
CHAPTER 1

THE KINEMATICS AND DYNAMICS
OF AIRCRAFT MOTION

1.1 INTRODUCTION

In this chapter the end point will be the equations of motion of a rigid aircraft moving
over the oblate, rotating Earth. The flat-Earth equations, describing motion over a
small area of a nonrotating Earth, with constant gravity, will be derived as a special
case. To reach this end point we will use the vector analysis of classical mechanics to
set up the equations of motion, matrix algebra to describe operations with coordinate
systems, and concepts from geodesy, gravitation, and navigation to introduce the
effects of the Earth’s shape and mass attraction.
The moments and forces acting on the vehicle, other than the mass attraction of

the Earth, will be abstract until Chapter 2 is reached. At this stage the equations can
be used to describe the motion of any type of aerospace vehicle, including an Earth
satellite, provided that suitable force and moment models are available. The term
rigid means that structural flexibility is not allowed for, and all points in the vehicle
are assumed to maintain the same relative position at all times. This assumption is
good enough for flight simulation in most cases, and good enough for flight control
system design provided that we are not trying to design a system to control structural
modes or to alleviate aerodynamic loads on the aircraft structure.
The vector analysis needed for the treatment of the equations of motion often

causes difficulties for the student, particularly the concept of the angular velocity vec-
tor. Therefore, a review of the relevant topics is provided. In some cases we have gone
beyond the traditional approach to flight mechanics. For example, quaternions have
been introduced because of their “all-attitude” capability and numerical advantages in
simulation and control. They are now widely used in simulation, robotics, guidance
and navigation calculations, attitude control, and graphics animation. Topics from
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geodesy (a branch of mathematics dealing with the shape of the Earth), gravitation
(the mass attraction effect of the Earth), and navigation have also been introduced.
This is because aircraft can now fly autonomously at very high altitudes and over long
distances and there is a need to simulate navigation of such vehicles.
The equations of motion will be organized as a set of simultaneous first-order

differential equations, explicitly solved for the derivatives. For n dependent variables,
Xi , and m control inputs, Ui , the general form will be:

Ẋ1 = f1(X1, X2, . . . , Xn, U1, . . . , Um)

... (1.1-1)

Ẋn = fn(X1, X2, . . . , Xn, U1, . . . , Um),

where the functions fi are the nonlinear functions that can arise from modeling real
systems. If the variablesXi constitute the smallest set of variables that, together with
given inputs Ui , completely describe the behavior of the system, then theXi are a set
of state variables for the system. Equations (1.1-1) become a state-space description
of the system. The functions fi are required to be single-valued continuous functions.
Equations (1.1-1) are often written symbolically as:

Ẋ = f (X,U), (1.1-2)

where the state vector X is an (n×1) column array of the n state variables, the control
vector U is an (m × 1) column array of the control variables, and f is an array of
nonlinear functions. The nonlinear state equations (1.1-1), or a subset of them, usually
have one or more equilibrium points in the multidimensional state and control space,
where the derivatives vanish. The equations are often approximately linear for small
perturbations from equilibrium, and can be written in matrix form as the linear state
equation:

ẋ = Ax + Bu (1.1-3)

Here, the lowercase notation for the state and control vectors indicates that they are
perturbations from equilibrium, although the derivative vector contains the actual
values (i.e., perturbations from zero). The “A matrix” is square and the “B matrix”
has dimensions determined by the number of states and controls.
The state-space formulation will be described in more detail in Chapters 2 and 3.

At this point we will simply note that a major advantage of this formulation is that the
nonlinear state equations can be solved numerically. The simplest numerical solution
method is Euler integration, given by:

X = X + f (X,U)δt, (1.1-4)

where “=” indicates replacement ofX in computer memory by the value on the right-
hand side of the equation. The integration time-step, δt , must be made small enough
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that, for every δt interval, U can be approximated by a constant, and Ẋδt provides a
good approximation to the increment in the state vector. This numerical integration
allows the state vector to be stepped forward in time, in time-increments of δt , to
obtain a time-history simulation (Problem 1.5-2).

1.2 VECTOR KINEMATICS

Definitions and Notation

Kinematics can be defined as the study of the motion of objects without regard to the
mechanisms that cause the motion. The motion of physical objects can be described
by means of vectors in three dimensions, and in performing kinematic analysis with
vectors we will make use of the following definitions:

Frame of Reference: a rigid body or set of rigidly related points that can be used
to establish distances and directions (denoted by Fi, Fe, etc.). In general, a
subscript used to indicate a frame will be lowercase, while a subscript used
to indicate a point will be uppercase.

Inertial Frame: a frame of reference in which Newton’s laws apply. Our best iner-
tial approximation is probably a “helio-astronomic” frame in which the center
of mass (cm) of the sun is a fixed point, and fixed directions are established by
the normal to the plane of the ecliptic and the projection on that plane of certain
stars that appear to be fixed in position.

Vector: a vector is an abstract geometrical object that has both magnitude and
direction. It exists independently of any coordinate system. The vectors used
here are Euclidean vectors that exist only in three-dimensional space.

Coordinate System: a measurement system for locating points in space, set up
within a frame of reference. We may have multiple coordinate systems (with
no relative motion) within one frame of reference, and we sometimes loosely
refer to them as “frames.”

In choosing a notation the following facts must be taken into account. For position
vectors, the notation should specify the two points whose relative position the vector
describes. Velocity and acceleration vectors are relative to a frame of reference, and
the notation should specify the frame of reference as well as the moving point. The
derivative of a vector depends on the observer’s frame of reference, and this frame
must be specified in the notation. A derivative may be taken in a different frame from
that in which a vector is defined, so the notation may require two frame designators
with one vector. We will use the following notation:

Vectors will be in boldface typefonts.

A right subscript will be used to designate two points for a position vector, and a
point and a frame for a velocity or acceleration vector. A “/ ” in a subscript will
mean “with respect to.”
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A left superscript will specify the frame in which a derivative is taken, and the dot
notation will indicate a derivative.

A right superscript on a vector will specify a coordinate system. It will therefore
denote an array of the components of that vector in the specified system.

Vector length will be denoted by single bars, for example, |p|.

Examples of the notation are:

pA/B ≡ position vector of point A with respect to point B

vA/i ≡ velocity of point A in frame i (Fi)
bv̇A/i ≡ derivative of vA/i taken in Fb
vcA/i ≡ (vA/i)c ≡ components of vA/i in coordinate system c

bv̇cA/i ≡ components in system c of the derivative in Fb

The components of a vector will be denoted by subscripts that indicate the coordinate
system, or by the vector symbol with subscripts x, y, and z. All component arrays
will be column arrays unless otherwise indicated by the transpose symbol, a right
superscript T . For example,

pbA/B =

 xbyb
zb


 or vb =


 vxvy
vz


 = [

vx vy vz
]T

are arrays of components in a coordinate system b.

The Derivative Vector

The derivative of a vector can be defined in the same way as the derivative of a scalar:

dpA/B
dt

= Lim.
δt→0

[
pA/B(t + δt)− pA/B(t)

δt

]

This is a new vector created by the changes in length and direction of pA/B . Different
answers will be obtained for the derivative depending on how the observer’s frame is
rotating. As another example of the notation above, consider

i ṗA/B = derivative of the vector pA/B, taken in frame i

Note that if pA/B is a position vector, the derivative is a velocity vector only if it is
taken in the frame in which B is a fixed point. Similarly, the derivative of a velocity
vector is an acceleration vector only if it is taken in the frame in which the velocity
vector is defined.
If the derivative of a general vector v is taken in frame a, the components of the

derivative vector in a coordinate system fixed in frame a are given by the rates of
change of the components of v in that coordinate system. For example, if
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vc = [
vx vy vz

]T
,

where system c is fixed in frame a, then

a v̇c = [
v̇x v̇y v̇z

]T
The vector derivative deserves special attention, and is discussed further in connection
with angular velocity.

Vector Properties

Vectors are independent of any coordinate system, but some vector operations yield
pseudo-vectors that are not independent of a “handedness” convention. For example,
the result of the vector cross-product operation is a vector whose direction depends on
whether a right-handed or left-handed convention is being used. We will always use
the right-hand rule in connection with vector direction. Similarly, we will always use
Cartesian coordinate systems that are right-handed. Figure 1.2-1 shows a vector p and
a reference coordinate system (fixed in some frame) used to describe the direction of
p. The axes of the coordinate system are aligned with the unit vectors i, j,k, which (in
that order) form a right-handed set (i.e., i× j = k). The direction of p, relative to this
coordinate system, is described by the three direction angles α, β, γ . The direction
cosines of p—cosα, cosβ, and cos γ—give the projections of p on the coordinate
axes, and two applications of the theorem of Pythagoras yield

|p|2 cos2 α + |p|2 cos2 β + |p|2 cos2 γ = |p|2

Therefore, the direction cosines satisfy

cos2 α + cos2 β + cos2 γ = 1 (1.2-1)

Figure 1.2-1 The direction angles of a vector.
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Addition and subtraction of vectors can be defined independently of coordinate
systems by means of geometrical constructions (the “parallelogram law”). The dot
product of two vectors is a scalar defined by

u · v = |u||v| cos θ, (1.2-2)

where θ is the included angle between the vectors (it may be necessary to translate
the vectors so that they intersect). The dot product is commutative and distributive;
thus,

u · v = v · u

and

(u+ v) · w = u · w + v · w

The principal uses of the dot product are to find the projection of a vector, to
establish orthogonality, and to find length. For example, if (1.2-2) is divided by |v|,
we have the projection of u on v,

