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xv

PREFACE

When we completed the first edition of this book, just over 10 years ago, we
did not expect to undertake rewriting it for a long time to come. It is certainly
true that the theory behind the NOE has altered little in the last 10 years (as
reflected by the fact that Chapters 1, 2, 3, and 6 are largely unchanged). How-
ever, there has continued to be a very rapid growth in the range of applications,
particularly in the macromolecular area.

To a large extent, this has dictated the changes we have made to the book.
The biggest change from the first edition is the inclusion of a completely new
chapter (Chapter 12), which deals with the way NOE enhancements are used
to calculate structures of biomolecules. Chapter 13, which discusses applica-
tions of the NOE to calculations of macromolecular structures, has been largely
rewritten. Much the same is true for Chapter 4, which deals with the kinetics
of the NOE; although the theory is largely the same, we have now placed much
more emphasis on transient NOE experiments (such as 2D and gradient-
selected experiments), which have seen a major increase in use over the last
10 years.

Interest in internal motions in macromolecules was the main driving force
behind the changes we have made to Chapter 5 (which also includes a new
section on NOE enhancements involving water, and a major update on the
transferred NOE), and a large number of new approaches have been incorpo-
rated into Chapters 7 (particularly gradient enhanced experiments) and 8 (net-
work editing). Chapter 9 (“Other Developments”) remains the home for “mis-
cellany” and contains a lot of new material, much of it concerned with the new
experiments that became available in the wake of isotope labeling.

We have not significantly changed the content of the chapters dealing with
applications to small molecules (Chapters 10 and 11), partly because neither
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of us is still active in that field, but more importantly because we feel the
examples we gave in the first edition still represent a balanced selection that
demonstrates coherently what is usefully possible. It is true that some types of
structural problem are now more frequently solved by other means (e.g., po-
sitional isomers on aromatic rings might now be more frequently distinguished
using long-range 13C–1H correlation than by using the NOE), but we felt il-
lustration of the utility of such NOE experiments was still important.

Overall, we have thus broadened the scope of the first edition somewhat,
feeling that to exclude (for example) applications of the NOE to relaxation
measurements, because it does not relate directly to structure or conformation,
was unnecessarily restrictive.

One of the aims we set ourselves in writing this second edition was to make
the book shorter. The most casual glance will reveal that we have achieved the
opposite of success in this regard. The reason, unfortunately, is simple: as
George Bernard Shaw (or was it Blaise Pascal?) is supposed to have said, “I
am sorry to have written you a long letter, but I did not have time to write you
a short one.” For this and other reasons, we feel it is safe to predict that there
will be no third edition.

David Neuhaus
Michael P. Williamson
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PREFACE TO THE FIRST EDITION

In the past ten years a quiet revolution in the applications of NMR to organic
chemistry and biochemistry has occurred. One of the main changes has been
a great increase in the use of the nuclear Overhauser effect (NOE) to solve
structural and conformational problems, which in turn was largely due to ex-
perimental developments such as the advent of NOE difference spectroscopy
and the two-dimensional NOE experiment (NOESY). In this book we have
tried to bring chemists and biochemists who are not NMR specialists up to
date with these trends. The book aims to provide readers with sufficient back-
ground information to enable them to apply the NOE successfully within their
own work, and also assess critically other papers in which the NOE is used to
solve structural problems.

Because the NOE is transmitted directly through space, it is uniquely well
suited to revealing the spatial arrangements of nuclei within molecules, but its
interpretation is particularly vulnerable to the overapplication of inappropriate
equations. For this reason, we have tried above all to emphasize a clear un-
derstanding of the underlying concepts, since only through an awareness of
these can the most useful NOE experiments be devised and interpreted. Un-
avoidably, we have had to use a certain amount of mathematics to do this, but
it is kept to a minimum, consistent with a clear explanation. Perhaps contrary
to first appearances, most of the expressions in this book require no more than
elementary mathematical skills.

As the title implies, our treatment is deliberately restricted to those aspects
of the NOE that are relevant to the study of stereochemistry and conformation;
topics such as dipolar interactions in solids, and the use of the NOE to study
relaxation phenomena, kinetics, or exchange, have therefore been omitted.
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The book is organized into three parts, dealing with theory, experimental
practice, and an illustrative overview of applications of the NOE to problems
in chemistry and biochemistry.

SI units have been used throughout, as far as possible. This results in oc-
casional numerical factors in some expressions (e.g., the factor m0 /4p, which
appears in expressions relating relaxation rates to internuclear distances).

David Neuhaus
Michael P. Williamson
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SYMBOLS, ABBREVIATIONS,
AND UNITS

Throughout, subscript letters are used to denote spin states and transitions; thus,
Na is the number of molecules in spin state a, and RI is the spin–lattice relax-
ation rate of spin I. Superscript letters are used to denote different molecules
or conformations; thus, S a is the signal from spin S in molecules with confor-
mation a, and is the spin–lattice relaxation rate of spin S in molecules withbRS

conformation b. Vector quantities are written in bold.

