
THE RELATIONAL
DATABASE MODEL:

INTRODUCTION

C H A P T E R 5

A Black& Decker power saw

CHAPTER OBJECTIVES

After learning the material in this chapter, you will be able to:

✔ Explain why the relational database model became practical in about 1980.
✔ Define such basic relational database terms as relation and tuple.
✔ Describe the major types of keys including primary, candidate, and foreign.
✔ Describe how one-to-one, one-to-many, and many-to-many binary relation-

ships are implemented in a relational database.
✔ Describe how relational data retrieval is accomplished in concept with the

select, project, and join operators.
✔ Understand how the join operator facilitates data integration in relational database.

BLACK & DECKER
Black & Decker is one of the world’s largest producers of electric power tools and
power tool accessories, is among the largest-selling residential lock manufacturers in the
United States, and is a major manufacturer of faucets sold in the United States. It is also
the world’s largest producer of certain types of technology-based industrial fastening
systems. The company’s brand names include Black & Decker and DeWalt power tools,

83

84 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

Emhart Teknologies, Kwikset locks and other home security products, and Price Pfister
plumbing fixtures. Based in Towson, MD, Black & Decker has manufacturing plants in
ten countries and markets its products in over 100 countries around the globe.

One of the major factors in Black & Decker’s Power Tools Division’s leadership
position is its highly advanced, database-focused information system that assures a
steady and accurate supply of raw materials to the manufacturing floor. Using
Manugistics’ Demand and Supply Planning software, the system forecasts demand for
Black & Decker’s power tools and then generates a raw material supply plan based on
the forecast and on the company’s manufacturing capacity. These results are fed into
SAP’s Plant Planning System that takes into account suppliers’ capabilities and lead-time
constraints to set up orders for the raw materials.

Both the Manugistics and SAP software use Oracle databases to keep track of all
of the data involved in these processes. Black & Decker runs the system, which became
fully integrated in 1998, on clustered Compaq Alphas. The databases are also shared
by the company’s purchasing, receiving, finance, and accounting departments, assur-
ing very high degrees of accuracy and speed throughout the company’s operations and
procedures. Included among the major database tables that support this information
system are a material master table, a vendor master table, a bill-of-materials table (that
indicates which parts go into making which other parts), a routing table (that indicates
the work stations that the part will move through during manufacturing), planning, pur-
chase order, customer, and other tables.

Printed by permission of Black & Decker

In 1970, Dr. Edgar F. (Ted) Codd of IBM published a paper entitled “A Relational
Model of Data for Large Shared Data Banks” in Communications of the ACM. This
paper marked the beginning of the field of relational database. During the 1970s,
the relational approach to database progressed from being a technical curiosity to
a subject of serious interest in the information systems community. But it was not
until the early 1980s that commercially viable relational database management sys-
tems became available. There were two basic reasons for this lag. One was that
while relational database was very tempting in concept, it was not easily applica-
ble in a real-world environment for reasons related to performance, which we will
discuss later in Chapter 8. The second reason was that at exactly the time that
Codd’s paper was published, the earlier hierarchical and network database man-
agement systems were just coming onto the commercial scene and were the focus
of intense marketing efforts by the software and hardware vendors of the day.

Several factors converged in the early 1980s to begin turning the tide toward
relational database. One was that the performance issues that held back its adop-
tion in the 1970s began to be resolved. Another was that after a decade of use of
hierarchical and network database management systems, information systems pro-
fessionals were interested in finding an alternative that would help simplify the
database design process and produce database structures that were easier to use and
understand at all levels. At this time, too, there was increasing interest in having a
DBMS environment that would allow easier, more intuitive access to the data by
an increasingly broad range of personnel. Finally, the early 1980s saw the advent
of the personal computer (PC). As software developers began trying to create all

The Re la t iona l Da tabase Concep t 85

manner of applications and supporting software utilities for the PC, it quickly
became clear that the existing hierarchical and network database approaches would
not work in the PC environment, for two reasons. One was that these DBMSs were
simply too large to store and use on the early PCs. The other was that they were too
complex to be used by the very broad array of noninformation systems profes-
sionals to whom the PCs were targeted.

Today, the relational approach to database management is by far the primary
database management approach used in all levels of information systems and for
most application purposes from accounting to banking to manufacturing to sales
on the World Wide Web. Relational database management is represented today by
such products as Microsoft Access and SQL Server, Oracle, Sybase, and IBM’s
DB2 and Informix. While these and other relational database systems have differ-
ent features and implementations, they all share a common data structure philoso-
phy and a common data access tool: Structured Query Language (SQL) (often
pronounced “sequel”). This chapter will focus on the basic concepts of how data is
stored and retrieved in a relational database by a relational DBMS. The following
chapter, Chapter 6, will discuss some additional relational database concepts;
Chapter 7 will describe logical database design; Chapter 8 will go into physical
database design; and Chapter 9 will be devoted to SQL, primarily to its use in
retrieving data from a relational database. As explained in the Preface, it is impor-
tant to note that Chapter 9 on SQL can be read and studied before the two design
chapters, Chapters 7 and 8, without any loss of content or continuity.

THE RELATIONAL DATABASE CONCEPT

Relational Terminology

In spite of the apparent conflict between non-redundant, linear file data storage and
data integration demonstrated in the previous chapter, the concept of having the
relative simplicity of simple, linear files or structures that resemble them in a true
database environment is very desirable. After all, the linear file arrangement is the
most basic and commonly used data structure available. This is precisely one of the
advantages of relational database.

To begin with, consider the data structure used in relational databases. In a rela-
tional database, the data appears to be stored in what we have been referring to as
simple, linear files. Following the conventions of the area of mathematics on which
relational database is based, we will begin calling those simple linear files relations,
although in common practice they are also referred to as tables. In the terminology
of files, each row is called a record, while in a relation, each row is called a tuple.
In files, each column is called a field, while in a relation each column is called an
attribute. In practice, in speaking about relational database, it is common for peo-
ple to use relation, table, and file synonymously. Similarly, tuple, row, and record
are often used synonymously, as are attribute, column, and field, (Figure 5.1). We
will use an appropriate term in each particular situation during our discussion. In
particular, we will use the term relation in this chapter and the next, in which we are
talking about relational database concepts. Following common usage, we will gen-
erally use the term table in the more applied parts of the book, such as in the cor-
porate database stories in each chapter and in the discussion of SQL in Chapter 9.

86 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

Technical differences exist between the concept of a file and the concept of a
relation (which is why we say that in a relational database the data only appears to
be stored in structures that look like files). The differences include:

• The columns of a relation can be arranged in any order without affecting the
meaning of the data. This is not true of a file.

• Similarly, the rows of a relation can be arranged in any order, which is not true
of a file.

• Every row/column position, sometimes referred to as a cell, can have only a
single value, which is not necessarily true in a file.

• No two rows of a relation are identical, which is not necessarily true in a file.

A relational database is simply a collection of relations that, as a group, con-
tain the data that describes a particular business environment.

Primary and Candidate Keys

Primary Keys Figure 5.2 contains two relations, the SALESPERSON rela-
tion and the CUSTOMER relation, from General Hardware Company’s relational
database. The SALESPERSON relation has four rows, each representing one sales-
person. Also, the SALESPERSON relation has four columns, each representing a
characteristic of salespersons. Similarly, the CUSTOMER relation has nine rows,
each representing a customer, and four columns.