(u · v)/|v| = |u| cos θ

If cos θ = 0,u · v = 0, and the vectors are said to be orthogonal. If a vector is dotted
with itself, then cos θ = 1 and we obtain the square of its length.
Orthogonal unit vectors satisfy the dot product relationships

i · i = j · j = k · k = 1

i · j = j · k = k · i = 0

Using these relationships, the dot product of two vectors can be expressed in terms
of components,

u · v = uxvx + uyvy + uzvz, (1.2-3)

where the vector are taken in any orthogonal Cartesian coordinate system.
The cross-product of u and v, denoted by u × v, is a vector w that is normal to

the plane of u and v and is in a direction such that u, v,w (in that order) form a
right-handed system (again, it may be necessary to translate the vectors so that they
intersect). The length of w is defined to be |u×v| = |u||v| sin θ , where θ is the angle
between u and v.
It has the following properties:

u× v = −(v × u) (anticommutative)

a(u× v) = (au)× v = u× (av) (associative)
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u× (v + w) = (u× v)+ (u× w) (distributive)

u · (v × w) = v · (w × u) = w · (u× v) (scalar triple product)

u× (v × w) = v(w · u)− w(u · v) (vector triple product) (1.2-4)

As an aid for remembering the form of the triple products, note the cyclic permutation
of the vectors involved. Alternatively, the vector triple product can be remembered
phonetically using “ABC = BAC− CAB.”
The cross-products of the unit vectors describing a right-handed orthogonal coor-

dinate system satisfy the equations

i× i = j× j =k × k = 0

i × j = k

j × k = i

k × i = j

Also remember that j × i = −i × j = −k, and so on. From these properties
we can derive a formula for the cross-product of two vectors; a convenient way
of remembering the formula is to write it so that it resembles the expansion of a
determinant.
The mnemonic is

u× v =
∣∣∣∣∣
i j k
ux uy uz
vx vy vz

∣∣∣∣∣ = i

∣∣∣∣ uy uz
vy vz

∣∣∣∣ − j

∣∣∣∣ ux uz
vx vz

∣∣∣∣ + k

∣∣∣∣ ux uy
vx vy

∣∣∣∣ , (1.2-5)

where subscripts x, y, z indicate components in a coordinate system whose axes are
aligned respectively with the unit vectors i, j,k.
An example of the use of the cross-product is to find the momentM of a force F,

acting at a point whose position vector is r; the vector moment about the origin of r
is given by

M = r × F

Other examples are given in the following subsections.

Rotation of a Vector

It is intuitively obvious that a vector can be made to point in an arbitrary direction
by means of a single rotation around an appropriate axis. Here we follow Goldstein
(Goldstein, 1980) to derive a formula for vector rotation.
Consider Figure 1.2-2, in which a free vector u has been rotated to form a new

vector v by defining a rotation axis along a unit vector n and performing a left-handed
rotation throughµ around n. NV andNUhave been constructed to find the projections
of v and u on the rotation axis and hence identify µ. A vector expression for v is
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Figure 1.2-2 Rotation of a vector.

v = −→
ON + −→

NW + −→
WV

= (u · n) n + (u− (u · n)n)
|u− (u · n)n| NVcosµ+ (u× n)

|u| sin φ NV sinµ

Now,

NV = NU = |u− (u · n)n| = |u| sin φ
Therefore,

v = n(n · u)+ cosµ (u− n(n · u))− sinµ (n× u)

or,

v = (1− cosµ) n (n · u)+ cosµ u− sinµ (n× u) (1.2-6)

Equation (1.2-6) is sometimes called the rotation formula; it shows that, after choos-
ing n and µ, we can operate on u with dot and cross-product operations to get the
desired rotation.
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Fb

Fr

0

w

w + wδ δw

s

δφ

Figure 1.2-3 A vector derivative in a rotating frame.

Vector Derivatives and the Angular Velocity Vector

Figure 1.2-3 shows a vector w that is fixed in a frame Fb, and Fb is rotating with
respect to a reference frame Fr . The derivative of w taken in Fr is nonzero if w
is changing direction and/or changing length when observed from Fr , and is inde-
pendent of translational motion between the frames. The change in direction with
respect to Fr can be found by using the rotation theorem. In the figure, let ŝ be a
unit vector parallel to the instantaneous axis of rotation at time t . To an observer in
Fr,w becomes a new vector w + δw at time t + δt , due to the small rotation δφ.
The rotation formula can be used to find δw. Then, by taking the limit of δw/δt as δt
becomes infinitesimal, the derivative of w in Fr can be found. The rotation formula,
with small-angle approximations and positive δφ right-handed around ŝ, gives

δw
δt

≈
(
ŝ
δφ

δt

)
× w

Taking the limit as δt → 0,

rẇ = (ŝ φ̇)× w

The quantity in parentheses has the properties of a vector, with direction along the
axis of rotation and magnitude equal to the angular rotation rate. It is defined to be
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the instantaneous angular velocity vector, ωb/r , of Fb with respect to Fr . A right-
handed rotation around ŝ corresponds to a positive angular velocity vector. If w is
also changing in length in Fb, we must add this effect to the right-hand side of the
above equation, so that

rẇ = bẇ + ωb/r × w (1.2-7)

Equation (1.2-7) is sometimes called the equation of Coriolis (Blakelock, 1965)
and will be an essential tool in developing equations of motion from Newton’s laws.
It is much more general than is indicated above, and applies to any physical quantity
that has a vector representation. The derivatives need not even be taken with respect to
time. Angular velocity can be defined as the vector that relates the derivatives of any
arbitrary vector in two different frames, according to (1.2-7). In our context we have a
physical interpretation of this vector as a right-handed angular rate around a directed
axis with, in general, both rate and direction changing with time. An alternative
derivation of the angular velocity vector can be found in many texts (McGill and
King, 1995; Kane, 1983).
Some formal properties of the angular velocity vector are:

(i) It is a unique vector that relates the derivatives of a vector taken in two
different frames.

(ii) It satisfies the relative motion condition ωb/a = −ωa/b.

(iii) It is additive over multiple frames, for example, ωc/a = ωc/b + ωb/a (this is
not true of angular acceleration).

(iv) Its derivative is the same in either frame, aω̇b/a = bω̇b/a . This is made evident
by using (1.2-7) to find the derivative of ω.

A common problem is the determination of an angular velocity vector after the
frames have been defined in a practical application. This can be achieved by finding
one or more intermediate frames in which an axis of rotation and an angular rate
are physically evident. Then the additive property can be invoked to combine the
intermediate angular velocities. An example of this is given later, with the “rotating-
Earth” equations of motion of an aerospace vehicle.

Velocity and Acceleration in Moving Frames

Figure 1.2-4 shows a point P moving with respect to two frames Fa and Fb, with
fixed points O and Q, respectively. Suppose that we wish to relate the velocities in
the two frames and also the accelerations. First, we must relate the position vectors
shown in the figure, and then take derivatives in Fa to introduce velocity:

rP/O = rQ/O + rP/Q (1.2-8)
a ṙP/O = a ṙQ/O + a ṙP/Q (1.2-9)
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Fb

Fa

O

Q

P

rP/Q

rP/O

rQ /O

Figure 1.2-4 Velocity and acceleration in moving frames.

Starting from the left-hand side of Equation (1.2-9), the first two terms are velocities
in Fa but the last term involves the position of P relative to a fixed point in Fb, with
the derivative taken in Fa . Let v with an appropriate subscript represent a velocity
vector. Then, by applying the equation of Coriolis, Equation (1.2-9) gives

vP/a = vQ/a + vP/b + ωb/a × rP/Q (1.2-10)

As an application of Equation (1.2-10), let Fa be an inertial reference frame and
Fb a body moving with respect to the reference frame. Assume that a navigator on
the moving body determines, from an onboard inertial navigation system, his velocity
in the inertial reference frame (vQ/a) and his inertial angular velocity vector (ωb/a).
Also, using a radar set, he measures the velocity of P in Fb(vP/b) and the position
of P with respect to Q(rP/Q). He can then use Equation (1.2-10) to calculate the
velocity of the object in the inertial reference frame and, knowing the equation of
motion in the inertial frame, predict its trajectory. The word measure should always
evoke the thought “coordinate system?” and Equation (1.2-10) cannot be evaluated
without choosing coordinate systems for this example. In Section 1.3 it will become
clear how the coordinate systems calculations can be performed.
We next find the acceleration of P by taking derivatives of (1.2-10) in Fa . Starting

from the left, the first two terms are velocities in Fa and these become accelerations
in Fa . The third term is a velocity in Fb and must be differentiated by the equation of
Coriolis. The last term involving a cross-product can be differentiated by the “product
rule,” and the derivative of angular velocity is an angular acceleration vector, denoted
by α. Therefore, denoting translational acceleration vectors by a, (1.2-10) yields,
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aP/a = aQ/a + (aP/b + ωb/a × vP/b)+ αb/a × rP/Q + ωb/a × (vP/b + ωb/a × rP/Q)

Regrouping terms, we get,

aP/a
total
accl.

= aP/b
relative
accl.

+ aQ/a + αb/a × rP/Q + ωb/a × (ωb/a × rP/Q)
Centripetal
accl.

+ 2ωb/a × vP/b
Coriolis
accl.

Transport accln. of P in Fa (1.2-11)

The term labeled “transport acceleration” is the acceleration in Fa of a fixed point
in Fb that is instantaneously coincident with P . This is evident because the two
remaining right-hand-side terms vanish when P is fixed in Fb. Note that (1.2-10)
can be written as

vP/a = vP/b + (vQ/a + ωb/a × rP/Q),

where the term in parentheses is the velocity in Fa of a fixed point in Fb that is
instantaneously coincident withP . Therefore, the acceleration equation does not have
the same form as this velocity equation because of the “Coriolis acceleration” term.

