinement step and the process continues.

Verification is a powerful tool where applicable but can only be applied to completely
and formally specified elements. It will be shown below that for programs operating
in and addressing real-world applications in real-world domains, their properties cannot
all be formally or completely specified. Hence the pure LST process cannot be used.
Individually and collectively, however, these nonformalisable properties influence the
computational process, its behaviour and its outputs and contribute to the level of user
satisfaction and program quality. As already observed, it is the satisfaction with the results
of program execution that concerns E-type users, not the correctness of the software.
Without verification, validation becomes even more crucial. The process whereby they
are implemented is, at best, a pseudo-LST process.

This distinction leads directly to a further observation relating to the use of component-
based architectures, reuse and COTS. The benefits these are expected to yield implicitly
assume that the elements are correct with respect to a stated specification. In a malleable,
evolutionary E-type domain, S-type components must be maintained compatible with all
of the domains in which they operate and are embedded (Lehman and Ramil 2000b);
their specification must be continually updated. This is not straightforward. As Turski has
affirmed ‘. . . the problem of adopting existing software to evolving specifications remains
largely unsolved, perhaps is algorithmically not solvable in full generality . . .’ (Turski
2000). In the real world of constant change and evolving systems, reliance on the use of
standardised components, reuse and COTS is difficult and hazardous, likely to negate the
benefits of their alleged use.

1.6.3 Phenomenological Analysis of Real-World Computer Usage

Clearly, pseudo-LST process cannot be guaranteed to produce a program that is satis-
factory whenever executed. This observation reflects the nature of the real world and of
people. Satisfaction depends upon the state of the former and the needs, desires, reactions
and judgements of the latter when using the results of execution. Relative to a world that is
forever changing, formal specification and demonstration of correctness where applicable,
is bound to the period at which the specification was developed and accepted. Behaviour
considered satisfactory even yesterday may not meet the conditions, needs and desires of
today. Later satisfaction cannot be guaranteed unless it is demonstrated that the defini-
tions, values and assumptions underlying the formulation and correctness demonstration
are still valid. Testing and other means of validation may increase confidence in the likeli-
hood of satisfaction from subsequent execution. But even this is not absolute, As Dijkstra
said ‘Testing can only demonstrate the presence of defects, never their absence’ (Dijkstra
1972b). In the real world of ‘now’ a claim of demonstrated correctness (even in its every-
day sense) of an E-type program with respect to the specification as it was, is, at best, a
statement about the likelihood of satisfaction from subsequent execution. Any assertion
of absolute or lasting, satisfaction is meaningless.

1.6.4 Theoretical Underpinning

The above reasoning is phenomenological. Closer examination provides a basis for for-
malising its conclusions. Programs and their specifications are products of human activity.

Software Evolution 19

As such, they are essentially bounded in themselves and in the number of real-world prop-
erties that they reflect. Real-world applications and domains are themselves unbounded
in the number of their properties. Specifications and programs therefore, cannot reflect
them in their entirety. Knowingly and unknowingly, an unbounded number of real-world
properties are discarded during the abstraction that produces the specification and per-
meates the subsequent development process. Moreover, each abstraction involves at least
one assumption. An unbounded number of assumptions are therefore reflected in any
E-type system (and in each of its E-type elements). Moreover, assumptions reflected in
the system may become invalid, for example, as discarded properties become relevant.
Ignoring this possibility adds further assumptions. Admittedly, most of the assumptions
embedded in the system will be and remain totally irrelevant, but some will inevitably
become irritants very possibly error or other, misbehaviour. All program elements that
reflect such assumptions will require rectification. However carefully and to whatever
detail software specifications and their implementations are developed the time for which
they remain valid will be limited.

Contractually, one may be able to protect the developers from responsibility for resultant
failure to achieve satisfactory results. Users will, in general, be unaware of the fact that
the program can only address foreseen changes that permit corrective procedures to be
included in the software and/or usage procedures. Usage will be judged as satisfactory or
otherwise on the basis of the results of execution but depends on the properties the program
has, not those it should have to satisfy and reflect the current states of the application
and the operational domains. Even in special cases where a real-world program has and
is correct against a formal specification, the use of the term correctness of a bounded
program relative to an unbounded domain is wrong. Formal correctness of a program or
system has only limited value.

1.6.5 The Value of Formalisms and of Verification

Nevertheless, formalisms and specifications can play an important role in the development
and evolution of E-type applications (van Lamsweerde 2000). Other than momentarily,
systems, software or otherwise, cannot, in general, be better, than the foundations on
which they are built. A demonstrably correct element does not provide any permanent
indication that the system as a whole is valid or will be satisfactory to its users. Nor can
correctness prove that a specification on which the demonstration is based is sufficient or
correct to ensure satisfactory operation. But the greater the number of system elements
that can be shown to be correct relative to a precise and complete specification, the
greater the likelihood that the system will prove to be satisfactory, at least for a while.
Demonstration, by whatever means, of the correctness of an element with respect to its
specification can assist in the isolation, characterisation and minimisation of uncertainties
and inconsistencies (Lehman 1989, 1990). It will then also assist systematic and controlled
evolution of the system and its parts as and when required.

Some researchers have highlighted the need to accompany a formal specification with
a precise, informal definition of its interpretation in the domains of interest (van Lam-
sweerde 2000). The systematic development and maintenance of these is a worthwhile
activity in the context of E-type evolution. It is referred to briefly later in the next section
when the role of assumptions is addressed.

20 Software Evolution and Feedback: Theory and Practice

1.6.6 Bounding

Abstraction is a bounding process. It determines the operational range of E-type systems.
The bounds required for such systems are, generally, imprecise, even unclear and subject
to change. Some of the boundaries will be well defined by prior practice or related
experience, for example. Others are adopted on the basis of compromise or recognised
constraints. Still others will be uncertain, undecidable or verging on the inconsistent. This
situation may be explicitly acknowledged or remain unrecognised until exposed by chance
or during system operation. Since applications and the domains to which they apply and
in which they operate are dynamic, always changing, and E-type system (in particular)
must be continually reviewed and, where necessary, changed to ensure continuing validity
of execution results in all situations that may legitimately arise.

In the context of evolution, fuzziness of bounds arises from several sources. The first
relates to the, in general, unlimited, number of potential application properties from
which those to be implemented and supported must be selected. The detail of system
functional and nonfunctional properties and system behaviour also cannot be uniquely
determined. A limited set must be selected for implementation on the basis of the current
state of knowledge and understanding, experience, managerial and legal directives and
so on.

Precise bounds of the operational domains are, in general, equally undetermined. The
uncertainty is overcome by provisionally selecting boundaries within which the system
is to operate to provide satisfactory solutions at some level of precision and reliabil-
ity, in some defined time frame, at acceptable cost. Inevitably however, once a system
is operational, the need or desire to change or extend the area of validity, whether of
domains or of behaviours, will inevitably arise. Without such changes, exclusions will
become performance inhibitors, irritants and sources of system failure. In summary, the
potential set of properties and capabilities to be included in a system is, in general,
unbounded and not uniquely selectable. Even a set that appears reasonably complete
may well exceed what can be accommodated within the resources and time allocated
for system implementation. As implemented, system boundaries will be arbitrary, largely
determined by many individual and group decision makers. Inevitably, the system will
need to be continually evolved by modifying or extending domains it defines, and explic-
itly or implicitly assumes, so as to satisfy changing constraints, newly emerging needs or
changed environmental circumstances.

But, unlike those of the domain, once developed and installed, system boundaries
become solid, increasingly difficult and costly to change, interpret and respect, fault prone,
slow to modify. A user requiring a facility not provided by the system may, in the
first instance, use stand-alone software to satisfy individual or local needs. This may be
followed by direct coupling of such software tightly to the system for greater convenience
in cooperative execution. But problems such as additional execution overhead, time delays,
performance and reliability penalties and sources of error will emerge, however the desired
or required function is invoked and the results of execution passed to the main system.
Omissions become onerous; a source of performance inhibitors and user dissatisfaction.
A request for system extension will eventually follow.

