Methods in Stereochemical Analysis

Series Editor
Alan P. Marchand, Denton, Texas, USA

Advisory Board
A. Greenberg, Charlotte, North Carolina, USA
I. Hargittai, Budapest, Hungary
A. R. Katritzky, Gainesville, Florida, USA
J. F. Liebman, Baltimore, Maryland, USA
E. Lippmaa, Tallinn, Estonia
L. A. Paquette, Columbus, Ohio, USA
P. von R. Schleyer, Athens, Georgia, USA
S. Sternhell, Sydney, Australia
Y. Takeuchi, Tokyo, Japan
F. Wehrli, Philadelphia, Pennsylvania, USA
D. H. Williams, Cambridge, UK
N. S. Zefirov, Moscow, Russia

Other Books in the Series:
Motohiro Nishio, Miroru Hirota, and Yoji Umezawa
The CH/π Interaction: Evidence, Nature, and Consequence
David A. Lightner and Jerome E. Gurst
Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy
Jacek Waluk
Conformational Analysis of Molecules in Excited States
Eiji Ōsawa and Osamu Yonemitsu
Carbocyclic Cage Compounds: Chemistry and Applications
Janet S. Spliter and Frantisek Turecek (editors)
Applications of Mass Spectrometry to Organic Stereochemistry
William R. Croasmun and Robert M. K. Carlson (editors)
Two-dimensional NMR Spectroscopy: Applications for Chemists and Biochemists. Second Edition
Jenny P. Glusker with Mitchell Lewis and Miriam Rossi
Crystal Structure Analysis for Chemists and Biologists
Kalevi Pihlaja and Erich Kleinpeter
Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis
Louis D. Quin and John G. Verkade (editors)
Phosphorus-31 NMR Spectral Properties in Compound Characterization and Structural Analysis
Eusebio Juaristi (editor)
Conformational Behavior of Six-Membered Rings: Analysis, Dynamics and Stereoelectronic Effects
CHAPTER 2. THE STEADY-STATE NOE FOR TWO SPINS 23

2.1. The Origin and Form of the NOE / 23
 2.1.1. Qualitative Considerations / 23
 2.1.2. The Solomon Equations / 27

2.2. Dependence of the NOE on Molecular Motion / 30
 2.2.1. Correlation Times, Spectral Density Functions, and Transition Probabilities / 31
 2.2.2. Anisotropic Tumbling / 38

2.3. What the Symbols Mean for Two Spins and for Many Spins / 38
 2.3.1. Relaxation Rates / 39
 2.3.2. T_1 Measurements and Cross-Relaxation / 42

2.4. Effects of Other Relaxation Sources / 46
 2.4.1. The External Relaxation Rate ρ* / 46
 2.4.2. Intermolecular Dipole–Dipole Relaxation / 50
 2.4.3. Quadrupolar Relaxation / 52
 2.4.4. Chemical Shift Anisotropy (CSA) Relaxation / 53
 2.4.5. Scalar Relaxation / 53
 2.4.6. Spin–Rotation Relaxation / 53

2.5. The Heteronuclear NOE / 54

2.6. An Extension to the Solomon Equations / 59

References / 60

CHAPTER 3. THE STEADY-STATE NOE IN RIGID MULTISPIN SYSTEMS 62

3.1. The Equations / 63
 3.1.1. The Solomon Equations for More Than Two Spins / 63
 3.1.2. Cross-Correlation / 66
 3.1.3. Two General Solutions to the Multispin Solomon Equations / 68
 3.1.3.1. Saturation of One Spin / 68
 3.1.3.2. Saturation of All Spins Except One / 69
 3.1.4. Internuclear Distances and Steady-State NOE Enhancements / 71

3.2. What the Equations Mean / 72
 3.2.1. General: Direct Enhancements and Spin Diffusion / 72
 3.2.2. Interpretation at the Extreme Narrowing Limit (ωτ_c << 1) / 76
3.2.2.1. Direct Effects / 76
3.2.2.2. Indirect Effects / 79
3.2.2.3. When Do Indirect Effects Matter? / 80
3.2.2.4. Magnetic Equivalence / 82
3.2.2.5. T_1 and the 3/2 Effect / 84
3.2.2.6. Chemical Equivalence / 85
3.2.3. Away from the Extreme Narrowing Limit / 86

3.3. In Practice / 91
3.3.1. Incomplete Saturation / 92
3.3.2. Failure to Reach Steady-State / 93
3.3.3. Competition From Other Relaxation Sources / 94