Example 1.2-1: Coriolis Acceleration in an Earth-Fixed Frame. As an
example of the application of (1.2-11), let Fb be fixed in the Earth, and let Fa also
translate with the Earth but be nonrotating (i.e., chosen to be an approximation
to an inertial frame). Let P be a point moving over the surface of the Earth, and
let the points Q and O coincide, at the Earth’s cm, so that the acceleration aQ/a
vanishes and rP/Q is a geocentric position vector. The Earth’s angular velocity is quite
closely constant and so the derivative of ωb/a vanishes. This leaves only the relative
acceleration, centripetal acceleration, and Coriolis acceleration terms. Solving for the
relative acceleration gives:

aP/b = aP/a − ωb/a × (ωb/a × rP/Q)− 2ωb/a × vP/b (1.2-12)

For a particle of mass m at P , the relative acceleration corresponds to an “apparent
force” on the particle and produces the trajectory observed by a stationary observer
on the Earth. The true acceleration (aP/a) corresponds to “true” forces (e.g., mass
attraction, drag), therefore,

apparent force = true force−mωb/a × (ωb/a × rP/Q)+ 2mvP/b × ωb/a

The second term on the right is the “centrifugal” force, directed normal to the angular
velocity vector. The third term is usually referred to as the Coriolis force and will
cause a ballistic trajectory over the Earth to curve to the left or right. A stationary
observer on the Earth might realize that the Earth is not an inertial frame by seeing
this curvature, which is really just the kinematic effect of the Earth’s rotation.
An often quoted example of the Coriolis force is the circulation of winds around

a low-pressure area (a cyclone) on the Earth. The true force is radially inward along
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the pressure gradient. In the Northern Hemisphere, for example, the Earth’s angular
velocity vector points outward from the Earth’s surface and, whichever way the
velocity vector vP/b is directed, the Coriolis force is directed to the right of vP/b.
Therefore, in the Northern Hemisphere the winds spiral inward in a counterclockwise
direction around a cyclone.

Example 1.2-2: Accelerometer Measurements. This example will illustrate
the principle of an accelerometer and the contribution of angular motion to the linear
acceleration at a point away from the cm of a rigid body. Figure 1.2-5 shows a very
simple accelerometer mounted on a rigid body, and aligned so as to measure z-axis
components in the body-fixed coordinate system shown. The accelerometer consists
of a “proof mass,” m, a suspension spring, a viscous damper for the motion of the
mass, and a means of measuring its displacement. The proof mass is constrained to
move in one dimension only, in this case, in the body-z direction. Point P is the
deflected position of the cm of the proof mass, R(xR, 0, 0) is the rest-position, and
d is the deflection. Applying Equation (1.2-11) to find the acceleration of P in the
inertial reference frame Fi yields

aP/i = aP/b + aCM/i + αb/i × rP/Q + ωb/i × (ωb/i × rP/Q)+ 2ωb/i × vP/b

Figure 1.2-5 An accelerometer on a rigid body.
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Now write this equation in terms of orthogonal unit vectors, i, j,k, fixed in Fb,
with

aP/i = apx i+ apyj+ apzk aP/b = d̈k rP/Q = xRi+ dk vP/b = ḋk

aCM/i ≡ ax i+ ayj+ azk αb/i ≡ αx i+ αyj+ αzk ωb/i ≡ ωx i+ ωyj+ ωzk

and consider only the components along k:

apz = d̈ + az − αyxR − d
(
ω2x + ω2y

) + xRωxωz

The z-component of force required to produce this acceleration is given by m(apz),
and is provided by the mass attraction force (mG) toward the Earth’s cm (Section
1.4), spring force, and viscous-damping force, that is,

m(apz) = mGz − ksd − bḋ,

where ks is the accelerometer spring constant and b is the accelerometer viscous
damping constant. Equating these two force expressions and rearranging terms gives

d̈ + b

m
ḋ + ks

m
d − d

(
ω2x + ω2y

) = Gz − (az − αyxR + xRωxωz)

Note that the last term on the right is the transport acceleration of point R in Fi .
The reading of the accelerometer is represented by d. The derivatives of d come

into play when the accelerometer has to respond to a changing acceleration; here we
will focus on the steady-state behavior with a constant acceleration input and neglect
the derivatives. The variable position of the proof mass will cause a measurement
error through the term d(ω2x +ω2y); this is eliminated in high-sensitivity accelerome-
ters by using a “force rebalancing” technique, which measures the force required to
maintain d and its derivatives very close to zero.
Acceleration in the z direction corresponds to negative d, so the steady-state

accelerometer reading is

reading ∝ (
a′
z −Gz

)
, (1.2-13a)

where

a′
z = (az − αyxR + xRωx ωz) (1.2-13b)

Equation (1.2-13a) shows that, in general, this type of accelerometer responds to the
pertinent component of (a−G) at its location. If the mass of the rigid body plus ac-
celerometer isM , and the applied “contact force” (i.e., not counting the gravitational
field force) is F, the accelerometer responds to (F+MG)/M −G, or simply F/M .
This quantity is a specific force, denoted by f , and so an accelerometer measures a
component of the specific contact force given by
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f = a −G (1.2-14)

in whatever acceleration units are chosen.
As an example of Equation (1.2-14) consider a stationary accelerometer on the

surface of the Earth, with its sensitive axis aligned with a plumb-bob measurement of
the vertical. Neglecting the inertial acceleration of the Earth’s cm, the term a will be
the small centripetal acceleration due to the Earth’s rotation. The G term depends
on distance from Earth’s cm, but is close to 9.8 m/s2 in magnitude and directed
toward the Earth’s cm (see Section 1.4). The measurement f is the specific force due
to the upward reaction of the Earth on the accelerometer, and will be exactly equal to
the negative of the weight mg divided by the mass m (i.e., it will be −g), where g
is the local gravity vector. Alternatively, if the accelerometer is in free fall above the
Earth, a = G, f = 0, and the accelerometer reading is zero.
The accelerometer reading can be made dimensionless by dividing by |g|, and

accelerometers are commonly calibrated to read 1.0 g-units when stationary on the
Earth’s surface and having their sensitive axis parallel to the plumb-bob vertical.
Therefore, the accelerometer measurement of specific force, at any location, can be
obtained by multiplying the scale reading by the gravity value used for calibration,
in whatever units are desired. It is evident that G must be known accurately to get an
accurate value of acceleration from an accelerometer measurement of specific force
(Section 1.4).

Quaternions and Vectors

Here we will show that the vector rotation formula can be expressed much more
compactly in terms of quaternions. W. R. Hamilton (1805–1865) introduced the
quaternion form:

x0 + x1i + x2j + x3k

with,

i2 = j 2 = k2 = ijk = −1, ij = k, jk = i, ki = j = −ik
in an attempt to generalize complex numbers in a plane to three dimensions. Quater-
nions obey the normal laws of algebra, except that multiplication is not commutative.
Multiplication is defined by the associative law, for example, if,

r = (p0 + p1i + p2j + p3k)× (q0 + q1i + q2j + q3k)

then,

r = p0q0 + p0q1i + p0q2j + p0q3k + p1q0i + p1q1i
2 + . . .

By using the rules for i, j, k products, and collecting terms, the answer can be written
in various forms, for example,
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

r0
r1
r2
r3


 =



p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0





q0
q1
q2
q3




Alternatively, by interpreting i, j, k as unit vectors, the quaternion can be treated as
(q0 + q), where q is the quaternion vector part, with components q1, q2, q3, along
i, j,k. We will write the quaternion as an array, formed from q0 and the vector
components, thus

p =
[
p0

pr

]
q =

[
q0

qr

]
, (1.2-15)

where components of the vector are taken in a reference system r , to be chosen when
the quaternion is applied. The above multiplication can be written as

p ∗ q =
[

p0q0 − p · q
(p0q+ q0p+ p× q)r

]
, (1.2-16)

where “∗” indicates quaternion multiplication. We will use (1.2-15) and (1.2-16) as
the definitions of quaternions and quaternion multiplication. Quaternion properties
can now be derived using ordinary vector operations.

Quaternion Properties

(i) Quaternion Noncommutativity Consider the following identity:

p ∗ q − q ∗ p =
[ 0

(p× q− q× p)r

]
=

[ 0

2(p× q)r

]

It is apparent that, in general,

p ∗ q �= q ∗ p
(ii) The Quaternion Norm The norm of a quaternion is defined to be the sum of
the squares of its elements:

norm(q) =
i=3∑
i=0

q2i

(iii) Norm of a Product Using the definition of the norm, and vector operations,
it is straightforward to show (Problem 1.2-9) that the norm of a product is equal to
the product of the individual norms:

norm(p ∗ q) = norm(p)× norm(q)
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(iv) Associative Property over Multiplication The associative property:

(p ∗ q) ∗ r = p ∗ (q ∗ r)

is proven in a straightforward manner.

(v) The Quaternion Inverse Consider the following product,

[
q0

qr

]
∗
[

q0

−qr
]

=
[

q20 + q · q
(q0q− q0q− q× q)r

]
=




∑
q2i

0

0

0




We see that multiplying a quaternion by another quaternion, which differs only by
a change in sign of the vector part, produces a quaternion with a scalar part only. A
quaternion of the latter form will have very simple properties in multiplication (i.e.,
multiplication by a constant) and, when divided by the quaternion norm, will serve
as the “identity quaternion.” Therefore, the inverse of a quaternion is defined by

q−1 =
[
q0

qr

]−1
= 1

norm(q)

[
q0

−qr
]

(1.2-17)

However, we will work entirely with unit-norm quaternions, thus simplifying many
expressions.

(vi) Inverse of a Product The inverse of a quaternion product is given by the
product of the individual inverses in the reverse order. This can be seen as follows:

(p ∗ q)−1 = 1

norm(p ∗ q)
[

p0q0 − p · q
−(p0q+ q0p+ p× q)r

]

= 1

norm(q)

[
q0

−qr
]

∗
[

p0

−pr
]

1

norm(p)

Therefore,

(p ∗ q)−1 = q−1 ∗ p−1

Vector Rotation by Quaternions

A quaternion can be used to rotate a Euclidean vector in the same manner as the
rotation formula, and the quaternion rotation is much simpler in form. The vector
part of the quaternion is used to define the rotation axis, and the scalar part to define
the angle of rotation. The rotation axis is specified by its direction cosines in the
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reference coordinate system, and it is convenient to impose a unity norm constraint
on the quaternion. Therefore, if the direction angles of the axis are α, β, and γ , and
a measure of the rotation angle is δ, the rotation quaternion is written as

q =




cos δ
cosα sin δ
cosβ sin δ
cos γ sin δ


 =

[
cos δ
sin δ nr

]
, (1.2-18)

where n is a unit vector along the rotation axis,

nr = [
cosα cosβ cos γ

]T
and,

norm(q) = cos2 δ + sin2 δ (cos2 α + cos2 β + cos2 γ ) = 1

This formulation also guarantees that there is a unique quaternion for every value of
δ in the range ±180 degrees, thus encompassing all possible rotations.
Now consider the form of the transformation, which must involve multiplication.