The history of automatic computation is rich with examples of functions first devel-
oped and exploited as stand-alone application software, migrating inwards to become, at
least conceptually, part of an operating or run time system and ultimately integrated into

Software Evolution 21

some larger application system or, at the other extreme, into hardware (chips). This is
exemplified by the history of language and graphics support. The evolving computing
system is an expanding universe with an inward drift of function from the domains to
the core of the system. The drift is driven by feedback about the effectiveness, strengths,
weaknesses, precision, convenience and potential of the system as recognised during its
use and the application of results.

1.6.7 The Consequence: Continual System Evolution

Properties such as those mentioned make implementation and use of an E-type system
a learning experience. Its evolution is driven, in part, by the ongoing experiences of
those that interact with or use the results of execution directly or indirectly, of those who
observe, experience or are affected by its use as well as those who develop or maintain
it. The system must reflect any and all properties and behaviours of the application being
implemented or supported, the domains in which the application is being executed, pursued
and supported, and everything that affects the results of execution. It must be a model-like
reflection8 of the application and its many operational domains.

However as repeatedly observed, the latter are unbounded in the number of their prop-
erties. They, therefore, cannot be known entirely by humans during the conscious and
unconscious abstraction and reification decisions that occur from conception onwards.
The learning resulting from development, use and evolution plays a decisive role in the
changes that must be implemented throughout its lifetime in the nature and pattern of its
inevitable evolution.

Evolution of E-type applications, systems, software and usage practices is clearly intrin-
sic to computer usage. Serious software suppliers and users experience the phenomenon
as a continuing need to acquire successive versions, releases and upgrades of used soft-
ware to ensure that the system maintains its validity, applicability, viability and value
in an ever-changing world. Development and adaptation of such systems cannot be cov-
ered by an exhaustive and complete theory if only because of human involvement in
the applications, the partially arbitrary nature of procedures in business, manufacturing,
government, the service sector and so on, and the potential unboundedness of the domain
boundaries (Turski 1981). Inherently, therefore, the software evolution process is, at least
to some extent, ad hoc.

1.6.8 Summary

In summary, every E-type program is a bounded, discrete and static reflection of
an unbounded, dynamic application and its operational domain. The boundaries and

8 In accepted mathematical usage the term model is valid when formally describing, for example, a required
relationship between a program specification, the application, operational domains to which it relates and the
program derived from it. The specification is derived from application and domain statements by an abstraction
process. The program is, in turn, derived from the specification by reification. The program, application and
domains will, however, possess additional properties. These must not be incompatible with the specification but
are not necessarily compatible with one another. The program is, therefore, not a model of the application and
its domains. The term model-like reflection is used here to convey the relationships which do exist. Software
maintenance may then be viewed as ‘maintaining reflective validity between the program and application’ as
the latter and its operational domains evolve.

22 Software Evolution and Feedback: Theory and Practice

other attributes of the latter are first determined in initial planning and adjusted,
during development, by technology, time, business and operational considerations and
constraints. Some are determined explicitly in processes such as requirements analysis
and specification, others as a result of explicit or implicit assumptions adopted and
embedded in the system during the evolution process. Fixing the detailed properties of
human/system interfaces or interactions between people and the operational system must
include trial and error. The fine design detail cannot be based on either one-off observation
and requirements elicitation or on intuition, conjecture or statistics alone. It arises from
continuing human experience, judgement and decision by development staff, users and
so on. Development changes perception and understanding of the application itself, of
facilities that may be offered, of how incompatibilities may be resolved, what requirements
should be satisfied by the solution, possible solutions, and so on. In combination, such
considerations drive the process onwards, by experience and learning-based feedback, to
its final goal, a satisfactory operational system.

1.6.9 Principle of Software Uncertainty

The preceding discussions have shown how the processes of abstraction and bounding
each generate a bounded number of assumptions that are reflected in the specifications
and programs. The latter are a subset of the unbounded number of assumptions made,
implicitly or explicitly, during the above processes and that relate, inter alia, to the states
and behaviours of the various domains addressed by the program and within which it
operates. The real world is dynamic, always changing and the rate of change is also likely
to be significantly affected by the development, installation and use of the computing
system. Inevitably, members of this bounded, embedded, assumption set will become
invalid as a result of changes in the real world. This principle follows that every E-type
system is likely to reflect a number of invalid assumptions. Since they are, in general,
not identified, the consequences in execution are not known. Hence the outcome of every
E-type program or system execution is uncertain. This observation has been formalised in
a Principle of Software Uncertainty. It has been discussed in several papers (e.g. Lehman
1989, 1990), more recently as an example of potential theorems in the development of a
theory of software evolution (Lehman and Ramil 2000a, 2001b).

1.7 Software Systems Evolution
1.7.1 Early Work

The decision whether, when and how to upgrade a system will be taken by the organisation
owning a product though often forced on them by others, clientele, for example. Their
considerations will involve many factors: business, economic, technical and even social.
Each version or release that emerges from the evolution process which implements their
decision is an adaptation, improvement (in some sense) and/or extension of the system, and
represents one element of the ongoing evolution. The sequence of releases transforms the
system away from one satisfying the original concept to one that successively supports the
ever-changing and emerging circumstances, needs and opportunities in a dynamic world.
If conditions to support evolution do not exist, then the system will gradually lapse into
uselessness as a widening gap develops between the real world as mirrored by the program
and the real world as it now is (First Law of Software Evolution, Lehman, 1974).

Software Evolution 23

Recognition of software evolution, its identification as a disciplined phenomenon and
its subsequent study was triggered by a 1968/1969 report entitled The Programming
Process (Lehman 1969). Inter alia, the study examined empirical data on the growth
of the IBM OS/360-370 operating system. As analysed in a number of papers since
then, it concluded that system evolution, as measured, for example, by growth in size
over successive releases, displayed regularity that was unlikely to have been primarily
determined by human management decision. Instead, the regularity appears to be due to
feedback via many different routes. The empirical data that first suggested this conclusion
was illustrated and was briefly discussed in Section 1.4, Figure 1.1. The figure plots
system size measured in numbers of modules – a surrogate for the functional power of
the system – against release sequence number (RSN) up to and including the period of
instability preceding its break-up into the VS/1 and VS/2 systems.

The growth trend of OS/360-370, when plotted over releases, was close to linear9 up
to RSN 20. A superimposed ripple suggested self-stabilisation around that trend, self
because no indication could be found that management sought linear growth. In fact,
there was no evidence that growth considerations played any part in defining individual
release content.

This stabilisation phenomenon provided the first empirical evidence that feedback was
playing a role in determining the growth rate of functional power or other attributes of
evolving systems. The conclusion was strengthened (Belady and Lehman 1972) by the
post RSN 21 instability. By the same reasoning, this was attributed to excessive positive
feedback, as reflected in the excessive incremental growth10 from RSN 20 to RSN 21.

1.7.2 FEAST

Follow-on studies in the 1970s and 1980s (Lehman and Belady 1985) produced further
evidence of similar evolutionary behaviour and led eventually to eight Laws of Soft-
ware Evolution that encapsulated these invariants (Lehman 1974, 1978, 1980, Lehman
et al. 1997). Following formulation of the FEAST hypothesis (Lehman 1994) succes-
sive studies, FEAST/1 and/2, were undertaken to further explore the evolution phe-
nomenon (FEAST 2001). Figure 1.2 provides just one example of the similarity between
the observation of the growth of OS/360-370 (Figure 1.1) and observations some 30 years
later. Discussion of those results can be found in some of the publications listed on the
FEAST web pages (FEAST 2001).

Attention should also be drawn to some of the differences in the evolution patterns of the
systems studied. For example, five of the FEAST systems display declining growth rate
trends appropriately modelled by an inverse square model of the form Si+1 = Si + E/S2

i

where Si is the predicted size of the release with sequence number ‘i’, with size measured
in appropriate units and E is a model parameter as determined from data on the growth
history of the system (Turski 1996). Moreover, for all five of these systems, the precision
of the trend model was increased by breaking up the growth data and by estimating the
model over two or more sequential segments. The recovery of the growth rate, at break
points such as that visible in Figure 1.2 may be assumed to indicate improvements in the
evolution process or restructuring of the evolving system. In fact, the figure appears to

9 As noted later, this early result was subsequently refined but this does not affect the basic reasoning.
10 Three-and-a-half times as great as the previously largest growth increment.

