
1

Before getting into the details of cryptographic operators, we’ll review
some basics of working with bits and number bases. For those of you who
have worked on operating systems, low-level protocols, and embedded
systems, the material in this chapter will probably be a review; for the rest
of you, whose day-to-day interactions with information technology and
basic software development don’t involve working directly with bits, this
information will be an important foundation to the information contained
in the rest of the book.

General Operations

Most cryptographic functions operate directly on machine representation
of numbers. What follows are overviews of how numbers are presented in
different bases, how computers internally represent numbers as a collec-
tion of bits, and how to directly manipulate bits. This material is presented
in a computer- and language-generic way; the next section focuses specifi-
cally on the Java model.

Bits and Bytes

C H A P T E R

1

C H A P T E R

210293 Ch01.F 8/13/02 8:53 AM Page 1

Number Bases
In day-to-day operations, we represent numbers using base 10. Each digit
is 0 through 9; thus, given a string of decimal digits dndn-1

... d2d1d0, the
numeric value would be:

10ndn + 10n-1dn-1 + ... + 102d2 + 10d1 + d0

This can be generalized to any base x, where there are x different digits
and a number is represented by:

xndn + xn-1dn-1 + ... + x2d2 + xd1 + d0

In computer science, the most important base is base 2, or the binary rep-
resentation of the number. Here each digit, or bit, can either be 0 or 1. The
decimal number 30 can be represented in binary as 11110 or 16 + 4 + 2. Also
common is hexadecimal, or base 16, where the digits are 0 to 9 and A, B, C,
D, E, and F, representing 10 to 15, respectively. The number 30 can now be
represented in hexadecimal as 1E or 16 + 14. The relationship between dig-
its in binary, decimal, and hexadecimal is listed in Table 1.1.

Table 1.1 Binary, Decimal, and Hexadecimal Representations

BINARY DECIMAL HEXADECIMAL

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

2 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 2

When you are working with different bases, the base of a number
may be ambiguous. For instance, is 99 the decimal or the hexadecimal 99
(= 9 × 16+9)? In this case, it’s common to prefix a hexadecimal number with
0x or just x (e.g., 99 becomes 0x99 or x99). The same confusion can happen
with binary numbers: Is 101 the decimal 101 or the binary 101 (4 + 1 = 5)?
When a number in binary may be confused, it’s customary to add a sub-
script 2 at the end of a string of binary digits, for example, 1012.

Any number can be represented in another base b if it is positive; how-
ever, doing the conversion isn’t necessarily easy. We’ll discuss general-
purpose base conversion in a later section, but it’s useful to note that
conversion between two bases is especially easy if one of the bases is a
power of the other. For instance, the decimal number 1234 has the canoni-
cal representation in base 10 as 1 × 1000 + 2 × 100 + 3 × 10 + 4. However,
1234 can also be thought as two “digits” in base 100: (12) and (34), with a
value of 12 × 1000 + 34 × 100. It’s the same number with the same value; the
digits have just been regrouped. This property is especially useful for base
2. Given a binary string, it’s possible to convert to hexadecimal by group-
ing 4 bits and computing the hexadecimal value:

10011100 = 1001 1100 = 9C

Bits and Bytes
A bit is the smallest unit of information that a computer can work on and
can take two values “1” and “0,” although sometimes depending on con-
text the values of “true” and “false” are used. On most modern computers,
we do not work directly on bits but on a collection of bits, sometimes called
a word, the smallest of which is a byte. Today, a byte by default means 8 bits,
but technically it can range from 4 to 10 bits. The odd values are from either
old or experimental CPU architectures that aren’t really in use anymore. To
be precise, many standards use octet to mean 8 bits, but we’ll use the more
common byte. Modern CPUs operate on much larger word sizes: The term
32-bit microprocessor means the CPU operates primarily on 32-bit words in
one clock cycle. It can, of course, operate on 8-bit words, but it doesn’t
mean it happens any faster. Many CPUs also have special instructions that
sometimes can operate on larger words, such as the SSE and similar
instructions for multimedia, as well as vector processing, such as on the
PowerPC.

A byte has a natural numeric interpretation as an integer from 0 to 255
using base 2, as described earlier. Bit n represents the value 2n, and the
value of the byte becomes the sum of these bits. The bits are laid out exactly
as expected for a numeric representation, with bit 0 on the right and bit 7 on
the left, but the layout is backward when compared to Western languages.

Bits and Bytes 3

210293 Ch01.F 8/13/02 8:53 AM Page 3

(b7b6b5b4b3b2b1b0) = 27b7 + 26b6 + 25b5 + 24b4 + 23b3 + 22b2 + 21b1 + 20b0

or using decimal notation

(b7b6b5b4b3b2b1b0) = 128b7 + 64b6 + 32b5 + 16b4+ 8b3 + 4b2+ 2b1 + b0

For example, 00110111 = 32 + 16 + 4 + 2 + 1 = 55.
Bits on the left are referred to as the most-significant bits, since they

contribute the most to the overall value of the number. Likewise, the right-
most bits are called the least-significant bits. This layout is also known as
Big-Endian, which we’ll discuss later.

Signed Bytes
Negative numbers can be represented in a few ways. The simplest is to
reverse one bit to represent the sign of the number, either positive or nega-
tive. Bits 0 through 6 would represent the number, and bit 7 would repre-
sent the sign. Although this allows a range from –127 to 127, it has the quirk
of two zeros: a “positive” zero and a “negative” zero. Having the two zeros
is odd, but it can be worked around. The bigger problem is when an over-
flow occurs—for instance, adding 127 + 2 is 129 in unsigned arithmetic, or
1000001. However, in signed arithmetic, the value is –1.

The most common representation is known as two’s complement. Given x,
its negative is represented by flipping all the bits (turning 1s into 0s and
vice versa) and adding 1, or computing –1 –x (the same value). For example,
note in Table 1.2 that adding 1 to 127 makes the value –128. While this
method is a bit odd, there are many benefits. Microprocessors can encode
just an addition circuit and a complementation circuit to do both addition
and subtraction (in fact, many CPUs carry around the complement with
the original value just in case subtraction comes up). The other main bene-
fit is when casting occurs, or converting a byte into a larger word, as
described in the following section.

Bitwise Operators
The usual arithmetic functions such as addition and multiplication inter-
pret words as numbers and perform the appropriate operations. However,
other operations work directly on the bits without regard to their represen-
tation as numbers. These are bitwise or logical operations. While examples
shown in the next sections use 8-bit bytes, they naturally extend to any
word size.