For compatibility of multiplication between vectors and quaternions, a Euclidean
vector is written as a quaternion with a scalar part of zero, thus

u =
[
0

ur

]

The result of the rotation must also be a quaternion with a scalar part of zero, the
transformation must be reversible by means of the quaternion inverse, and Euclidean
length must be preserved. The transformation v = q ∗ u obviously does not satisfy
the first of these requirements. Therefore, we consider the transformations:

v = q ∗ u ∗ q−1 or v = q−1 ∗ u ∗ q,

which are reversible by performing the inverse operations on v. The second of these
transformations leads to the convention most commonly used:

v = q−1 ∗ u ∗ q =
[

q0(q · u)− (q0u− q× u) · q
((q · u)q+ q0(q0u− q× u)+ (q0u− q× u)× q)r

]
,

which reduces to

v = q−1 ∗ u ∗ q =
[

0

(2q(q · u)+ (
q20 − q · q)u− 2q0(q× u))r

]
(1.2-19)
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Therefore, this transformation meets the requirement of zero scalar part. Also, be-
cause of the properties of quaternion norms, the Euclidean length is preserved. For a
match with the rotation formula, we require:

rotation formula quaternion rotation
(1− cosµ) n(n · u) 2 sin2 δ n(n · u)

cosµ u (cos2 δ − sin2 δ) u
− sinµ (n × u) −2 cos δ sin δ (n× u)

The corresponding terms agree if δ = µ/2 and half-angle trigonometric identities are
applied. Therefore, the quaternion

q =
[
cos(µ/2)

sin(µ/2)nr

]
(1.2-20a)

and transformation

q−1 ∗ u ∗ q (1.2-20b)

give a left-handed rotation of a vector u through an angle µ, around n, when µ is
positive.

1.3 MATRIX ANALYSIS OF KINEMATICS

Properties of Linear Transformations

Before studying matrix representation of kinematic relationships, we will review
some pertinent matrix theory. Consider the matrix equation

v = Au, (1.3-1)

where v and u are (n × 1) matrices (e.g., vector component arrays) and A is an
(n × n) constant matrix, not necessarily nonsingular. Each element of v is a linear
combination of the elements of u, and so this equation is a linear transformation of
the matrix u. Next, suppose that in an analysis we change to a new set of variables
through a reversible linear transformation. If L is the matrix of this transformation,
then L−1 must exist (i.e., L is nonsingular) for the transformation to be reversible,
and the new variables corresponding to u and v are

u1 = Lu, v1 = Lv

Therefore, the relationship between the new variables must be

v1 = LAu = LAL−1u1 (1.3-2a)
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The transformation LAL−1 is a similarity transformation of the original coefficient
matrix A. A special case of this transformation occurs when the inverse of the ma-
trix L is given by its transpose (i.e., L is an orthogonal matrix) and the similarity
transformation becomes a congruence transformation, LALT .
As an important example of a linear transformation, consider the linear state

equation (1.1-3) with a nonsingular change of variables z = Lx. The state equation
in terms of the z-variables is

ż = (LAL−1)z+ (LB)u (1.3-2b)

and L can be chosen so that the state equations have a much simpler form, as shown
below.

Eigenvalues and Eigenvectors

A square-matrix linear transformation has the property that vectors exist whose com-
ponents are only scaled by the transformation. If v is such an “invariant” vector, its
components must satisfy the equation

Av = λv, v(n× 1), (1.3-3)

where A is the transformation matrix and λ is a (scalar) constant of proportionality.
A rearrangement of (1.3-3) gives the set of homogeneous linear equations

(A− λI)v = 0, (1.3-4)

which has a non-null solution for v if, and only if, the determinant of the coefficient
matrix is zero (Strang, 1980); that is,

|A− λI | = 0 (1.3-5)

This determinant is an n-th order polynomial in λ, called the characteristic polyno-
mial ofA, so there may be up to n distinct solutions for λ. Each solution, λi , is known
as an eigenvalue or characteristic value of the matrixA. The associated invariant vec-
tor defined by (1.3-3) is known as a right eigenvector of A (the left eigenvectors of
A are the right eigenvectors of its transpose AT ).
In the mathematical model of a physical system, a reversible change of internal

variables does not usually change the behavior of the system if observed at the same
outputs. An example of this is the invariance of the eigenvalues of a linear system,
described by Equation (1.1-3), under the similarity transformation (1.3-2b). After the
similarity transformation, the eigenvalues are given by

∣∣(λI − LAL−1)
∣∣ = 0,

which can be rewritten as
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∣∣(λLL−1 − LAL−1)
∣∣ = 0

The determinant of a product of square matrices is equal to the product of the indi-
vidual determinants; therefore,

|L| × |(λI − A)| × ∣∣L−1∣∣ = 0 (1.3-6)

This equation is satisfied by the eigenvalues of the matrix A, so the eigenvalues are
unchanged by the transformation.
Now consider a special similarity transformation that will reduce the linear equa-

tions to a canonical (standard) form. First, consider the case when all of the n eigen-
values of the coefficient matrix A are distinct. Then the n eigenvectors vi can be
shown to form a linearly independent set; therefore, their components can be used to
form the columns of a nonsingular transformation matrix. This matrix is called the
modal matrix, M , and

M = [v1 v2 · · · vn]
According to the eigenvector/eigenvalue defining equation (1.3-3), if M is a modal
matrix, we find that

AM = MJ and J = diag(λ1 · · · λn),
or

M−1AM = J (1.3-7a)

When some of the eigenvalues of A are repeated (i.e., multiple), it may not be
possible to find a set of n linearly independent eigenvectors. Also, in the case of
repeated eigenvalues, the result of the similarity transformation (1.3-7a) is in general
a Jordan-form matrix (Wilkinson and Golub, 1976). In this case the matrix J may
have some unit entries on the superdiagonal. These entries are associated with blocks
of repeated eigenvalues on the main diagonal.
As an example, the linear state equation (1.3-2b), with L−1 = M , becomes

ż = Jz+M−1Bu (1.3-7b)

This corresponds to a set of state equations with minimal coupling between them. For
example, if the eigenvalue λi is of multiplicity 2, and the associated Jordan block has
a superdiagonal 1, we can write the corresponding equations as

żi = λizi + zi+1 + b′
iu

żi+1 = λizi + b′
i+1u (1.3-7c)

The variables zi are called the modal coordinates. When the eigenvalues are all dis-
tinct, the modal coordinates yield a set of uncoupled first-order differential equations.
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Their homogeneous solutions are the exponential functions eλi t , and these are the nat-
ural modes of (behavior of) the dynamic system (see Section 3.2). A disadvantage of
the modal coordinates is that the state variables usually lose their original physical
significance.

The Scalar Product

If ua and va are column arrays of the same dimension, their scalar product is (ua)T va ,
for example,

(ua)T va = [
ux uy uz

] vxvy
vz


 = uxvx + uyvy + uzvz (1.3-8a)

and this result is identical to (1.2-3) obtained from the vector dot product. The scalar
product allows us to find the norm of a column matrix:

|va| = (
(va)T va

)1/2
(1.3-8b)

In Euclidean space this is the length of a vector.

The Cross-Product Matrix

Suppose that the cross-product ω × v is to be evaluated in system a, where ω and v
have components given by

ωa =

 PQ
R


 va =


 xy
z




Then it is easy to show (Problem 1.3-1), using the determinant formula for the cross-
product, that

(ω × v)a =

 0 −R Q

R 0 −P
−Q P 0




 xy
z


 ≡ 8a va (1.3-9)

The same idea can be applied to the vector triple product. For example,

(ω × (ω × v))a =

 0 −R Q

R 0 −P
−Q P 0



2 
 xy
z


 ≡ (8a)2 va (1.3-10)

The symbol8will be used throughout to denote the cross-product matrix correspond-
ing to the operation (ω × ) when ω is an angular velocity vector. For other vectors,
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a tilde symbol over the vector will be used to denote the cross-product matrix. A
cross-product matrix is skew-symmetric, that is,

8T = −8 ≡ −ω̃ (1.3-11)

and therefore the square of the cross-product matrix is symmetric. Note that in the
general case the matrix operations must be written in the same order as the vector
operations, but may be performed in any order (the associative property for matrix
multiplication).