24 Software Evolution and Feedback: Theory and Practice

 A large real-time system
size in modules over releases

 and inverse square trends

0
1 5 9 13 17

1

2

3

4

5

6

7 Size
relative
to RSN 1

RSN

Figure 1.2 Growth trend of one of the systems studied in the FEAST projects (dots) with inverse
square models fitted to two individual segments (dashes). The start of segment 1 at RSN 2 provides
a slightly better fit than a model fitted starting at RSN 1

provide empirical support for the evolutionary stages concept (Bennett and Rajlich 2000,
Rajlich and Bennett 2000).

These five systems exemplify release level evolution. Phenomenological reasoning as
summarised above suggests that, in principle, similar behaviour is to be expected from
all real-world software systems. The data studied in FEAST was, however, all obtained
from systems developed and evolved using variations or extensions of the classical water-
fall process paradigm. Use of newer approaches, object oriented, open source, agile and
extreme programming, component-based architecture, and implementation introduces new
situations. But the all-pervading influences of factors such as the role of learning, feed-
back, environmental changes, the impact of computer integration and usage on needs and
usage patterns and the consequences of assumptions in a dynamic real world reflected
in the software suggest that paradigm changes will, at most, have an impact on the
detail of the software evolution phenomenon. The evolution of specific software under
the newer approaches is currently a topic of study and some results have been reported
[e.g. Godfrey and Tu 2000, Lehman and Ramil 2000b, Succi et al. 2001, Bauer and Pizka
2003, Capiluppi et al. 2004]. A discussion of current results cannot be included here.

The sixth system studied under FEAST involved ab initio development of a defence
system. Moreover, in that system, the size of the executable code was externally con-
strained by the memory capacity of the computer used in the application and alternative
metrics were unavailable. Hence it was concluded that the comparison of this system to
the other five could not contribute to the present study. It is mentioned here for the sake
of completeness.

1.7.3 The Growth Trend

The observed inverse square growth trend is consistent with a hypothesis that declining
growth rate may be attributed, at least in part, to growing complexity of the evolving
system and application as change is applied upon change. The growth in complexity may,
of course, be compensated by growing familiarity with the system, improved training,
expertise, documentation and tools, by re-engineering, system restructuring, refactor-
ing (Fowler 1999) and, more generally, anti-regressive activity (Lehman 1974). System
dynamics models (Forrester 1961) reproducing this phenomenon suggest that sufficient

Software Evolution 25

anti-regressive activity can yield close to linear growth (following an initial increasing
growth rate as briefly discussed below) (Lehman et al. 2002).

The results of these investigations have been widely reported (FEAST 2001). The sys-
tems studied were industrially evolved systems stemming from different development
organisations, addressing different application areas in differing operational environments
and of widely different sizes. The conclusions suggested some relatively minor modi-
fication of earlier overall results and strengthened conviction in the universality of the
phenomenon of E-type software evolution. As stated by the first (continuing change) and
sixth (continuing growth) laws, such systems must be continually adapted, changed and
extended, that is, evolved, if they are to remain of value to users and profitable to the
organisations in charge of their evolution.

More recently it has been realised that the inverse square model, while valid over
an extended period of the system life cycle, or over segments, is not the last word.
Re-examination of existing data and its interpretation indicates that growth rates at the
start of a development or at the initiation of a new growth segment are increasing, even
approaching the exponential. If, as appears likely, this conclusion is sustained then it is
more appropriate to replace the segmented inverse square growth model with an S-curve,
initial increasing rate that gradually approaches linearity and then decreases into, possibly,
inverse square growth.

1.7.4 Evolution Drivers

Observations and insights that suggested the laws of software evolution support the
observation that feedback plays a major role in driving and controlling release processes
(Lehman and Belady 1985, chap. 16; Lehman 1991). Sources of feedback include defect
reports from the field, domain changes due to installation, operation and use of the sys-
tem, changing user needs, new opportunities, advances in technology, even the economic
climate. At a more abstract level, experience changes user perception, understanding,
underlying application detail, system concepts, abstractions and assumptions. A need
and demand for change emerges. The always-emerging needs are conveyed back to sup-
pliers and demands action on their part. But the response can rarely be immediate since it
requires informed selection and approval that requires technical, business and, economic
judgements with moderation of the needs and priorities of many different users. As is to
be expected from a feedback system, the resultant delays cause further distortion of the
evolution process.

The information required to support this process propagates along paths involving
human interpretation, judgement and decision; hence there are significant delays. All
involved are liable to have an impact on the information and on feedback character-
istics. Many will contribute to the change process and not all are developers or user
communities exploiting insight gained from their usage and experience. But in all cases
information is the principal driver, with the characteristics of the feedback path influ-
encing its significance: that is, process-internal feedback paths are relatively short and
involve people who are experts in the application, the development process and the target
system. Their feedback is based on individual interpretation. In control-theoretic terms it
can be interpreted as low-level amplification, delay, noise and distortion. But long external
user- and business-based loops are likely to be primary determinants of release dynamics
characteristics.

26 Software Evolution and Feedback: Theory and Practice

1.7.5 Relationship Between the Above Levels of Evolution

Sections 1.6 and 1.7 of this chapter each addresses one area of software evolution.
Section 1.6 covers the activity of development of an entire system ab initio or of a change
to an existing system. Section 1.7 addresses the continual adaptation of a developed system
to changing circumstances, needs and ambitions. The two areas are related: The second
area also requires planning, development, specification, design and implementation of
desired changes and additions. Such implementation will then involve evolution activity
such as the one considered in the first area. But as briefly stated in Section 1.1.1, relative
to the system as a whole, the amount of change in any one release of a software system
is generally small even though locally many individual elements or components may be
changed or replaced by newly developed or acquired alternatives.

1.7.6 Evolutionary Development

Attention may also be drawn to development approaches that constitute an amalgama-
tion of the two above areas. As an example, consider Gilb’s Evolutionary Development
approach (Gilb 1981, 1988). In this approach, ab initio development and fielding of com-
plex (in some sense) systems in a sequence of releases each involving a new component
or chunk of functionality. In this way, the complexity of the task undertaken in any
release interval is greatly reduced. Moreover, by fielding the ‘in development’ system to
users, the latter becomes progressively exposed to a system of increasing functionality
and power. Learning and reaction, that is, user feedback, can be taken into account well
before development is completed. Hence the degree and complexity of validation and of
rework may be reduced. Regression testing and revalidation, on the other hand, is likely
to have to be increased.

Application of the approach depends on being able to architect the system so that
constituent parts may be interconnected, part by part, to yield a sequence of viable systems
of increasing functionality and power. The parts are developed, installed and, ideally,
introduced into use in a predetermined order. The latter is, however, very likely to require
modification as a result of, for example, unanticipated difficulties in completing some
elements, a need for redesign, introduction of new requirements, domain changes and
so on.

The system is not evolved continuously but by leaps and bounds. Constituent parts are
progressively exposed to system internal interactions and to usage. Hence, some interface
errors and undesirable or incorrect internal interactions will be detected sooner than would
be the case if real-world operation were to await completion of the entire system. On the
other hand, any benefit from this may be reduced or even reversed as development later
in the evolution process takes note of changes in the operational domains, reflects these in
the current design and implementation activity but fails to adjust older part of the system.
That is wrong of course, but very likely to occur.

It is likely that where a system structure can be decomposed to yield a viable process
and a usable system at each stage of the development, the approach can provide clear net
benefit. It has been industrially applied in practice but we are not aware of any empirical
assessment of its effectiveness in relation to more conventional development approaches.
It must, however, be accepted that a major problem in real-world system development is
that of uncertainty and risk associated with fixing the properties of the system. Related to

Software Evolution 27

this is the lack of a theoretical framework to guide selection of system properties during
requirements analysis, specification and design. Many decisions are, therefore, arbitrary
and not fully validated or rejected until the system has been fielded and is in regular
use. It is not now clear how effectively evolutionary development addresses these issues
although potentially it might well be more effective in this respect than the more classical
approaches. Detailed assessment of the approach is required to determine its dependency
on the nature of the application, development and other environments and what, if any,
changes are required to ensure maximum benefit from the approach.