4 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 4

Table 1.2 Two’s Complement Representation

UNSIGNED SIGNED HEXADECIMAL BINARY
VALUE VALUE REPRESENTATION REPRESENTATION

0 0 00 00000000

1 1 01 00000001

2 2 02 00000010

126 126 7d 01111110

127 127 7f 01111111

128 -128 80 10000000

129 -127 81 10000001

130 -126 82 10000010

253 -3 fd 11111101

254 -2 fe 11111110

255 -1 ff 11111111

As shown in Table 1.3, the operations are represented by different sym-
bols depending if the context is programming or typographical. When
required, this book will use the programming notations, with the exception
of XOR, since the caret symbol (^) is used to denote exponents in some
systems.

Table 1.3 Bitwise Operations and Notation

C-STYLE C-STYLE SELF-
OPERATION NOTATION ASSIGNMENT TYPOGRAPHICAL

NOT a ~a n/a ¬ a

a AND b a & b a &= b a ^ b

a OR b a | b a |= b a b

a XOR b a ^ b a ^= b a ⊕ b

Shift a left by a << n a <<= n a << n
n bits

(continues)

^

Bits and Bytes 5

210293 Ch01.F 8/13/02 8:53 AM Page 5

Table 1.3 Bitwise Operations and Notation (Continued)

C-STYLE C-STYLE SELF-
OPERATION NOTATION ASSIGNMENT TYPOGRAPHICAL

Shift a right by a >> n a >>=n None; all shifts and
n bits, preserve words are assumed
sign of a to be unsigned

Shift a right by a >>> n a >>>=n a >> n
n bits, unsigned

Rotate a right by (x >>> n) | n/a ROTRn(a)
n bits; w is (x << w-n)
number of bits of a

Rotate a left by (x << n) | n/a ROTLn(a)
n bits; w is the (x >>> w-n)
number of bits of a

Concatenating (a << shift) | b n/a a || b
a and b

Take n least- a & mask a &= mask MSBn(a)
significant bits of a

Take n most- a & mask LSBn(a)
significant bits of a >>> shift

Complementation or Bitwise NOT

The simplest bit operation is complementation or the bitwise NOT. This
simply flips bits within a word, where 0s become 1s and 1s become 0s—for
example ~11001 = 00110. Cryptographically, this operation is not used
much, primarily for implementing basic arithmetic in hardware.

Bitwise AND

AND is useful in bit testing and bit extraction. It’s based on the usual truth
table for logical AND, as shown in Table 1.4. You can remember the truth
table by observing that it’s the same as binary multiplication—anything
times zero is zero.

Table 1.4 Bitwise AND

6 Chapter 1

0 1

0 0 0

1 0 1

AND

210293 Ch01.F 8/13/02 8:53 AM Page 6

To test if a bit is set, create a mask with 1s in positions you wish to test
and perform the logical AND operation. If the result is nonzero, the bit is
set; otherwise, the bit is not:

01011101

AND 00001000

00001000 // not == 0, bit 4 is set

It’s also useful for bit clearing. A mask is created with 1s in positions to
preserve and 0s where you want to clear. For instance, to clear the four
least-significant bits in a byte, use the mask 11110000:

11011101

AND 11110000

11010000

Bitwise OR

Bitwise OR extends the logical OR to a series of bits. In English, or means
one or the other but not both. The bitwise version means one or the other
or both (the same as the logical OR). See Table 1.5.

Logical OR is useful in joining nonoverlapping words. The following
example joins two 4-bit words together:

11010000

OR 00001111

11011111

In this case, the same effect could be done by using regular addition;
however, it’s pretty standard to use OR instead to make it clear that addi-
tion is not the point of the operation and that you are doing bit operations.

Table 1.5 Bitwise OR

Bits and Bytes 7

0 1

0 0 1

1 1 1

OR

210293 Ch01.F 8/13/02 8:53 AM Page 7

Table 1.6 Bitwise XOR

Bitwise Exclusive OR (XOR)

Exclusive OR is abbreviated as XOR, and its operation is denoted by ⊕. It
is less common in normal programming operations but very common in
cryptographic applications. Table 1.6 shows the Bitwise XOR table. This
table is easy to remember, since it is the same as addition but without any
carry (this is also known as addition modulo 2). It’s also equivalent to the
English usage of or—one or the other but not both.

XOR tests to see if two bits are different: If the bits are both 0s or both 1s,
the result is 0; if they are different, the result is 1. XOR is useful in crypto-
graphic applications, since unlike AND and OR, it’s an invertible opera-
tion, so that A ^ B ^ B = A:

11010011

XOR 10101010

01111101

XOR 10101010

11010011

Left-Shift

As its name implies, the left-shift operator shifts the bits within a word to
the left by a certain number of positions. Left-shifts are denoted by a << b,
where a is the value and b denotes the number of positions to shift left.
Zeros are filled in on the least-significant positions:

11111111 << 1 = 11111110

11001100 << 3 = 01100000

Mathematically, each shift left can be thought of as multiplication by 2:

3 × 2 = 00000011 << 1 = 00000110 = 4 + 2 = 6

3 × 4 = 00000011 << 2 = 00001100 = 8 + 4 = 12

-3 × 2 = 11111101 << 1 = 11111010 = -6

-128 × 2 = 10000000 << 1 = 00000000 = 0 (overflow)

8 Chapter 1

0 1

0 0 1

1 1 0

XOR

210293 Ch01.F 8/13/02 8:53 AM Page 8

When you are working with large word sizes (such as 32-bit integers),
left-shifts are used to compute large powers of 2, since 2n = 1 << n. A trick
to test to see if only one bit is set (or rather the value is a power of 2) is using
x & -x == x. In many cryptographic operations, we need to extract a cer-
tain number of the least-significant bits from a word. Normally you are
working with word sizes much bigger than a byte. However, say you
needed to extract the six least-significant bits from a byte B. You could per-
form B & 0x3f (B & 0011111). Computing this for larger word sizes is a bit
clumsy, and worse, some algorithms may extract a variable number of bits,
so the mask has to be dynamic. Hardwiring a hexadecimal mask is also
prone to errors, and someone reading your code would have to think about
how many bits you are extracting. How many bits are in 0x7fffff? The
answer is 23, but it’s not automatically clear, and staring at a computer mon-
itor all day where the text is in a small font makes the task harder. Instead,
a left-shift can be used, since 2n – 1 or (1 << n) – 1 has binary representation
of with (n – 1) digits of “1.” Instead of 0x7fffff, we can use ((1 << 24) – 1), which
will be perfectly clear to someone familiar with bit operations. Even better,
you can make your intentions clearer by making the mask a constant:

public static final int mask23lsb = (1<<24) -1; // 23-bit mask

Right-Shift

Not surprisingly, right-shifts, denoted by >>, are the opposite of left-shifts,
and positions are shifted to the right. However, there is another significant
difference. In left-shift notation, zeros are placed in the least-significant
position. With right-shift, the value of the most-significant bit is used to
fill in the shifted positions. For example, 1000000 >> 2 = 1100000, but
0100000 >> 2 = 00100000. This is designed so that the sign is preserved and
the right-shift is equivalent to division by 2 (dropping any fractional part),
regardless of the sign. For example, we’ll “undo” the previous left-shift
examples:

6 / 2 = 00000110 >> 1 = 00000011 = 3

12 / 4 = 00001100 >> 2 = 00000011 = 3

-6 / 2 = 11111010 >> 2 = 11111101 = -3

-127 / 2 = 10000001 >> 1 = 11000000 = -64

This works well when you are treating the byte as a number. In crypto-
graphic applications, the bits are just treated as bits without any numerical
interpretation. In every case, it is assumed the byte or word is unsigned
(e.g., unsigned long in C). If you are using a signed type (such as Java),

Bits and Bytes 9

210293 Ch01.F 8/13/02 8:53 AM Page 9

you’ll want to use the unsigned right-shift, denoted by >>> (three less-than
symbols). This just shifts the bits to the right and fills in zeros for the most
significant bits. All cryptographic papers assume the shift is unsigned and
normally use the plain >>. When coding an algorithm using signed types,
make sure you convert >> to >>>.

Special Operations and Abbreviations

The previous operations, while useful, are fairly basic and typically directly
implemented in hardware. By combining and composing them, you can
create new higher-level bit operations. For cryptography, the most useful
operations are rotations, concatenation, and extraction of most- and least-
significant bits.

Rotations

Bit rotations are fairly self-explanatory: Bits are shifted either left or right,
and the bits that “fall off the edge” roll over onto the other side. These are
commonly used in cryptography, since this method provides an invertible
operation that can aid in scrambling bits. The problem is that they aren’t
used for much else, so many CPUs do not have rotation instructions, or if
they do, they are frequently slow. Even if they have a fast rotation, the only
way to access them is by writing assembly language, since rotations do not
have a standard operator like the shifts do. Common programming rota-
tions can be accomplished with a combination of shifts and logical opera-
tors, which is the slowest method of all. In its most general case, a rotation
will take one subtraction, two shifts, and a logical OR operation. Remember
to use the unsigned right-shift operator:

(x >>> n) | (x << 32-n); // rotate right n positions, x 32-bit int

(x << n) | (x >>> 32-n); // rotate left n position, x 32-bit int

There is no special typographical symbol for rotations; we normally use
the abbreviations ROTR or ROTL, although certain technical papers may
define their own symbols in their work.

Bit Concatenation

Bit concatenation is the process of simply joining together two sets of bits
into one word. If b is n-bits long, then a || b is a << n | a:

a = 101

b = 0011

a || b = 11 << 4 | 0011 = 1010000 | 0011 = 1010011

10 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 10

MSB and LSB operations

Two other common operations are extracting a certain number of most-
significant bits (MSB) or least-significant bits (LSB). We’ll use the notation
MSBn(a) to denote extracting the n most-significant bits. Likewise with
LSBn(a). These operations are accomplished by making the appropriate
mask, and in the MSB case, by shifting appropriately:

MSB3(10111111) = (10111111 & 11100000) >>> 5 = 101

LSB2(11111101) = 11111111 & 00000011 = 00000001

Packed Words
Shifts are useful in creating packed words, where you treat the word as an
array of bits rather than as a number, and where the bits represent anything
you like. When doing this, you should use an unsigned numeric type.
Unfortunately, Java and many scripting languages do not have unsigned
types, so you must be extremely careful. As an example, suppose you have
two variables that are numbers between 0 and 15. When transmitting or
storing them, you might want to use the most space-efficient representa-
tion. To do this, you represent them not as 8-bit numbers from 0 to 255, but
as two numbers each with 4 bits. For this example, we’ll use pseudocode
and use the type int to represent an unsigned 8-bit value:

int a = 5; // 00000101

int b = 13; // 00001101

int packed = a << 4 | b; // = 00000101 << 4 | 00001101

// = 01010000 | 00001101

// = 01011101

To undo the operation:

b = packed & 0x0F; // 01011101 & 00001111 = 00001101

a = packed >>> 4; // note unsigned right-shift

// 01011101 >>> 4 = 00000101

Likewise, you might wish to view the byte as holding eight true/false
values:

int c = b0 | (b1 << 1) | (b2 << 2) | (b3 << 3) | (b4 << 4)

| (b5 << 5) | (b6 << 6) | (b7 << 7);

int mask = 0x01;

b0 = c & mask

b1 = (c >>> 1) & mask;

b2 = (c >>> 2) & mask;

Bits and Bytes 11

210293 Ch01.F 8/13/02 8:53 AM Page 11

and so on. If you were using an array, you could do this dynamically in a
loop as well.

for (int i = 0; i < 8; ++i)

b[i] = (c >>> i) & mask;

It’s quite easy to make mistakes, especially when the packed word has a
complicated structure. If you are writing code and the answers aren’t what
you’d expect:

�� Check to make sure you are using the unsigned right-shift operator
>>> instead of the signed version >>.

�� Check that the language isn’t doing some type of automatic type
conversion of signed values (e.g., turning bytes into integers before
the shift operation happens).

�� Check to make sure your masks are correct.
�� If you are using dynamic shifts, make sure the shift amount isn’t

larger than the word size. For instance, if you are shifting a byte,
make sure you aren’t doing >> 9. How this is interpreted depends
on the environment.

Integers and Endian Notation
Endian refers to how a string of bytes should be interpreted as an integer,
and this notation comes is two flavors: Little-Endian and Big-Endian. The
names come from Jonathan Swift’s Gulliver’s Travels, where the tiny people,
Lilliputians, were divided into two camps based on how they ate eggs. The
Little-Endians opened the eggs from the small end, and the Big-Endians
opened theirs from the big end. As you might expect with that reference,
there are pros and cons to Big-Endian and Little-Endian representations,
but overall it doesn’t make any difference except when you have to convert
between the two formats. A comparison of the two is shown in Table 1.7.

