Г

- |

## HIGH-SPEED DIGITAL SYSTEM DESIGN

|

٦

\_ | ۱\_\_ | -I

# HIGH-SPEED DIGITAL SYSTEM DESIGN

A HANDBOOK OF INTERCONNECT THEORY AND DESIGN PRACTICES ٦

Stephen H. Hall Garrett W. Hall James A. McCall

Г



A Wiley-Interscience PublicationJOHN WILEY & SONS, INC.New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

This book is printed on acid-free paper.  $\otimes$ 

Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

For ordering and customer service, call 1-800-CALL-WILEY.

#### Library of Congress Cataloging-in-Publication Data:

Hall, Stephen H.

High-speed digital system design: a handbook of interconnect theory and design practices/Stephen H. Hall, Garrett W. Hall, James A. McCall p. cm.
ISBN 0-471-36090-2 (cloth)
1. Electronic digital computers—Design and construction. 2. Very high speed integrated circuits—Design and construction.
3. Microcomputers—Buses. 4. Computer interfaces. I. Hall, Garrett W.

II. McCall, James A. III. Title.

TK7888.3 H315 2000 621.39'8—dc21

00-025717

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

### CONTENTS

| Preface                                  |                                                          | xi |  |
|------------------------------------------|----------------------------------------------------------|----|--|
| 1. The Importance of Interconnect Design |                                                          |    |  |
| 1.1                                      | The Basics                                               | 2  |  |
| 1.2                                      | The Past and the Future                                  | 4  |  |
| 2. Ideal                                 | 2. Ideal Transmission Line Fundamentals                  |    |  |
| 2.1                                      | 2.1 Transmission Line Structures on a PCB or MCM         |    |  |
| 2.2                                      | 2.2 Wave Propagation                                     |    |  |
| 2.3                                      | 1.6                                                      |    |  |
|                                          | 2.3.1 Characteristic Impedance                           | 11 |  |
|                                          | 2.3.2 Propagation Velocity, Time, and Distance           | 14 |  |
|                                          | 2.3.3 Equivalent Circuit Models for SPICE Simulation     | 15 |  |
| 2.4                                      | Launching Initial Wave and Transmission Line Reflections | 18 |  |
|                                          | 2.4.1 Initial Wave                                       | 18 |  |
|                                          | 2.4.2 Multiple Reflections                               | 19 |  |
|                                          | 2.4.3 Effect of Rise Time on Reflections                 | 26 |  |
|                                          | 2.4.4 Reflections From Reactive Loads                    | 28 |  |
|                                          | 2.4.5 Termination Schemes to Eliminate Reflections       | 32 |  |
| 2.5                                      | Additional Examples                                      | 36 |  |
|                                          | 2.5.1 Problem                                            | 36 |  |
|                                          | 2.5.2 Goals                                              | 36 |  |
|                                          | 2.5.3 Calculating the Cross-Sectional Geometry of the    |    |  |
|                                          | PCB                                                      | 37 |  |
|                                          | 2.5.4 Calculating the Propagation Delay                  | 38 |  |
|                                          | 2.5.5 Determining the Wave Shape Seen at the Receiver    | 39 |  |
|                                          | 2.5.6 Creating an Equivalent Circuit                     | 40 |  |
| 3. Crosstalk 4                           |                                                          |    |  |
| 3.1                                      | 3.1 Mutual Inductance and Mutual Capacitance             |    |  |
|                                          | 3.2 Inductance and Capacitance Matrix                    |    |  |
| 3.3 Field Simulators                     |                                                          |    |  |
|                                          |                                                          | v  |  |