Coordinate Rotation

When the rotation formula (1.2-6) is resolved in a coordinate system a, the result is

va = [
(1− cosµ) na(na)T + cos(µ)I − sin(µ) ña

]
ua, (1.3-12)

where na(na)T is a square matrix, I is the identity matrix, and ña is a cross-product
matrix. This formula was developed as an “active” vector operation in that a vector
was being rotated to a new position by means of a left-handed rotation about the
specified unit vector. In component form, the new array can be interpreted as the
components of a new vector in the same coordinate system, or as the components of
the original vector in a new coordinate system, obtained by a right-handed coordinate
rotation around the specified axis. This can be visualized in Figure 1.3-1, which shows
a b coordinate system obtained by a right-handed rotation around the z-axis. If the
vector is next given a left-handed rotation through µ, then (xb, yb) will become the
components in the original system. Taking the coordinate-system rotation viewpoint,
and combining the matrices in (1.3-12) into a single coefficient matrix, this linear
transformation can be written as

ub = Cb/a ua (1.3-13)

Figure 1.3-1 A plane rotation of coordinates.
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Here Cb/a is a matrix that transforms the components of the vector u from system a

to system b, and is called a direction cosine matrix, or simply a rotation matrix.
We will look briefly at some of the properties of the rotation matrix, and then at

how it may be determined in applications. A coordinate rotation must leave the length
of a vector unchanged. The change of length under the rotation above is

(
ub

)T
ub = (

Cb/aua
)T
Cb/aua = (

ua
)T
CTb/aCb/a u

a

and the length is preserved if

CTb/a Cb/a = I = Cb/a C
T
b/a (1.3-14)

This is the definition of an orthogonal matrix, and it makes the inverse matrix partic-
ularly easy to determine (C−1 = CT ). It also implies that the columns (and also the
rows) of the rotation matrix form an orthonormal set:

C = [c1 c2 c3] cTi cj =
{
0, i �= j

1, i = j

Also, since

c1 = C


 10
0




columns of the rotation matrix give us the components, in the new system, of a unit
vector in the old system.
If a vector is expressed in a new coordinate system by a sequence of rotations as

ud = Cd/c Cc/b Cb/a ua, (1.3-15)

then the inverse operation is given by

ua = (
Cd/cCc/bCb/a

)−1
ud = C−1

b/aC
−1
c/bC

−1
d/cu

d = CTb/aC
T
c/bC

T
d/cu

d

or

ua = (
Cd/cCc/bCb/a

)T
ud = (

Cd/a
)T
ud (1.3-16)

A better understanding of coordinate rotations can be obtained by examining
the eigenvalues of the (3 × 3) rotation matrix. Goldstein (1980) shows that any
nontrivial rotation matrix has one, and only one, eigenvalue equal to+1, and that this
corresponds to a theorem proved by Leonhard Euler (1707–1783) for a rigid body.
The other two eigenvalues are a complex conjugate pair with unit magnitude, and
can be written as (cosφ ± j sin φ). Therefore, using a similarity transformation, and
writing separate equations for the real and imaginary parts, it is possible to transform
any rotation matrix C to the form of a plane rotation matrix P , for example,
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P =

 cosφ sin φ 0

− sin φ cosφ 0
0 0 1


 (1.3-17)

The matrix (1.3-17) corresponds to a single rotation through an angle φ about the
z-axis. It shows that the orientation of one coordinate frame with respect to another is
uniquely determined by a single rotation about a unique axis (the Euler axis), and this
is the essence of Euler’s theorem. This principle is used as the basis of the quaternion
representation of rotation.

Summary of Rotation Matrix Properties

(i) Successive rotations can be described by the product of the individual rotation
matrices; cf. (1.3-15).

(ii) Rotation matrices are not commutative, for example, Cc/bCb/a �= Cb/aCc/b.

(iii) Rotation matrices are orthogonal matrices, for example, (1.3-14).

(iv) The determinant of a rotation matrix is unity.

(v) A nontrivial rotation matrix has one, and only one, eigenvalue equal to unity.

Euler Rotations

The direction cosine matrix is so-called because its elements can be determined from
dot products that involve the direction cosines between corresponding axes of the new
and old coordinate systems. Here we will determine the rotation matrix in a way that
is better suited to visualizing aircraft orientation.
The orientation of one Cartesian coordinate system with respect to another can

always be described by three successive rotations, and the angles of rotation are
called the Euler angles (or Eulerian angles). These angles are specified in various
ways in different fields of science, and the reader should be aware that there are small
differences in many of the formulae in the literature as a result of this. In the aerospace
field the rotations are performed, in a specified order, about each of the three Cartesian
axes in succession. That is, they are performed in each of the three coordinate planes,
and are therefore called plane rotations.
Figure 1.3-1 shows a plane rotation, in which coordinate system b has been rotated

relative to system a. The systems are right-handed, with the z-axis coming out of the
page, and the rotation is a right-handed rotation about the z-axis, through the angleµ.
Assume that the components of the vector u are known in system a, and that we need
to know its components in b. Equation (1.3-12) readily gives the rotation matrix, or
simple trigonometry can be applied to the figure (Problem 1.3-2); the result is

 xbyb
zb


 =


 cosµ sinµ 0

− sinµ cosµ 0
0 0 1




 xaya
za


 (1.3-18)
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Henceforth the plane rotation matrix will be written immediately by inspection.
The unit and zero elements correspond to the coordinate that does not change, and
the remaining elements are always cosines on the main diagonal and sines off the
diagonal (so that zero rotation produces the identity matix). The negative sine element
always occurs on the row above the one containing the unit element when the second
system is reached by a right-handed rotation (note that the third row is considered as
being above the first row). Note that changing the sign of the rotation angle yields the
matrix transpose.
Three-dimensional coordinate rotations can now be built up as a sequence of plane

rotations. The fact that the individual rotations are not commutative can be checked
by performing sequences of rotations with any convenient solid object. Therefore,
although the order of the sequence can be chosen arbitrarily, the same order must be
maintained ever after. For example, standard aircraft practice is to describe the aircraft
orientation by the z, y, x (also called 3, 2, 1) right-handed rotation sequence that is
required to get from a reference system on the surface of the Earth into alignment
with an aircraft body-fixed coordinate system. Therefore, starting from the reference
system, the sequence of rotations is:

1. Right-handed rotation about the z-axis (positive ψ)

2. Right-handed rotation about the new y-axis (positive θ )

3. Right-handed rotation about the new x-axis (positive φ)

The reference system, on the Earth, normally has its z-axis pointing down and the
aircraft axes are normally aligned forward, starboard, and down. Starting with the
aircraft axes aligned with the corresponding reference axes, we see that this sequence
corresponds first to a right-handed rotation around the aircraft z-axis, which is a
positive “yaw.” This is followed by a right-handed rotation around the aircraft y-axis,
which is a positive “pitch,” and a right-handed rotation around the aircraft x-axis,
which is a positive “roll.” Therefore, the rotations are often described as a yaw-pitch-
roll sequence, starting from the reference system.
The plane rotation matrices can be written down immediately with the help of the

rules established above. Thus, abbreviating cosine and sine to c and s, and using r
and b to denote reference and body systems, we get

ub =

 1 0 0
0 cφ sφ
0 −sφ cφ




 cθ 0 −sθ
0 1 0
sθ 0 cθ




 cψ sψ 0

−sψ cψ 0
0 0 1


 ur (1.3-19)

Let Cb/r denote the complete transformation from the reference system to the body
system. Then, multiplying out these transformations, we get:

Cb/r =

 cθ cψ cθ sψ −sθ
(−cφ sψ + sφ sθ cψ) (cφ cψ + sφ sθ sψ) sφ cθ
(sφ sψ + cφ sθ cψ) (−sφ cψ + cφ sθ sψ) cφ cθ


 (1.3-20)
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This matrix represents a standard transformation, and will be used throughout the
text.
The Euler angles are not unique for a given orientation. For example, imagine an

aircraft performing a vertical loop with the pilot’s head inside the loop. This could be
represented by a pitch angle that is continuous in the range −π < θ ≤ π , and zero
roll and yaw angles. Alternatively, we can restrict the pitch-attitude angle to ±π/2
and, when the pitch attitude reaches π/2, we can allow the roll and yaw angles to
change abruptly by π radians (inverted and heading in the opposite direction). The
pitch attitude will then begin to decrease, passing through zero when the plane is
at the top of the loop and reaching −π/2 when it is nose down, at which point the
roll and yaw angles change back to zero. This is a more mathematically convenient
choice, and so pitch is normally restricted to±π/2. The Euler angles are then unique,
apart from the case when the pitch is exactly±π/2 and the roll and yaw are undefined
during their abrupt transition.

Matrix Kinematic Relationships for Rotation

Given a set of time-varying Euler angles describing a rotating frame, it is not difficult
to determine the components of the angular velocity vector. For example, let the
orientation of a coordinate system in frame Fb, relative to a system in reference frame
Fr , be described by the aircraft standard yaw (ψ), pitch (θ), roll (φ) sequence of Euler
rotations. Also, let the Euler angles have derivatives ψ̇, θ̇ , φ̇. Starting from Fr , using
two intermediate frameswhose relative angular velocities are given by the Euler angle
rates, and the additive property of angular velocity, we obtain

ωbb/r =

 φ̇0
0


 + Cφ




 0θ̇
0


 + Cθ


 0
0
ψ̇




 ,

where Cφ and Cθ are the right-handed plane rotations through the particular Euler
angles, as given in Equation (1.3-19). After multiplying out the matrices, the final
result is

ωbb/r ≡

 PQ
R


 =


 1 0 −sθ

0 cφ sφ cθ
0 −sφ cφ cθ




 φ̇

θ̇

ψ̇


 , (1.3-21)

where P,Q,R are standard symbols for, respectively, the roll, pitch, and yaw rate
components of the aircraft angular-velocity vector. The inverse transformation is

 φ̇

θ̇

ψ̇


 =


 1 tθ sφ tθ cφ
0 cφ −sφ
0 sφ/cθ cφ/cθ




 PQ
R


 (1.3-22a)
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We will use the following matrix notation for these equations:

<̇ = H(<)ωbb/r (1.3-22b)

Equations (1.3-21) and (1.3-22) will be referred to as the Euler kinematical equa-
tions. Note that the Euler-angle derivatives are each in a different coordinate system,
and so the array of derivatives does not represent the components of a vector. There-
fore, the equations do not represent coordinate transformations, and the coefficient
matrices are not orthogonal matrices. Note also that Equations (1.3-22) have a singu-
larity when θ = ±π/2. In addition, if these equations are used in a simulation, the
Euler-angle rates may integrate up to values outside the Euler-angle range. There-
fore, logic to deal with this problem must be included in the computer code. Despite
these disadvantages the Euler kinematical equations are commonly used in aircraft
simulation.
An alternative set of kinematic equations can be derived as follows. The reference

system to body-fixed coordinate system transformation was

ub = Cb/r ur

Performing the operations of matrix multiplication in terms of the columns of C
shows us that a vector ci , whose (time-varying) components in Fb are given by the
i-th column ofCb/r , represents a (fixed) unit vector in Fr . Now, applying the equation
of Coriolis to the derivative of this vector in the two frames, we have