Table 1.7 Comparison of Little-Endian versus Big-Endian Representation

ENDIAN TYPE B0B1B2B3 = 0XAABBCCDD SAMPLE
MICROPROCESSORS

Little-Endian aa bb cc dd Intel x86, Digital (VAX,
Alpha)

Big-Endian dd cc bb aa Sun, HP, IBM RS6000, SGI,
“Java”

12 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 12

Big-Endian, also know as most-significant byte order (MSB) or network
order, puts the most-significant or highest byte value first. This is equiva-
lent to how we write decimal numbers: left to right. The downside is that
many numerical algorithms have to work backward starting at the end of
the array and working forward (just as you would manually with pencil
and paper).

The Little-Endian, or least significant byte (LSB), format is the opposite.
This makes it harder for humans to read hex dumps, but numeric algorithms
are a little easier to implement. Adding capacity (or widening conversions)
is also easier, since you just add bytes to the end of the array of bytes (i.e.,
0xff becomes 0xff00).

Fortunately, regardless of what the byte Endian order is, the bits within
bytes are always in Big-Endian format. For instance, 1 is always stored in a
byte as 000000012 no matter what platform.

The Endian issue becomes critical when you are working with heteroge-
neous systems—that is, systems that use different Endian models. When
shipping bytes between these machines, you must use a standard Endian
format or an ASCII format. In many other programming languages, you
must determine in advance what the Endian architecture is and adjust sub-
sequent bit operations appropriately. For cryptographic applications this
becomes critical, since you are often manipulating bits directly.

With Java, the underlying architecture is hidden and you program using
a Big-Endian format. The Java virtual machine does any Endian conversion
needed behind the scenes.

For C and C++ programmers, normally a BIG_ENDIAN or LITTLE_
ENDIAN macro is defined by the compiler or from an include file. If not,
you can use code similar to this for testing. It sets raw memory and then
converts it to an integer type. The value will be different depending on the
CPU’s Endian type. This C code assumes an int is a standard 4 bytes or
32 bits, but you may wish to generalize:

int isBigEndian() {

static unsigned char test[sizeof(unsigned int)] = {0, 0, 0, 1};

unsigned int i = *(unsigned int) test;

if (i == 0x0000001) return 1; // true, big-endian

return 0; // false, little-endian

}

Java Numerics

We’ll now apply the information in the previous section to the Java
numeric model. While notation is similar to the C or C++ model, there are

Bits and Bytes 13

210293 Ch01.F 8/13/02 8:53 AM Page 13

Java-specific issues with using signed and unsigned types—specifically,
byte arrays. Java also provides class wrappers around the native types, as
well as an unlimited-capacity integer arithmetic.

Basic Types
Java provides the standard basic numeric types—integers with 8, 16, 32,
and 64 bits, and floating-point types with 32- and 64-bit representations.
Unlike C and other languages, all the types are signed—there are no native
unsigned types. Table 1.8 shows Java’s primitive numeric types.

For integer types, a literal integer can be expressed in decimal or hexa-
decimal formats (using lower- or uppercase letters for hex digits):

int i1 = 1000;

int i2 = 0x3e8; // == 1000 decimal

int i3 = 0x3E8; // same

For literal long values, a prefix of L or l should always be used, even if it
appears unnecessary:

long l1 = 1000; // compiles but is not recommended

long l1 = 1000L; // recommended

long l2 = 0xfffffffff; // won’t compile, error

long l2 = 0xfffffffffL; // correct

Table 1.8 Primitive Numeric Types in Java

NAME TYPE LOGICAL SIZE RANGE

byte signed integer 8 bits –128 to 127

short signed integer 16 bits –32768 to 32767

int signed integer 32 bits –2,147,483,648 to
2,147,483,647 (2.1 billion)

long signed integer 64 bits –9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

(± 9.2 × 1018)

float ANSI/IEEE 754 32 bits ±1.4 × 10-45 to
floating point ±3.4028235 × 1038

(6–7 significant decimal digits)

double ANSI/IEEE 754 64 bits ±4.9 × 10-324 to
floating point ±1.7976931348623157 × 10308

(15 significant decimal digits)

14 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 14

Specifying literal values for bytes can be tricky because a byte is signed
from –128 to 127, while very often you’ll be using constants specified from
0 to 255. If the value is within –128 to 127, the code will compile. If the value
is from 128 to 255, you can either convert it to its negative equivalent or use
a cast operation. The same principles apply to the short type:

byte b1 = 10;

byte b2 = 189; // error, out of bounds

byte b3 = -67; // = 189, ok

byte b4 = (byte) 189; // ok

byte b4 = (byte) 0xbd; // ok

Floating-type literals are assumed to be a double type unless suffixed
by an f for float. Floating types can also be representing using scientific
notation using valEscale = val × 10scale.

float f1 = 0.1; // compiler error

float f2 = 0.1f; // by default “0.1” is a double type

double d1 = 0.1;

double d2 = 1.0E2 // == 100

In practice, the short type is rarely used because it almost always is
converted into an int type before anything else is done. The float
type also isn’t used because it doesn’t provide enough precision for most
applications.

Type Conversion

Conversions between types can either be widening or narrowing. A widen-
ing conversion is where the new type can represent larger numbers and can
“contain” the old type. For an integer-to-integer type conversion (i.e.,
short to long), this just means putting the same number in a larger
container. Integer-to-floating-point conversions are also considered as
widening, but some of the least-significant digits may be scrambled or
zeroed due to how floating point numbers are presented. These types of
conversion happen automatically and silently either at compile time or at
run time. For example:

int i1 = 123;

long l1 = i; // ok -- l = 123

float f1 = i; // ok -- f = 123

int i2 = 123456789;

float f2 = i; // ok, but f = 123456792

Bits and Bytes 15

210293 Ch01.F 8/13/02 8:53 AM Page 15

Narrowing conversions may result in a loss of magnitude and precision.
Any conversion from floating-point to an integer type is considered nar-
rowing and is clearly a larger integer type to a smaller integer type. Java
will not automatically do narrowing conversions, and a compiler error will
be issued if the compiler detects such a conversion. To do these conver-
sions, you must explicitly declare them with the cast operator.

Converting floating point to integers drops or truncates any digits to the
right of the decimal point:

float f1 = 0.123456;

int i0 = f1; // compiler error -- requires a cast.

int i1 = (int) f1; // == 0

float f2 = 0.99999;

int i2 = (int) f2; // == 0

float f3 = 100.9;

int i3 = (int) f3; // == 100

float f4 = -100.9;

int i4 = (int) f4; // == -100

int i5 = 0xffL; // compiler error; long to int conversion

For narrowing conversions from one integer type to another, the least-
significant bits (or bytes) form the larger type:

int i1 = 0xfffff01;

byte b1 = (byte) b; // b = 0x01;

These rules are summarized in Table 1.9, with N representing a narrow-
ing conversion, W for a widening conversion, and W* for a widening
conversion that may result in a loss of precision.