1.8 Evolution of the Application and Its Domain
Continuing evolution is not confined to the software or even to a wider system within
which the software may be embedded. It is inherent in the very nature of computer
application. This is illustrated by a study of long-term feature evolution in the telephone
industry (Antón and Potts 2001). The activity that software supports and the problems
solved also evolve. Such evolution is, in part, driven by human aspiration for improvement
and growth. But more subtle forces are also at play. The very installation and use of
the system changes both the activity being supported and the domains within which
it is pursued. When installed and operational, the output of the process that evolved the
software changes the attributes of the application and the domains that defined the process
in the first place. As illustrated by Figure 1.3, the development process in association with
the application and the operational domains as defined and bounded, clearly constitute a
feedback loop. Depending on the manner in which and the degree to which changes impact
use of the system and loop characteristics such as amplification, attenuation and delays,
the overall feedback at this level can be negative or positive, leading to stabilisation,
continuous controlled growth and/or instability.

Operational
program

Theories, models,
procedures, laws
of application and
system domains

Application
concept

Application domain

Computational
procedures

and
algorithms

Views

Evolving
understanding
and structure

Requirements
analysis

Program
definition

Program

Exogenous
change

Figure 1.3 Evolution of the application in its domains as an iterative feedback system. Process
steps are illustrative. Internal process loops are not shown

28 Software Evolution and Feedback: Theory and Practice

In many instances, however, the phenomenon of application evolution is more complex
than indicated in the preceding paragraph. In particular, it may not be self-contained but
a phenomenon of co-evolution. As government, business and other organisations make
ever greater use of computers for administration, internal and external communication,
marketing, security, technical activity and so on, the various applications become inextri-
cably interdependent, sharing and exchanging data, invoking services from one another,
making demands on common manpower resources and budgets. The inescapable trend is
towards the integration of services, internal and external, with the goal, for example, of
minimising the need for human involvement in information handling and communication,
avoidance of delays and errors and increases in safety and security. And such integration
is seen as needing to gradually extend to clients’ systems, their customers and suppliers
and service organisations, banks for example.

With this scenario, the rate at which an organisation can grow and be adapted to
changing conditions and advancing technology depends on the rate at which it can evolve
the software systems that support its activities. More generally, in the world of today,
and even more of tomorrow, organisations will become interdependent. This will happen,
whatever their activity or sphere of operation, however disparate the domains within which
they operate, the activities they pursue, the technologies they employ and the computer
software which links, coordinates and ties all together. All co-evolve, each one advancing
only at a rate that can be accommodated by the others. And those rates depend not only
on the various entities involved but also on the processes pursued and the extent to which
these can be improved. Software is at the very heart of this co-evolution. Change to any
element almost inevitably implies software changes elsewhere.

1.9 Process Evolution
1.9.1 Software Processes as Systems

Software processes are the aggregate of all activities in developing or evolving software
and of the relationships between them. If correctly executed, they transform an application
concept into a satisfactory operational system. Improvement of the process is achieved
by improvement of its inputs, its parts and of their interactions. The parts themselves
implement and support technical, operational and managerial activity. At some level,
process steps can be seen as elements in a successive transformation paradigm (e.g. LST
as in Section 1.6.2).

But enactment of a software process requires a wide variety of interacting activities and
entities. Many of these are outside the core transformational steps but are nevertheless,
needed to address fuzziness in the application concept, to enable the orderly interaction
of many stakeholders and to ensure that the required outcome is achieved within relevant
quality, schedule and economic constraints.

1.9.2 Process Improvement

Over the past decade, computers and the software that gives them their functional capa-
bility, have penetrated ever more deeply into the very fabric of society, individually and
collectively. The world at large has become more and more dependent on the timely
availability of satisfactorily operating software with the reliability and at a cost that is
commensurate with the value that the software is to yield on execution. But, as repeatedly

Software Evolution 29

observed, E-type software must be adapted and extended as the world changes to yield
satisfactory results whenever or wherever, within the accepted and supported bounds, the
system is executed. Errors or delays in this continuing process can yield significant cost
and/or performance penalties due to incorrect or unacceptable behaviour. They can even
constrain or throttle organisations limited by out-of-date capabilities and legacy software.
The extent, number and severity of problems experienced is certainly, at least in part,
related to the nature and quality of the process by which the software is developed,
maintained and evolved.

As variously practised today, that process is far from perfect, expensive, the source
of many delays and with its products displaying major defects and deficiencies. The
need for improvement is widely accepted. Major investment is being made in developing
and applying software process improvement techniques (Zahran 1997). The methods used
have been formalised, developed and applied using paradigms such as SPICE (El Eman
et al. 1997), Bootstrap (Kuvaja et al. 1994) ISO 9000 and its derivatives, CMM (Paulk
et al. 1993) and more recently CMMi (Ahern et al. 2001). All are being explored and
applied the world over.

A major element of this search for improvement involves the development of new
programming paradigms and languages. These include Object Orientation, Component-
Based Architecture, Java, UML, Agile and Extreme. These new technologies involve
significant changes in approach and/or development practices to earlier practice. They
also cross-fertilise one another and, in turn, suggest or demand changes to or extensions
of the processes in which they feature. Hence, software evolution processes also evolve.
In the absence of a comprehensive scientific framework for software technology, such
evolution is primarily driven and directed by experience, emerging insight, inventiveness
and feedback.

1.9.3 The Theoretical Approach

Process improvement may be based on theory or be empirical. The first approach is
exemplified by the work of WG 2.3 (Gries 1978). That group has been meeting for-
mally since 1971 as an IFIP working group, to discuss its members’ views and work
on various aspects of programming methodology. The approach is bottom–up, based
on both fundamental thinking about the nature and goals of the basic program devel-
opment task and how it is or could be approached by individuals seeking solutions of
a problem. The group’s many positive results extended earlier work by their members.
These included Dijkstra’s much quoted observation that ‘GOTOs are considered harm-
ful’ (Dijkstra 1968b), the concepts and procedures of structured programming (Dijkstra
1972a), the concepts of program correctness proving (Dijkstra 1968a, Hoare 1969, 1971)
and successive refinement (Wirth 1971). The approach has provided basic concepts of
modern programming methods, but relate in the first instance to S-type programs. As a
result they are most significant at the heart of programming process improvement. They
provide, for example, a basis for individual programmer practice (Humphrey 1997) that
seeks to develop defect-free code.

In summary, the wider importance of the theoretical approach relates in the main
to the use of S-type elements to implement and evolve E-type systems. The resultant
methods and techniques are primarily relevant to the development of individual elements
within such systems. Any demonstration of correctness is limited by the fact that, in

30 Software Evolution and Feedback: Theory and Practice

the total system context, the individual element must be, and be maintained, correct in
the context of an intrinsically incomplete specification. The value of this, if achieved, is
unquestionable. The use of precise specifications with correct implementations at any level
provides value. But as the application, its domains and the system in which elements are
embedded and integrated evolve some, at least, will have to be adapted to the changing
environment in which they operate. It will become increasingly difficult to maintain them
correctly. The use of formal methods wherever possible is, at most, a partial answer to
maintaining an E-type system satisfactorily.

1.9.4 Evolving Specifications

The theory-based approach has also identified another fundamental software evolution
problem, the consequences of evolution at the specification level. As already stated
in Section 1.6.2, ‘. . . the problem of adopting existing software to evolving specifica-
tions remains largely unsolved, perhaps is algorithmically not solvable in full generality
. . .’ (Turski 2000). More generally, an open problem in program implementation relates to
the achievement of evolutionary approaches, in which, for example, unforeseen changes
and updates to an existing specification can be cheaply and safely reflected in an existing
model of that specification, including the operational program. That problem too may not
be solvable in full generality.

1.9.5 The Empirical Approach

The empirical approach must be seen as being parallel to and in support of the theoretical
approach. It is essential if the methods and techniques developed in relation to the latter
are to make a significant contribution to the evolution of large program systems. Empiri-
cism in the software evolution area is exemplified by Lehman’s early work (Lehman
and Belady 1985), the work of the FEAST group (Lehman et al. 1994–2002, FEAST
2001) and that of Kemerer (Kemerer and Slaughter 1999). All these exploit observation,
measurement, modelling and interpretation of actual industrially developed and evolved
software systems. This permits the development of black and white box (e.g. system
dynamics) models. Reasoning about the findings leads to the gradual development of an
empirical theory, and this in turn must be tied in with the low-level approach.