0 = r ċi = bċi + ωb/r × ci i = 1, 2, 3

Resolving in Fb,

0 = bċbi +8b
b/rc

b
i i = 1, 2, 3

The term bċbi is the derivative of the i-th column of Cb/r . If we combine the three
equations into one matrix equation, the result is

Ċb/r = −8b
b/r Cb/r (1.3-23)

These equations are known as Poisson’s kinematical equations or, in inertial navi-
gation, as the strapdown equation. Whereas Equations (1.3-22) deal with the Euler
angles, this equation deals directly with the elements of the rotation matrix. The com-
ponents P,Q,R, of the angular velocity vector are, of course, contained in8. Com-
pared to the Euler kinematical equations, the strapdown equation has the advantage
of being singularity-free and the disadvantage of a large amount of redundancy (nine
scalar equations).
When the strapdown equation is used in a simulation, the Euler angles are not

directly available and must be calculated from the direction cosine matrix as follows.
Let the elements of the rotation matrix (1.3-20) be denoted by cij . Then for this
definition of Euler angles and rotation order, we see that
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θ = − sin−1 (c13)

φ = atan2 (c23, c33) (1.3-24)

ψ = atan2 (c12, c11),

where atan2( ) is the four-quadrant inverse tangent function, available in most
programming languages. These equations automatically put the Euler angles into the
ranges discussed earlier.

Derivative of an Array

It is interesting to consider formulae for the derivative of an array, and look for a
parallel to the equation of Coriolis. Starting from a time-varying coordinate transfor-
mation of the components of a general vector,

ub = Cb/a ua

with coordinate systems a and b fixed in Fa and Fb, differentiate the arrays on both
sides of the equation. Differentiating the ub array is equivalent to taking the derivative
in Fb with components taken in system b, therefore,

bu̇b = Cb/a
au̇a + Ċb/a ua

or,

bu̇b = au̇b + Ċb/a ua

Now use the Poisson equations to replace Ċb/a (note that we used the equation of
Coriolis to derive the Poisson equations, but they could have been derived in other
ways),

bu̇b = au̇b −8b
b/aCb/au

a

or,

bu̇b = au̇b +8b
a/bu

b (1.3-25)

Equation (1.3-25) is Equation (1.2-7) (the equation of Coriolis) resolved in coordinate
system b.

Quaternion Coordinate Rotation

Referring to the quaternion rotation formulae (1.2-20) and the discussion of Equation
(1.3-13), we again take the viewpoint that positive µ is a right-handed coordinate
rotation rather than a left-handed rotation of a vector. We will define the quaternion
that performs the coordinate rotation from system a to system b to be qb/a , therefore,
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qb/a ≡
[
cos(µ/2)

sin(µ/2)nr

]
(1.3-26a)

and the coordinate transformation is

ub = q−1
b/a ∗ ua ∗ qb/a (1.3-26b)

Equation (1.3-26b) can take the place of the direction cosine matrix transformation
(1.3-13), and the coordinate transformation is thus achieved by a single rotation
around an axis aligned with the quaternion vector n sin(µ/2). Euler’s theorem shows
that the same coordinate rotation can be achieved by a plane rotation around the
unique axis corresponding to an eigenvector of the rotation matrix. Therefore, the
vector n must be parallel to this eigenvector, and so

nb = Cb/a na = na,

which shows that the quaternion vector part has the same components in system a or
system b. In (1.3-26a) the reference coordinate system r may be either a or b. We
will postpone, for the moment, the problem of finding the rotation quaternion without
finding the direction cosine matrix and its eigenstructure, and instead examine the
properties of the quaternion transformation.
Performing the inverse transformation to (1.3-26b) shows that

(qb/a)
−1 = qa/b (1.3-27)

Also, for multiple transformations,

uc = q−1
c/b ∗ q−1

b/a ∗ ua ∗ qb/a ∗ qc/b, (1.3-28)

which, because of the associative property, means that we can also perform this
transformation with the single quaternion given by

q−1
c/a = q−1

c/b ∗ q−1
b/a

or,

qc/a = qb/a ∗ qc/b (1.3-29)

The quaternion coordinate transformation (1.3-26b) actually involves more arith-
metic operations than premultiplication of ua by the direction cosine matrix. How-
ever, when the coordinate transformation is evolving with time, the time-update of the
quaternion involves differential equations (following shortly) that are numerically
preferable to the Euler kinematical equations and more efficient than the Poisson
kinematical equations. In addition, the quaternion formulation avoids the singularity
of the Euler equations.
In simulation and control, we often choose to keep track of orientation with a

quaternion and construct the direction cosine matrix from the quaternion as needed.
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It is easy to construct the quaternion for a simple plane rotation, but for a compound
rotation (e.g., yaw, pitch, and roll combined) the quaternion rotation axis is not
evident. Therefore, we initialize the quaternion from Euler angles or the direction
cosine matrix. We now derive the relationships between the quaternion and the Euler
angles and direction cosine matrix.

Direction Cosine Matrix from Quaternion

If we write the quaternion rotation formula (1.2-19) in terms of array operations,
using the vector part of the quaternion, we get

ub = [
2qa(qa)T + (

q20 − (qa)T qa
)
I − 2q0q̃a

]
ua (1.3-30)

The cross-product matrix q̃a is given by

q̃a =

 0 −q3 q2

q3 0 −q1
−q2 q1 0


 (1.3-31)

Now, evaluating the complete transformation matrix in (1.3-30), we find that

Cb/a =



(
q20 + q21 − q22 − q23

)
2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3)
(
q20 − q21 + q22 − q23

)
2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1)
(
q20 − q21 − q22 + q23

)



(1.3-32)

This expression for the rotation matrix, in terms of quaternion parameters, corre-
sponds to Equations (1.3-26) and the single right-handed rotation around n, through
the angle µ. Equation (1.3-32) is independent of any choice of Euler angles. We now
show how a quaternion may be determined for any given sequence of Euler rotations.

Quaternion from Euler Angles

For the yaw, pitch, roll sequence described by (1.3-19) the quaternion formulation is

vb = q−1
rollq

−1
pitchq

−1
yawv

rqyawqpitchqroll

If we think of this equation as three successive transformations, with pairs of quater-
nions, the rotation axes for the quaternions are immediately evident:

qyaw =



cos(ψ/2)

0
0

sin(ψ/2)


 qpitch =



cos(θ/2)

0
sin(θ/2)

0


 qroll =



cos(φ/2)
sin(φ/2)

0
0



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These transformations can be multiplied out, using quaternion multiplication, with
only a minor amount of pain. The result is

q0 = ±(cosφ/2 cos θ/2 cosψ/2+ sin φ/2 sin θ/2 sinψ/2)

q1 = ±(sin φ/2 cos θ/2 cosψ/2− cosφ/2 sin θ/2 sinψ/2)

q2 = ±(cosφ/2 sin θ/2 cosψ/2+ sin φ/2 cos θ/2 sinψ/2)

q3 = ±(cosφ/2 cos θ/2 sinψ/2− sin φ/2 sin θ/2 cosψ/2)

(1.3-33)

and these are the elements of qb/r . A plus or minus sign has been added to these
equations because neither (1.3-26b) nor (1.3-32) is affected by the choice of sign.
The same choice of sign must be used in all of Equations (1.3-33).

Quaternion from Direction Cosine Matrix

The quaternion parameters can also be calculated from the elements {cij } of the gen-
eral direction cosine matrix. If terms on the main diagonal of (1.3-32) are combined,
the following relationships are obtained:

4q20 = 1+ c11 + c22 + c33

4q21 = 1+ c11 − c22 − c33

4q22 = 1− c11 + c22 − c33

4q23 = 1− c11 − c22 + c33

(1.3-34a)

These relationships give the magnitudes of the quaternion elements but not the signs.
The off-diagonal terms in (1.3-32) yield the additional relationships

4q0q1 = c23 − c32 4q1q2 = c12 + c21

4q0q2 = c31 − c13 4q2q3 = c23 + c32

4q0q3 = c12 − c21 4q1q3 = c13 + c31

(1.3-34b)

From the first set of equations, (1.3-34a), the quaternion element with the largest
magnitude (at least one of the four must be nonzero) can be selected. The sign
associated with the square root can be chosen arbitrarily, and then this variable can
be used as a divisor with (1.3-34b) to find the remaining quaternion elements. An
interesting quirk of this algorithm is that the quaternion may change sign if the
algorithm is restarted with a new set of initial conditions. This will have no effect on
the rotation matrix given in (1.3-32). Algorithms like this are discussed in Shoemake
(1985) and Shepperd (1978).
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The Quaternion Kinematical Equations

When two frames are in relative angular motion, and we wish to keep track of the
relative orientation by means of a quaternion, a method is required for continuously
updating the quaternion. This takes the form of a differential equation for the quater-
nion, with the coefficients determined from the relative angular rates. The equation
is analagous to the Euler and Poisson kinematical equations.
Let the orientation of a rotating frameFb, relative to a reference frameFr , be given,

at time t , by the quaternion qb/r (t). Also, as in Figure 1.2-3, let the instantaneous
angular velocity of Fb be in the direction of a unit vector ŝ, with magnitude ω. Then,
in a small time interval δt , the quaternion δqb/r , which describes the incremental
coordinate rotation around ŝ, can be found by using small angle approximations in
(1.3-26a):

δqb/r (δt) ≈
[

1

ŝb ωδt/2

]

At time t + δt the rotation is given by the quaternion qb/r (t + δt), where

qb/r (t + δt) = qb/r (t) ∗ δqb/r (δt)

(Note that the order of the multiplication matches (1.3-29) ). By definition the deriva-
tive of qb/r (t) is, temporarily omitting the subscripts,

dq

dt
= Lim

δt→0

q(t) ∗ [
δq − Iq

]
δt

,

where Iq is the identity quaternion. Substituting for δq gives

dq

dt
= 1

2 q(t) ∗
[
0

ŝbω

]
= 1

2 q(t) ∗ ωb

This result can be written formally as:

q̇b/r = 1
2 qb/r ∗ ωbb/r (1.3-35)

Replacing the quaternion multiplication by matrix multiplication, Equation (1.3-35)
can be put into the form

q̇ = 1
2

[
0 −ωT

ω −8

][
q0

q

]

Writing this out in full, using the body-system components of ωb/r , gives
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

q̇0

q̇1

q̇2

q̇3


 = 1

2




0 −P −Q −R
P 0 R −Q
Q −R 0 P

R Q −P 0





q0

q1

q2

q3


 (1.3-36)

This equation is widely used in simulation of rigid-body motion, and in discrete
form it is used in digital attitude control systems (e.g., for satellites) and for inertial
navigation digital processing.