-

٦

|\_\_\_\_

|    | 3.4        | Crosstal  | k-Induced Noise                                   | 45       |  |
|----|------------|-----------|---------------------------------------------------|----------|--|
|    | 3.5        | Simulat   | ing Crosstalk Using Equivalent Circuit Models     | 51       |  |
|    | 3.6        | Crosstal  | k-Induced Flight Time and Signal Integrity        |          |  |
|    |            | Variatio  |                                                   | 52       |  |
|    |            | 3.6.1     | Effect of Switching Patterns on Transmission Line |          |  |
|    |            | 5.0.1     | Performance                                       | 53       |  |
|    |            | 3.6.2     |                                                   | 55       |  |
|    |            | 5.0.2     |                                                   | 50       |  |
|    |            | ~ .       | Using a Single-Line Equivalent Model              | 59       |  |
|    | 3.7        |           | k Trends                                          | 62       |  |
|    | 3.8        |           | tion of Odd- and Even-Mode Transmission Line      |          |  |
|    |            | Pairs     |                                                   | 65       |  |
|    |            | 3.8.1     | Pi Termination Network                            | 65       |  |
|    |            | 3.8.2     | T Termination Network                             | 66       |  |
|    | 3.9        | Minimiz   | zation of Crosstalk                               | 67       |  |
|    | 3.10       |           | onal Examples                                     | 68       |  |
|    | 5.10       |           | -                                                 | 69       |  |
|    |            |           | Problem                                           |          |  |
|    |            |           | Goals                                             | 70       |  |
|    |            | 3.10.3    | Determining the Maximum Crosstalk-Induced         | 70       |  |
|    |            | 2 10 4    | Impedance and Velocity Swing                      | 70       |  |
|    |            | 3.10.4    | e                                                 |          |  |
|    |            |           | Triggers                                          | 72       |  |
| 4. | Nonid      | eal Inte  | rconnect Issues                                   | 74       |  |
|    | 4.1        | Transmi   | ission Line Losses                                | 74       |  |
|    |            | 4.1.1     | Conductor DC Losses                               | 75       |  |
|    |            |           | Dielectric DC Losses                              | 75       |  |
|    |            |           | Skin Effect                                       | 76       |  |
|    |            |           | Frequency-Dependent Dielectric Losses             | 87       |  |
|    | 4.2        |           | ns in the Dielectric Constant                     | 91       |  |
|    | 4.2<br>4.3 |           | ine Traces                                        | 91       |  |
|    | 4.3        | -         | nbol Interference                                 | 92<br>95 |  |
|    |            |           | of 90° Bends                                      | 93<br>97 |  |
|    |            |           |                                                   | 97<br>99 |  |
|    | 4.6        | Effect o  | f Topology                                        | 99       |  |
| 5. | Conn       | ectors, P | ackages, and Vias                                 | 102      |  |
|    | 5.1        | Vias      |                                                   | 102      |  |
|    | 5.2        | Connect   | tors                                              | 104      |  |
|    |            | 5.2.1     | Series Inductance                                 | 104      |  |
|    |            | 5.2.2     | Shunt Capacitance                                 | 105      |  |
|    |            | 5.2.2     | Connector Crosstalk                               | 105      |  |
|    |            | 5.2.4     | Effects of Inductively Coupled Connector Pin      | 105      |  |
|    |            | 5.2.4     | Fields                                            | 106      |  |
|    |            | 5.2.5     | EMI                                               | 100      |  |
|    |            |           |                                                   |          |  |
|    |            | 5.2.6     | Connector Design Guidelines                       | 110      |  |

vi

| CONTENTS  |                                                                                                                     | vii        |
|-----------|---------------------------------------------------------------------------------------------------------------------|------------|
| 5.3       | Chip Packages                                                                                                       | 112        |
|           | 5.3.1 Common Types of Packages                                                                                      | 113        |
|           | 5.3.2 Creating a Package Model                                                                                      | 117        |
|           | 5.3.3 Effects of a Package                                                                                          | 121        |
|           | 5.3.4 Optimal Pin-Outs                                                                                              | 127        |
| 6. Nonio  | deal Return Paths, Simultaneous Switching Noise, and                                                                |            |
| Powe      | r Delivery                                                                                                          | 129        |
| 6.1       | Nonideal Current Return Paths                                                                                       | 129        |
|           | 6.1.1 Path of Least Inductance                                                                                      | 129        |
|           | 6.1.2 Signals Traversing a Ground Gap                                                                               | 130        |
|           | 6.1.3 Signals That Change Reference Planes                                                                          | 134        |
|           | 6.1.4 Signals Referenced to a Power or a Ground Plane                                                               | 135        |
|           | 6.1.5 Other Nonideal Return Path Scenarios                                                                          | 140        |
|           | 6.1.6 Differential Signals                                                                                          | 140        |
| 6.2       |                                                                                                                     | 141        |
|           | 6.2.1 Determining the Local Decoupling Requirements                                                                 |            |
|           | for High-Speed I/O                                                                                                  | 144        |
|           | 6.2.2 System-Level Power Delivery                                                                                   | 147        |
|           | <ul><li>6.2.3 Choosing a Decoupling Capacitor</li><li>6.2.4 Frequency Response of a Power Delivery System</li></ul> | 149<br>150 |
| 6.3       | SSO/SSN                                                                                                             | 150        |
| 0.5       |                                                                                                                     |            |
|           | 6.3.1 Minimizing SSN                                                                                                | 154        |
| 7. Buffe  | er Modeling                                                                                                         | 156        |
| 7.1       | Types of Models                                                                                                     | 157        |
| 7.2       | •                                                                                                                   | 157        |
|           | 7.2.1 Basic Operation                                                                                               | 157        |
|           | 7.2.2 Linear Modeling of the CMOS Buffer                                                                            | 164        |
|           | 7.2.3 Behavioral Modeling of the Basic CMOS Buffer                                                                  | 172        |
| 7.3       |                                                                                                                     | 175        |
| 7.4       | Conclusions                                                                                                         | 177        |
| 8. Digita | al Timing Analysis                                                                                                  | 178        |
| 8.1       | Common-Clock Timing                                                                                                 | 178        |
| 0.1       | 8.1.1 Common-Clock Timing Equations                                                                                 | 180        |
| 8.2       | Source Synchronous Timing                                                                                           | 183        |
|           | 8.2.1 Source Synchronous Timing Equations                                                                           | 186        |
|           | 8.2.2 Deriving Source Synchronous Timing Equations                                                                  | 100        |
|           | from an Eye Diagram                                                                                                 | 189        |
|           | 8.2.3 Alternative Source Synchronous Schemes                                                                        | 191        |
|           |                                                                                                                     |            |