Table 1.9 Primitive Type Conversion

BYTE SHORT INT LONG FLOAT DOUBLE

byte W W W W W

short N W W W W

int N N W W* W

long N N N W* W*

float N N N N W

double N N N N N

16 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 16

Unsigned to Signed Conversions

There are no unsigned types in Java; however, you can still use the signed
types as an unsigned container. Even though a byte is signed, it still has
8 bits and can represent an integer from 0 to 255 even if Java thinks other-
wise. To use the unsigned value, it must be converted into a larger type
using an AND mask.

To convert a unsigned byte:

byte c = (byte) 254; // b = -2 in Java.

short c = (short)(x & 0xff); // c = 254

int c = x & 0xff // c = 254

long c = x & 0xffL; // c = 254, must put L at end of 0xffL

Unsigned short values are converted by the following:

int c = x & 0xffff;

long c = x & 0xffffL;

Finally, the unsigned int is converted into a signed long by the
following:

long c = x & 0xffffffffL

It’s critical to put an L at the end of the mask when working with long
types. Without it, Java will respond as if you are doing an int computa-
tion, then doing a widening conversion to a long:

byte b = (byte)0xff;

long b = (b & 0xff) << 56; // Wrong. b = 0

long b = (long)((int)(b & 0xff) << 56); // same as previous

long b = (b & 0xffL) << 56; // Correct. b = 0xff00000000000000

Overflow

When a computation exceeds an integer type’s bounds, the value is “rolled
over” silently; no exception is thrown:

byte b = (byte) 127; // b = 0111111

b++; // b = 1000000, but b has the value of -128

While the silence may seem disturbing, in practice overflow is rarely a
problem. For floating-point computations overflow is still silent, but the
result is not rolled over. Instead, the type takes on a special Infinity

Bits and Bytes 17

210293 Ch01.F 8/13/02 8:53 AM Page 17

value that can be checked using normal comparison operators or by using
the Double.isInfinite method. Also note that Java does not think 0.0
is the same as 0 (zero). Instead, 0.0 is treated as a number that is very close
to zero, so division by 0.0 results in an infinite value. Keep in mind, how-
ever, that Java throws an exception if you try to divide by the integer 0. In
the event that a computation doesn’t make sense, the value is NaN, which
stands for “not a number.” If you wish to see if a value is NaN, then you
must use the Double.isNaN method. Various examples of manipulating
double types are shown as follows:

double d1 = 1.7E308 * 2.0; // overflow = Infinity

double d2 = 1.0/0.0; // = Infinity

double d3 = -1.0/0.0; // = -Infinity

int i = 1 / 0; // throws a DivisionByZero exception

double d4 = 0.0/0.0 // = NaN

boolean b = (d4 == d4); // = false, always

boolean b = Double.isNan(d4); // true;

boolean b = Double.isInfinite(d3); // true

Arrays

In Java, native-type arrays are treated and created as if there were objects
created using a constructor with the new operator. Arrays can also be set
with initial values, as shown in the following code snippet.

int[] a= new int[3]; // all three elements set to zero

int[] a = {1, 2, 3}; // a pre-set 3 element array.

Once constructed, an array is not resizable. If dynamically allocated
storage is needed, you should use one of the collections in the java.util
package. The index to arrays is with int types, and the first element starts
at 0 (as in C). Small types will have widening conversions done to them,
and the long type cannot be used without a cast operation. Thus, single
dimensional arrays cannot be larger than 231, or roughly 2.1 billion, entries.
Hopefully, this will be sufficient for your needs.

Since arrays are objects, assignment is done by reference, as shown in the
following:

int[] a = {1,2};

int[] b = a;

b[0] = 100; // modifies the object that both a and b point too.

System.out.println(a[0]); // will print 100, not 1

a = null; // b is null, but a is intact.

18 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 18

In addition, they can be copied using the clonemethod. To use this, cast
the result to the correct array type:

int[] a = {1, 2};

int[] b = (int[]) a.clone(); // b is a “deep copy” of a

The System.arraycopy method is extremely useful for copying parts
of an array or concatenating arrays. It makes a native system call to copy
memory directly instead of copying each element individually and is much
faster than writing a custom for loop:

System.arrayCopy(Object input, int inputOffset,

Object output, int outputOffset, int length)

Even though the method has Object in its signature, this method only
works on array types. Other useful methods for manipulating native
arrays can be found in the class java.util.Arrays and are summarized
in Table 1.10.

Table 1.10 Summary of Methods from java.util.Arrays

JAVA.UTIL.ARRAYS METHOD DESCRIPTION

static boolean Returns true if and only if the arrays are
equals(type[] a, type[] b) the same length and every element is

equal.

static void Fills an array with a single value.
fill(type[] a, type val)

static void Performs a fast numeric sort. Array is
sort(type[] a) modified.

static void Sorts only part of an array.
sort(type[] a, int fromIndex,

int toIndex)

static int Performs a binary search of a sorted
binarySearch(type[] a, array. Returns the array index if a match

type val) is found and –1 if no match. Arrays must
be sorted first.

Bits and Bytes 19

210293 Ch01.F 8/13/02 8:53 AM Page 19

Numeric Classes

Each numeric type has a matching class that acts as an object wrapper, as
shown in Table 1.11.

These classes do not have any support for mathematical operations—
you can’t add two integer objects directly. Instead, these classes are pri-
marily used to allow numeric types to be used in methods that expect an
Object type, such as in collections from the java.util package (e.g.,
ArrayList, HashMap). The wrapper classes also provide basic string for-
matting and parsing from strings for numbers. Since they are objects, they
can also be null. Likewise, objects are always pass-by-reference.

public void changeInt(Integer i) {

i = new Integer(“1”);

}

Integer I = new Integer(“0”);

changeInt(i); // i is now 1

All of the classes share some common traits (examples are just shown for
Integer and Long):

�� Two public fields, MAX_VALUE and MIN_VALUE, in case you don’t
want to memorize the previous table.

�� byteValue, doubleValue, floatValue, intValue, and
longValue methods that return the underlying number in
a native type.

�� A static method valueOf that accepts a string and an optional radix
to parse a string and return an object. The radix can be 2 to 32.
static Integer Integer.valueOf(int val)

static Integer Integer.valueOf(int val, int radix)

static Long Long.valueOf(long val)

static Long Long.valueOf(long val, int radix)

�� A static method parseClass (where Class is the name of the class,
such as Byte or Integer) that also accepts a string, and an optional
radix to parse a string returns the native type instead of an object.
static int Integer.parseLong(int val)

static int Integer.parseFloat(int val, int radix)

static long Long.parseLong(long val)

static long Long.parseLong(long val, int radix)

�� toString that returns the number as unformatted decimal number.

