FEEDFORWARD
NEURAL NETWORKS:
AN INTRODUCTION

Simon Haykin

A neural network is a massively parallel distributed processor that
has a natural propensity for storing experiential knowledge and
making it available for use. It resembles the brain in two respects
(Haykin 1998):

1. Knowledge is acquired by the network through a learning
process.

2. Interconnection strengths known as synaptic weights are used
to store the knowledge.

Basically, learning is a process by which the free parameters (i.e.,
synaptic weights and bias levels) of a neural network are adapted
through a continuing process of stimulation by the environment in
which the network is embedded. The type of learning is determined
by the manner in which the parameter changes take place. In a general
sense, the learning process may be classified as follows:

2 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

* Learning with a teacher, also referred to as supervised learning

¢ Learning without a teacher, also referred to as unsupervised
learning

1.1 SUPERVISED LEARNING

This form of learning assumes the availability of a labeled (i.e.,
ground-truthed) set of training data made up of N input—output
examples:

T = {(x;,d)}r, (1.1)

where x; = input vector of ith example
d; = desired (target) response of ith example, assumed to be
scalar for convenience of presentation
N = sample size

Given the training sample 7, the requirement is to compute the free
parameters of the neural network so that the actual output y; of the
neural network due to x; is close enough to d; for all i in a statistical
sense. For example, we may use the mean-square error

1 N
E(n) =~ 3,(d; =) (12)
i=1
as the index of performance to be minimized.

1.1.1 Multilayer Perceptrons and
Back-Propagation Learning

The back-propagation algorithm has emerged as the workhorse for
the design of a special class of layered feedforward networks known
as multilayer perceptrons (MLP). As shown in Fig. 1.1, a multilayer
perceptron has an input layer of source nodes and an output layer
of neurons (i.e., computation nodes); these two layers connect the
network to the outside world. In addition to these two layers,
the multilayer perceptron usually has one or more layers of hidden
neurons, which are so called because these neurons are not directly
accessible. The hidden neurons extract important features contained
in the input data.

SUPERVISED LEARNING 3

Input layer Layer of Layer of
of source hidden output
nodes neurons neurons

Figure 1.1 Fully connected feedforward with one hidden layer and one
output layer.

The training of an MLP is usually accomplished by using a back-
propagation (BP) algorithm that involves two phases (Werbos 1974;
Rumelhart et al. 1986):

e Forward Phase. During this phase the free parameters of the
network are fixed, and the input signal is propagated through
the network of Fig. 1.1 layer by layer. The forward phase fin-
ishes with the computation of an error signal

el‘ = dl' - yi (1.3)

where d; is the desired response and y; is the actual output pro-
duced by the network in response to the input x;.

® Backward Phase. During this second phase, the error signal ¢; is
propagated through the network of Fig. 1.1 in the backward
direction, hence the name of the algorithm. It is during this phase
that adjustments are applied to the free parameters of the
network so as to minimize the error e; in a statistical sense.

Back-propagation learning may be implemented in one of two
basic ways, as summarized here:

4 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

1. Sequential mode (also referred to as the on-line mode or sto-
chastic mode): In this mode of BP learning, adjustments are
made to the free parameters of the network on an example-by-
example basis. The sequential mode is best suited for pattern
classification.

2. Batch mode: In this second mode of BP learning, adjustments
are made to the free parameters of the network on an epoch-
by-epoch basis, where each epoch consists of the entire set of
training examples. The batch mode is best suited for nonlinear
regression.

The back-propagation learning algorithm is simple to implement and
computationally efficient in that its complexity is linear in the synap-
tic weights of the network. However, a major limitation of the algo-
rithm is that it does not always converge and can be excruciatingly
slow, particularly when we have to deal with a difficult learning task
that requires the use of a large network.

We may try to make back-propagation learning perform better by
invoking the following list of heuristics:

e Use neurons with antisymmetric activation functions (e.g.,
hyperbolic tangent function) in preference to nonsymmetric
activation functions (e.g., logistic function). Figure 1.2 shows
examples of these two forms of activation functions.

e Shuffle the training examples after the presentation of each
epoch; an epoch involves the presentation of the entire set of
training examples to the network.

¢ Follow an easy-to-learn example with a difficult one.

