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PREFACE

You are fools, to say you learn from your mistakes. I learn from the mistakes of other
men.

ÐOtto von Bismarck

This is a book of lore. The word evokes many images: Merlin singing spells under the
oak trees, a 'San bushman drinking through a reed from a hidden sip well, an angler
trying to hook the wisest old trout in the lake. What I mean by it is altogether more
homely: a mixture of rules of thumb, experience, bits of theory, and an inde®nable
feeling for the right way to do things, a sort of technical taste. It is what makes the
di¨erence between merely being able to analyze a design once completed, and being
able to rapidly synthesize a good design to ®t a particular purpose. Coursework and
textbooks teach analysis reasonably e½ciently, but most contain no lore whatsoever.

One of the odd things about lore is that it lives in the ®ngers more than in the
brain, like piano playing. In writing this book, I have often run up against the dif-
ference between how I do something and how I think I do it or how I remember
having done it once. Since it's the actual lore of doing that is useful, I have where
possible written or revised each section when I was actually doing that task as part of
my job or was consulting with someone who was doing so. I hope that this gives
those sections a sense of immediacy and authenticity.

Apologia

Lore is usually acquired slowly through experience and apprenticeship. Beginners
pester experts, who help fairly willingly, mostly because they're kept humble by
stepping in potholes all the time themselves. This mutual aid system works but is slow
and unsystematic. As a beginner, I once spent nearly six months trying to get a laser
interferometer to work properly, a task that would now take about a week. The rea-
son was a breakdown in the apprenticeship systemÐeveryone consulted said ``Oh,
that comes with practice''Ðperfectly true, and by no means unsympathetic, but not
too helpful. Conversations with many others in the ®eld indicate that this experience
is the rule and not the exception.

This book is an attempt to provide a systematic and accessible presentation of the
practical lore of electro-optical instrument design and constructionÐto be the book I
needed as a graduate student. It is intended for graduate students at all levels, as well
as practicing scientists and engineers: anyone who has electro-optical systems to build
and could use some advice. Its applicability ranges from experimental apparatus to
CD players.

The very attempt reeks of hubris. The range of topics covered here is enormously
broad, and I do not pretend to be master of it all; it presents the work of a huge
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number of others. Lack of space and defect of memory prevent my adequately ac-
knowledging even those contributions whose source I once knew. My defense is that
a work like this can erect bridges between subdisciplines, prevent common mistakes,
and help all those working on an instrument project to see it as a whole. So much
good stu¨ gets lost in the cracks between physics, electrical engineering, optical en-
gineering, and computer science that a salvage attempt seemed justi®ed. I ask pardon
of those whose work has been acknowledged inadequately and hope that they can
remember once needing this sort of book.

Mission

Designing and constructing electro-optical instruments is without a doubt one of the
most interdisciplinary activities in engineering. It makes an absorbing and rewarding
career, with little danger of growing stale. On the other hand, the same interdisci-
plinary quality means that instrument building is a bit scary, and keeps us on our
toes. The very broad range of technologies involved means that at least one vital
subsystem lies outside the designer's expertise, presenting a very real danger of major
schedule slippage or outright failure, which may not become apparent until very late
in the project.

We in electro-optics rely on whatever subset of these technologies we are familiar
with, together with a combination of outside advice, collaboration, and purchased
parts. Often, there are many ways of reaching the goal of a robust, working system;
then the problem is where to start among a range of unfamiliar alternatives. It's like
the classic computer game Adventure: ``You are in a maze of twisty little passages, all
di¨erent.'' Some judicious advice (and perhaps a map left by a previous adventurer)
is welcome at such times, and that's what these books are about, the lore of designing
and building electro-optical instruments that work.

To have con®dence in an instrument design, we really need to be able to calculate
its performance ahead of time, without needing to construct an elaborate simulation.
It is a nontrivial matter, given the current fragmented state of the literature, to cal-
culate what the resolution and SNR of a measurement system will be before it is
built. It's not that there isn't lots of information on how to calculate the performance
of each lens, circuit, or computer program, but rather the complexity of the task
and the very di¨erent ways in which the results are expressed in the di¨erent ®elds
encountered. For example, what is the e¨ect of fourth-order spherical aberration in
the objective lens on the optimal band-setting ®lter in the analog signal processor,
and then on the signal-to-noise ratio of the ultimate digital data set? Somebody on
the project had better know that, and my aim is to make you that somebody.