20 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 20

Table 1.11 Java Class Wrappers for Native Types

NATIVE TYPE MATCHING JAVA.LANG CLASS

int Integer

byte Byte

double Double

float Float

long Long

short Short

The Long and Integer classes have a few other useful static methods
that provide an unsigned representation of the number in binary, hex, or
octal formats as shown:

static String Integer.toBinaryString(int val)

static String Integer.toHexString(int val)

static String Integer.toOctalString(int val)

static String Long.toBinaryString(long val)

static String Long.toHexString(long val)

static String Long.toOctalString(long val)

Binary representation is especially useful for debugging bit fields.
These objects do not add any “leading zeros” to the output, so new
Integer(16).toHexString() just returns F and not 0F or 0x0F.

Booleans and BitFields

Java provides a native boolean type that can either be true or false.
Unlike C and C++, it is not a numeric type and does not have a numeric
value, and it is not automatically cast. Like the numeric types, there is also
a boolean class wrapper. If you want to create an array of boolean values,
you could use Boolean with one of the collection classes (e.g.,
ArrayList). However, there is a special class java.utl.BitField
specially designed for use with boolean types that provides a huge perfor-
mance increase and memory savings. More specialized applications will
convert a native type or byte array into a bit field directly.

Bits and Bytes 21

210293 Ch01.F 8/13/02 8:53 AM Page 21

Chars

Java has another native type char that represents a Unicode character and
is used by String and StringBuffer internally. It is represented by an
unsigned 16-bit integer, but it is not a numeric type. It is automatically cast
to an integer in situations when needed, such in mathematical or bitwise
operations, but it’s not automatically cast to any other type. However, you
can explicitly convert a char to another type by using a cast operator.

Since it’s unsigned, it might be tempting to use char in places for math-
ematical purposes and for raw bit fields. In practice, there is not much
point, since char types are automatically converted into an int before any
operation is done, eliminating any advantage

Working with Bytes
Because the Java byte type is signed and because of the automatic conver-
sion rules, working with bytes and byte array can be frustrating. Following
are some tips and tricks to simplify byte manipulation.

Sign Problems

It’s always easiest to specify a constant byte value by using a cast (later in
this chapter you will see tricks on making byte arrays):

byte b = 0xff; // Compiler error. 0xff is an ‘int’ type

byte b = (byte) 0xff; // right

Bytes range from –127 to 128, and not 0 to 255. Setting a byte with the
value 128–255 and a cast is fine—the byte contains the correct bits. The
problem is when you want to retrieve the unsigned value or when you per-
form a computation with bytes and ints. For instance:

byte b = 127;

int i = 3;

System.out.println((i+b)); // Prints -126 and not 130

results in –127 being printed, not 129. In the addition step, byte b is auto-
matically converted to an int type, including the sign. While b was set
with 128, internally it’s really –1, and this is its value when converted.

The key point to remember is that all bitwise and arithmetic operators
work on int and long types only. All other types are automatically cast. If
you are using a byte as an unsigned value, you must manually convert the
type to an int or long before the operation using val & 0xFF or val &
0xFFL respectively.

22 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 22

The problem is more mysterious with the shift operators. Let’s say you
want to do a right-shift on 0xFF. In binary, this is 11111111, so you’d expect an
unsigned right-shift to be 0111111, or 0x7F. The natural way to write this is:

byte b1 = (byte) 0xff;

byte b2 = b >>> 1; // compiler error

However, this results in a strange error from the javac compiler, and the
problem isn’t clearly defined:

aprogram:java.6: possible loss of precision

found: int

required: byte

byte b2 = b >>> 1;

^

You might try and fix this by casting the result:

byte b1 = (byte) 0xff;

byte b2 = (byte)(b >>> 1); // error #2

This performs the compile operation; however, the result is still wrong.
The value of b2 is not 0x7f, but strangely remains at 0xff or –1. Again, Java
is converting the byte into an integer before the shift. Since bytes are signed,
it converts the byte value of –1 into an int value of –1, which is 0xffffffff.
Then it performs the shift, resulting in 0x7fffffff. Finally, the cast takes the
least bits, or 0xff, and converts them to a byte. The step-by-step details
are listed in Table 1.12. The correct solution is to treat the byte as an
unsigned value, then convert to an int, and then do the shift and cast back
down to a byte:

byte b1 = (byte) 0xff;

byte b2 = (byte)((b & 0xff) >>> 1); // correct:

Table 1.12 Comparison of Bit-Shifting a Byte Type

STEPS INCORRECT CORRECT

Initial value 0xff = –1 0xff = –1

Convert to int 0xffffffff = –1 0x000000ff = 255

Right-shift >>> 0x7fffffff = large int 0x0000007f = 127

Cast down to byte 0xff = –1 0x7f = 127

Bits and Bytes 23

210293 Ch01.F 8/13/02 8:53 AM Page 23

To convert a byte back to its unsigned value, you have to do a little trick;
you must bitwise AND the byte with 0xff, that is, b & 0xff. For example:

byte b = 128;

int i = 1;

int unsignedByteValue = b & 0xff

System.out.println((i + unsignedByteValue); // 129

System.out.println((i + (b & 0xff)); // combined

This trick works by observing that the least-significant bytes in an int
match exactly with the byte type, as shown in Table 1.13.

Conversion of Integral Types to Byte Arrays

Java does not have any easy way of converting integral types into raw
bytes. There are the serialization methods, but these involve a lot of work
for something that should be relatively simple. For example:

public static byte[] intToByteArray(int i) {

byte[] buf = new byte[4];

b[0] = (byte) (i >>> 24);

b[1] = (byte) (i >>> 16);

b[2] = (byte) (i >>> 8);

b[3] = (byte) i;

}

public static int byteArrayToInt(byte[]) {

If (buf.length != 4)

throw new RuntimeException(“Bad Length”);

return ((b[0] & 0xff) << 24) | ((b[1] & 0xff) << 16) |

(b[2] & 0xff) << 8) | (b[3]);

}

Table 1.13 Comparison of Representation between int and byte Types

UNSIGNED SIGNED BYTE INT
VALUE VALUE REPRESENTATION REPRESENTATION

0 0 00 00000000

1 1 01 00000001

2 2 02 00000002

126 126 7d 0000007e

127 127 7f 0000007f

128 -128 80 00000080

24 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 24

Table 1.13 (Continued)