* Preprocess the input data so as to remove the mean and decor-
relate the data.

e Arrange for the neurons in the different layers to learn at essen-
tially the same rate. This may be attained by assigning a learn-
ing rate parameter to neurons in the last layers that is smaller
than those at the front end.

¢ Incorporate prior information into the network design when-
ever it is available.

One other heuristic that deserves to be mentioned relates to the
size of the training set, N, for a pattern classification task. Given a mul-
tilayer perceptron with a total number of synaptic weights including
bias levels, denoted by W, a rule of thumb for selecting N is

SUPERVISED LEARNING 5

Vv
0
-1.719
(2)
o(v)
vV
0
(b)

Figure 1.2 (a) Antisymmetric activation function. (b) Nonsymmetric
activation function.

6 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

N = 0(%) (1.4)

where O denotes “the order of,” and € denotes the fraction of clas-
sification errors permitted on test data. For example, with an error
of 10% the number of training examples needed should be about 10
times the number of synaptic weights in the network.

Supposing that we have chosen a multilayer perceptron to be
trained with the back-propagation algorithm, how do we determine
when it is “best” to stop the training session? How do we select the
size of individual hidden layers of the MLP? The answers to these
important questions may be gotten though the use of a statistical

technique known as cross-validation, which proceeds as follows
(Haykin 1999):

e The set of training examples is split into two parts:
¢ Estimation subset used for training of the model
e Validation subset used for evaluating the model performance

¢ The network is finally tuned by using the entire set of training
examples and then tested on test data not seen before.

1.1.2 Radial-Basis Function Networks

Another popular layered feedforward network is the radial-basis
function (RBF) network which has important universal approxima-
tion properties (Park and Sandberg 1993), and whose structure is
shown in Fig. 13. RBF networks use memory-based learning for their
design. Specifically, learning is viewed as a curve-fitting problem in
high-dimensional space (Broomhead and Lowe 1989; Poggio and
Girosi 1990):

1. Learning is equivalent to finding a surface in a multidimen-
sional space that provides a best fit to the training data.

2. Generalization (i.e., response of the network to input data not
seen before) is equivalent to the use of this multidimensional
surface to interpolate the test data.

RBF networks differ from multilayer perceptrons in some funda-
mental respects:

SUPERVISED LEARNING 7

Input Hidden layer Output
layer of radial- layer
basis
functions

Figure 1.3 Radial-basis function network.

e RBF networks are local approximators, whereas multilayer per-
ceptrons are global approximators.

e RBF networks have a single hidden layer, whereas multilayer
perceptrons can have any number of hidden layers.

¢ The output layer of a RBF network is always linear, whereas in
a multilayer perceptron it can be linear or nonlinear.

e The activation function of the hidden layer in an RBF network
computes the Euclidean distance between the input signal
vector and parameter vector of the network, whereas the acti-
vation function of a multilayer perceptron computes the inner
product between the input signal vector and the pertinent
synaptic weight vector.

The use of a linear output layer in an RBF network may be justi-
fied in light of Cover’s theorem on the separability of patterns.
According to this theorem, provided that the transformation from
the input space to the feature (hidden) space is nonlinear and the

8 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

dimensionality of the feature space is high compared to that of the
input (data) space, then there is a high likelihood that a nonsepara-
ble pattern classification task in the input space is transformed into
a linearly separable one in the feature space. Another analytical basis
for the use of RBF networks (and multilayer perceptrons) in classi-
fication problems is provided by the results in Chapter 2, where (as
a special case) it is shown that a large family of classification prob-
lems in R" can be solved using nonlinear static networks.
Design methods for RBF networks include the following:

1. Random selection of fixed centers (Broomhead and Lowe
1998)

2. Self-organized selection of centers (Moody and Darken 1989)
Supervised selection of centers (Poggio and Girosi 1990)

4. Regularized interpolation exploiting the connection between
an RBF network and the Watson—Nadaraya regression kernel
(Yee 1998).

b

1.2 UNSUPERVISED LEARNING

Turning next to unsupervised learning, adjustment of synaptic
weights may be carried through the use of neurobiological principles
such as Hebbian learning and competitive learning. In this section
we will describe specific applications of these two approaches.