References / 97

CHAPTER 4. THE KINETICS OF THE NOE 98

4.1. Introduction / 98
4.1.1. Types of Kinetic NOE Experiment / 99
4.1.2. Overview / 100
4.2. Theory of the Kinetic NOE in a Two-Spin System / 105
4.3. Theory of the Kinetic NOE in Multispin Systems / 108
4.3.1. Multispin Kinetics in Transient NOE Experiments / 108
4.3.2. Multispin Kinetics in TOE Experiments / 111
4.4. Estimating Internuclear Distances / 111
4.4.1. The Initial Rate Approximation / 112
4.4.2. Distances From Enhancement Ratios / 113
4.4.3. Errors in Distance Measurements Using the Initial Rate Approximation / 115
4.4.4. Spin Diffusion, Nonlinear NOE Growth, and Interpretation / 117
4.5. More About Experiments / 122
4.5.1. Symmetry in Kinetic NOE Experiments / 122
4.5.2. T_1 Values as an Aid to Interpretation / 124

References / 127

CHAPTER 5. THE EFFECTS OF EXCHANGE AND INTERNAL MOTION 129

5.1. Transfer of Saturation / 131
5.2. General Equations for the NOE in Systems of Two-Site Exchange / 136
CONTENTS

5.2.1. Exchange in a Two-Spin System / 136
5.2.2. Exchange in Dimethylformamide / 143

5.3. Applications to More Complicated Cases of Exchange / 148
5.3.1. Averaging of Rates Rather than Enhancements / 148
5.3.2. Analyzing Conformational Equilibria / 150
 5.3.2.1. Olefinic Methoxy Conformations / 150
 5.3.2.2. Nucleotide Conformations / 151
 5.3.2.3. A Statistical Approach / 156

5.4. Estimating Flexibility Using Heteronuclear Relaxation Analysis / 158

5.5. How Internal Motions Average Internuclear Distances / 167
 5.5.1. Internal Motions Slower Than Overall Tumbling: “¢6 Averaging” / 171
 5.5.2. Internal Motions Faster Than Overall Tumbling / 172

5.6. Allowing for Averaging / 174
5.7. The Transferred NOE / 178
5.8. Intermolecular NOE Enhancements Involving Water / 185

References / 187

CHAPTER 6. COMPLICATIONS FROM SPIN-SPIN COUPLING 190

6.1. Decoupling / 190
6.2. Selective Population Transfer / 191
 6.2.1. Theory / 192
 6.2.2. Consequences / 199

6.3. Effects of Cross-Correlation / 201
6.4. Strong Coupling / 204
 6.4.1. A{B} Enhancements / 206
 6.4.2. AB{X} Enhancements / 206
 6.4.3. Scalar Relaxation / 213
 6.4.3.1. Scalar Relaxation of the First Kind / 213
 6.4.3.2. Scalar Relaxation of the Second Kind / 216

References / 217

PART II. EXPERIMENTAL 219

CHAPTER 7. ONE-DIMENSIONAL EXPERIMENTS 221

7.1. Sample Preparation / 221
 7.1.1. Solvent / 221
 7.1.2. Solute Concentration / 224
 7.1.3. Sample Purification / 225
CONTENTS

7.2. Setting Up the Steady-State Difference Experiment / 227
7.2.1. Introduction to the Difference Experiment / 227
7.2.2. Minimizing Subtraction Artifacts / 230
7.2.3. Automatic Multiple Experiments / 234
7.2.4. Irradiation Power and Selectivity / 235
7.2.5. Multiplet Irradiation and SPT Suppression / 240
7.2.6. Timing / 243

7.3. Processing, Display, and Calculation of Results / 247
7.3.1. General / 247
7.3.2. Reference Deconvolution / 249

7.4. Other 1D Experiments Employing Continuous Saturation / 254
7.4.1. CW Steady-State Integration / 254
7.4.2. The Truncated Driven NOE (TOE) Experiment / 255

7.5. Transient Experiments / 258
7.5.1. Selective Pulses / 259
7.5.2. Non-Gradient Transient NOE Experiments / 260
7.5.3. Gradient-Assisted Transient NOE Experiments / 261
7.5.3.1. Gradient Selection / 262
7.5.3.2. DPFGSE-NOE / 264
7.5.3.3. GOESY / 267
7.5.3.4. Variations / 272
7.5.3.5. Applications and Practicalities / 274
7.5.4. Doubly Selective Experiments / 276