A relation always has a unique primary key. A primary key (sometimes
shortened in practice to just “the key”) is an attribute or a group of attributes
whose values are unique throughout all of the rows of the relation. The primary
key represents the characteristic of a collection of entities that uniquely identi-
fies each one. For example, in the situation described by the relations of Figure
5.2, each salesperson has been assigned a unique salesperson number and each
customer has been assigned a unique customer number. Therefore the
Salesperson Number attribute is the primary key of the SALESPERSON rela-
tion, and the Customer Number attribute is the primary key of the CUSTOMER
relation. As shown in Figure 5.2, we will start marking the primary key
attribute(s) with a single, solid underline.

Relation (or Table or File)

Student Student
Number Name Class Major

03657 Robert Shaw Senior Biology

05114 Gloria Stuart Freshman English

05950 Fred Simpson Junior Mathematics

12746 W. Shin Junior English

15887 Pedro Marcos Senior History

19462 H. Yamato Sophomore French

21682 Mary Jones Freshman Chemistry

24276 Steven Baker Sophomore History

� Figure 5.1
Relat ional database
terminology

Attribute
(or Column or Field)

Tuple
(or Row or Record)

The Re la t iona l Da tabase Concep t 87

The number of attributes involved in the primary key is always the minimum
number of attributes that provide the uniqueness quality. For example, in the
SALESPERSON relation, it would make no sense to have the combination of
Salesperson Number and Salesperson Name as the primary key because
Salesperson Number is unique by itself. However, consider the situation of a
SALESPERSON relation that does not include a Salesperson Number attribute,
but instead has a First Name attribute, a Middle Name attribute, and a Last Name
attribute. The primary key might then be the combination of the First, Middle, and
Last Name attributes. (Assuming this would always produce a unique combination
of values. If it did not, then a fourth attribute could be added to the relation and to
the primary key as a sequence field to produce, for example, John Alan Smith #1,
John Alan Smith #2, and so forth.) Some attribute or combination of attributes of
a relation has to be unique and can serve as the unique primary key, since, by def-
inition, no two rows can be identical. In the worst case, all of the relation’s attrib-
utes combined could serve as the primary key if necessary (but this situation is
uncommon in practice).

Candidate Keys If a relation has more than one attribute or minimum group
of attributes that represents a way of uniquely identifying the entities, then they are
each called a candidate key. (Actually, if there is only one unique attribute or min-
imum group of attributes, it can also be called a candidate key.) For example, in a
personnel relation, an Employee Number attribute and a Social Security number
attribute (each of which is obviously unique) would each be a candidate key of that

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

� Figure 5.2
General Hardware Company
relat ional database

88 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

relation. When there is more than one candidate key, one of them must be chosen
to be the primary key of the relation. That is where the term candidate key comes
from since each one is a candidate for selection as the primary key. The decision
of which candidate key to pick to be the primary key is typically based on which
one will be the best for the purposes of the applications that will use the relation
and the database. Sometimes the term alternate key is used to describe a candidate
key that was not chosen to be the primary key of the relation (Figure 5.3).

Foreign Keys and Binary Relationships

Foreign Keys If in a collection of relations that make up a relational data-
base, an attribute or group of attributes serves as the primary key of one relation
and also appears in another relation, then it is called a foreign key in that other rela-
tion. Thus Salesperson Number, which is the primary key of the SALESPERSON
relation, is considered a foreign key in the CUSTOMER relation (Figure 5.4). As
shown in Figure 5.4, we will start marking the Foreign Key attribute(s) with a
dashed underline. The concept of the foreign key is crucial in relational database,
because the foreign key is the mechanism that ties relations together to represent
unary, binary, and ternary relationships. We begin the discussion by considering
how binary relationships are stored in relational databases. These are both the most
common and the easiest to deal with. The unary and ternary relationships will
come later. Recall from the discussion of the entity-relationship model that the
three kinds of binary relationships among the entities in the business environment
are the one-to-one, one-to-many, and many-to-many relationships. The first case is
the one-to-many relationship, which is typically the most common of the three.

CandidateKey 1

CandidateKey 3

CandidateKey 2

CandidateKey 1

CandidateKey 3

CandidateKey 2

Alternate
Key

Alternate
Key

The Winner and
Primary Key

� Figure 5.3
Candidate keys become
either pr imary or
al ternate keys

The Re la t iona l Da tabase Concep t 89

One-to-Many Binary Relationship Consider the SALESPERSON and CUS-
TOMER relations of Figure 5.2, repeated in Figure 5.4. As one would expect in most
sales-oriented companies, notice that each salesperson is responsible for several cus-
tomers, while each customer has a single salesperson as their point of contact with
General Hardware. This one-to-many binary relationship can be represented as:

Salesperson Customer

For example, the Salesperson Number attribute of the CUSTOMER relation
shows that salesperson 137 is responsible for customers 0121, 0933, 1047, and
1826. Looking at it from the point of view of the customer, the same relation shows
that the only salesperson associated with customer 0121 is salesperson 137 (Figure
5.5). This last point has to be true. After all, there is only one record for each cus-
tomer in the CUSTOMER relation (the Customer Number attribute is unique since
it is the relation’s primary key), and there is only one place to put a salesperson
number in it. The bottom line is that the Salesperson Number foreign key in the
CUSTOMER relation effectively establishes the one-to-many relationship between
salespersons and customers.

Notice that, in this case, the primary key of the SALESPERSON relation and
the corresponding foreign key in the CUSTOMER relation both have the same
attribute name, Salesperson Number. This will often be the case, but it does not
have to be. What is necessary is that both attributes have the same domain of val-
ues; that is they must both have values of the same type, such as, in this case, three-
digit whole numbers that are the identifiers for salespersons.

137

186

204

361

Baker

Adams

Dickens

Carlyle

10

15

10

20

1995

2001

1998

2001

Salesperson
Number

Salesperson
Name

Year
of Hire

Commission
Percentage

0121

0839

0933

1047

1525

1700

1826

2198

2267

Main St. Hardware

Jane’s Hardware

ABC Home Stores

Acme Hardware Store

Fred’s Tool Stores

XYZ Stores

City Hardware

Western Hardware

Central Stores

137

186

137

137

361

361

137

204

186

New York

Chicago

Los Angeles

Los Angeles

Atlanta

Washington

New York

New York

New York

Customer
Number

Salesperson
Name HQ City

Salesperson
Number

Primary
Key

Foreign
Key

(a) SALESPERSON relation. (b) CUSTOMER relation.

United States Europe

� Figure 5.4 A foreign key

90 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

It is the presence of a salesperson number in a customer record that indicates
which salesperson the customer is associated with. Fundamentally, that is why the
Salesperson Number attribute is in the CUSTOMER relation, and that is the essence
of its being a foreign key in that relation. Later in the book, we will discuss data-
base design issues in detail. But for now, note that when building a one-to-many
relationship into a relational database, it will always be the case that the unique iden-
tifier of the entity on the “one side” of the relationship (Salesperson Number, in this
example) will be placed as a foreign key in the relation representing the entity on
the “many side” of the relationship (the CUSTOMER relation, in this example).

Here’s something else about foreign keys. In some situations a relation doesn’t
have a single, unique attribute to serve as its primary key. Then, it requires a combi-
nation of two or more attributes to reach uniqueness and serve as its primary key.
Sometimes one or more of the attributes in that combination can be a foreign key!
Yes, when this happens, a foreign key is actually part of the relation’s primary key!
This was not the case in the CUSTOMER relation of Figure 5.2b. In this relation, the
primary key only consists of one attribute, Customer Number, which is unique all by
itself. The foreign key, Salesperson Number, is clearly not a part of the primary key.