It is not possible to discuss the findings of these empirical studies further here and the
interested are referred to the referenced literature. It is, however, worthy of note that the
eight laws of Software Evolution, as outlined briefly below, are a direct outcome of such
empirical observation and interpretation over a period of some 30 years. The observations
brought together here provide a basis for development of a formal Theory of Software
Evolution (Lehman 2000, Lehman and Ramil 2000a, 2001b), indeed they constitute an
informal, for the moment partial, theory. They also lead to practical rules for software
release planning, management and control (Lehman and Ramil 2001a).

1.9.6 Laws of Software Evolution

The, currently eight, Laws, as listed below (Figure 1.4), were formulated in the decade
following the mid-seventies. They were derived from direct observation and measure-
ment of the evolution of a number and variety of systems. As such, they were viewed
as reflecting specific, largely individual, behaviour and regarded as independent of one

Software Evolution 31

No. Name Statement

1 Continuing Change An E-type system must be continually adapted, else it
becomes progressively less satisfactory in use

2 Increasing
Complexity

As an E-type system is changed its complexity increases and
becomes more difficult to evolve unless work is done to
maintain or reduce the complexity

3 Self Regulation Global E-type system evolution is feedback regulated

4 Conservation of
Organisational
Stability

The work rate of an organisation evolving an E-type software
system tends to be constant over the operational lifetime of
that system or phases of that lifetime

5 Conservation of
Familiarity

In general, the incremental growth (growth rate trend) of
E-type systems is constrained by the need to maintain
familiarity

6 Continuing Growth The functional capability of E-type systems must be
continually enhanced to maintain user satisfaction over system
lifetime

7 Declining Quality Unless rigorously adapted and evolved to take into account
changes in the operational environment, the quality of an
E-type system will appear to be declining

8 Feedback System E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems

Figure 1.4 The Laws of Software Evolution

another. Relationships between them, though not ruled out, were not investigated. How-
ever, following formulation of the observed feedback phenomenon as formalised in the
eighth law11, the likelihood of a structured relationship rooted in that law was accepted
and awaits development as an integral part of the formal development of a Theory of
Software Evolution. More complete discussion of the laws may be found in a number of
publications (Lehman 1974, 1978, 1980, Lehman and Belady 1985, Lehman et al. 1997,
Lehman and Ramil 2001a).

1.9.7 The Ephemeral Process
Any instance of the process is transient, ephemeral. Once executed, it is gone forever. It
will normally have been pre-planned in outline, detail being filled in as progress is made.
But unanticipated circumstances and conditions are the norm; budgets and schedules
change, new requirements, functional or performance problems arise. All these, and many
more, lead to process adjustments, adaptations and, though to be avoided, changes on the

11 It is of interest to note that this phenomenon was second only to recognition of continual evolution as a
phenomenon and was already referred to in 1972 (Belady and Lehman 1972).

32 Software Evolution and Feedback: Theory and Practice

fly. Triggered by observation of results or consequences of past activity or by perception
of what lies ahead, such unplanned changes are often the result of crisis action and local
reaction. They may result in a change to planned process activity or a need to backtrack
or iterate. Thus they tend to be error prone, hence undesirable. In any event there is a
complex mixture of feedback and feed forward of information based on individual and
collective interpretation, intellectual judgement and decision by humans that determines
how to proceed. The greater part of this is based on what is perceived, what is experienced,
what is anticipated and challenges that arise.

Absolute predictability is not possible when people are involved in a process. Some
degree of freedom must exist, otherwise their activity could and would be mechanised.
The freedom relates to what is done, how it is done, what is not done and by what it is
replaced. The potential for process definition and pre-planning is limited in extent, level of
detail, precision and repeatability. It can only be enforced at a comparatively coarse level
of granularity. Enforcement of a process specified at a high level of detail may appear
desirable in specific circumstances as in life-critical medical or aerospace applications. But
it must be accepted that rigid enforcement and application may itself result in problems,
defect injection, inadequate treatment of unforeseen circumstances, high cost or serious
time delays. Any of these can result from, for example, a misunderstanding of aspects of
the situation, incorrect anticipation of the future or delays while authorisation to deviate
is obtained.

Most development environments are subject to strong resource, schedule, budget and
other constraints. Reliance on a process that can and will be carried out as planned is
likely to prove naive in the extreme. Even in a single project, the process will evolve
dynamically in vitro, as well as in vivo through pre-planning.

1.10 Process Model Evolution
1.10.1 The Nature of the Software Process

Real-world processes are very complex. As a multi-level, multi-loop, multi-agent feedback
system with many of its mechanisms involving unpredictable decision taking by humans,
the process is likely to display the nonintuitive or even anti-intuitive behaviour observed
in feedback systems (Forrester 1961). Understanding how they act and interact requires
models that reflect feedback mechanisms that can be used to validate them by observation
and measurement of real-world properties and events.

1.10.2 Process Models

Models are used in many different areas and many different ways to facilitate and advance
understanding of a phenomenon, activity or process. They are indeed essential as vehi-
cles for communication and reasoning, providing, for example, means for systematic
and disciplined examination, evaluation, comparison and improvement. As simulators or
enactment tools they permit preliminary measurement, exploration and evaluation of pro-
posed changes (Tully 1989). In all these areas, their role can be greatly enhanced if they
are formal. In the absence of a formal representation, results are difficult to obtain or
validate using theoretical reasoning.

As the applications they reflect become larger, more complex and more integrated,
models must be evolved to remain of continuing value. This is particularly the case

Software Evolution 33

for models of the software process. With feedback producing pressure for continuing
change and direct human involvement, the full consequences of introduction and use
of computers and software is essentially unpredictable. It has already been stressed that
software must remain compatible with the human reactions and volatile applications and
domains that it addresses and in which it operates. The result is continual pressure for
change to applications, interfaces, domains and processes involved and to the application
of changes to any of these. As a consequence, software processes and models of them
must also be changed and evolved to cope with the demands made of them, for the role
they can play in maintaining and improving the reliability, timeliness, cost effectiveness
and, above all, reliability of the process product. One must also consider that there are
inherent limitations in modelling processes involving human action and decisions in a
dynamic world (Lehman 1977).

1.10.3 Software Process Models

In considering the role and potential of models in the software process, one must take
the dynamic, feedback-dependant nature of the latter into account. Models must reflect
its structure. This fact was briefly described and explored, in a number of papers in
the 1970s and 1980s (Lehman and Belady 1985) using very simple models. This early
work came to the forefront with the first International Process Workshop (Potts 1984) and
its successors. Later instances of this series were dominated by discussions of process
programming and process program models. Interest in this approach was triggered by
Osterweil’s keynote address at ICSE 9 in 1987. Serious questions about it were, however,
raised by Lehman in his response to that talk. (Lehman 1987). Sometime later behavioural,
system dynamics (Forrester 1961) and other types of process models, were proposed by
Abdel-Hamid and Madnick for the management of software development (Abdel-Hamid
and Madnick 1991).

1.10.4 Process Improvement

At the highest level of abstraction, process improvement relates to a variety of perfor-
mance and product quality, more generally reliability, factors as well as those relating
to cost and elapsed time, more generally productivity factors. These include the reduc-
tion of time to detect, analyse and correct defects of any sort and the reliable release
of a correction to users. An overall goal must be the reduction in the total number and
frequency of justified defect reports, and their rate of submission once the system is in
use. In this context, behavioural process models that address these concerns can be useful
(e.g. Lehman et al. 2002).

Process evolution to achieve such improvement proceeds slowly and is implemented
in incremental steps. Such steps will tend to be implemented locally as, for example, in
the insertion of a new activity between two existing steps, or code inspection between
coding and testing. In other instances the new activity will be out of the main line of
development seeking out and verifying, for example, program elements that have been
formally specified. As in the two instances cited, such an improvement may be of great
local significance with both inspection and verification adding to the underlying quality of
the system being developed. As such it makes a definite contribution to the overall value
of the system, one that must be welcomed. But in terms of contribution to the overall

34 Software Evolution and Feedback: Theory and Practice

quality or other attributes of the system as perceived by system beneficiaries, users and
other stakeholders, this low-level activity will be taken for granted as it would in any other
engineering discipline. It does not directly provide the visible benefit that stakeholders
expect in a system. Programming standards and software validation techniques have,
in general, advanced to the point where code stability and quality is largely taken for
granted.