UNSIGNED SIGNED BYTE INT
VALUE VALUE REPRESENTATION REPRESENTATION

129 -127 81 00000081

130 -126 82 00000082

253 -3 fd fffffffd

254 -2 fe fffffffe

255 -1 ff ffffffff

256 256 00 00000100

We could do the same thing for longs. Instead, we’ll demonstrate a dif-
ferent technique that builds the result by incrementally shifting the value
in question:

public static byte[] longToByteArray(long I) {

byte[] buf = new byte[8];

for (int j = 7; j >= 0; ++j) {

buf[j] = (l & 0xffL); // !! must use 0xffL, not 0xff !!

l >>>= 8; // l = l >>> 8;

}

}

public static long byteArrayToLong(byte[] buf)

{

long i = 0;

if (buf.length != 8)

throw new RuntimeException(“Bad Length”);

for (int j = 0; j < 8; ++j) {

i |= buf[j];

i <<= 8; // l = l << 8;

}

return i;

}

Converting to Hex Strings

Converting an array into a hexadecimal string is a fairly common task for
printing, data interchange, and debugging. A naive way to do hex conver-
sions is by using one of the previously mentioned byte array-to-long
methods followed by Long.toHexString. However this is very slow

Bits and Bytes 25

210293 Ch01.F 8/13/02 8:53 AM Page 25

and is limited to arrays smaller than 8 bytes. Even worse would be using
BigInteger (discussed later in the chapter). For example:

byte[] mybytes = ...;

BigInteger a = new BigInteger(1, mybytes);

return a.toString(16);

While mathematically correct, most programs operate on printing two
hex digits per byte; for example, decimal 16 is converted to 0F, not F. The
other problem is that this method is horrendously slow.

While these methods are useful in a pinch, for high performance appli-
cations they won’t do. If one is willing to use a little memory, performance
can be doubled or tripled. The conversion itself is fairly simple, but an
implementation that uses tables has some important benefits:

�� Provides typically higher performance (at the expense of some minor
setup and memory costs).

�� Allows using different alphabets instead of the standard. These
issues are further detailed in Chapter 4.

�� Typically allows simpler coding.

The conversion class starts out defining the hexadecimal alphabet (in
our case, the standard one). The hexDecode table is the inverse mapping;
for instance, character A is mapped to 10. Characters that are invalid are set
to –1. For example:

public class Hexify

{

protected static char[] hexDigits = {‘0’, ‘1’, ‘2’, ‘3’, ‘4’,

‘5’ ‘6’, ‘7’, ‘8’, ‘9’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’},

protected static int[] hexDecode = new int[256];

static {

for (int i = 0; i < 256; ++i) hexDecode[i] = -1;

for (int i = ‘0’; i <= ‘9’; ++i) hexDecode[i] = i - ‘0’;

for (int i = ‘A’; i <= ‘F’; ++i) hexDecode[i] = i - ‘A’ + 10;

for (int i = ‘a’; i <= ‘f’; ++i) hexDecode[i] = i - ‘a’ + 10;

}

Encoding is fairly straightforward. Each byte is split into two sections,
and the table is used to determine the appropriate character:

public static String encode(byte[] b) {

char[] buf = new char[b.length * 2];

int max = b.length;

int j = 0;

26 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 26

for (int i = 0; i < max; ++i) {

buf[j++] = hexDigits[(b[i] & 0xf0) >> 4];

buf[j++] = hexDigits[b[i] & 0x0f];

}

return new String[buf];

}

Decoding is more interesting. First, a function, given a hexadecimal
character, returns the integer value. This is done via a table lookup, and the
result is verified to make sure it’s valid. It’s always important to check the
input for validity, especially if you don’t have control of what the input is.
You could easily add or inline these checks into the main decode routine
for a minimal improvement in execution time, as follows:

protected static int getHexDecode(char c) {

int x = hexDecode[c];

if (x < 0) throw new RuntimeException(“Bad hex digit “ + c);

return x;

}

While the encode function always encodes two characters per byte, you
may receive a hexadecimal string that doesn’t conform to this rule. If you
are only processing strings that you created, you could check that the num-
ber of input characters is even and that an exception is thrown if it’s not.
The following implementation handles full generality. The string is checked
to see if it has an odd number of characters, by computing max & 0x01
(or, equivalently, max % 2), which just looks at the least-significant bit. If
it’s set, then the value is odd.

public static byte[] decode(String s) {

char[] input = s.charArray[];

int max = input.length;

int maxodd = max & 0x01;

byte b;

byte[] buf = new byte[max/2 + odd];

int i = 0, j = 0;

if (maxodd == 1) {

buf[j++] = getHexDecode[input[i++]]

}

while (i < max) {

buf[j++] == (byte)(getHexDecode[input[i++]] << 4 |

getHexdecode[input[i++]]);

}

return buf;

} //end of class Hexity

Bits and Bytes 27

210293 Ch01.F 8/13/02 8:53 AM Page 27

BigInteger
The BigInteger class in the java.math package provides a way of
doing computations with arbitrary large integer types. Unlike C++, Java
does not overload operators, so to do basic math, you have to call methods
to perform mathematical operations such as addition. All of the operations
create new BigInteger objects as results. The objects used in the opera-
tions remain untouched. For instance:

BigInteger b1 = new BigInteger(“1”);

BigInteger b2 = new BigInteger(“2”);

BigInteger b3 = b1.add(b2);

At the end, b1 is still 1, b2 is still 2, and b3 is what you’d expect it to be,
3. Modifying an object requires explicit code. For instance, if we wanted
b1 to contain the result of the addition, we would use self-assignment like
this:

b1 = b1.add(b2); // b1 is now 3

While the notation is different, the behavior is no different than using
normal operators. Adding 1 + 2 doesn’t change the original values of 1 or 2.

All of the usual arithmetic operations are available: add, subtract,
multiply, divide, and remainder. Another method, divideAnd-
Remainder, returns a two-element BigInteger array where element 0
is the division result and element 1 is the remainder. A complete list and
comparison of BigInteger operations is given in Table 1.14.