References / 279

CHAPTER 8. THE TWO-DIMENSIONAL NOESY EXPERIMENT / 282

8.1. One Dimension or Two? / 282
8.1.1. The Negative NOE Regime ($\omega\tau_c > 1.12$) / 283
8.1.2. The Positive NOE Regime ($\omega\tau_c < 1.12$) / 283

8.2. Basic Principles / 285

8.3. Acquiring a NOESY Spectrum / 293
8.3.1. Fixed Delays and Pulse Widths / 294
8.3.2. Acquisition Times t_1 and t_2 and Spectral Widths SW_1 and SW_2 / 296
8.3.3. Quadrature Detection in F_1 and F_2 / 299
8.3.4. Phase-Sensitive NOESY / 304

8.4. Phase-Cycling, Signal Selection, and Artifact Suppression / 307
8.4.1. Rejection of Nonlongitudinal Contributions During τ_m: J-Peak Suppression / 309
8.4.2. Other Forms of J-Peaks: Zero Quantum Coherences and Pulse Angle Effects / 310
8.4.3. Axial Peaks / 313
8.4.4. Quadrature Images / 313
8.4.5. t_1 Noise / 314
8.5. Data Processing / 316
 8.5.1. Zero Filling / 317
 8.5.2. Window Functions and Linear Prediction / 318
 8.5.3. Symmetrization and t_1 Noise Removal / 320
 8.5.4. Integration / 321
8.6. Variations / 322
 8.6.1. Semi-Selective and Network-Edited Experiments / 322
 8.6.2. Other Variants / 327
References / 328

CHAPTER 9. OTHER DEVELOPMENTS 331

9.1. Heteronuclear NOE Enhancements / 331
 9.1.1. Non-Specific Heteronuclear NOE Experiments / 331
 9.1.2. Specific Heteronuclear NOE Experiments / 335
9.2. Editing and Spectral Simplification of NOE Experiments / 341
 9.2.1. Editing Using the NOE Itself / 341
 9.2.2. Editing Using Heteronuclear Scalar Couplings / 346
 9.2.2.1. X-Filtered NOE Experiments / 347
 9.2.2.2. X-Separated NOE Experiments / 350
 9.2.3. Homonuclear Three-Dimensional NOE Experiments / 359
 9.2.4. Editing Using Something Else / 362
9.3. Rotating Frame NOE Experiments / 364
 9.3.1. Theory / 365
 9.3.1.1. Spin-Locking / 365
 9.3.1.2. Spin-Locked Transverse Dipole-Dipole Relaxation / 367
 9.3.1.3. Other Effects During Spin-Locking / 371
 9.3.2. Practicalities / 379
9.4. Manipulation of $\omega \tau_c$ / 382
References / 384
PART III. APPLICATIONS 389

CHAPTER 10. APPLICATIONS OF THE NOE TO STRUCTURE ELUCIDATION 391

10.1. General Considerations / 391
 10.1.1. Why Structural and Conformational Problems Are the Same / 391
 10.1.2. Spectra and Assignments / 393
 10.1.3. Reporting Results and Interpretation / 395
 10.1.4. Miscellaneous / 397

10.2. Aromatic Substitution and Ring Fusion Patterns: Simple Cases / 398

10.3. Aromatic Substitution and Ring Fusion Patterns: More Complex Cases / 406
 10.3.1. Petroporphyrins / 407
 10.3.2. Isoquinoline and Related Alkaloids / 409

10.4. Double Bond Isomers / 415

10.5. Saturated Ring Systems: Simple Cases / 420
 10.5.1. Substituent Stereochemistry / 422
 10.5.2. Ring Fusion Stereochemistry / 432

 10.6.1. Pulvomycin / 444
 10.6.2. Penitrem A / 447
 10.6.3. Other Examples / 450

References / 453

CHAPTER 11. APPLICATIONS OF THE NOE TO CONFORMATIONAL ANALYSIS 456

11.1. General Considerations / 456
 11.1.1. Why Structural and Conformational Problems are Different / 456
 11.1.2. Multiple Conformations / 458

11.2. Local Conformational Detail in Small Molecules / 459
 11.2.1. Slowly Exchanging Equilibria / 461
 11.2.2. Rapidly Exchanging Equilibria: A Hypothetical Example, X-CH2OH / 461
 11.2.3. Rapidly Exchanging Equilibria: Real Examples / 463