۱\_\_

|

\_ I

-|

| viii |       |                                                                                                                                    | CONTENTS   |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------|------------|
|      | 8.3   | Alternative Bus Signaling Techniques                                                                                               | 192        |
|      |       | 8.3.1 Incident Clocking                                                                                                            | 192        |
|      |       | 8.3.2 Embedded Clock                                                                                                               | 192        |
| 9.   | Desig | n Methodologies                                                                                                                    | 194        |
|      | 9.1   | Timings                                                                                                                            | 195        |
|      |       | <ul><li>9.1.1 Worst-Case Timing Spreadsheet</li><li>9.1.2 Statistical Spreadsheets</li></ul>                                       | 196<br>198 |
|      | 9.2   | Timing Metrics, Signal Quality Metrics, and Test Loads                                                                             | 200        |
|      |       | 9.2.1 Voltage Reference Uncertainty                                                                                                | 200        |
|      |       | 9.2.2 Simulation Reference Loads                                                                                                   | 202        |
|      |       | 9.2.3 Flight Time                                                                                                                  | 206        |
|      |       | 9.2.4 Flight-Time Skew                                                                                                             | 207        |
|      |       | 9.2.5 Signal Integrity                                                                                                             | 209        |
|      | 9.3   | $\mathcal{O}$ -1                                                                                                                   | 210        |
|      |       | <ul><li>9.3.1 Paper Analysis</li><li>9.3.2 Routing Study</li></ul>                                                                 | 211<br>212 |
|      | 9.4   |                                                                                                                                    | 212        |
|      | 9.4   | 9.4.1 Initial Trend and Significance Analysis                                                                                      | 215        |
|      |       | 9.4.2 Ordered Parameter Sweeps                                                                                                     | 213        |
|      |       | 9.4.3 Phase 1 Solution Space                                                                                                       | 224        |
|      |       | 9.4.4 Phase 2 Solution Space                                                                                                       | 225        |
|      |       | 9.4.5 Phase 3 Solution Space                                                                                                       | 228        |
|      | 9.5   | Design Guidelines                                                                                                                  | 229        |
|      | 9.6   | Extraction                                                                                                                         | 230        |
|      | 9.7   | General Rules of Thumb to Follow When Designing a                                                                                  |            |
|      |       | System                                                                                                                             | 230        |
| 10.  |       | ated Emissions Compliance and System Noise                                                                                         |            |
|      | Minii | nization                                                                                                                           | 232        |
|      | 10.1  | FCC Radiated Emission Specifications                                                                                               | 233        |
|      | 10.2  | Physical Mechanisms of Radiation                                                                                                   | 233        |
|      |       | 10.2.1 Differential-Mode Radiation                                                                                                 | 234        |
|      |       | 10.2.2 Common-Mode Radiation                                                                                                       | 241        |
|      |       | 10.2.3 Wave Impedance                                                                                                              | 245        |
|      | 10.3  | Decoupling and Choking                                                                                                             | 246        |
|      |       | <ul><li>10.3.1 High-Frequency Decoupling at the System Level</li><li>10.3.2 Choking Cables and Localized Power and Group</li></ul> | nd         |
|      |       | Planes                                                                                                                             | 253        |
|      | 10.4  | 10.3.3 Low-Frequency Decoupling and Ground Isolatio<br>Additional PCB Design Criteria, Package Considerations                      | ,          |
|      |       | and Pin-Outs                                                                                                                       | 263        |
|      |       | 10.4.1 Placement of High-Speed Components and Trace                                                                                | es 263     |