Incremental improvement at the process step level, for example, has, in general, lit-
tle global impact on stakeholders in general, and individual and organisational users in
particular.

Unless process changes take the multi-level feedback structure of the process into
account, any benefit is likely to be overlooked, an illustration of the anti-intuitive behaviour
of such systems. Multi-level loop structures tend to be largely hierarchical but may also
involve loops, cutting across level boundaries. Whatever the case, one will have loops
within loops; more generally, feedback-generated responses that control and moderate the
behaviour and output of other loop mechanisms. Every process locality with its feed-
back loops will lie within others that drive and control the more extensive process and its
interaction with the operational domains. If feedback is negative, encompassing loops will
attenuate, even suppress, the effects of inner, more local changes. The potential impact
of improvements, whatever their significance in the isolation of their process neighbour-
hood, will be small outside. Positive feedback, while having the potential to amplify
some process property, may ultimately cause instability in the behaviour or a property of
the domain it controls. The instability of OS/360-370 growth illustrated occurring after
RSN 20 as illustrated in Section 1.4, Figure 1.1 represents an example of this effect. To
constitute a visible and measurable global improvement and to provide benefit to the
stakeholders and user communities, a process improvement must have visible, preferably
measurable, impact outside the programming process. Only such impact, has meaning and
value in the real world (Lehman 1994).

Models can be used to develop and evaluate proposed software process improvements.
However, if they are to be of value in their reflection of the likely properties of the
process after change and in the consequences of its implementation, they may well be
more difficult, costly and error prone to implement than is the process change itself. It is
not sufficient that the model reflects the change with sufficient precision. A framework
must be provided to provide a realistic environment for its validation, assessment of the
proposed change and evaluation. In addition, one must provide mechanisms to adjust,
and in some sense optimise, the change. And in any event, the full global consequences
of a process change are not straightforward to predict or to evaluate in the presence of
feedback, whether before implementation or after. Process models have a role in and a
contribution to make to software engineering but these are likely to be rather limited,
barring some major advances in process modelling and the use of models.

One final note on process model evolution must be made. However exploited, the infor-
mation that drives improvement is garnered from observation and previous experience.
Model evolution is also feedback driven. The flow will be from within the organisa-
tion, from other software developers and from process experts and practitioners (Lehman
1991). Disciplined and directed effort in process improvement is typified by the work

Software Evolution 35

of the Software Engineering Institute at Carnegie Mellon University (Humphrey 1989).
Their work does not explicitly focus on process models or feedback direction and control.
But those, in essence, are among the issues addressed and exploited.

1.10.5 Links Between Process and Process Model Evolution

What is the nature of the linkage between evolution of a process and that of its model?
Where impetus for change comes from a need to adapt a process to specific conditions
or circumstances, model evolution is a consequence of process evolution. The likely
consequence or benefit of a process change may possibly be assessed by implementing,
exploring and comparing alternative changes through model enactment before incorpo-
rating the selected change in the process. Evaluation of changes to the model can drive
process change. Where this is not done, changes made to the process, whether premedi-
tated or on the fly must be reflected in a change to the model if the latter is to retain its
validity and value. If, on the other hand, the pressure for evolution comes from recogni-
tion of a need for improvement, the process model can play a seminal role. It may then
influence the design and evaluation of the change before implementation. Such evaluation
must, however, include the benefits that would result and the investment required for their
implementation.

1.11 Relationships Between Levels
1.11.1 The Software/Software Process Contrast

There are clearly interactions between the various aspects and levels of evolution of
individual roles and evolution patterns as discussed. But this must not be interpreted as
indicating that there are similarities between their evolutionary behaviour. The reverse is,
in fact, the case. Software process evolution, for example, clearly differs significantly from
that of the software itself. Similarly, there is a fundamental difference in the relationships
between a software process and its models on the one hand and between E-type software
and the problem or application processes of which the software is a model-like reflection
on the other.

Wherein lie the differences? E-type software is concerned with some application pro-
cess and the application of program execution to the real world (Lehman 1991). Given
that operational domain, one develops and evolves systems to be used by a changing
population of (largely anonymous) people and organisations with differing degrees of
understanding, skill and experience. The concern will, in general, be with user commu-
nity behaviour. Only in exceptional instances can code make provision for individual
misuse, and that only if such misuse can and has been anticipated.

An essential ingredient of successful software design is, therefore, insulation of the
system from user behaviour. Computer applications evolve, inter alia, in response to the
changes in their software and in the domains. This is so, even though the former may
have been inspired by observation of real-world processes influenced or controlled by
its execution. There is directed interaction from the software to the application. Though
a model-like reflection of the application, it is often the software that forces evolution.
Software changes drive application changes while co-evolving with it.

36 Software Evolution and Feedback: Theory and Practice

1.11.2 The Software Process/Process Model Contrast

In direct contrast, when software development processes and the models that describe them
are considered, the focus of concern is the process even though a model was the source of
evolutionary change. A proposed change and its consequences may indeed be explored by
use of a model and be evaluated by its enactment. The process may even be guided to some
extend by a model-based support environment (Taylor et al. 1988). Nevertheless, the real
concern remains with the process in execution. Humans interpret specifications, process
directives, choose directions, take decisions, follow and apply methods. The proof of the
pudding lies in the eating. The process model is a broad-brush tool to permit reasoning
about the process but the consequences of process execution depend on the processes as
executed through the specific actions of individuals. It is the dependability, quality, ease
of use, timeliness and robustness of the process, which is of direct concern.

Process models are incomplete; at best a high-level guide to the process. They do not and
cannot provide a precise and complete representation of the process actually followed.
If, mistakenly, they are accepted as precise and complete they become straightjackets.
They constitute a constraint in domains where the unexpected and unanticipated is a
daily occurrence. This must be contrasted with executable software. Once acknowledged,
the software is relied upon to provide a precise, detailed, complete representation of the
actuality required or desired. Software defines the process of computation completely.
The language that determines it possesses a formal semantics with no ambiguity. Where
the process cannot be predetermined, alternatives must be identified and automated, tests
devised to select that which is to be followed. The process definition is absolute in the
context of that language12.

Process models, on the other hand are, as already observed, a partial reflection of the
desired process. It is the product of that process that is of concern. Changes to the model
are incidental to the ultimate purpose and interest in pursuing the process. They describe
changes, proposed or implemented; concepts to be translated into reality by people. They
are evaluated in terms of their impact on the process in execution. A process change may
be conceived and incorporated in a model. The acid test comes with the execution of
an instance of the process. Determination of its improvement or deterioration, success or
failure, is judged on the basis of product attributes.

There are also other significant differences. For example, process quality, productivity
and cost concerns relate to the process, not its model. For software, the reverse is the
case. Quality, productivity and cost concerns as visualised by the software engineer relate
to the software as a reflection of the application in its domain, not to the application itself.
Concern about such factors does arise but these must, in the first place, be addressed by
application experts. Deficiencies will, in general, be overcome, in the first instance, by
changes to system requirements and specification, to be reflected in changes to future
versions of the software.

Consider, finally, the time relationship between model and process changes and the
nature of the feedback loops that convey the interactions. For the process the keyword
is immediacy, whereas for software there is, in general, significant relative delay in feed-
back. One could go on listing the differences. The analysis as given suffices to indicate

12 The use of, for example, statistical tests, random number generators or other random choices is no exception
to this general rule. It is also predetermined, though the path taken cannot be predicted except in a probabilistic
sense.

Software Evolution 37

that the thesis (Osterweil 1987) that ‘software processes are software too’ must not be
taken literally.