1.4 GEODESY, EARTH’S GRAVITATION,TERRESTRIAL NAVIGATION

Geodesy is a branch of mathematics that deals with the shape and area of the Earth.
Some ideas and facts from geodesy are needed to simulate the motion of an aerospace
vehicle around the Earth. In addition, some knowledge of the Earth’s gravitation
is required. Useful references are Encyclopaedia Britannica (1987), Heiskanen and
Moritz (1967), Kuebler and Sommers (1981), NIMA (1997), and Vanicek and Kra-
kiwsky (1982).

The Shape and Gravitation of the Earth,WGS-84

Simulation of high-speed flight over large areas of the Earth’s surface, with accurate
equations of motion and precise calculation of position, requires an accurate model
of the Earth’s shape, rotation, and gravity. The shape of the Earth can be well mod-
eled by an ellipsoid of revolution (i.e., a spheroid). The polar radius of the Earth is
approximately 21 km less than the equatorial radius, so the generating ellipse must
be rotated about its minor axis, to produce an oblate spheroidal model. Organizations
from many countries participate in making accurate measurements of the parameters
of such models. In the United States the current model is the Department of Defense
World Geodetic System 1984, or WGS-84, and the agency responsible for support-
ing this model is the National Imagery andMapping Agency (NIMA) (NIMA, 1997).
The Global Positioning System (GPS) relies on WGS-84 for the ephemerides of its
satellites.
The equipotential surface of the Earth’s gravity field that coincides with the undis-

turbed mean sea level, extended continuously underneath the continents, is called the
geoid. Earth’s irregular mass distribution causes the geoid to be an undulating sur-
face, and this is illustrated in Figure 1.4-1. Note that the local vertical is defined by
the direction in which a plumb-bob hangs and is accurately normal to the geoid. The
angle that it makes with the spheroid normal is called the deflection of the vertical,
and is usually less than 10 arc-sec (the largest deflections over the entire Earth are
about 1 arc-min).
The WGS-84 spheroid has its center at the Earth’s cm, and was originally (1976–

1979 data) a least-squares best fit to the geoid. More recent estimates have slightly
changed the “best fit” parameters, but the current WGS-84 spheroid now uses the
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Figure 1.4-1 The geoid and definitions of height.

original parameters as its defining values. Based on a 1° by 1° (latitude, longitude)
worldwide grid, the rms deviation of the geoid from the spheroid is only about
30 m! Figure 1.4-2 shows the oblate spheroidal model of the Earth, with the oblate-
ness greatly exaggerated. In the figure, a and b are, respectively, the semimajor and
semiminor axes of the generating ellipse. Two other parameters of the ellipse (not

Figure 1.4-2 The oblate spheroidal model of the Earth.
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shown) are its flattening, f , and its eccentricity, e. The WGS-84 defined and derived
values are:

a ≡ 6,378,137.0 m (defined) (1.4-1a)

f = a − b

a
≡ 1/298.257223563 (defined) (1.4-1b)

b = 6,356,752 m (derived) (1.4-1c)

e = (a2 − b2)

a

1/2

≈ .08181919 (derived) (1.4-1d)

Two additional parameters are used to define the complete WGS-84 reference frame;
these are a fixed Earth rotation rate, ωE , and the Earth’s gravitational constant (GM)
with the mass of the atmosphere included. In WGS-84 they are defined to be:

ωE ≡ 7.2921150× 10−5 rad/s (1.4-1e)

GM ≡ 3986004.418× 108 m3/s2 (1.4-1f )

The ωE value is the sidereal rate of rotation, that is, the “inertial” rate relative to the
“fixed” stars (Kaplan, 1981).

Frames and Coordinate Systems

Table 1.4-1 shows the frames and coordinate systems that will be used with Figure
1.4-2. Note that a “geographic” coordinate system has its axes aligned east, north, and
up (ENU), or north, east, and down (NED), where “up” or “down” means along the
spheroid normal at the system location. It is also called a local navigational system,
and the symbol n is used to denote the components in this system. The stability and
wind axes systems will be defined in Chapter 2.

Geocentric Coordinates

Geocentric coordinates are referenced to the common origin of the ECI and ECEF
systems. Thus, in Figure 1.4-2, the dashed line OP represents the geocentric radius
of P , and the angle ψ (measured positive north) is the geocentric latitude of P .
Longitude is measured in the equatorial plane, from one axis of the ECI or ECEF
system, to the projection of P on the equatorial plane. We will assume that the ECEF
x-axis points to the zero-longitude meridian, and the terrestrial longitude, C, (positive
east) is shown in the figure. Celestial longitude, λ, is measured from the ECI x-axis,
which is aligned with some celestial reference direction such as a line from the Sun’s
cm to the Earth’s position in orbit at vernal equinox. In a given time interval, an
increment in celestial longitude is equal to the increment in terrestrial longitude plus
the increment in Earth’s rotation angle. This can be written as

λ− λ0 = C− C0 + ωEt, (1.4-2)
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TABLE 1.4-1 Frames and Coordinate Systems Used with Figure 1.4-2

Frame of Reference Coordinate Systems

Fi , an “inertial” frame, nonrotating but
translating with Earth’s cm

ECI (Earth-centered inertial), origin at Earth’s
cm, axes in the equatorial plane and along the
spin axis

Fe, a frame defined by the “rigid”
Earth




ECEF (Earth-centered, Earth-fixed), axes in
the equatorial plane and along the spin axis

Tangent-plane system, a geographic system
with its origin on the Earth’s surface

Fv , a frame translating with the vehicle
cm, in which north, east, and down,
represent fixed directions

Vehicle-carried system, a geographic system
with its origin at the vehicle cm

Fb, a “body” frame defined by the
“rigid” vehicle




Vehicle body-fixed system, origin at
vehicle cm, axes aligned with vehicle
reference directions

Vehicle stability-axes system

Vehicle wind-axes system

where λ0 and C0 are the values at t = 0. Absolute celestial longitude is often unimpor-
tant, and λ0 ≡ 0 can be used.
Geodetic Coordinates

Referring to Figure 1.4-2, geodetic position over the surface of the Earth, as used
for maps and navigation, is determined by using a normal to the spheroid. Geodetic
latitude, φ, is the angle that the normal makes with the geodetic equatorial plane, and
is positive in the Northern Hemisphere. Geodetic height, h, is the height above the
spheroid, along the normal, as shown in Figure 1.4-1. It can be determined from a
database of tabulated geoid height versus latitude and longitude, plus the elevation
above mean sea level (msl). The elevation above msl is in turn obtained from a
barometric altimeter, or from the land elevation (in a hypsographic database) plus
the altitude above land (e.g., radar altimeter).

Navigation Calculations

Two important parameters of the spheroid are required for navigation calculations,
namely, the radii of curvature. The meridian radius of curvature, M , is the radius of
curvature in a meridian plane, that is, the radius of curvature of the generating ellipse.
Calculations of the radius of curvature for an ellipse can be found in calculus texts
and, in terms of geodetic latitude, it is easy to show thatM is given by

M = a(1− e2)

(1− e2 sin2 φ)3/2
(1.4-3)
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A radius of curvature, integrated with respect to angle, gives arc length. In this case
the integral cannot be found in closed form, and it is much easier to compute distance
over the Earth approximately using spherical triangles. The usefulness of the radius of
curvature lies in calculating components of velocity. Thus, at geodetic height, h, the
geographic-system north component of velocity over the Earth is related to latitude
rate by

VN = (M + h)φ̇ (1.4-4)

The prime vertical radius of curvature, N , is the radius of curvature in a plane
containing the spheroid normal and a normal to the meridian plane. It is equal to
the distance along the normal, from the spheroid surface to the semiminor axis, and
is given by

N = a

(1− e2 sin2 φ)1/2
(1.4-5)

Again, N is useful for calculating velocity components. If we take the component of
N parallel to the equatorial plane, we obtain the radius of a constant-latitude circle.
Therefore, the geographic-system east component of velocity over the Earth is related
to longitude rate by

VE = (N + h) cos(φ) Ċ (1.4-6)

Cartesian position coordinates (ECI or ECEF) can be readily calculated from the
prime vertical radius of curvature. The projection of N on the x-y plane gives the
x and y components. The z-component can be found by dividing N into its parts
(Problem 1.4-3) above and below the x-y plane:

N = Ne2

(below x-y)
+ N(1− e2)

(above x-y)
(1.4-7)

Therefore, ECEF position can be calculated from geodetic coordinates by

pe =



(N + h) cos(φ) cos(C)

(N + h) cos(φ) sin(C)[
N(1− e2)+ h

]
sin(φ)


 , (1.4-8)

where superscript e indicates ECEF coordinates. Position in ECI coordinates is of the
same form as (1.4-8), but with celestial longitude λ replacing terrestrial longitude C.
The reverse of the above transformation is to find the geodetic coordinates from

Cartesian coordinates. An exact formula exists but requires the solution of a quartic
equation in tan(φ) (Vanicek and Krakiwsky, 1982). Therefore, an iterative algorithm
is often used. Referring to Figure 1.4-2, we see that

sin φ = z

N(1− e2)+ h
(1.4-9)
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Using the large triangle whose hypotenuse is (N + h), and sides
√
(x2 + y2), [z +

Ne2 sin(φ)], we can write

tan φ =
[
z+Ne2 sin φ

]
√
(x2 + y2)

(1.4-10)

If (1.4-9) is substituted for sin(φ) in (1.4-10) and simplified, we obtain

tan φ = z√
(x2 + y2)[1−Ne2/(N + h)]

Because N is a function of φ, this formula is implicit in φ, but it can be used in the
following iterative algorithm for the geodetic coordinates:

C = atan2(y, x)

h = 0, N = a

φ = tan−1
[

z

(x2 + y2)1/2 [1−Ne2/(N + h)]

]

N = a

(1− e2 sin2 φ)1/2

(N + h) =
√
(x2 + y2)

cosφ

h = (N + h)−N

(1.4-11)

−→

Latitudes of ±90° must be dealt with as a special case, but elsewhere the iterations
converge very rapidly.