Here is an example of a situation in which a foreign key is part of a relation’s
primary key. Figure 5.6 adds the CUSTOMER EMPLOYEE relation (Figure 5.6c),
to the General Hardware database. Remember that General Hardware’s customers
are the hardware stores, home improvement stores, or chains of such stores that it
supplies. Figure 5.6c, the CUSTOMER EMPLOYEE relation, lists the employees
of each of General Hardware’s customers. In fact, there is a one-to-many relation-
ship between customers and customer employees. A customer (like a hardware
store) has many employees, but an employee, a person, works in only one store:

Customer Customer Employee

Customer 1826

Customer 1047

Customer 0933

Customer 0121

Salesperson 137
Mr. Baker

� Figure 5.5
A salesperson and his
four customers

The Re la t iona l Da tabase Concep t 91

For example, Figure 5.6c shows that customer 2198 has four employees—Smith,
Jones, Garcia, and Kaplan. Each of those people is assumed to work for only one cus-
tomer company, customer 2198. Following the rule we developed for setting up a
one-to-many relationship with a foreign key, the Customer attribute must appear in
the CUSTOMER EMPLOYEE relation as a foreign key, and indeed it does.

Now, what about finding a legitimate primary key for the CUSTOMER
EMPLOYEE relation? The assumption here is that employee numbers are only
unique within a company; they are not unique across all of the customer companies.

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

� Figure 5.6
General Hardware Company
relat ional database inc lud-
ing the CUSTOMER
EMPLOYEE relat ion

92 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

Thus, as shown in the CUSTOMER EMPLOYEE relation of Figure 5.6c, there
can be an employee of customer number 0121 who is employee number 30441
in that company’s employee numbering system, an employee of customer num-
ber 0933 who is employee number 30441 in that company’s system, and also an
employee of customer number 2198 who is also employee number 30441. That
being the case, the Employee Number is not a unique attribute in this relation.
Neither it nor any other single attribute of the CUSTOMER EMPLOYEE rela-
tion is unique and can serve, alone, as the relation’s primary key. But the com-
bination of Customer Number and Employee Number is unique. After all, we
know that customer numbers are unique and that within each customer com-
pany, employee numbers are unique. That means that, as shown in Figure 5.6c,
the combination of Customer Number and Employee Number can be and is the
relation’s primary key. That also means that Customer Number is both a foreign
key in the CUSTOMER EMPLOYEE relation and a part of its primary key. As
shown in Figure 5.6c, we will start marking attributes that are both a foreign key
and a part of the primary key with an underline consisting of a dashed line over
a solid line.

Many-to-Many Binary Relationship
Storing the Many-to-Many Binary Relationship Figure 5.7 expands the

General Hardware database by adding two more relations: the PRODUCT rela-
tion (Figure 5.7d), and the SALES relation (Figure 5.7e). The PRODUCT rela-
tion simply lists the products that General Hardware sells, one row per product,
with Product Number as the unique identifier and thus the primary key of the
relation. Each of General Hardware’s salespersons can sell any or all of the com-
pany’s products, and each product can be sold by any or all of its salespersons.
Therefore the relationship between salespersons and products is a many-to-
many relationship.

Salesperson Product

So, the database will somehow have to keep track of this many-to-many rela-
tionship between salespersons and products. The way that a many-to-many rela-
tionship is represented in a relational database is by the creation of an additional
relation, in this example, the SALES relation in Figure 5.7e. The SALES relation
of Figure 5.7e is intended to record the lifetime sales of a particular product by a
particular salesperson. Thus there will be a single row in the relation for each
applicable combination of salesperson and product (i.e., when a particular sales-
person has actually sold some of the particular product). For example, the first
row of the SALES relation indicates that salesperson 137 has sold product
19440. Since it is sufficient to record that fact once, the combination of the
Salesperson Number and Product Number attributes always produces unique
values. So, in this case, the new relation created to record the many-to-many rela-
tionship will have as its primary key the combined, unique identifiers of the two
entities in the many-to-many relationship. That’s why, in this example, the
Salesperson Number and Product Number attributes both appear in the SALES
relation. Each of the two is a foreign key in the SALES relation since each is the
primary key of another relation in the database. The combination of these two
attributes is unique and, combined, they comprise the primary key of the newly
created SALES relation.

The Re la t iona l Da tabase Concep t 93

The new SALES relation of Figure 5.7e effectively records the many-to-many rela-
tionship between salespersons and products. This is illustrated from the “salesperson
side” of the many-to-many relationship by looking at the first three rows of the SALES
relation and seeing that salesperson 137 sells products 19440, 24013, and 26722. It is
illustrated from the “product side” of the many-to-many relationship by scanning down
the Product Number column of the SALES relation, looking for the value 19440, and
seeing that product 19440 is sold by salespersons 137 and 186 (Figure 5.8).

(a) SALESPERSON relation

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

186 Adams 15 2001

204 Dickens 10 1998

361 Carlyle 20 2001

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(Continues)

� Figure 5.7
General Hardware Company
relat ional database inc lud-
ing the PRODUCT and SALES
relat ion

94 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

Intersection Data What about
the Quantity attribute in the
SALES relation? In addition to
keeping track of which salesper-
sons have sold which products,
General Hardware wants to record
how many of each particular prod-
uct each salesperson has sold since
the product was introduced or since
the salesperson joined the com-
pany. So, it sounds like there has to
be a Quantity attribute. And, an
attribute describes an entity, right?
Then, which entity does the
Quantity attribute describe? Does
it describe salespersons the way the
Year of Hire does in the SALES-
PERSON relation? Does it
describe products the way Unit
Price does in the PRODUCT rela-
tion? Each salesperson has exactly
one date of hire, and each product
has exactly one unit price. But a
salesperson doesn’t have just one
quantity associated with her
because she sells many products,
and similarly, a product doesn’t
have just one quantity associated
with it because it is sold by many
salespersons.

(d) PRODUCT relation

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(e) SALES relation

Salesperson Product
Number Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1,745

186 19440 2,529

186 21765 1,962

186 24013 3,071

204 21765 809

204 26722 734

361 16386 3,729

361 21765 3,110

361 26722 2,738

� Figure 5.7 (Continued)
General Hardware Company
relat ional database inc lud-
ing the PRODUCT and SALES
relat ion

Salesperson 137
Mr. Baker

Product 19440
 Hammer

Product 24013
 Saw

Product 26722
 Pliers

Salesperson 186
Ms. Adams

� Figure 5.8
Many-to-many relat ionship
between salespersons and
products as shown in the
SALES relat ion

The Re la t iona l Da tabase Concep t 95

While year of hire is clearly a characteristic of salespersons and unit price is
clearly a characteristic of products, quantity is a characteristic of the relationship
between salesperson and product. For example, the fact that salesperson 137
appears in the first row of the SALES relation of Figure 5.7e along with product
19440 indicates that he has a history of selling this product. But do we know more
about his history of selling it? Yes! That first row of Figure 5.7e indicates that sales-
person 137 has sold 473 units of product 19440. Quantity describes the many-to-
many relationship between salespersons and products. In a sense, it falls at the
intersection between the two entities and is called intersection data (Figure 5.9).

Since the many-to-many relationship has its own relation in the database and
since it can have attributes, does that mean that we should think of it as a kind of
entity? Yes! Many people do just that and refer to it as an associative entity, a con-
cept that we first described when discussing data modeling in Chapter 3.