Table 1.14 BigInteger Arithmetic Operators

ARITHMETIC NATIVE TYPE BIGINTEGER
OPERATION NOTATION NOTATION

Addition a + b a.add(b)

Subtraction a – b a.subtract(b)

Multiplication a * b a.mult(b)

Integer division a / b a.divide(b)

Remainder a % b a.remainder(b)

Division with int[] result = BigInteger[] result =
remainder { a / b, a % b } a.divideAndRemainder(b)

Negation –a a.negate()

28 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 28

Table 1.14 (Continued)

ARITHMETIC NATIVE TYPE BIGINTEGER
OPERATION NOTATION NOTATION

Exponentiation Math.pow(a,b) a.pow(b)

Random value Random r = new Random(); Random r = ...
int bits = ...;

a = r.getInt(); BigInteger a =
new BigInteger(bits, r);

Absolute value (a >= 0) ? a : b or a.abs()
Math.abs(a)

Minimum of a, b (a < b) ? a : b or a.min(b)
Math.min(a,b)

Maximum of a, b (a > b) ? a : b or a.max(b)
Math.max(a,b)

Likewise, all the usual bit operations are available, as described in
Table 1.15. There is no need for a special unsigned right-shift operator, since
BigInteger has unlimited capacity; the result of shifting n places to the
right is the equivalent of dividing by 2n, regardless of sign. In addition are
a few new methods that simplify working with bits: testBit, setBit,
and flipBit. Two others called bitCount and bitLength need a bit
more explaining. For positive integers the results are what you’d expect:
bitLength returns the minimal number of bits required to represent the
integer, and BitCount returns the number of one-bits in the representation.
For negative numbers, bitLength gives a minimal length excluding the
sign bit, and bitCount returns the number of zeros in the representation.

Creating and Converting

BigInteger objects can be converted by using a string representation of a
number, a native type, or with a byte array. Using a native type, a string, or
a byte array representation of a number creates BigInteger objects.

Strings

You can create BigInteger objects by using a construction that takes a
string representation of a number. By default, the constructor expects the
string representation to be in decimal (base 10) form. However, you can
also use the standard base 16 representations, as follows:

BigInteger(String base10Rep)

BigInteger(String representation, int radix)

Bits and Bytes 29

210293 Ch01.F 8/13/02 8:53 AM Page 29

Table 1.15 BigInteger Bit Operations

NATIVE TYPE BIGINTEGER
BIT OPERATION NOTATION NOTATION

AND a & b a.and(b)

ANDNOT a & ~b a.andNot(b)

NOT (complement) ~a a.not(b)

OR a | b a.or(b)

XOR a ^ b a.xor(b)

Shift left n bits, signed a << n a.shiftLeft(n)

Shift right n bits, signed a >> n a.shiftRight(n)

Test bit n (a & (1 << n) != 0) a.testBit(n)

Set bit n (a | (1 << n)) a.setBit(n)

Flip bit n (a ^ (1 << n)) a.flipBit(n)

Conversely, you can retrieve a string representation in an appropriate
base by using the toString method:

String toString()

String toString(int radix)

Numeric Types

The BigInteger class can be created from a long by using the static
method:

Long val = 123456789123;

BigInteger bi = BigInteger.valueOf(val);

Once you have the BigInteger object, it can be converted directly
into a numeric type by using intValue, longValue, floatValue, or
doubleValue. Not that we’ll mind, but there is no method to directly
convert into a short or char value. If the value is too large to fit into the
numeric type, a silent narrowing conversion is done (the high bits are
chopped off).

Byte Arrays

Generating byte arrays and constructing byte a. Assuming you have a
BigInteger object, a byte array can be generated with:

30 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 30

byte[] toByteArray()

And the results of this output can be used to create a new BigInteger
object:

BigInteger(byte[] array)

However, because of signing issues, typically this format is not used for
cryptographic purposes. If the bit length is a multiple of 8, and it always is
for cryptographic applications, the byte array starts with an extra byte
indicating the sign (0 for positive). Either your application can deal with a
leading zero, or you can strip it away, as in the following:

byte ba[] = bi.toByteArray();

if (ba[0] == 0) {

byte[] tmp = new byte[ba.length - 1];

System.arraycopy(ba, 1, tmp, 0, tmp.length)

ba = tmp;

}

A lower-speed option is to use strings as the common medium:

Byte ba[] = Hexify.decode(bi.toString(16);

Since BigInteger expects a sign-bit, you’ll need to use a special con-
structor and manually indicate the sign by passing in 1, –1, or 0 for positive,
negative, or zero:

BigInteger(int signum, byte[] magnitude)

BigInteger and Cryptography

BigInteger has a few special methods specifically designed for cryptog-
raphy, listed in Table 1.16. These operations are discussed fully in Chapter 3.

Secret Methods in BigInteger

For Sun Microsystems to effectively test for primality, many generic
methods and algorithms had to be implemented; however, they are not
part of the public API. For people working in numbers theory or who are
developing more advanced cryptographic algorithms, these “hidden”
methods may be useful. Unfortunately, they are declared private; but with
a few modifications to the source code, you can create your own enhanced
BigInteger variant.

Bits and Bytes 31

210293 Ch01.F 8/13/02 8:53 AM Page 31

Table 1.16 BigInteger Operations Useful in Implementing Cryptographic Algorithms

OPERATION BIGINTEGER NOTATION

Create a random nonnegative integer BigInteger
uniformly distributed from 0 to 2n–1 (int numBits, Random r)

Create a random integer that is prime Random r = ...;
with certainty 1 – 2n int bitLength = ...;

BigInteger a =
BigInteger(bitLength, r)

Check if prime with certainty using a.isProbablePrime()
IEEE standard of 1 – 2100

a mod b a.mod(b)

an mod b a.modPow(b, n); // n is an
int, not BigInteger

find a-1, such that aa-1 = 1 mod b a.modInv(b)

Greatest common denominator of a, b a.gcb(b)

The most interesting of these are the following methods:

int jacobiSymbol(int p, BigInteger n); // this is “package protected”

private boolean passesMillerRabin(int iterations)

private boolean passesLucasLehmer()

private static BigInteger lucasLehmerSequence(int z,

BigInteger k, BigInteger n)

In addition, there is an implementation of sieve for testing primality of
small numbers in the class BitSieve.

To “free” them:

1. Copy all the source files from this directory into a new directory.

2. Edit each file and change the package name from sun.math to one
of your own choosing.

3. Make the BitSieve class “public.”

4. Change the desired methods and classes to public. Note that the
method jacobiSymbol in BigInteger and the class BitSieve
do not have an access modifier, so you have to add public in front
of the method.

5. Compile.

32 Chapter 1

210293 Ch01.F 8/13/02 8:53 AM Page 32

This code is copyrighted by Sun Microsystems. For commercial use and
distribution, refer to the license agreement distributed with the source
code.

Now that we have a full understanding of bit operations and the Java
model, we’ll discuss secret and public key cryptography.

Bits and Bytes 33

210293 Ch01.F 8/13/02 8:53 AM Page 33