1.12 Conclusions
The brief discussion of evolutionary development at the end of Section 1.7 indicates
that the classification of areas of evolution proposed in this chapter is not as precise as
one might have hoped for. There are other examples and in introducing one more in
these concluding remarks, a more general point can be made. Luqi’s Evolution by Rapid
Prototyping (Luqi 1989) also combines views from areas of ab initio development and
release-based evolution. This suggests that there might be advantages in simultaneously
addressing these, and indeed, other areas described in this chapter. In particular, it must
be recognised that the lowest level of evolution as outlined is used to implement the
evolution of the individual entities in the other areas. Thus, while compartmentalisation
has very clear benefits as an aid to understanding, it remains arbitrary to some extent. It is
certain that in industrial situations, for example, evolution over several levels will occur
concurrently. Consideration and management of each and of the interactions between
them must be coordinated to ensure maximum benefit.

The objective of this chapter has been to expose the wider and crucial role of evolution
and feedback in a number of domains related to software. Only recently has serious
thought been given to this topic and firm conclusions must await further directed and
intensive study. Though not sufficiently structured, the analysis presented here constitutes
an outline Theory of Software Evolution (Lehman and Ramil 2000a, 2001b). Formal
development and presentation of such a theory should not be long delayed.

In summary, feedback drive and control plays a major, critical and unavoidable role
in software technology. The characteristics of individual phenomena are functions of the
properties of the feedback loops. As a phenomenon, evolution occurs at different levels
in the computing and software domains. There is still much to be learned in this area and
the nature, impact and control of evolution at all levels must become a major focus of
future research and development.

1.13 Acknowledgments
Many thanks are due to industrial collaborators and academic colleagues for many discus-
sions, particularly during two EPSRC supported FEAST projects (1996–2001). Over the
years these have helped to prune, sharpen and extend the concepts and ideas presented.

References
References indicated with an “*” were reprinted in Lehman and Belady, 1985.
T.K. Abdel-Hamid and S.E. Madnick (1991), Software Project Dynamics – An Integrated Approach, Prentice

Hall, Englewood Cliffs, NJ, 264.
D. Ahern, A. Clouse and R. Turner (2001), CMMi Distilled – An Introduction to Multi-discipline Process

Improvement, SEI Series in Software Engineering, Addison-Wesley, Reading, MA.
A. Antón and C. Potts (2001), Functional Paleontology: System Evolution as the User Sees It, 23rd International

Conference on Software Engineering , Toronto, Canada, 12–19 May, pp. 421–430.
K.R. Apt and D. Kozen (1986), Limits for Automatic Program Verification of Finite-State Concurrent Systems,

Inf. Process. Lett., vol. 22, no. 6, pp. 307–309.

38 Software Evolution and Feedback: Theory and Practice

V.R. Basili, L. Briand, S. Condon, W. Melo and J. Valett (1996), Understanding and Predicting the Process of
Software Maintenance Releases, 18th International Conference on Software Engineering , Berlin, Germany,
March 25–29.

A. Bauer and M. Pizka (2003), The Contribution of Free Software to Software Evolution, Proceedings of the
International Workshop on Principles of Software Evolution (IWPSE), Helsinki, Finland, Sept. 2003.

*L.A. Belady and M.M. Lehman (1972), An Introduction to Growth Dynamics, in W. Freiburger (ed.), Statis-
tical Computer Performance Evaluation, Academic Press, New York, pp. 503–511.

K.H. Bennett and V.T. Rajlich (2000), Software Maintenance and Evolution: A Roadmap, in A. Finkelstein
(ed.), The Future of Software Engineering, ACM Order Nr. 592000-1, June 4–11, ICSE, Limerick, Ireland,
pp. 75–87.

B.W. Boehm (1976), Software Engineering, IEEE Trans. Comput., vol. C-25, no. 12, pp. 1226–1241.
B.W. Boehm (1988), A Spiral Model of Software Development and Enhancement, Computer, vol. 21, May

1988, pp. 61–72.
F. Brooks (1975), The Mythical Man-Month, Addison-Wesley, Reading, MA.
A. Capiluppi, M. Morisio and J.F. Ramil (2004), The Evolution of Source Folder Structure in actively evolved

Open Source Systems, Metrics 2004 Symposium , Chicago, Ill.
C.K.S. Chong Hok Yuen (1981), Phenomenology of Program Maintenance and Evolution, PhD thesis, Depart-

ment of Computing, Imperial College.
S. Cook, R. Harrison, M.M. Lehman and P. Wernick (2006), Evolution in Software Systems: Foundations of

the SPE Classification Scheme, J. Softw. Maint. Evol., vol. 18, no. 1, pp. 1–35.
E.W. Dijkstra (1968a), A Constructive Approach to the Problem of Program Correctness, BIT, vol. 8, no. 3,

pp. 174–186.
E.W. Dijkstra (1968b), GOTO Statement Considered Harmful, Letter to the Editor, Commun. ACM, vol. 11,

no. 11, Nov. 1968, pp. 147–148.
E.W. Dijkstra (1972a), Notes on Structured Programming, in O.J. Dahl, E.W. Dijkstra and C.A.R. Hoare (eds.),

Structured Programming, Academic Press, pp. 1–82.
E.W. Dijkstra (1972b), The Humble Programmer, ACM Turing Award Lecture, Commun. ACM, vol. 15, no. 10,

Oct. 1972, pp. 859–866.
K. El Eman, J.N. Drouin and W. Melo (1997), SPICE: The Theory and Practice of Software Process Improve-

ment and Capability Determination, IEEE Computer Society Press, Los Alamitos, CA, p. 450.
FEAST (2001), Feedback, Evolution And Software Technology, http://www.doc.ic.ac.uk/∼mml/feast/ <as of

Oct. 2001> See also http://www.cs.mdx.ac.uk/staffpages/mml <as of Feb 2004>.
J.W. Forrester (1961), Industrial Dynamics, MIT Press, Cambridge, MA.
M. Fowler (1999), Refactoring: Improving the Design of Code, Addison-Wesley, New York.
T. Gilb (1981), Evolutionary Development, ACM Softw. Eng. Notes, vol. 6, no. 2, April, 1981, p. 17.
T. Gilb (1988), Principles of Software Engineering Management, Addison-Wesley, Wokingham, United King-

dom.
M.W. Godfrey and Q. Tu (2000), Evolution in Open Source Software: A Case Study, Proceedings International.

Conference on Software Maintenance, ICSM 2000 , 11–14 Oct. 2000, San Jose, CA, pp. 131–142.
D. Gries (1978), Programming Methodology – A Collection of Articles by Members of IFIP WG2.3, Springer-

Verlag, New York, p. 437.
C.A.R. Hoare (1969), An Axiomatic Basis for Computer Programming, Commun. ACM, vol. 12, no. 10,

pp. 576–583.
C.A.R. Hoare (1971), Proof of a Program FIND, Commun. ACM, vol. 14, no. 1, pp. 39–45.
W.S. Humphrey (1989), Managing the Software Process, Addison-Wesley, Reading, MA.
W.S. Humphrey (1997), Introduction to the Personal Software Process(SM), Addison-Wesley, Reading, MA.
IWPSE. (2004), Proceedings International Workshop on Principles of Software Evolution , Kyoto, Japan, 6–7

Sept. http://iwpse04.wakayama-u.ac.jp/ <as of July 2004>.
C.F. Kemerer and S. Slaughter (1999), An Empirical Approach to Studying Software Evolution, IEEE Trans.

Softw. Eng., vol. 25, no. 4, July/August 1999, pp. 493–509.
S. Kuvaja, P. Koch, L. Mila, A. Krzanik, S. Bicego and G. Saukkonen (1994), Software Process Assessment

and Improvement – The Bootstrap Approach, Blackwell.
*M.M. Lehman (1969), The Programming Process, IBM Research Report RC2722M, IBM Research Center,

Yorktown Heights, New York.
*M.M. Lehman (1974), Programs, Cities, Students – Limits to Growth, Imp. Coll. Inaug. Lect. Ser., vol. 9,

1970–1974, pp. 211–229; also in Gries, 1978.

Software Evolution 39

*M.M. Lehman (1977), Human Thought and Action as an Ingredient of System Behaviour, in R. Duncan and
M. Weston Smith (eds.), Encyclopedia of Ignorance, Pergamon Press, Oxford, England.

*M.M. Lehman (1978), Laws of Program Evolution–Rules and Tools for Programming Management, Proceed-
ings of the Infotech State of the Art Conference, Why Software Projects Fail , London, England, April 9–11,
1978, pp. 1V1–lV25.