\_|

\_ | ۱\_\_

|

| CONTENTS |                       |                                             | ix  |
|----------|-----------------------|---------------------------------------------|-----|
|          | -                     | Crosstalk                                   | 263 |
|          | 10.4.3                | Pin Assignments and Package Choice          | 264 |
| 10.5     | Enclos                | ure (Chassis) Considerations                | 265 |
|          | 10.5.1                | Shielding Basics                            | 265 |
|          | 10.5.2                | Apertures                                   | 267 |
|          | 10.5.3                | Resonances                                  | 272 |
| 10.6     | Spread                | Spectrum Clocking                           | 273 |
| 11. High | -Speed N              | Measurement Techniques                      | 276 |
| 11.1     | Digital               | Oscilloscopes                               | 276 |
|          | -                     | Bandwidth                                   | 277 |
|          |                       | Sampling                                    | 278 |
|          |                       | Other Effects                               | 281 |
|          |                       | Statistics                                  | 283 |
| 11.2     | Time-D                | Domain Reflectometry                        | 283 |
|          |                       | TDR Theory                                  | 284 |
|          |                       | Measurement Factors                         | 287 |
| 11.3     |                       | locuracy                                    | 289 |
| -        |                       | Launch Parasitics                           | 290 |
|          |                       | Probe Types                                 | 292 |
|          |                       | Reflections                                 | 293 |
|          | 11.3.4                | Interface Transmission Loss                 | 293 |
|          | 11.3.5                | Cable Loss                                  | 294 |
|          | 11.3.6                | Amplitude Offset Error                      | 294 |
| 11.4     | Impedance Measurement |                                             |     |
|          | 11.4.1                | Accurate Characterization of Impedance      | 295 |
|          | 11.4.2                | Measurement Region in TDR Impedance Profile | 297 |
| 11.5     | Odd- a                | nd Even-Mode Impedance                      | 299 |
| 11.6     |                       | lk Noise                                    | 299 |
| 11.7     | Propag                | ation Velocity                              | 300 |
|          | 11.7.1                | Length Difference Method                    | 301 |
|          |                       | Y-Intercept Method                          | 301 |
|          | 11.7.3                | TDT Method                                  | 302 |
| 11.8     | Vector                | Network Analyzer                            | 303 |
|          | 11.8.1                | Introduction to S Parameters                | 304 |
|          | 11.8.2                | Equipment                                   | 305 |
|          | 11.8.3                | One-Port Measurements $(Z_0, L, C)$         | 305 |
|          | 11.8.4                | Two-Port Measurements $(T_d, Attenuation,$  |     |
|          |                       | Crosstalk)                                  | 310 |
|          | 11.8.5                | Calibration                                 | 314 |
|          | 11.8.6                | Calibration for One-Port Measurements       | 315 |
|          | 11.8.7                |                                             | 316 |
|          | 11.8.8                | Calibration Verification                    | 316 |

۱\_\_

|

\_ I

-|

| x            |                                                                                                            | CONTENTS  |
|--------------|------------------------------------------------------------------------------------------------------------|-----------|
| Appendiz     | x A: Alternative Characteristic Impedance Formulas                                                         | 318       |
| A.1          | Microstrip                                                                                                 | 318       |
| A.2          | Symmetric Stripline                                                                                        | 319       |
| A.3          | Offset Stripline                                                                                           | 319       |
| Appendi      | x B: GTL Current-Mode Analysis                                                                             | 321       |
| B.1          | Basic GTL Operation                                                                                        | 321       |
| B.2          | GTL Transitions When a Middle Agent Is Driving                                                             | 323       |
| B.3          | GTL Transitions When an End Agent With a Termination Is Driving                                            | 325       |
| B.4          | Transitions When There is a Pull-Up at the Middle Agent                                                    | 327       |
| Appendix     | x C: Frequency-Domain Components in a Digital Signal                                                       | 329       |
| Appendi      | x D: Useful S-Parameter Conversions                                                                        | 332       |
| D.1          | ABCD, Z, and Y Parameters                                                                                  | 332       |
| D.2          | Normalizing the <i>S</i> Matrix to a Different Characteristic Impedance                                    | 335       |
| D.3          | Derivation of the Formulas Used to Extract the Mutual<br>Inductance and Capacitance from a Short Structure |           |
|              | Using $S_{21}$ Measurements                                                                                | 336       |
| D.4          | Derivation of the Formula to Extract Skin Effect Resistant from a Transmission Line                        | ce<br>337 |
| Appendix     | x E: Definition of the Decibel                                                                             | 338       |
| Appendi      | x F: FCC Emission Limits                                                                                   | 340       |
| Bibliography |                                                                                                            |           |
| Index        |                                                                                                            | 345       |