Additional Many-to-Many Concepts Before leaving the subject of many-to-
many relationships, there are a few more important points to make. First, will the
combination of the two primary keys representing the two entities in the many-to-
many relationship always serve as a unique identifier or primary key in the additional
relation representing the many-to-many relationship? That depends on the precise
nature of the many-to-many relationship. For example, in the situation of the SALES
relation in Figure 5.7e, the combination of the two entity identifier attributes works
perfectly as the primary key, as described above. But what if General Hardware
decides that it wants to keep track of each salesperson’s annual sales of each product
instead of their lifetime sales? Fairly obviously, a new attribute, Year, would have to

Salesperson 137

Product 19440

473
Units

Intersection
Data

� Figure 5.9
Intersect ion data that
indicates that salesperson
137 has sold 473 units
of product 19440

96 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

be added to the SALES relation, as
shown in Figure 5.10. Moreover, as
demonstrated by a few sample rows
of that relation, the combination of
Salesperson Number and Product
Number is no longer unique. For
example, salesperson 137 sold many
units of product 19440 in each of
1999, 2000, and 2001. The first three
records of the relation all have the
salesperson number, product number
combination of 137, 19440. The way
to solve the problem in this instance
is to add the Year attribute to the
Salesperson Number and Product
Number attributes to form a three-
attribute, unique, primary key. It is
quite common in practice to have to

add such a “timestamp” to a relation storing a many-to-many relationship in order to
attain uniqueness and have a legitimate primary key. Sometimes, as in the example
in Figure 5.10, this is accomplished with a Year attribute. A Date attribute is required
if the data may be stored two or more times in a year. A Time attribute is required if
the data may be stored more than once in a day.

Next is the question of why an additional relation is necessary to represent
a many-to-many relationship. For example, could the many-to-many relation-
ship between salespersons and products be represented in either the SALES-
PERSON or PRODUCT relation? The answer is no! If, for instance, you tried
to represent the many-to-many relationship in the SALESPERSON relation,
you would have to list all of the products (by Product Number) that a particu-
lar salesperson has sold in that salesperson’s record. Furthermore, in some
way you would have to carry the Quantity intersection data along with it. For
example, in the SALESPERSON relation, the row for salesperson 137 would
have to be extended to include products 19440, 24013, and 26722, plus the
associated intersection data (Figure 5.11a). Alternately, one could envision a
single additional attribute in the SALESPERSON relation into which all of the
related product number and intersection data for each salesperson would
somehow be stuffed (Figure 5.11b), although, aside from other problems, this
would violate the rule about every cell in a relation having only a single value.
In either case, it would be unworkable. Because, in general, each salesperson
has been involved in selling different numbers of product types, each record
of the SALESPERSON relation would be a different length. Furthermore,
additions, deletions, and updates of product/quantity pairs would be a night-
mare. Also, trying to access the related data from the “product side,” for
example, looking for all of the salespersons who have sold a particular prod-
uct, would be very difficult. And, incidentally, trying to make this work by
putting the salesperson data into the PRODUCT relation, instead of putting
the product data into the SALESPERSON relation as in Figure 5.11, would
generate an identical set of problems. No, the only way that’s workable is to

SALES relation (modified)

Salesperson Product
Number Number Year Quantity

137 19440 1999 132

137 19440 2000 168

137 19440 2001 173

137 24013 2000 52

137 24013 2001 118

137 26722 1999 140

137 26722 2000 203

137 26722 2001 345

186 16386 1998 250

186 16386 1999 245

186 16386 2000 581

186 16386 2001 669

� Figure 5.10
Modif ied SALES relat ion
of the General Hardware
Company relat ional data-
base, inc luding a Year
att r ibute

The Re la t iona l Da tabase Concep t 97

create an additional relation to represent the many-to-many relationship. Each
combination of a related salesperson and product has its own record, making
the insertion, deletion, and update of related items feasible, providing a clear
location for intersection data, and avoiding the issue of variable-length records.

Finally, there is the question of whether an additional relation is required to rep-
resent a many-to-many relationship in the case where there is no intersection data.
For example, suppose that General Hardware wants to track which salespersons have
sold which products but has no interest in how many units of each product they have
sold. The SALES relation of Figure 5.7e would then have only the Salesperson
Number and Product Number attributes (Figure 5.12). Could this information be
stored in some way other than with the additional SALES relation? The answer is that
the additional relation is still required. Note that in the preceding explanation, of why
an additional relation is necessary in general to represent a many-to-many relation-
ship, the intersection data played only a small role. The issues would still be there,
even without intersection data.

One-to-One Binary Relationship After considering one-to-many and many-to-
many binary relationships in relational databases, the remaining binary relationship is
the one-to-one relationship. Each of General Hardware’s salespersons has exactly one
office, and each office is occupied by exactly one salesperson (Figure 5.13).

Salesperson Office

Figure 5.14 shows the addition of the OFFICE relation (Figure 5.14f) to the
General Hardware relational database. The SALESPERSON relation has the Office
Number attribute as a foreign key so that the company can look up the record for a
salesperson and see to which office she is assigned. Because this is a one-to-one rela-
tionship and each salesperson has only one office, the company can also scan down

(a) Additional Product and Quantity columns

Salesperson Salesperson Commission Year
Number Name Percentage of Hire Product Qty Product Qty Product Qty Product Qty

137 Baker 10 1995 19440 473 24013 170 26722 688

186 Adams 15 2001 16386 1745 19440 2529 21765 1962 24013 3071

204 Dickens 10 1998 21765 809 26722 734

361 Carlyle 20 2001 16386 3729 21765 3110 26722 2738

(b) One additional column for Product and Quantity Pairs

Salesperson Salesperson Commission Year
Number Name Percentage of Hire Product and Quantity Pairs

137 Baker 10 1995 (19440, 473) (24013, 170) (26722, 688)

186 Adams 15 2001 (16386, 1745) (19440, 2529) (21765, 1962) (24013, 3071)

204 Dickens 10 1998 (21765, 809) (26722, 734)

361 Carlyle 20 2001 (16386, 3729) (21765, 3110) (26722, 2738)

� Figure 5.11 Unacceptable ways of stor ing a binary many-to-many relat ionship

98 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

the Office Number column of the SALESPERSON rela-
tion, find a particular office number (which can only
appear once, since it’s a one-to-one relationship), and see
which salesperson is assigned to that office. In general,
this is the way that one-to-one binary relationships are
built into relational databases. The unique identifier, the
primary key, of one of the two entities in the one-to-one
relationship is inserted into the other entity’s relation as a
foreign key. The question of which of the two entities is
chosen as the “donor” of its primary key and which is cho-
sen as the “recipient” will be discussed further when we
talk about logical design in Chapter 7.
But there is another interesting question about this
arrangement. Could the SALESPERSON and OFFICE
relations of Figure 5.14 be combined into one relation?
After all, a salesperson has only one office and an office
has only one salesperson assigned to it. So, if an office
and its unique identifier, Office Number, “belongs” to

Salesperson 186

Salesperson 204

Salesperson 361

Salesperson 137 Office 1253

Office 1227

Office 1284

Office 1209

� Figure 5.13
A one-to-one binary
re lat ionship

SALES relation
(without intersection data)