11.3. Conformational Analysis of Medium-Sized Molecules / 472

References / 484
CHAPTER 12. CALCULATING STRUCTURES OF BIOPOLYMERS 485

12.1. Introduction / 485
12.2. Restraints / 486
 12.2.1. Assigning NOE Restraints / 487
 12.2.1.1. Using Only (H, H) NOESY Data / 488
 12.2.1.2. Using Preliminary Structural Data / 489
 12.2.1.3. Using Heteronuclear Labeling / 490
 12.2.2. Measuring NOE Restraints / 491
 12.2.3. Calibrating NOE Restraints / 493
 12.2.4. Averaging in Equivalent Groups / 499
 12.2.4.1. Pseudoatom Corrections / 500
 12.2.4.2. Multiplicity Corrections / 503
 12.2.4.3. r^{-6} Summation / 506
 12.2.5. Stereoassignments and Torsion Angle Restraints / 506
 12.2.6. Other Types of Restraints / 511
12.3. Calculating Structures / 515
 12.3.1. Distance Geometry Calculations / 517
 12.3.1.1. The Exact Case / 518
 12.3.1.2. Distance Geometry Applied to NMR Structure Determination / 519
 12.3.1.3. Distance Geometry in Torsion Angle Space / 522
 12.3.2. Restrained Molecular Dynamics Calculations / 523
 12.3.3. Simulated Annealing Calculations / 527
 12.3.4. Other Methods / 529
12.4. Assessing and Describing NMR Structures / 530
 12.4.1. Global Precision: Overall Root Mean Squared Deviations / 531
 12.4.2. Local Precision: Local RMSD and Angular Order Parameters / 533
 12.4.3. Assessing the Quality of Structures / 536
12.5. Refinement / 540
 12.5.1. General / 541
 12.5.2. Specific Protocols for Refinement / 543
References / 546

CHAPTER 13. BIOPOLYMERS 550

13.1. Peptides and Proteins / 550
 13.1.1. Assignment: Heteronuclear Methods / 554
CONTENTS

13.1.2. Assignment: \((^1H, ^1H)\) NOE-Based Methods / 555

13.1.3. Structure Determination of Protein Monomers / 556
 13.1.3.1. Small Rigid Unlabeled Proteins / 556
 13.1.3.2. Larger Rigid Labeled Proteins / 558
 13.1.3.3. Conformationally Mobile Proteins / 560

13.1.4. Structure Determination of Symmetric Protein Oligomers / 562

13.1.5. Through-Space Connections by Solid-State NMR Experiments with Proteins / 563

13.2. Polynucleotides / 566
 13.2.1. Structures and Conformations / 567
 13.2.2. Assignment / 574
 13.2.2.1. Duplex DNA / 574
 13.2.2.2. RNA / 576
 13.2.2.3. Other Nucleotides / 577
 13.2.3. Structure Calculation / 577
 13.2.3.1. Sequence Dependent Conformation in Duplexes / 577
 13.2.3.2. Non-Helical Conformations / 581

13.3. Oligosaccharides / 583
 13.3.1. Sequence and Linkage Determination / 584
 13.3.2. Conformation / 585

13.4. Complexes / 587
 13.4.1. Drug–Protein Complexes / 589
 13.4.2. Drug–DNA Complexes / 589
 13.4.3. Protein–Nucleic Acid Complexes / 590

References / 592

APPENDIX I. EQUATIONS FOR ENHANCEMENTS INVOLVING GROUPS OF EQUIVALENT SPINS 596

APPENDIX II. QUANTUM MECHANICS AND TRANSITION PROBABILITIES 599

INDEX 611
When we completed the first edition of this book, just over 10 years ago, we did not expect to undertake rewriting it for a long time to come. It is certainly true that the theory behind the NOE has altered little in the last 10 years (as reflected by the fact that Chapters 1, 2, 3, and 6 are largely unchanged). However, there has continued to be a very rapid growth in the range of applications, particularly in the macromolecular area.

To a large extent, this has dictated the changes we have made to the book. The biggest change from the first edition is the inclusion of a completely new chapter (Chapter 12), which deals with the way NOE enhancements are used to calculate structures of biomolecules. Chapter 13, which discusses applications of the NOE to calculations of macromolecular structures, has been largely rewritten. Much the same is true for Chapter 4, which deals with the kinetics of the NOE; although the theory is largely the same, we have now placed much more emphasis on transient NOE experiments (such as 2D and gradient-selected experiments), which have seen a major increase in use over the last 10 years.