1.2.1 Principal Components Analysis

According to Hebb’s postulate of learning, the change in synaptic
weight Aw;; of a neural network is defined by

AW/'I' = T[x,-y,- (1.5)

where 71 = learning-rate parameter
x; = input (presynaptic) signal
y; = output (postsynaptic) signal

Principal component analysis (PCA) networks use a modified form
of this self-organized learning rule. To begin with, consider a linear
neuron designed to operate as a maximum eigenfilter; such a
neuron is referred to as Oja’s neuron (Oja 1982). It is characterized
as follow:

UNSUPERVISED LEARNING 9

Awj; = 1y;(x; = ywi) (1.6)

where the term —ny;w; is added to stabilize the learning process. As
the number of iterations approaches infinity, we find the following:

1. The synaptic weight vector of neuron j approaches the eigen-
vector associated with the largest eigenvalue A, of the corre-
lation matrix of the input vector (assumed to be of zero mean).

2. The variance of the output of neuron j approaches the largest
eigenvalue A .

The generalized Hebbian algorithm (GHA), due to Sanger (1989),
is a straightforward generalization of Oja’s neuron for the extraction
of any desired number of principal components.

1.2.2 Self-Organizing Maps

In a self-organizing map (SOM), due to Kohonen (1997), the neurons
are placed at the nodes of a lattice, and they become selectively
tuned to various input patterns (vectors) in the course of a compet-
itive learning process. The process is characterized by the formation
of a topographic map in which the spatial locations (i.e., coordinates)
of the neurons in the lattice correspond to intrinsic features of the
input patterns. Figure 1.4 illustrates the basic idea of a self-organiz-
ing map, assuming the use of a two-dimensional lattice of neurons as
the network structure.

In reality, the SOM belongs to the class of vector-coding algo-
rithms (Luttrell, 1989). That is, a fixed number of codewords are
placed into a higher-dimensional input space, thereby facilitating
data compression.

An integral feature of the SOM algorithm is the neighborhood
function centered around a neuron that wins the competitive
process. The neighborhood function starts by enclosing the entire
lattice initially and is then allowed to shrink gradually until it encom-
passes the winning neuron.

The algorithm exhibits two distinct phases in its operation:

1. Ordering phase, during which the topological ordering of the
weight vectors takes place

2. Convergence phase, during which the computational map is fine
tuned

10 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

® 000600 00
® 0000 00
o0 000000 Discrete
o0 elX) o4 o outer space 4
[BN o 000
[N) o 000
Feature o/ R
map ¢ . XEX
1
Continuous

input space #

Figure 1.4 lllustration of relationship between feature map ¢ and weight
vector w; of winning neuron |.

The SOM algorithm exhibits the following properties:

1. Approximation of the continuous input space by the weight
vectors of the discrete lattice.

2. Topological ordering exemplified by the fact that the spatial
location of a neuron in the lattice corresponds to a particular
feature of the input pattern.

3. The feature map computed by the algorithm reflects variations
in the statistics of the input distribution.

4. SOM may be viewed as a nonlinear form of principal compo-
nents analysis.

Refinements to the SOM algorithm are discussed in Van Hulle (2000).

1.3 TEMPORAL PROCESSING USING
FEEDFORWARD NETWORKS

The material just described is concerned basically with the approxi-
mation of systems without dynamics (i.e., with static systems). At

TEMPORAL PROCESSING USING FEEDFORWARD NETWORKS 11

about the same time as the appearance of the early universal-
approximation theorems for static neural networks there began
(Sandberg 1991a) a corresponding study (see Chapter 2) of the neural
network approximation of approximately-finite-memory maps and
myopic maps. It was found that large classes of these maps can be uni-
formly approximated arbitrarily well by the maps of certain simple
nonlinear structures using, for example, sigmoidal nonlinearities or
radial basis functions. The approximating networks are two-stage
structures comprising a linear preprocessing stage followed by a
memoryless nonlinear network. Much is now known about the prop-
erties of these networks, and examples of these properties are given in
the following.

From another perspective, time is an essential dimension of
learning. We may incorporate time into the design of a neural
network implicitly or explicitly. A straightforward method of implicit
representation of time' is to add a short-term memory structure in
the input layer of a static neural network (e.g., multilayer percep-
tron). The resulting configuration is sometimes called a focused time-
lagged feedforward network (TLFN).