Salesperson Product
Number Number

137 19440

137 24013

137 26722

186 16386

186 19440

186 21765

186 24013

204 21765

204 26722

361 16386

361 21765

361 26722

� Figure 5.12
The many-to-many
SALES relat ion without
intersect ion data

The Re la t iona l Da tabase Concep t 99

one particular salesperson, so does that office’s Telephone Number and Size.
Indeed, when we want to be able to contact a salesperson, we ask for her phone
number, not for “her office’s phone number!” So, could we combine the SALES-
PERSON and OFFICE relations of Figure 5.14 into the single relation of Figure
5.15? The answer is, it’s possible in some cases, but you have to be very careful
about making such a decision. In the General Hardware case, how would you
store an unoccupied office in the database? The relation of Figure 5.15 only

(a) SALESPERSON relation

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number

137 Baker 10 1995 1284

186 Adams 15 2001 1253

204 Dickens 10 1998 1209

361 Carlyle 20 2001 1227

(b) CUSTOMER relation

Customer Customer Salesperson
Number Name Number HQ City

0121 Main St. Hardware 137 New York

0839 Jane’s Stores 186 Chicago

0933 ABC Home Stores 137 Los Angeles

1047 Acme Hardware Store 137 Los Angeles

1525 Fred’s Tool Stores 361 Atlanta

1700 XYZ Stores 361 Washington

1826 City Hardware 137 New York

2198 Western Hardware 204 New York

2267 Central Stores 186 New York

(c) CUSTOMER EMPLOYEE relation

Customer Employee Employee
Number Number Name Title

0121 27498 Smith Co-Owner

0121 30441 Garcia Co-Owner

0933 25270 Chen VP Sales

0933 30441 Levy Sales Manager

0933 48285 Morton President

1525 33779 Baker Sales Manager

2198 27470 Smith President

2198 30441 Jones VP Sales

2198 33779 Garcia VP Personnel

2198 35268 Kaplan Senior Accountant

(Continues)

� Figure 5.14
General Hardware Company
relat ional database inc lud-
ing the OFFICE relat ion

100 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

allows data about an office to be
stored if the office is occupied.
After all, the primary key of Figure
5.15’s relation is Salesperson
Number! You can’t have a record
with office data in it and no sales-
person data. A case where it might
work is a database of U.S. states
and their governors. Every state
always has exactly one governor,
and anyone who is a governor must
be associated with one state. There
can’t be a state without a governor
or a governor without a state.

At any rate, in practice, there
are a variety of reasons for keeping
the two relations involved in the
one-to-one relationship separate. It
may be that because each of the
two entities involved is considered
sufficiently important in its own
right, it simply adds clarity to the
database. It may be because most
users at any one time seek data
about only one of the two entities.
It may have to do with splitting the
data between different geographic
sites. It can even be done for sys-
tem performance purposes in the
case where the records would be
unacceptably long if the data was
all contained in one relation. These
issues will be discussed later in
this book, but at this point it is
important to have at least a basic
idea of the intricacies of the one-
to-one relationship.

DATA RETRIEVAL FROM A RELATIONAL DATABASE

Extracting Data from a Relation

Thus far, the discussion has concentrated on how a relational database is structured,
but building relations and loading them with data is only half of the story. The other
half is the effort to retrieve the data in a way that is helpful and beneficial to the
business organization that built the database. If the database management system
did not provide any particular help with this effort, then the problem would revert
to simply writing a program in some programming language to retrieve data from
the relations, treating them as if they were simple, linear files. But the crucial point

(d) PRODUCT relation

Product Product Unit
Number Name Price

16386 Wrench 12.95

19440 Hammer 17.50

21765 Drill 32.99

24013 Saw 26.25

26722 Pliers 11.50

(e) SALES relation

Salesperson Product
Number Number Quantity

137 19440 473

137 24013 170

137 26722 688

186 16386 1,745

186 19440 2,529

186 21765 1,962

186 24013 3,071

204 21765 809

204 26722 734

361 16386 3,729

361 21765 3,110

361 26722 2,738

(f) OFFICE relation

Office
Number Telephone Size (sq. ft.)

1253 901-555-4276 120

1227 901-555-0364 100

1284 901-555-7335 120

1209 901-555-3108 95

� Figure 5.14 (Continued)
General Hardware Company
relat ional database inc lud-
ing the OFFICE relat ion

Data Re t r i eva l f rom a Re la t iona l Da tabase 101

is that a major, defining feature of a relational DBMS is the ability to accept high-
level data retrieval commands, process them against the database’s relations, and
return the desired data. The data retrieval mechanism is a built-in part of the DBMS
and does not have to be written from scratch by every program that uses the data-
base. As we shall soon see, this is true even to the extent of matching related
records in different relations (integrating data), as in the earlier example of finding
the name of the salesperson on a particular customer account. We shall address
what relational retrieval might look like, first in terms of single relations and then
across multiple relations.

Since a relation can be viewed as a tabular or rectangular arrangement of data
values, it would seem to make sense to want to approach data retrieval horizontally,
vertically, or in a combination of the two. To take a horizontal slice of a relation
implies retrieving one or more rows of the relation. In effect, that’s an expression
for retrieving one or more records or retrieving the data about one or more entities.
Taking a vertical slice of a relation means retrieving one or more entire columns of
the relation (down through all of its rows). Taken in combination, we can retrieve
one or more columns of one or more rows, the minimum of which is a single col-
umn of a single row, or a single attribute value of a single record. That’s as fine a
sense of retrieval, as we would ever want.

Using terminology from a database formalism called relational algebra, and
an informal, hypothetical command style for now, there are two commands called
Select and Project, which are capable of the kinds of horizontal and vertical manip-
ulations that were just suggested. (Note: The use of the word “Select” here is not
the same as its use in the SQL data retrieval language, which we will discuss later
in this book.)

The Relational Select Operator
Consider the database of Figure 5.14 and its SALESPERSON relation (Figure
5.14a). To begin with, suppose that we want to find the row or record for salesper-
son number 204. In a very straightforward way, the informal command might be:

Select rows from the SALESPERSON relation in which Salesperson Number
= 204.

The result would be:

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

204 Dickens 10 1998

Combined SALESPERSON/OFFICE relation

Salesperson Salesperson Commission Year Office
Number Name Percentage of Hire Number Telephone Size (sq. ft.)

137 Baker 10 1995 1284 901-555-7335 120

186 Adams 15 2001 1253 901-555-4276 120

204 Dickens 10 1998 1209 901-555-3108 95

361 Carlyle 20 2001 1227 901-555-0364 100

� Figure 5.15
Combining the SALESPER-
SON and OFFICE relat ions
into a s ingle re lat ion

102 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

Notice that the result of the Select operation is itself a relation, in this case con-
sisting of only one row. The result of a relational operation will always be a rela-
tion, whether it consists of many rows with many columns or one row with one
column (i.e., a single attribute value).

In order to retrieve all of the records with a common value in a particular
(nonunique) attribute, for example, all of the salespersons with a commission per-
centage of 10, the command looks the same as when dealing with a unique attribute:

Select rows from the SALESPERSON relation in which Commission
Percentage = 10.

But the result of the operation may include several rows:

Salesperson Salesperson Commission Year
Number Name Percentage of Hire

137 Baker 10 1995

204 Dickens 10 1998

If the requirement is to retrieve the entire relation, the command would be:
Select all rows from the SALESPERSON relation.

The Relational Project Operator

To retrieve what we referred to earlier as a vertical slice of the relation requires the
Project operator. For example, to retrieve the number and name of each salesper-
son in the file, the command might look like:

Project the Salesperson Number and Salesperson Name over the SALESPER-
SON relation.