Interest in internal motions in macromolecules was the main driving force behind the changes we have made to Chapter 5 (which also includes a new section on NOE enhancements involving water, and a major update on the transferred NOE), and a large number of new approaches have been incorporated into Chapters 7 (particularly gradient enhanced experiments) and 8 (network editing). Chapter 9 (“Other Developments”) remains the home for “miscellany” and contains a lot of new material, much of it concerned with the new experiments that became available in the wake of isotope labeling.

We have not significantly changed the content of the chapters dealing with applications to small molecules (Chapters 10 and 11), partly because neither
of us is still active in that field, but more importantly because we feel the examples we gave in the first edition still represent a balanced selection that demonstrates coherently what is usefully possible. It is true that some types of structural problem are now more frequently solved by other means (e.g., positional isomers on aromatic rings might now be more frequently distinguished using long-range 13C–1H correlation than by using the NOE), but we felt illustration of the utility of such NOE experiments was still important.

Overall, we have thus broadened the scope of the first edition somewhat, feeling that to exclude (for example) applications of the NOE to relaxation measurements, because it does not relate directly to structure or conformation, was unnecessarily restrictive.

One of the aims we set ourselves in writing this second edition was to make the book shorter. The most casual glance will reveal that we have achieved the opposite of success in this regard. The reason, unfortunately, is simple: as George Bernard Shaw (or was it Blaise Pascal?) is supposed to have said, “I am sorry to have written you a long letter, but I did not have time to write you a short one.” For this and other reasons, we feel it is safe to predict that there will be no third edition.

David Neuhaus
Michael P. Williamson
ACKNOWLEDGMENTS

We are deeply indebted to Dr. James Keeler, who has made many valuable comments on the manuscript and contributed much to the theory sections. His work on extending aspects of NOE theory remains a major influence on this book. We would also like to thank Dr. Deirdre Hickey for all her invaluable help and encouragement in preparing the manuscript, Prof. Dudley Williams, who instigated the project, Prof. Gareth Morris, for a number of useful observations and figures, and Prof. Ruth Lynden-Bell for her advice on Appendix II. Thanks also to all those who contributed ideas, comments, figures, or data, including (for the second edition) Drs. Mike Bernstein, David Case, Bob Diamond, Bob Dutnall, Philip Evans, Mark Fletcher, Charlie Hoogstraten, Richard Lewis, Beat Meier, Michael Nilges, Carol Post, and John Schwabe and (for the first edition) Andy Derome, Jeremy Everett, Duncan Farrant, Maurice Guéron, Peter Hore, Laurence Kruse, Forrest McKellar, Andrew Lane, Werner Leupin, Jeremy Sanders, Maurice Shamma, Richard Sheppard, Alan Whittle, and David Widdowson, as well as the authors and publishers who gave permission to reproduce published material. We thank all those at Wiley involved in the production of the book, particularly Barbara Goldman and Christine Punzo, both of whom showed patience well beyond the call of duty when waiting for the text, and, subsequently, in coping with all our various requests. Finally, we thank our families for putting up with so many lost evenings and weekends (again!).
In the past ten years a quiet revolution in the applications of NMR to organic chemistry and biochemistry has occurred. One of the main changes has been a great increase in the use of the nuclear Overhauser effect (NOE) to solve structural and conformational problems, which in turn was largely due to experimental developments such as the advent of NOE difference spectroscopy and the two-dimensional NOE experiment (NOESY). In this book we have tried to bring chemists and biochemists who are not NMR specialists up to date with these trends. The book aims to provide readers with sufficient background information to enable them to apply the NOE successfully within their own work, and also assess critically other papers in which the NOE is used to solve structural problems.

Because the NOE is transmitted directly through space, it is uniquely well suited to revealing the spatial arrangements of nuclei within molecules, but its interpretation is particularly vulnerable to the overapplication of inappropriate equations. For this reason, we have tried above all to emphasize a clear understanding of the underlying concepts, since only through an awareness of these can the most useful NOE experiments be devised and interpreted. Unavoidably, we have had to use a certain amount of mathematics to do this, but it is kept to a minimum, consistent with a clear explanation. Perhaps contrary to first appearances, most of the expressions in this book require no more than elementary mathematical skills.

As the title implies, our treatment is deliberately restricted to those aspects of the NOE that are relevant to the study of stereochemistry and conformation; topics such as dipolar interactions in solids, and the use of the NOE to study relaxation phenomena, kinetics, or exchange, have therefore been omitted.
The book is organized into three parts, dealing with theory, experimental practice, and an illustrative overview of applications of the NOE to problems in chemistry and biochemistry.