The book is intended in the ®rst instance for use by oppressed graduate students in
physics and electrical engineering, who have to get their apparatus working long
enough to take some data before they can graduate. When they do, they'll ®nd that
real-world design work has much the same harassed and overextended ¯avor, so in
the second instance, it's intended for working electro-optical designers. It can be
used as a text in a combined lecture±laboratory course aimed at graduate students
or fourth-year undergraduates, and for self-teaching and reference by working
designers.
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Organization

Textbooks usually aim at a linear presentation of concepts, in which the stu¨ on page
n does not depend on your knowing pages n� 1 � � �N. This is very valuable peda-
gogically, since the reader is initially unfamiliar with the material and usually will go
through the book thoroughly, once, under the guidance of a teacher who is present-
ing information rapidly. Reference books are written for people who already have a
grasp of the topic but need to ®nd more detail or remind themselves of things dimly
remembered. Thus they tend to treat topics in clumps, emphasizing completeness,
and to be weak on explanations and on connections between topics.

Those two kinds of presentation work pretty well in some subject areas, but design
lore is not one of them. Its concepts are not related like a tree, or packed like eggs in
a crate, but rather are interlinked like a ®shnet or a sponge; thus a purely linear or
clumped presentation of lore is all but impossible without doing violence to it.
Nonetheless, to be any use, a lore book must be highly accessible, both easy to work
through sequentially and attractive to leaf through many times.

The book is organized into three sections: Optics; Electronics and Signal Process-
ing; and Special Topics in Depth (Front Ends and Bringing Up the System). There is
also supplementary material, available from the Web at http://www.wiley.com, which
comprises two chapters that didn't make it into an already large book, plus chapter
problems and an appendix that is mostly about where to ®nd more information
(including micro-reviews of my favorite technical books).

The material is presented in varying levels of detail. The di¨erences in the detail
levels re¯ect the amount of published lore and the measured density of deep potholes
that people fall into. For example, there are lots of potholes in optomechanical
design, but weighty books of relevant advice ®ll shelf after shelf. Anyway, mechanical
problems aren't usually what cause instrument projects to failÐunexamined as-
sumptions, inexperience, and plain discouragement are. To get the software job done,
we talk instead about how to avoid common mistakes while coming up with some-
thing simple that works reliably.

Computer scientists use the concept of locality of referenceÐit's a good thing if an
algorithm works mainly with data near each other in storage, since it saves cache
misses and page faults, but all the data have to be there, regardless. That's the way I
have tried to organize this book: Most of the lore on a particular topic is kept close
together for conceptual unity and easy reference, but the topics are presented in a
su½ciently linear order that later chapters build mainly on earlier ones, and impor-
tant connections are noted in both forward and backward directions.y A certain
amount of messiness results, which (it is to be hoped) has been kept close to a
minimum.

The one big exception to this general scheme is Chapter 1. It pulls in strands from
everywhere, to present the process and the rhythm of conceptual design, and so con-
tains things that many readers (especially beginners) may ®nd somewhat unfamiliar.
Don't worry too much about the technical aspects, because there's more on all those
things later in the book, and pointers to other sources. (Teachers may want to leave
this chapter until late in the course.)

y Because electro-optical lore is so interconnected, useful connections that are tangential to the discussion

are relegated to footnotes. An occasional polemic is found there, too.
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A complete instrument design course based on this book would probably have to
wait for a ®rst- or second-year graduate class. Undergraduate students with a good
grasp of electromagnetism, physical optics, and Fourier transforms might bene®t
from a fourth-year course on optical instruments based selectively on the ®rst ten
chapters. To get the most out of such a course, the audience should be people with
instruments of their own to build, either in a lab course, a senior project, or as part of
their graduate work. Because of the complicated, interdisciplinary nature of instru-
ment building, the laboratory part of the course might best be done by teams working
on an instrument project rather than individually, provided that each designer knows
enough about everybody else's part to be able to explain it.

Chapter problems for this book are available on the World Wide Web at
ftp://ftp.wiley.com/public/sci_tech_med/electro-optical, also via links from http://
www.wiley.com/products/subject/engineering/electrical.

Making complicated tasks intuitive is the true realm of loreÐknowing the math-
ematical expression for the fringe pattern of a defocused beam is less useful than
knowing which way to turn which knob to ®x it. The most powerful method for
gaining intuition is to use a combination of practical work and simple theoretical
models that can be applied easily and stay close to the real physics. Accordingly, the
emphasis in the problems is on extracting useful principles from theory and discus-
sion. Most of the problems have been taken from real design and scienti®c work, and
so tend to be open-ended.

Most students will have had a lot of theoretical training, but nowadays most will
not have the skills of a Lightning Empiricist, a gimlet-eyed designer who's fast at
mental rule-of-thumb calculations and who sanity-checks everything by re¯ex. Per-
haps this book can help ®x that.

Errata

A certain number of errors and misconceptionsÐhopefully, minorÐare bound
to creep into a book of this type, size, and scope. I welcome your comments
and corrections, large and small: Errata and omissions will be posted periodi-
cally at ftp://ftp.wiley.com/public/sci_tech_med/electro-optical. Send e-mail to
hobbs@alumni.stanford.org.
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