The result will be a long, narrow relation:

Salesperson Salesperson
Number Name

137 Baker

186 Adams

204 Dickens

361 Carlyle

If we project a nonunique attribute, then a decision must be made as to whether
or not we want duplicates in the result (although, since the result is itself a relation,
technically there should not be any duplicate rows). For example, whether:

Project the Year of Hire over the SALESPERSON relation.

Produces:

Year of Hire

1995

2001

1998

2001

or (eliminating the duplicates in the identical rows) produces:

Data Re t r i eva l f rom a Re la t iona l Da tabase 103

Year of Hire

1995

2001

1998

would depend on exactly how this hypothetical, informal command language was
implemented.

Combination of the Relational Select and Project Operators

More powerful still is the combination of the Select and Project operators. Suppose
we apply them serially, with the relation that results from one operation being used
as the input to the next operation. For example, to retrieve the numbers and names
of the salespersons working on a 10 percent commission, we would issue:

Select rows from the SALESPERSON relation in which Commission
Percentage = 10.

Project the Salesperson Number and Salesperson Name over that result.

The first command “selects out” the rows for salespersons 137 and 204. Then
the second command “projects” the salesperson numbers and names from those
two rows, resulting in:

Salesperson Salesperson
Number Name

137 Baker

204 Dickens

The following combination illustrates the ability to retrieve a single attribute
value. Suppose that there is a need to find the year of hire of salesperson number
204. Since Salesperson Number is a unique attribute, only one row of the relation
can possibly be involved. Since the goal is to find one attribute value in that row,
the result must be just that: a single attribute value. The command is:

Select rows from the SALESPERSON relation in which Salesperson Number
= 204.

Project the Year of Hire over that result.

The result is the single value:

Year of Hire

1998

Extracting Data Across Multiple Relations: Data Integration

In Chapter 4, the issue of data integration was broached, and the concept was
defined. First, the data in the Salesperson and Customer files of Figure 4.5 was
shown to be nonredundant. Then it was shown that integrating data would
require the extraction of data from one file and the use of that extracted data as
a search argument to find the sought-after data in the other file. For example,
recall that finding the name of the salesperson who was responsible for customer
number 1525 required finding the salesperson number in customer 1525’s record

104 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

in the Customer file (i.e., salesperson number 361) and then using that salesper-
son number as a search argument in the Salesperson file to discover that the
sought-after name was Carlyle. The alternative was the combined file of Figure
4.6 that introduced data redundancy.

A fundamental premise of the database approach is that a DBMS must be able
to store data nonredundantly while also providing a data integration facility. But it
seems that we may have a problem here. Since relations appear to be largely simi-
lar in structure to simple, linear files, do the lessons learned from the files of
Figure 4.5 and Figure 4.6 lead to the conclusion that it is impossible to simultane-
ously have nonredundant data storage and data integration with relations in a rela-
tional database?

In fact, one of the elegant features of relational DBMSs is that they auto-
mate the cross-relation data extraction process in such a way that it
appears that the data in the relations is integrated while also remaining
nonredundant.

The data integration takes place at the time that a relational query is processed by
the relational DBMS for solution. This is a unique feature of relational database
and is substantially different from the functional equivalents in the older naviga-
tional database systems and in some of the newer object-oriented database systems.
In both the older and newer systems, the data integration is much more tightly built
into the data structure itself. In relational algebra terms, the integration function is
known as the Join command.

Now, focus on the SALESPERSON and CUSTOMER relations of Figure 5.14,
which outwardly look just like the Salesperson and Customer files of Figure 4.5.
Adding the Join operator to our hypothetical, informal command style, consider
the following commands designed to find the name of the salesperson responsible
for customer number 1525. Again, this was the query that seemed to be so prob-
lematic in Chapter 4.

Join the SALESPERSON relation and the CUSTOMER relation, using the
Salesperson Number of each as the join fields.

Select rows from that result in which Customer Number = 1525.

Project the Salesperson Name over that last result.

Obviously, the first sentence represents the use of the join command. The join
operation will take advantage of the common Salesperson Number attribute, which
for this purpose is called the join field, in both relations. The Salesperson Number
attribute is, of course, the primary key of the SALESPERSON relation and is a for-
eign key in the CUSTOMER relation. Remember that the point of the foreign key
is to represent a one-to-many (in this case) relationship between salespersons and
customers. Some rows of the SALESPERSON relation are related to some rows of
the CUSTOMER relation by virtue of their having the same salesperson number.
The Salesperson Number attribute serves to identify each salesperson in the
SALESPERSON relation, while the Salesperson Number attribute in the CUS-
TOMER relation indicates which salesperson is responsible for a particular cus-
tomer. Thus the rows of the two relations that have identical Salesperson Number
values are related. It is these related rows that the join operation will bring together
for the purpose of satisfying the query that was posed.

Data Re t r i eva l f rom a Re la t iona l Da tabase 105

The join operation tries to find matches between the join field values of the
rows in the two relations. For example, it finds a match between the Salesperson
Number value of 137 in the first row of the SALESPERSON relation and the
Salesperson Number value of 137 in the first, third, fourth, and seventh rows of the
CUSTOMER relation. When it finds such a pair of rows, it takes all of the attribute
values from both rows and creates a single new row out of them in the resultant
relation. In its most basic form, as shown here, the join is truly an exhaustive oper-
ation, comparing every row of one relation to every row of the other relation, look-
ing for a match in the join fields. (Comparing every possible combination of two
sets, in this case rows from the two relations, is known as the Cartesian product.)
So the result of the join command, the first of the three commands in the example
command sequence we’re executing, is:

Notice that the first and seventh columns are identical in all of their val-
ues, row by row. They represent the Salesperson Number attributes from the
SALESPERSON and CUSTOMER relations, respectively. Remember that two
rows from the SALESPERSON and CUSTOMER relations would not be com-
bined together to form a row in the resultant relation unless their two join field
values were identical in the first place. This leads to identical values of the
two Salesperson Number attributes within each of the rows of the resultant
relation. This type of join is called an equijoin. If, as seems reasonable, one
of the two identical join columns is eliminated in the process, the result is
called a natural join.

Continuing with the command sequence to eventually find the name of the
salesperson responsible for customer number 1525, the next part of the command
issued is:

Select rows from that result (the relation that resulted from the join) in which
Customer Number = 1525.

This produces:

Finally, we issue the third command:
Project the Salesperson Name over that last result.

Salesperson Salesperson Commission Year of Customer Customer Salesperson
Number Name Percentage Hire Number Name Number HQ City

137 Baker 10 1995 0121 Main St. Hardware 137 New York

137 Baker 10 1995 0933 ABC Home Stores 137 Los Angeles

137 Baker 10 1995 1047 Acme Hardware Store 137 Los Angeles

137 Baker 10 1995 1826 City Hardware 137 New York

186 Adams 15 2001 0839 Jane’s Stores 186 Chicago

186 Adams 15 2001 2267 Central Stores 186 New York

204 Dickens 10 1998 2198 Western Hardware 204 New York

361 Carlyle 20 2001 1525 Fred’s Tool Stores 361 Atlanta

361 Carlyle 20 2001 1700 XYZ Stores 361 Washington

Salesperson Salesperson Commission Year of Customer Customer Salesperson
Number Name Percentage Hire Number Name Number HQ City

361 Carlyle 20 2001 1525 Fred’s Tool Stores 361 Atlanta

106 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

and get:

Salesperson Name

Carlyle

Notice that the process could have been streamlined considerably if the relational
DBMS had more “intelligence” built into it. The query dealt with only a single cus-
tomer, customer 1525, and there is only one row for each customer in the CUSTOMER
relation, since Customer Number is the unique key attribute. Therefore, the query only
needed to look at one row in the CUSTOMER relation, the one for customer 1525.
Since this row only references one salesperson, salesperson 361, it follows that, in turn,
it only needed to look at one row in the SALESPERSON relation, the one for sales-
person 1525. This type of performance issue in relational query processing will be cov-
ered later in this book in the chapter on physical database design (chapter 8).