\_|

— I ۱\_\_

|\_\_\_\_

#### PREFACE

This book covers the practical and theoretical aspects necessary to design modern high-speed digital systems at the platform level. The book walks the reader through every required concept, from basic transmission line theory to digital timing analysis, high-speed measurement techniques, as well as many other topics. In doing so, a unique balance between theory and practical applications is achieved that will allow the reader not only to understand the nature of the problem, but also provide practical guidance to the solution. The level of theoretical understanding is such that the reader will be equipped to see beyond the immediate practical application and solve problems not contained within these pages. Much of the information in this book has not been needed in past digital designs but is absolutely necessary today. Most of the information covered here is not covered in standard college curricula, at least not in its focus on digital design, which is arguably one of the most significant industries in electrical engineering.

The focus of this book is on the design of robust high-volume, high-speed digital products such as computer systems, with particular attention paid to computer busses. However, the theory presented is applicable to any high-speed digital system. All of the techniques covered in this book have been applied in industry to actual digital products that have been successfully produced and sold in high volume.

Practicing engineers and graduate and undergraduate students who have completed basic electromagnetic or microwave design classes are equipped to fully comprehend the theory presented in this book. At a practical level, however, basic circuit theory is all the background required to apply the formulas in this book.

Chapter 1 describes why it is important to comprehend the lessons taught in this book. (Authored by Garrett Hall)

Chapter 2 introduces basic transmission line theory and terminology with specific digital focus. This chapter forms the basis of much of the material that follow. (Authored by Stephen Hall)

Chapters 3 and 4 introduce crosstalk effects, explain their relevance to digital timings, and explore nonideal transmission line effects. (Authored by Stephen Hall)

Chapter 5 explains the impact of chip packages, vias, connectors, and many other aspects that affect the performance of a digital system. (Authored by Stephen Hall)

Chapter 6 explains elusive effects such as simultaneous switching noise and nonideal current return path distortions that can devastate a digital design if not properly accounted for. (Authored by Stephen Hall)

Chapter 7 discusses different methods that can be used to model the output buffers that are used to drive digital signals onto a bus. (Authored by Garrett Hall)

Chapter 8 explains in detail several methods of system level digital timing. It describes the theory behind different timing schemes and relates them to the high-speed digital effects described throughout the book. (Authored by Stephen Hall)

Chapter 9 addresses one of the most far-reaching challenges that is likely to be encountered: handling the very large number of variables affecting a system and reducing them to a manageable methodology. This chapter explains how to make an intractable problem tractable. It introduces a specific design methodology that has been used to produce very high performance digital products. (Authored by Stephen Hall)

Chapter 10 covers the subject of radiated emissions, which causes great fear in the hearts of system designers because radiated emission problems usually cannot be addressed until a prototype has been built, at which time changes can be very costly and time-constrained. (Authored by Garrett Hall)

Chapter 11 covers the practical aspects of making precision measurements in high-speed digital systems. (Authored by James McCall)

#### Acknowledgments

Many people have contributed directly or indirectly to this book. We have been fortunate to keep the company of excellent engineers and fine peers. Among the direct, knowing contributors to this book are:

Dr. Maynard Falconer, Intel Corporation

Mike Degerstrom, Mayo Foundation, Special Purpose Processor Development Group

Dr. Jason Mix, Intel Corporation Dorothy Hall, PHI Incorporated

Dorouny man, i'm meorporated

We would also like to recognize the following people for their continuing collaboration over the years, which have undoubtedly affected the outcome of this book. They have our thanks.

Howard Heck, Intel Corporation; Oregon Graduate Institute Michael Leddige, Intel Corporation

xii

#### PREFACE

Dr. Tim Schreyer, Intel Corporation
Harry Skinner, Intel Corporation
Alex Levin, Intel Corporation
Rich Melitz, Intel Corporation
Wayne Walters, Mayo Foundation, Special Purpose Processor Development Group
Pat Zabinski, Mayo Foundation, Special Purpose Processor Development Group
Dr. Barry Gilbert, Mayo Foundation, Special Purpose Processor Development Group
Dr. Melinda Picket-May, Colorado State University

Special thanks are also given to Jodi Hall, Stephen's wife, without whose patience and support this book would not have been possible.

#### xiii

\_ | ۱\_\_ | -I