SI units have been used throughout, as far as possible. This results in occasional numerical factors in some expressions (e.g., the factor $\mu_0/4\pi$, which appears in expressions relating relaxation rates to internuclear distances).

David Neuhaus
Michael P. Williamson
SYMBOLS, ABBREVIATIONS, AND UNITS

Throughout, subscript letters are used to denote spin states and transitions; thus, N_a is the number of molecules in spin state α, and R_I is the spin–lattice relaxation rate of spin I. Superscript letters are used to denote different molecules or conformations; thus, S^a is the signal from spin S in molecules with conformation a, and R_{S}^{b} is the spin–lattice relaxation rate of spin S in molecules with conformation b. Vector quantities are written in bold.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>analog-to-digital converter</td>
</tr>
<tr>
<td>AQ</td>
<td>acquisition time</td>
</tr>
<tr>
<td>$\gamma B/2\pi$</td>
<td>field strength in Hz</td>
</tr>
<tr>
<td>γB</td>
<td>field strength in rad s$^{-1}$</td>
</tr>
<tr>
<td>B_0</td>
<td>applied magnetic field (tesla)</td>
</tr>
<tr>
<td>B_I</td>
<td>irradiating magnetic field (tesla)</td>
</tr>
<tr>
<td>CW</td>
<td>continuous wave</td>
</tr>
<tr>
<td>$d_{AB}(i, j)$</td>
<td>distance between proton A in residue i and proton B in residue j in a peptide or protein</td>
</tr>
<tr>
<td>D</td>
<td>dwell time in t_2 (s)</td>
</tr>
<tr>
<td>1D</td>
<td>one-dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>DG</td>
<td>distance geometry</td>
</tr>
<tr>
<td>DPFGSE</td>
<td>double pulsed field gradient spin echo</td>
</tr>
<tr>
<td>DQF-COSY</td>
<td>double-quantum filtered 2D correlation spectroscopy</td>
</tr>
<tr>
<td>$f_i[S]$</td>
<td>fractional NOE enhancement of I on saturating S</td>
</tr>
</tbody>
</table>
FID free induction decay
FT Fourier transform
\(g(\tau) \) correlation function, usually \(\exp(-\tau/\tau_c) \)
GOESY gradient enhanced NOE spectroscopy
\(h \) Planck’s constant = \(6.626 \times 10^{-34} \) Js
\(\hbar \) Planck’s constant divided by \(2\pi = 1.055 \times 10^{-34} \) Js
HMQC heteronuclear multiple quantum correlation (also coherence)
HSQC heteronuclear single quantum correlation (also coherence)
\(I \) nuclear spin quantum number, or general symbol for a nucleus; in expressions concerning NOE experiments, \(I \) generally represents the nucleus at which the enhancement is measured.
\(I_z \) longitudinal component of \(I \) magnetization
\(I_z^0 \) equilibrium value of \(I_z \)
\(I^N \) \(t_i \) increment in a 2D experiment (s)
ISPA isolated spin pair approximation
\(J \) spin–spin coupling constant (Hz)
\(J(\omega) \) spectral density function, usually \(2\pi/(1 + \omega^2\tau_c^2) \)
\(k \) Boltzmann’s constant = \(1.38 \times 10^{-23} \) J K\(^{-1}\)
\(M \) macroscopic magnetization vector (J T\(^{-1}\))
\(M_z \) \(z \) component of \(M \)
\(M_{xy} \) transverse component of \(M \)
MAS magic angle spinning
\(N_i \) number of molecules (population) in state \(i \)
\(n_i \) population deviation from equilibrium of state \(i \), namely \(N_i - N_i^0 \)
NOE nuclear Overhauser effect
NOESY nuclear Overhauser effect correlation spectroscopy
\(R_{1D}^I \) dipolar contribution to the spin–lattice relaxation rate of \(I \), defined as \(W_{0IS} + 2W_{11} + W_{2IS} + \Sigma_x \left(W_{0x} + W_{2x} \right) \) (cf. Eqs. 2.31 and 3.8) (s\(^{-1}\))
\(R_I = R_{1D}^I \) longitudinal relaxation rate of \(I = R_I^{1D} + \rho_f^I \), roughly equal to the inverse of the selective \(T_1 \) value (cf. Section 2.3.1) (s\(^{-1}\))
\(R_2 \) transverse relaxation rate (s\(^{-1}\))
\(r \) internuclear distance
\(r_{\text{Tropp}} \) effective internuclear distance sensed by the NOE in the presence of rapid internal motion; most commonly used to denote the effective distance to a methyl group (cf. Section 5.5.2)
RF radiofrequency
rmsd root mean squared deviation (or difference); usually implies root mean squared atomic deviation when comparing structures
ROE rotating frame NOE; also known as CAMELSPIN
ROESY rotating frame 2D NOE spectroscopy
\(S \) general symbol for a nucleus; in expressions concerning NOE experiments, \(S \) generally represents the nucleus which is saturated (\(S \) can also represent the electron spin quantum number).
Also, generalized order parameter for describing the geometrical extent of internal motions relative to the molecular frame (cf. Section 5.4)