ADC analog-to-digital converter
AQ acquisition time
gB/2p field strength in Hz
gB field strength in rad s21

B0 applied magnetic field (tesla)
B1 irradiating magnetic field (tesla)
CW continuous wave
dAB(i, j) distance between proton A in residue i and proton B in residue

j in a peptide or protein
D dwell time in t2 (s)
1D one-dimensional
2D two-dimensional
3D three-dimensional
dB decibels
DG distance geometry
DPFGSE double pulsed field gradient spin echo
DQF-COSY double-quantum filtered 2D correlation spectroscopy
fI{S} fractional NOE enhancement of I on saturating S
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FID free induction decay
FT Fourier transform
g(t) correlation function, usually exp(2t/tc)
GOESY gradient enhanced NOE spectroscopy
h Planck’s constant = 6.626 3 10234 Js
" Planck’s constant divided by 2p = 1.055 3 10234 Js
HMQC heteronuclear multiple quantum correlation (also coherence)
HSQC heteronuclear single quantum correlation (also coherence)
I nuclear spin quantum number, or general symbol for a nucleus;

in expressions concerning NOE experiments, I generally repre-
sents the nucleus at which the enhancement is measured.

Iz longitudinal component of I magnetization
0I z equilibrium value of Iz

IN t1 increment in a 2D experiment (s)
ISPA isolated spin pair approximation
J spin–spin coupling constant (Hz)
J(v) spectral density function, usually 2 22t /(1 1 v t )c c

k Boltzmann’s constant = 1.38 3 10223 J K21

M macroscopic magnetization vector (J T21)
Mz z component of M
Mxy transverse component of M
MAS magic angle spinning
Ni number of molecules (population) in state i
ni population deviation from equilibrium of state i, namely Ni 2

0Ni

NOE nuclear Overhauser effect
NOESY nuclear Overhauser effect correlation spectroscopy

DDRI dipolar contribution to the spin–lattice relaxation rate of I, de-
fined as W0IS 1 2W1I 1 W2IS 1 (x (W0IX 1 W2IX) (cf. Eqs. 2.31
and 3.8) (s21)

RI [ R1I longitudinal relaxation rate of I = 1 roughly equal toDDR r*,I I

the inverse of the selective T1 value (cf. Section 2.3.1) (s21)
R2 transverse relaxation rate (s21)
r internuclear distance
rTropp effective internuclear distance sensed by the NOE in the pres-

ence of rapid internal motion; most commonly used to denote
the effective distance to a methyl group (cf. Section 5.5.2)

RF radiofrequency
rmsd root mean squared deviation (or difference); usually implies root

mean squared atomic deviation when comparing structures
ROE rotating frame NOE; also known as CAMELSPIN
ROESY rotating frame 2D NOE spectroscopy
S general symbol for a nucleus; in expressions concerning NOE

experiments, S generally represents the nucleus which is satu-
rated (S can also represent the electron spin quantum number).
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Also, generalized order parameter for describing the geometrical
extent of internal motions relative to the molecular frame (cf.
Section 5.4)

S2 square of the generalised order parameter (cf. Section 5.4)
S ang angular order parameter (cf. Section 12.4.2)
Sz longitudinal component of S magnetization

0Sz equilibrium value of Sz

SPT selective population transfer
SW1 spectral width in F1 of a multidimensional experiment (Hz)
SW2 spectral width in F2 of a multidimensional experiment (Hz)
SW3 spectral width in F3 of a multidimensional experiment (Hz)
t1 incremented time in 2D experiments; first incremented time in

multidimensional experiments
t1 max maximum time reached by t1 in the last increment of a 2D or

multidimensional experiment (s)
t2 detection period in 2D experiments; second incremented time in

multidimensional experiments
t2 max maximum time reached by t2 (s)
t3 detection period in 3D experiments
t3 max maximum time reached by t3 (s)
T temperature (K)
T1 normally used to mean (see below)nonselectiveT 1

nonselectiveT 1 nonselective longitudinal relaxation time, obtained by following
the course of longitudinal relaxation after a nonselective pulse;
approximately given by (RI 1 sIS 1 (X sIX)21 (s) (cf. Section
2.3.2)

selectiveT 1 selective longitudinal relaxation time, obtained by following the
course of longitudinal relaxation after a selective pulse; approx-
imately equal to (s)21RI

T1r spin–lattice relaxation time in the rotating frame (s)
T2 spin–spin, or transverse, relaxation time (s)
T2r spin–spin relaxation time in the rotating frame (s)
T*2 decay constant for free precession, which is shorter than T2 be-

cause of inhomogeneous broadening (s)
T*2r decay constant for free precession in the rotating frame (s)
tD relaxation delay (s)
TMS tetramethylsilane
TOCSY total correlation spectroscopy
TOE truncated driven NOE
TPPI time-proportional phase incrementation
TRNOE transferred NOE
VDW van der Waals
VT variable temperature
W transition probability (s21)
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X general symbol for a nucleus; in expressions concerning NOE
experiments in this book, X represents all nuclei other than I and
S (when not italicized, X can also refer to a non-hydrogen
nucleus)