EXAMPLE: GOOD READING BOOKSTORES
Figure 5.16 shows the relational database for the Good Reading Bookstores example
that was described earlier in the book. Since publishers are in a one-to-many rela-
tionship to books, the primary key of the PUBLISHER relation, Publisher Name, is
inserted into the BOOK relation as a foreign key. There are two many-to-many rela-
tionships. One, between books and authors, keeps track of which authors wrote
which books. Recall that a book can have multiple authors and a particular author
may have written or partly written many books. The other many-to-many relation-
ship, between books and customers, records which customers bought which books.

The WRITING relation handles the many-to-many relationship between books
and authors. The primary key is the combination of Book Number and Author
Number. There is no intersection data! Could there be a reason for having intersection
data in this relation? If, for example, this database belonged to a publisher instead of
a bookstore chain, an intersection data attribute might be Royalty Percentage; that is,
the percentage of the royalties that a particular author is entitled to for a particular
book. The SALE relation takes care of the many-to-many relationship between books
and customers. Certainly, Book Number and Customer Number are part of the pri-
mary key of the SALE relation, but is the combination of the two the entire primary
key? The answer is that it depends on whether the assumption is made that a given cus-
tomer can or cannot buy copies of a given book on different days. If the assumption
is that a customer can only buy copies of a particular book on one single day, then the
combination of Book Number and Customer Number is fine as the primary key. If the
assumption is that a customer may indeed buy copies of a given book on different
days, then the Date attribute must be part of the primary key to achieve uniqueness.

EXAMPLE: WORLD MUSIC ASSOCIATION
Figure 5.17 shows the relational database for the World Music Association example
that was described earlier in the book. There is a one-to-many relationship from
orchestras to musicians and, in turn, a one-to-many relationship from musicians to
degrees. Thus the primary key of the ORCHESTRA relation, Orchestra Name,
appears in the MUSICIAN relation as a foreign key. In turn, the primary key of the

Example : Wor ld Mus i c Assoc ia t ion 107

MUSICIAN relation, Musician Number, appears in the DEGREE relation as a for-
eign key. In fact, since the Degree attribute is only unique within a musician, the
Musician Number attribute and the Degree attribute together serve as the compound
primary key of the DEGREE relation. The one-to-many relationship from com-
posers to compositions requires that the primary key of the COMPOSER relation,
Composer Name, appear as a foreign key in the COMPOSITION relation.

The many-to-many relationship between orchestras and compositions indi-
cates which orchestras have recorded which compositions and which compositions
have been recorded by which orchestras. As a many-to-many relationship, it
requires that an additional relation be created. The primary key of this new,
RECORDING relation has three attributes: Orchestra Name, Composition Name,
and Year. Orchestra Name is the unique identifier of orchestras. Composition
Name is the unique identifier of compositions. Since a particular orchestra could
have recorded a particular composition multiple times in different years (although
we assume that this is limited to once per year), Year must also be part of the pri-
mary key of the RECORDING relation to provide uniqueness. The Price attribute
is then intersection data in the RECORDING relation.

SALE relation

Book Customer
Number Number Date Price Quantity

WRITING relation

Book Author
Number Number

CUSTOMER relation

Customer Customer
Number Name Street City State Country

BOOK relation

Book Book Publication Publisher
Number Name Year Pages Name

AUTHOR relation

Author Author Year Year
Number Name Born Died

PUBLISHER relation

Publisher Year
Name City Country Telephone Founded

� Figure 5.16
Good Reading Bookstores
relat ional database

108 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

EXAMPLE: LUCKY RENT-A-CAR
Figure 5.18 shows the relational database for the Lucky Rent-A-Car example
that was described earlier in the book. There is a one-to-many relationship
from manufacturers to cars and another one-to-many relationship from cars to
maintenance events. The former requires the manufacturer primary key,
Manufacturer Name, to be placed in the CAR relation as a foreign key. The
latter requires the car primary key, Car Serial Number, to be placed in the
MAINTENANCE relation as a foreign key. The many-to-many relationship
between cars and customers requires the creation of a new relation, the
RENTAL relation. Each record of the RENTAL relation records the rental of
a particular car by a particular customer. Note that the combination of the Car
Serial Number and Customer Number attributes is not sufficient as the pri-
mary key of the RENTAL relation. A given customer might have rented a
given car more than once. Adding Rental Date to the primary key achieves the
needed uniqueness.

RECORDING relation

Orchestra Composition
Name Name Year Price

COMPOSITION relation

Composition Composer
Name Name Year

COMPOSER relation

Composer Date of
Name Country Birth

DEGREE relation

Musician
Number Degree University Year

MUSICIAN relation

Musician Musician Annual Orchestra
Number Name Instrument Salary Name

ORCHESTRA relation

Orchestra Music
Name City Country Director

� Figure 5.17
World Music Associat ion
relat ional database

Ques t ions 109

RENTAL relation

Car Serial Customer Rental Return Total
Number Number Date Date Cost

CUSTOMER relation

Customer Customer Customer Customer
Number Name Address Telephone

MAINTENANCE relation

Repair Car Serial Repair
Number Number Date Procedure Mileage Time

CAR Relation

Car Serial Manufacturer
Number Model Year Class Name

MANUFACTURER relation

Manufacturer Manufacturer Sales Rep Sales Rep
Name Country Name Telephone

� Figure 5.18
Lucky Rent -A-Car re lat ional
database

Alternate key
Attribute
Attribute name
Candidate key
Cell
Column
Data retrieval
Domain of values
Equijoin

Foreign key
Integrating data
Intersection data
Join operator
Natural join
Nonredundant data
Personal computer (PC)
Primary key
Project operator

Relation
Relational algebra
Relational database
Row
Select operator
Tuple
Unique attribute

KEY TERMS

QUESTIONS
1. Why was the commercial introduction of relational

database delayed during the 1970s? What factors
encouraged its introduction in the early 1980s?

2. How does a relation differ from an ordinary file?

3. Define the terms tuple and attribute.

4. What is a relational database?

5. What are the characteristics of a candidate key?

6. What is a primary key? What is an alternate key?

7. Define the term foreign key.

8. In your own words, describe how foreign keys are
used to setup one-to-many binary relationships in
relational databases.

110 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

1. The main relation of a motor vehicle registration bureau’s
relational database includes the following attributes:I

The Vehicle Identification Number is a unique num-
ber assigned to the car when it is manufactured.

The License Plate Number is, in effect, a unique num-
ber assigned to the car by the government when it is
registered.

The Owner Serial Number is a unique identifier of each
owner. Each owner can own more than one vehicle.

The other attributes are not unique.

What is/are the candidate key(s) of this relation? If there
is more than one candidate key, choose one as the pri-
mary key and indicate which is/are the alternate key(s).

2. A relation consists of attributes A, B, C, D, E, F, G, and H.

No single attribute has unique values.