\[S^2 \] square of the generalised order parameter (cf. Section 5.4)

\[S^\text{ang} \] angular order parameter (cf. Section 12.4.2)

\[S_z \] longitudinal component of \(S \) magnetization

\[S_z^0 \] equilibrium value of \(S_z \)

SPT selective population transfer

\(SW_1 \) spectral width in \(F_1 \) of a multidimensional experiment (Hz)

\(SW_2 \) spectral width in \(F_2 \) of a multidimensional experiment (Hz)

\(SW_3 \) spectral width in \(F_3 \) of a multidimensional experiment (Hz)

\(t_1 \) incremented time in 2D experiments; first incremented time in multidimensional experiments

\(t_{1\text{max}} \) maximum time reached by \(t_1 \) in the last increment of a 2D or multidimensional experiment (s)

\(t_2 \) detection period in 2D experiments; second incremented time in multidimensional experiments

\(t_{2\text{max}} \) maximum time reached by \(t_2 \) (s)

\(t_3 \) detection period in 3D experiments

\(t_{3\text{max}} \) maximum time reached by \(t_3 \) (s)

\(T \) temperature (K)

\(T_1 \) normally used to mean \(T_1^{\text{nonselective}} \) (see below)

\(T_1^{\text{nonselective}} \) nonselective longitudinal relaxation time, obtained by following the course of longitudinal relaxation after a nonselective pulse; approximately given by \((R_i + \sigma_{ij} + \Sigma_x \sigma_{ik})^{-1}\) (s) (cf. Section 2.3.2)

\(T_1^{\text{selective}} \) selective longitudinal relaxation time, obtained by following the course of longitudinal relaxation after a selective pulse; approximately equal to \(R_i^{-1} \) (s)

\(T_1^{\rho} \) spin–lattice relaxation time in the rotating frame (s)

\(T_2 \) spin–spin, or transverse, relaxation time (s)

\(T_2^{\rho} \) spin–spin relaxation time in the rotating frame (s)

\(T_2^g \) decay constant for free precession, which is shorter than \(T_2 \) because of inhomogeneous broadening (s)

\(T_2^{g\rho} \) decay constant for free precession in the rotating frame (s)

\(t_D \) relaxation delay (s)

TMS tetramethylsilane

TOCSY total correlation spectroscopy

TOE truncated driven NOE

TPPI time-proportional phase incrementation

TRNOE transferred NOE

VDW van der Waals

VT variable temperature

\(W \) transition probability (s\(^{-1}\))
SYMBOLS, ABBREVIATIONS, AND UNITS

- **X** general symbol for a nucleus; in expressions concerning NOE experiments in this book, X represents all nuclei other than I and S (when not italicized, X can also refer to a non-hydrogen nucleus)

- **X**
 - longitudinal component of X magnetization
 - equilibrium value of X_z

- **α, β** spin states for a spin 1/2 nucleus

- **γ** gyromagnetic ratio (rad T^{-1} s^{-1})

- **η** viscosity (cP)

- **η_{max}** maximum enhancement attainable in a two-spin system at a given value of τ_c and ω

- **μ** magnetic dipole moment (J T^{-1})

- **μ_0** permeability constant in a vacuum = 4π × 10^{-7} kg m s^{-2} A^{-2}

- **ν** precession rate (Hz)

- **ν_0** reference frequency of rotating frame (Hz)

- **ρ_{IS}** direct dipole–dipole relaxation rate between I and S, defined by ρ_{IS} = W_{0IS} + 2W_{1I} + W_{2IS} [Eq. 2.30] (s^{-1})

- **ρ^*_{s}** external spin–lattice relaxation rate (s^{-1})

- **ρ_1** alternative notation for ρ_{IS}, useful when comparing the NOE with the ROE