Xz longitudinal component of X magnetization
0Xz equilibrium value of Xz

a, b spin states for a spin 1/2 nucleus
g gyromagnetic ratio (rad T21 s21)
h viscosity (cP)
hmax maximum enhancement attainable in a two-spin system at a

given value of tc and v
m magnetic dipole moment (J T21)
m0 permeability constant in a vacuum = 4p 3 1027 kg m s22 A22

n precession rate (Hz)
n0 reference frequency of rotating frame (Hz)
rIS direct dipole–dipole relaxation rate between I and S, defined by

rIS = W0IS 1 2W1I 1 W2IS [Eq. 2.30] (s21)
r* external spin–lattice relaxation rate (s21)
r1 alternative notation for rIS, useful when comparing the NOE with

the ROE
r2 direct relaxation rate in the rotating frame (s21)
sI chemical shift tensor for nucleus I (cf. Sections 5.4 and 6.3)
sIS cross-relaxation rate between I and S, defined by sIS = W2IS 2

W0IS (Eq. 2.29) (s21)
s1 alternative notation for sIS, useful when comparing the NOE

with the ROE
s2 cross-relaxation rate in the rotating frame (s21)
tc rotational correlation time (for overall molecular tumbling) (s)
te correlation time for an internal motion (cf. Section 5.4) (s)
tm mixing time in a 2D or multidimensional NOE experiment (s)
t buildup time in kinetic NOE experiment; also general symbol

for a fixed delay other than tm (s)
v0 Larmor precession frequency due to B0 (rad s21)
v1 Larmor precession frequency due to B1 (rad s21)
{ } denotes irradiated spin
^ & denotes average or expectation value or conformational average
^ u , u& Dirac notation for a wave function (ket) and its complex con-

jugate (bra), respectively
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INTRODUCTION

The fundamentals of the NOE were described very early in the history of NMR,
in a classic paper by Solomon published in 1955.1 This paper included the first
experimental demonstration of the NOE. Solomon’s work followed studies on
nuclear spin relaxation by Bloembergen, Purcell, and Pound,2 and Overhauser’s
original prediction that saturation of electrons in a metal would produce a large
polarization of the metal nuclear spins.3,4

Solomon’s work then lay almost dormant for some years until the advent of
double resonance techniques5,6 led to the more widespread availability of spec-
trometers having a decoupler. Papers appeared by Kaiser on distance estimation
using the intermolecular 1H{1H} NOE,7 and by Lauterbur on signal enhance-
ment in 13C spectra.8

The first paper to demonstrate the power of the NOE in structural problems
was by Anet and Bourn in 1965.9 The next few years saw a surge in the number
of papers reporting applications of the NOE, especially after publication of the
book by Noggle and Schirmer.10 On the CW spectrometers of the day, these
experiments involved comparison of integrals to measure steady-state NOE
enhancements.

Noggle and Schirmer’s book surveyed the field as it stood in 1971, and for
some years there was little that needed to be added. There were two major
advances in the decade or so following 1971. The first was the application of
the NOE to large molecules. In 1972, Balaram et al.11 observed a negative NOE
enhancement between a protein and a peptide binding to it, and they showed
that negative enhancements are a general property of large molecules. Further
applications to large molecules soon revealed the problem of spin diffusion,
and the truncated driven NOE (TOE) experiment was suggested by Wagner
and Wüthrich12 as a means of getting around this difficulty.
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The second major advance was the introduction of the two-dimensional NOE
experiment, largely by Ernst’s group. The first use of the experiment to measure
NOE enhancements (as opposed to chemical exchange) was published in
1980,13,14 and the experiment has come to play a central role in work with
biological macromolecules. This area has burgeoned still further with the arrival
in the late 1980s of isotopically labeled proteins and the many multidimensional
NOE experiments that can be applied to them.

Both these advances could not have had the impact they did without devel-
opments in instrumental techniques. The first FT NMR spectrometers became
available around 1970, and brought much improved sensitivity. To observe
small NOE enhancements, one needs not only sensitivity but also instrumental
stability, and this was provided by superconducting magnets, which arrived at
the end of the 1970s. The third in this trio of instrumental advances was the
advent of dedicated computers, which could control the cycling of decoupler
frequencies and gating. A direct result of these changes was the NOE difference
experiment, which emerged at about this time. A much more recent develop-
ment is the use of pulsed field gradients, which have found applications in
almost all parts of NMR. Gradients provide little benefit for 2D NOESY ex-
periments, but promise to revolutionize 1D measurements.15

Although the theory of the NOE as applied to organic molecules has scarcely
changed since 1971, its application has increased dramatically. Using the tech-
niques available in 1971, enhancements smaller than 5% could be seen only
with difficulty. Now it is not particularly difficult to detect enhancements of
less than 1%, or even 0.1% using newer gradient assisted experiments. Hall
and Sanders16 point out that the maximum possible size of NOE enhancement
seen between 1,3 diaxial protons in a cyclohexane chair is about 3%. This size
of enhancement was just below the threshold of detection in the CW era, but
it is well within modern instrumental capabilities.

H

H H
H

H

H
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