The combination of attributes A and E is unique.

The combination of attributes B and D is unique.

The combination of attributes B and G is unique.

Select a primary key for this relation and indicate any
alternate keys.

3. In the General Hardware Company relational database
of Figure 5.14:

a. How many foreign keys are there in each of the six
relations?

b. List the foreign keys in each of the six relations.

4. Identify the relations that support many-to-many relation-
ships, the primary keys of those relations, and any inter-
section data in the General Hardware Company database.

5. Consider the General Hardware Company relational
database. Using the informal relational command lan-
guage described in this chapter, write commands to:

a. List the product name and unit price of all of the
products.

b. List the employee names and titles of all of the
employees of customer 2198.

c. Retrieve the record for office number 1284.

d. Retrieve the records for the customers headquar-
tered in Los Angeles.

e. Find the size of office number 1209.

f. Find the name of the salesperson assigned to office
number 1209.

g. List the product name and quantity sold of each
product sold by salesperson 361.

6. Consider the General Hardware Company relational
database and the data stored in it, as shown in Figure
5.14. Find the answer to each of the following queries
that are written in the informal relational command
language described in this chapter.

a. Select rows from the CUSTOMER EMPLOYEE
relation in which Customer Number = 2198.

b. Select rows from the CUSTOMER EMPLOYEE
relation in which Customer Number = 2198.
Project Employee Number and Employee Name
over that result.

c. Select rows from the PRODUCT relation in which
Product Number = 21765.

d. Select rows from the PRODUCT relation in which
Product Number = 21765. Project Unit Price over
that result.

e. Join the SALESPERSON and CUSTOMER rela-
tions using the Salesperson Number attribute of
each as the join fields. Select rows from that result
in which Salesperson Name = Baker. Project
Customer Name over that result.

f. Join the PRODUCT relation and the SALES rela-
tion using the Product Number attribute of each as
the join fields. Select rows in which Product Name
= Pliers. Project Salesperson Number and Quantity
over that result.

7. For each part of Exercise 6, describe in words what the
query is trying to accomplish.

Vehicle License Owner
Identification Plate Serial Manu-
Number Number Number facturer Model Year Color

9. Describe why an additional relation is needed to rep-
resent a many-to-many relationship in a relational
database.

10. Describe what intersection data is, what it describes,
and why it does not describe a single entity.

11. What is a one-to-one binary relationship?

12. Describe the purpose and capabilities of:

a. The relational Select operator.

b. The relational Project operator.

c. The relational Join operator.

13. Describe how the join operator works.

EXERCISES

Min i cases 111

MINICASES
1. Consider the following relational database for Happy

Cruise Lines. It keeps track of ships, cruises, ports,
and passengers. A “cruise” is a particular sailing of a
ship on a particular date. For example, the seven-day
journey of the ship Pride of Tampa, that leaves on
June 13, 2003, is a cruise. Note the following facts
about this environment.

• Both ship number and ship name are unique in the
SHIP relation.

• A ship goes on many cruises over time. A cruise is
associated with a single ship.

• A port is identified by the combination of port
name and country.

• As indicated by the VISIT relation, a cruise
includes visits to several ports and a port is typi-
cally included in several cruises.

• Both Passenger Number and Social Security
Number are unique in the PASSENGER relation. A
particular person has a single Passenger Number
that is used for all of the cruises that she takes.

• The VOYAGE relation indicates that a person can
take many cruises, and a cruise, of course, has
many passengers.

a. Identify the candidate keys of each relation.

b. Identify the primary key and any alternate keys of
each relation.

c. How many foreign keys does each relation have?

d. Identify the foreign keys of each relation.

e. Indicate any instances in which a foreign key
serves as part of the primary key of the relation in
which it is a foreign key. Why does each of those
relations require a multi-attribute primary key?

f. Identify the relations that support many-to-many
relationships, the primary keys of those relations,
and any intersection data.

g. Using the informal relational command language
described in this chapter, write commands to:

i. Retrieve the record for passenger number 473942.
ii. Retrieve the record for the port of Nassau in the

Bahamas.
iii. List all of the ships built by General

Shipbuilding, Inc.
iv. List the port name and number of docks of

every port in Mexico.
v. List the name and number of every ship.
vi. Who was the cruise director on cruise number

38232?
vii.What was the gross weight of the ship used for

cruise number 39482?
viii.List the home address of every passenger on

cruise number 17543.

2. Super Baseball League

Consider the following relational database for the
Super Baseball League. It keeps track of teams in the
league, coaches and players on the teams, work expe-
rience of the coaches, bats belonging to each team,
and which players have played on which teams. Note
the following facts about this environment:

• The database keeps track of the history of all the
teams that each player has played on and all the
players who have played on each team.

• The database only keeps track of the current team
that a coach works for.

• Team Number, Team Name, and Player Number
are each unique attributes across the league.

VOYAGE relation

Passenger Cruise Stateroom
Number Number Number Fare

PASSENGER relation

Passenger Passenger Social Security Home Telephone
Number Name Number Address Number

VISIT relation

Cruise Port Arrival Departure
Number Name Country Date Date

PORT relation

Port Number of Port
Name Country Docks Manager

CRUISE relation

Cruise Start End Cruise Ship
Number Date Date Director Number

SHIP relation

Ship Ship Ship Launch Gross
Number Name Builder Date Wight

112 Chapter 5 The Re la t iona l Da tabase Mode l : In t roduc t ion

• Coach Name is only unique within a team (and we
assume that a team cannot have two coaches of the
same name).

• Serial Number (for bats) is only unique within a
team.

• In the AFFILIATION relation, the Years attribute
indicates the number of years that a player played
on a team; the Batting Average is for the years that
a player played on a team.

a. Identify the candidate keys of each relation.

b. Identify the primary key and any alternate keys of
each relation.

c. How many foreign keys does each relation have?

d. Identify the foreign keys of each relation.

e. Indicate any instances in which a foreign key
serves as part of the primary key of the relation in
which it is a foreign key. Why does each of those
relations require a multi-attribute primary key?

f. Identify the relations that support many-to-many
relationships, the primary keys of those relations,
and any intersection data.

g. Assume that we add the following STADIUM rela-
tion to the Super Baseball League relational data-
base. Each team has one home stadium, which is
what is represented in this relation. Assume that a
stadium can serve as the home stadium for only one
team. Stadium Name is unique across the league.

What kind of binary relationship exists between the
STADIUM relation and the TEAM relation? Could
the data from the two relations be combined into one
without introducing data redundancy? If so, how?

h. Using the informal relational command language
described in this chapter, write commands to:

i. Retrieve the record for team number 12.
ii. Retrieve the record for Coach Adams on team

number 12.
iii. List the player number and age of every player.
iv. List the work experience of every coach.
v. List the work experience of every coach on

team number 25.
vi. Find the age of player number 42459.
vii.List the serial numbers and manufacturers of all

of the Vultures’ (the name of a team) bats.
viii.Find the number of years of college coaching

experience that Coach Taylor of the Vultures has.

STADIUM relation

Stadium Year Team
Name Built Size Number

AFFILIATION relation

Player Team Batting
Number Number Years Average

PLAYER relation

Player Player
Number Name Age

BATS relation

Team Serial
Number Number Manufacturer

WORK EXPERIENCE relation

Team Coach Experience Years of
Number Name Type Experience

COACH relation

Team Coach Coach
Number Name Telephone

TEAM relation

Team Team
Number Name City Manager