- **ρ_2** direct relaxation rate in the rotating frame (s^{-1})

- **σ_{I}** chemical shift tensor for nucleus I (cf. Sections 5.4 and 6.3)

- **σ_{IS}** cross-relaxation rate between I and S, defined by σ_{IS} = W_{2IS} − W_{0IS} [Eq. 2.29] (s^{-1})

- **σ_{1}** alternative notation for σ_{IS}, useful when comparing the NOE with the ROE

- **σ_{2}** cross-relaxation rate in the rotating frame (s^{-1})

- **τ_c** rotational correlation time (for overall molecular tumbling) (s)

- **τ_e** correlation time for an internal motion (cf. Section 5.4) (s)

- **τ_m** mixing time in a 2D or multidimensional NOE experiment (s)

- **τ** buildup time in kinetic NOE experiment; also general symbol for a fixed delay other than τ_m (s)

- **ω_0** Larmor precession frequency due to B_0 (rad s^{-1})

- **ω_1** Larmor precession frequency due to B_1 (rad s^{-1})

- {{ denotes irradiated spin

- ⟨ ⟩ denotes average or expectation value or conformational average

- ⟨|, |⟩ Dirac notation for a wave function (ket) and its complex conjugate (bra), respectively
INTRODUCTION

The fundamentals of the NOE were described very early in the history of NMR, in a classic paper by Solomon published in 1955. This paper included the first experimental demonstration of the NOE. Solomon’s work followed studies on nuclear spin relaxation by Bloembergen, Purcell, and Pound, and Overhauser’s original prediction that saturation of electrons in a metal would produce a large polarization of the metal nuclear spins.

Solomon’s work then lay almost dormant for some years until the advent of double resonance techniques led to the more widespread availability of spectrometers having a decoupler. Papers appeared by Kaiser on distance estimation using the intermolecular 1H$\{$1H$\}$ NOE, and by Lauterbur on signal enhancement in 13C spectra.

The first paper to demonstrate the power of the NOE in structural problems was by Anet and Bourn in 1965. The next few years saw a surge in the number of papers reporting applications of the NOE, especially after publication of the book by Noggle and Schirmer. On the CW spectrometers of the day, these experiments involved comparison of integrals to measure steady-state NOE enhancements.

Noggle and Schirmer’s book surveyed the field as it stood in 1971, and for some years there was little that needed to be added. There were two major advances in the decade or so following 1971. The first was the application of the NOE to large molecules. In 1972, Balaram et al. observed a negative NOE enhancement between a protein and a peptide binding to it, and they showed that negative enhancements are a general property of large molecules. Further applications to large molecules soon revealed the problem of spin diffusion, and the truncated driven NOE (TOE) experiment was suggested by Wagner and Wüthrich as a means of getting around this difficulty.
The second major advance was the introduction of the two-dimensional NOE experiment, largely by Ernst’s group. The first use of the experiment to measure NOE enhancements (as opposed to chemical exchange) was published in 1980,13,14 and the experiment has come to play a central role in work with biological macromolecules. This area has burgeoned still further with the arrival in the late 1980s of isotopically labeled proteins and the many multidimensional NOE experiments that can be applied to them.

Both these advances could not have had the impact they did without developments in instrumental techniques. The first FT NMR spectrometers became available around 1970, and brought much improved sensitivity. To observe small NOE enhancements, one needs not only sensitivity but also instrumental stability, and this was provided by superconducting magnets, which arrived at the end of the 1970s. The third in this trio of instrumental advances was the advent of dedicated computers, which could control the cycling of decoupler frequencies and gating. A direct result of these changes was the NOE difference experiment, which emerged at about this time. A much more recent development is the use of pulsed field gradients, which have found applications in almost all parts of NMR. Gradients provide little benefit for 2D NOESY experiments, but promise to revolutionize 1D measurements.15

Although the theory of the NOE as applied to organic molecules has scarcely changed since 1971, its application has increased dramatically. Using the techniques available in 1971, enhancements smaller than 5% could be seen only with difficulty. Now it is not particularly difficult to detect enhancements of less than 1%, or even 0.1% using newer gradient assisted experiments. Hall and Sanders16 point out that the maximum possible size of NOE enhancement seen between 1,3 diaxial protons in a cyclohexane chair is about 3%. This size of enhancement was just below the threshold of detection in the CW era, but it is well within modern instrumental capabilities.

\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{cyclohexane.png}
\caption{Cyclohexane chair conformation.}
\end{figure}

REFERENCES