The short-term memory structure may be implemented in one of
two forms, as described here:

1. Tapped-Delay-Line (TDL) Memory. This is the most com-
monly used form of short-term memory. It consists of p unit
delays with (p + 1) terminals, as shown in Fig. 1.5, which may
be viewed as a single input-multiple output network. Figure 1.6
shows a focused TLFN network using the combination of a
TDL memory and multilayer perceptron. In Figs. 1.5 and 1.6,
the unit-delay is denoted by z 7.

The memory depth of a TDL memory is fixed at p, and its
memory resolution is fixed at unity, giving a depth resolution
constant of p.

2. Gamma Memory. We may exercise control over the memory
depth by building a feedback loop around each unit delay, as
illustrated in Fig. 1.7 (deVries and Principe 1992). In effect, the
unit delay z™' of the standard TDL memory is replaced by the
transfer function

! Another practical way of accounting for time in a neural network is to employ
feedback at the local or global level. Neural networks so configured are referred to
as recurrent networks. For detailed treatment of recurrent networks, see Haykin
(1999).

12 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

Unit | Unit 2 Unit p
Input x(n-1) x(n-2) x(n-p+1) x(n-p)
signal 0) - .. -

x(n)

Output terminals

Figure 1.5 Ordinary tapped-delay line memory of order p.

Output
y(n)

Figure 1.6 Focused time-lagged feedforward network (TLFN); the bias
levels have been omitted for convenience of presentation.

(o}
!

Input n Output
signal signal

L-p
Figure 1.7 Signal-flow graph for one section of gamma memory.

TEMPORAL PROCESSING USING FEEDFORWARD NETWORKS 13

-1

_ Uz
G
_u
z2=(1—p)

where 1 is an adjustable parameter. For stability, the only pole
of G(z) at z = (1 — u) must lie inside the unit circle in the z
plane. This, in turn, requires that we restrict the choice of u to
the following range of values:

O<pu<?2

The overall impulse response of the gamma memory, consist-
ing of p sections, is the inverse z transform of the overall trans-
fer function

a0~

Denoting the impulse response by g,(n), we have

n-1

gp(Z)=(p_1

)up(l -w"" n2p

where (:) is a binomial coefficient. The overall impulse response
g,(n) for varying p represents a discrete version of the inte-
grand of the gamma function (deVries and Principe 1992);
hence the name “gamma memory.”

The depth of the gamma memory is p/u and its resolution is
U, for a depth resolution product of p. Accordingly, by choos-
ing u to be less than unity, the gamma memory provides
improvement in depth over the TDL memory, but at the
expense of memory resolution.

With regard to the utility of gamma networks—which are partic-
ular cases of the family of two-stage structures comprising a linear
preprocessing stage followed by a memoryless nonlinear network—
experimental results have been reported which indicate that the
structure is useful. In fact, it is known (Sandberg and Xu 1997) that

14 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

for a large class of discrete-time dynamic system maps H, and for
any choice of u in the interval (0, 1), there is a focused gamma
network that approximates H uniformly arbitrarily well. It is known
that tapped-delay-line networks (i.e., networks with y = 1) also have
the universal approximation property (Sandberg 1991b).

Focused TLFNs using ordinary tapped-delay memory or gamma
memory are limited to stationary environments. To deal with
nonstationary dynamical processes, we may use distributed TLFNs
where the effect of time is distributed at the synaptic level through-
out the network. One way in which this may be accomplished is to
use finite-duration impulse response (FIR) filters to implement the
synaptic connections of an MLP; Fig. 1.8 shows an FIR model of a
synapse. The training of a distributed TLFN is naturally a more dif-
ficult proposition than the training of a focused TLFN. Whereas we
may use the ordinary back-propagation algorithm to train a focused
TLFN, we have to extend the back-propagation algorithm to cope
with the replacement of a synaptic weight in the ordinary MLP by a
synaptic weight vector. This extension is referred to as the temporal
back-propagation algorithm due to Wan (1994).