M.M. Lehman (1979), The Environment of Design Methodology, in T.A Cox (ed.), Proceedings of Symposium
on Formal Design Methodology, Cambridge, UK, Apr. 9–12, 1979, pp. 17–38; STL Ltd, Harlow, Essex,
1980.

*M.M. Lehman (1980), Program Life Cycles and Laws of Software Evolution, Proc. lEEE Spec. Iss. on Softw.
Eng., vol. 68, no. 9, Sept. 1980, pp. 1060–1076.

*M.M. Lehman (1982), Program Evolution, Symposium on Empirical Foundations of Computer and Informa-
tion Sciences, 1982, Japan Information Center of Science and Technology, published in J. Info. Proc. and
Management, 1984, Pergamon Press, reprinted as chapter 2 in (Lehman and Belady 1985).

M.M. Lehman (1987), Process Models, Process Programs, Programming Support, Invited Response to a Keynote
Address by Lee Osterweil, Proceedings of the Ninth International Conference on Software Engineering , Mon-
terey, CA, March 30–April 2, pp. 14–16.

M.M. Lehman (1989), Uncertainty in Computer Application and its Control Through the Engineering of Soft-
ware, J. Softw. Maint. Res. Pract., vol. 1, no. 1, pp. 3–27.

M.M. Lehman (1990), Uncertainty in Computer Application, Commun. ACM, vol. 33, no. 5, pp. 584–586.
M.M. Lehman (1991), Software Engineering, the Software Process and Their Support, IEE Softw. Eng. J.

Special Issue on Software Environ Factories, vol. 6, no. 5, pp. 243–258.
M.M. Lehman (1994), Feedback in the Software Evolution Process, CSR Eleventh Annual Workshop on Soft-

ware Evolution: Models and Metrics , 7–9 Sept. 1994, Workshop Proceedings, Information and Software
Technology, Special Issue on Software Maintenance, Elsevier, Dublin, NC, 1996, pp. 681–686.

M.M. Lehman (2000), These – Towards a Theory of Software Evolution, EPSRC Proposal, Case for Support
Part 2, Department of Computing, ICSTM, 11 Dec.

M.M. Lehman and F.N. Parr (1976), Program Evolution and its Impact on Software Engineering, Proceedings
of the 2nd ICSE , San Francisco, pp. 350–357.

M.M. Lehman and L.A. Belady (1985), Program Evolution – Processes of Software Change, Academic Press,
London.

M.M. Lehman and J.F. Ramil (2000a), Towards a Theory of Software Evolution – And its Practical Impact,
in Katayama T, Tamai T and Yonezaki N, (eds.), invited talk, Proceedings ISPSE 2000, Kanazawa, Japan,
IEEE Computer Society Press, Los Alamitos, CA, pp. 2–11.

M.M. Lehman and J.F. Ramil (2000b), Software Evolution in the Age of Component Based Software Engi-
neering, IEE Softw., special issue on Component Based Software Engineering, vol. 147, no. 6, pp. 249–255;
earlier version as Tech. Rep. 98/8, Imperial College, London, June 1998.

M.M. Lehman and J.F. Ramil (2001a), Rules and Tools for Software Evolution Planning and Management,
Ann. Softw. Eng. Spec. Issue Softw. Manage., vol. 11, pp. 15–44.

M.M. Lehman and J.F. Ramil (2001b), An Approach to a Theory of Software Evolution, IWPSE 2001. A revised
version as Background and Approach to Development of a Theory of Software Evolution.

M.M. Lehman, G. Kahen and J.F. Ramil (2002), Behavioural Modelling of Long-lived Evolution Processes:
Some Issues and an Example, J. Softw. Maint. Res. Pract., vol. 14, no. 5, pp. 335–351.

M.M. Lehman, Stenning V. and Turski W.M. (1984), Another Look at Software Design Methodology, ACM
SigSoft. Softw. Eng. Notes, vol. 9, no. 2, pp. 38–53.

M.M. Lehman, D.E. Perry, J.F. Ramil, W.M. Turski and P. Wernick (1997), Metrics and Laws of Software
Evolution – The Nineties View, Proceedings of the 4th International Symposium on Software Metrics, Metrics
97 , Albuquerque, New Mexico, pp. 20–32; Also in K. El Eman and N.H. Madhavji (eds.) (1999), Elements
of Software Process Assessment and Improvement, IEEE Computer Society Press, pp. 343–368.

Luqi (1989), Software Evolution through Rapid Prototyping, IEEE Comput., vol. 22, no. 5, pp. 13–25.
R.T. Mittermeir (2006), Facets of Software Evolution.
V. Nanda and N.H. Madhavji (2002), The Impact of Environmental Evolution on Requirements Changes,

Proceedings International Conference on Software Maintenance, Montreal, Canada, pp. 452–461.
P. Naur and B. Randell (1968), Software Engineering – Report on a Conference Sponsored by the NATO Sci-

ence Committee, Garmisch, Germany, Scientific Affairs Division; NATO, Brussels, Belgium, 1969, http://
homepages.cs.ncl.ac.uk/brian.randell/NATO/ <as of July 2004>.

40 Software Evolution and Feedback: Theory and Practice

L. Osterweil (1987), Software Processes are Software Too, Proceedings of the 9th International Conference on
Software Engineering, IEEE Computer Society Press, Monterey, CA, Pub. 767, pp. 2–13.

M.C. Paulk, B. Curtis, M.B. Chrissis and C. Weber (1993), Capability Maturity Model for Software, Version
1.1. Technical Report CMU/SEI-93-TR-24, Software Engineering Institute.

S.L. Pfleeger (2001), Software Engineering – Theory and Practice, 2nd Ed, Prentice Hall, Upper Saddle River,
NJ, pp. 659.

T.M. Pigoski (1996), Practical Software Maintenance, Wiley, p. 384.
C. Potts (ed.), (1984), Proceedings of the Software Process Workshop, IEEE Computer Society Press, Egham,

Surrey, Feb., Order No. 587.
V.T. Rajlich and K.H. Bennett (2000), A Staged Model for the Software Life Cycle, Computer, vol. 33, no. 7,

July 2000, pp. 66–71.
W. W. Royce (1970), Managing the Development of Large Software Systems, Proceedings of IEEE Westcon ,

Los Angeles, CA, pp. 1–9.
G. Succi, J. Paulson and A. Eberlein (2001), Preliminary Results from an Empirical Study on the Growth

of Open Source and Commercial Software Products, EDSER-3 Wkshop, Co-located with ICSE 2001 , May
14–15, Toronto, Canada.

R.N. Taylor, F.C. Belz, L.A. Clarke, L. Osterweil, R.W. Selby, J.C. Wileden, A.L. Wolf and M.Young (1988),
Foundations for the Arcadia Environment Architecture, SIGSOFT Software Engineering Notes, ACM Press,
New York, vol. 13, no. 5, pp. 1–13.

C. Tully (1989), Representing and Enacting the Software Process, Proceedings of the 4th International Software
Process Workshop, ACM SlGSOFT Software Engineering Notes, ACM Press, June 1989.

W.M. Turski (1981), Specification as a Theory with Models in the Computer World and in the Real World,
Infotech State Art Rep. vol. 9, no. 6, pp. 363–377.

W.M. Turski (1996), A Reference Model for the Smooth Growth of Software Systems, IEEE Trans. Softw.
Eng., vol. 22, no. 8, pp. 599–600.

W.M. Turski (2000), An Essay on Software Engineering at the Turn of the Century, in T. Maibaum (ed.),
Fundamental Approaches to Software Engineering, Proceedings of the Third International Conference FASE
2000. LNCS 1783, Springer-Verlag, Berlin, Germany, pp. 1–20.

A. van Lamsweerde 2000, Formal Specification: a Roadmap, in A. Finkelstein (ed.), 22nd International Con-
ference on software Engineering, The Future of Software Engineering, ACM Press, Limerick, Ireland, Order
No. 592000-1, pp. 149–159.

N. Wirth (1971), Program Development by Stepwise Refinement, Commun. ACM, vol. 14, no. 4, pp. 221–222.
S. Zahran (1997), Software Process Improvement – Practical Guidelines for Business Success, SEI Series in

Software Engineering, Addison-Wesley, Harlow, England.