1.4 CONCLUDING REMARKS

In this chapter, we briefly reviewed the feedforward type of neural
networks, which are exemplified by multilayer perceptrons (MLPs),
radial-basis function (RBF) networks, principal component analysis
(PCA) networks, and self-organizing maps (SOMs). The training of
MLPs and RBF networks proceeds in a supervised manner, whereas
the training of PCA networks and SOMs proceeds in an unsuper-
vised manner.

Feedforward networks by themselves are nonlinear static net-
works. They can be made to operate as nonlinear dynamical systems

xi(n) __

w j,»(O) Y

p
sim)= 2wk n - k)
k=0

Figure 1.8 Finite-duration impulse response (FIR) filter.

BIBLIOGRAPHY 15

by incorporating short-term memory into their input layer. Two
important examples of short-term memory are the standard tapped-
delay-line and the gamma memory that provides control over attain-
able memory depth. The attractive feature of nonlinear dynamical
systems built in this way is that they are inherently stable.

BIBLIOGRAPHY

Anderson, J. A., 1995, Introduction to Neural Networks (Cambridge, MA:
MIT Press).

Barlow, H. B., 1989, “Unsupervised learning,” Neural Computation, vol. 1,
pp- 295-311.

Becker, S., and G. E. Hinton, 1982, “A self-organizing neural network that
discovers surfaces in random-dot stereograms,” Nature (London), vol.
355, pp. 161-163.

Broomhead, D. S., and D. Lowe, 1988, “Multivariable functional inter-
polation and adaptive networks,” Complex Systems, vol. 2, pp. 321-
355.

Comon, P,, 1994, “Independent component analysis: A new concept?” Signal
Processing, vol. 36, pp. 287-314.

deVries, B., and J. C. Principe, 1992, “The gamma model—A new
neural model for temporal processing,” Neural Networks, vol. 4, pp.
565-576.

Haykin, S., 1999, Neural Networks: A Comprehensive Foundation, 2nd ed.
(Englewood Cliffs, NJ: Prentice-Hall).

Moody and Darken, 1989, “Fast learning in networks of locally-tuned pro-
cessing unites,” Neural Computation, vol. 1, pp. 281-294.

Oja, E., 1982, “A simplified neuron model as a principal component ana-
lyzer,” J. Math. Biol., vol. 15, pp. 267-273.

Park, J., and Sandberg, I. W., 1993, “Approximation and radial-basis func-
tion networks,” Neural computation, vol. 5, pp. 305-316.

Poggio, T., and F. Girosi, 1990, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, pp. 1481-1497.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986, “Learning internal
representations by error propagation,” in D. E. Rumelhart and J. L.
McCleland, eds. (Cambridge, MA: MIT Press), vol. 1, Chapter 8.

Sandberg, I. W., 1991a, “Structure theorems for nonlinear systems,” Multi-
dimensional Sys. Sig. Process. vol. 2, pp. 267-286. (Errata in 1992, vol. 3,
p. 101.)

Sandberg, I. W., 1991b, “Approximation theorems for discrete-time
systems,” IEEE Trans. Circuits Sys. vol. 38, no. 5, pp. 564-566, May 1991.

16 FEEDFORWARD NEURAL NETWORKS: AN INTRODUCTION

Sandberg, [. W., and Xu, L., 1997, “Uniform approximation and gamma net-
works,” Neural Networks, vol. 10, pp. 781-784.

Van Hulle, M. M., 2000, Faithful Representations and Topographic Maps:
From Distortion-to-Information-Based Self Organization (New York:
Wiley).

Wan, E. A., 1994, “Time series prediction by using a connectionist network
with internal delay lines,” in A. S. Weigend and N. A. Gershenfield, eds.,
Time Series Prediction: Forecasting the Future and Understanding the Past
(Reading, MA: Addison-Wesley), pp. 195-217.

Werbos, P. J., 1974, “Beyond regression: New tools for prediction and analy-
sis in the behavioral sciences,” Ph.D. Thesis, Harvard University,
Cambridge, MA.

Werbos, P. J., 1990, “Backpropagation through time: What it does and how
to do it,” Proc. IEEE, vol. 78, pp. 1550-1560.

Yee, P. V., 1998, “Regularized radial basis function networks: Theory and
applications to probability estimation, classification, and time series pre-
diction,” Ph.D. Thesis, McMaster University, Hamilton, Ontario.