Earth-Related Coordinate Transformations

The aircraft equations of motion will require the coordinate rotationmatrices between
the three systems defined above. The rotation between ECEF and ECI is a plane
rotation around the z-axis. Equation (1.4-2) gives the rotation angle as

µ = λ0 − C0 + ωEt

Therefore, the rotation from ECI to ECEF can be written as

Ce/i =

 cosµ sinµ 0

− sinµ cosµ 0
0 0 1


 , (1.4-12)

where subscripts i and ewill be used, respectively, to indicate ECI and ECEF systems.
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When going from the ECEF to a geographic system, the convention is to perform
the longitude rotation first. Now imagine the ECEF system moved to the equator at
the correct longitude; a left-handed rotation through 90 degrees, around the y-axis, is
needed to get the x-axis pointing north and the z-axis down. It is then only necessary
to move to the correct latitude and fall into alignment with the NED system by means
of an additional left-handed rotation around the y-axis, through the latitude angle.
Therefore, the transformation is

Cn/e =

 cφ 0 sφ

0 1 0
−sφ 0 cφ




 0 0 1
0 1 0

−1 0 0






cC sC 0
−sC cC 0

0 0 1




or

Cn/e =

−sφ cC −sφ sC cφ

−sC cC 0
−cφ cC −cφ sC −sφ


 , (1.4-13)

where the n subscript indicates a geographic (local navigational) system.

Gravitation

The term gravitation denotes a mass attraction effect, as distinct from gravity, mean-
ing the combination of mass attraction and centrifugal force experienced by a body
constrained to move with the Earth’s surface. Our most accurate equations of motion
will contain the centripetal acceleration as a separate term.
The WGS-84 datum includes an amazingly detailed model of the Earth’s gravita-

tion. This model is in the form of a (scalar) potential function V , such that a com-
ponent of specific mass-attraction force along each of three axes can be found from
the gradients of the potential function. The current potential function, for use with
WGS-84, is Earth Gravitational Model 1996 (EGM96). This has 130,676 coefficients
and is intended for very precise satellite and missile calculations. The largest coef-
ficient is two orders of magnitude bigger than the next coefficient and, if we retain
only the largest coefficient, the result is still a very accurate model. Neglecting these
coefficients removes the dependence on terrestrial longitude, leaving the following
potential function:

V = GM

r

[
1− 0.5J2(a/r)

2(3 sin2 ψ − 1)
]

(1.4-14)

in which r is radial distance from the Earth’s cm, andψ is the geocentric latitude. The
Earth’s gravitational constantGM is the product of the Earth’s mass and the universal
gravitational constant of the inverse square law. Its EGM96 value, with the mass of
the atmosphere included, was given in Equation (1.4-1f ). The constant J2 is given by
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J2 = −√
5C̄2,0 = 1.0826267× 10−3, (1.4-15)

where C̄2,0 is the actual EGM96 coefficient.
The gradients of the potential function are easily evaluated in geocentric coordi-

nates (the same as NED coordinates but with the z-axis pointing to the cm).When this
is done and the results are transformed into the ECEF system, we obtain the following
gravitation model:

Ge = −GM
r2



[
1+ 1.5J2(a/r)2(1− 5 sin2 ψ)

]
px/r[

1+ 1.5J2(a/r)2(1− 5 sin2 ψ)
]
py/r[

1+ 1.5J2(a/r)2(3− 5 sin2 ψ)
]
pz/r


 , (1.4-16)

where r is equal to the length of the geocentric position vector pe, whose ECEF
components are px, py, pz. This model is accurate to about 30–35× 10−3 cm/s2 rms,
but local deviations can be quite large. Note that the x and y components are identical
because there is no longitude dependence. The geocentric latitude is given by

sinψ = pz/|pe|

The model can also be converted to geodetic coordinates. A useful relationship is

tanψ = (1− n) tan φ, where n = Ne2/(N + h) (1.4-17)

Theweight of an object on Earth is determined by the gravitational attraction (mG)
minus the force needed to produce the centripetal acceleration at the Earth’s surface
(mωe/i × (ωe/i ×pe)). Dividing the weight of the object by its mass gives the gravity
vector g. Therefore, the vector equation for g is

g = G− ωe/i × (ωe/i × pe) (1.4-18)

As noted earlier, at the Earth’s surface g is accurately normal to the geoid and defines
the local vertical. When Equation (1.4-16) is substituted for G in (1.4-18), and the
equation is resolved in the NED system, we find that g is almost entirely along
the down axis with a variable north component of only a few micro-g’s. This is
a modeling error, since deflection of the vertical is not explicitly included in the
model. The down component of g given by the model, at the Earth’s surface, varies
sinusoidally from 9.780 m/s2 at the equator to 9.806 m/s2 at 45° geodetic latitude,
and 9.832 m/s2 at the poles. When a constant value of gravity is to be used (e.g.,
in a simulation), the value at 45° latitude is taken as the standard value of gravity
(actually defined to be 9.80665m/s2). Our simplified “flat-Earth” equations of motion
will use a g vector that has only a down component, and is measured at the Earth’s
surface.
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1.5 RIGID-BODY DYNAMICS

Angular Motion

By using the vehicle cm as a reference point, the rotational dynamics of the aircraft
can be separated from the translational dynamics (Wells, 1967). Here, we develop
the equations for the rotational dynamics, which will be the same for both the flat-
Earth and oblate-rotating-Earth equations of motion. The following definitions will
be needed:

Fi = an inertial reference frame

Fb = a body-fixed frame in the rigid vehicle

vCM/i = velocity of vehicle cm in Fi
ωb/i = angular velocity of Fb with respect to Fi
MA,T = sum of aerodynamic and thrust moments at the cm

The moment is generated by aerodynamic effects, by any reaction-control thrusters,
and by any components of the engine thrust not acting through the cm (e.g., due to
thrust-vectoring control).
Let the angular momentum vector of a rigid body, in the inertial frame and taken

about the cm, be denoted by h. It is shown in textbooks on classical mechanics
(Goldstein, 1980) that the derivative of h, taken in the inertial frame, is equal to
the vector torque or moment MA,T , applied about the cm. Therefore, analogously
to Newton’s law for translational momentum, we write

MA,T = i ḣ (1.5-1)

In order to determine the angular momentum vector, consider an element of mass
δm with position vector r relative to the cm. Its inertial velocity is given by

v = vCM/i + ωb/i × r

The angular momentum of this particle, about the cm, is the moment of the transla-
tional momentum about the cm, or

δh = r × vδm = r × vCM/iδm+ r × (ωb/i × r) δm

When this equation is integrated over all the elements of mass, the first term will
disappear. This is because vCM/i is constant for the purposes of the integration and
can be taken outside the integral, and the integral of rdm is zero by the definition of
the cm. If the vector triple product formula is applied to the remaining term, and the
integration is over all of the elements of mass, the result is:

h = ωb/i
∫
(r · r) dm− ∫

r(r · ωb/i) dm
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We must now choose a coordinate system in which to perform the integration. The
easiest choice is a body-fixed system in which r has constant components. Therefore,
let

ωbb/i =

 PQ
R


 , and rb =


 xy
z




so that

dhb =

 PQ
R


(
x2 + y2 + z2

)
dm−


 xy
z


 (Px +Qy + Rz) dm

and the integral over the whole vehicle can be written as

hb =



P

∫ (
y2 + z2

)
dm−Q

∫
xy dm− R

∫
xz dm

Q
∫ (
x2 + z2

)
dm− R

∫
yz dm− P

∫
yx dm

R
∫ (
x2 + y2

)
dm− P

∫
zx dm−Q

∫
zy dm




The various integrals in the angular momentum components are defined to be the
moments and cross-products of inertia, for example,

moment of inertia about x-axis = Jxx = ∫ (
y2 + z2

)
dm

cross-product of inertia Jxy ≡ Jyx = ∫
xy dm

On substituting these definitions into the angular momentum, we obtain expressions
for the components of hb that are bilinear in P,Q,R, and the inertias. This allows
hb to be written as the matrix product:

hb =



Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz





P

Q

R


 ≡ J bωbb/i (1.5-2)

The matrix J will be referred to as the inertia matrix of the rigid body. It can be
calculated or experimentally determined, and is a constant matrix when calculated in
body-fixed coordinates for a bodywith a fixed distribution ofmass. It was necessary to
choose a coordinate system to obtain this matrix and, consequently, it is not possible
to obtain a vector equation of motion that is completely coordinate-free. In more
advanced treatments this paradox is avoided by the use of tensors. Note also that J is
a real symmetric matrix, and therefore has special properties that are discussed below.
With the angular momentum expressed in terms of the inertia matrix and angular

velocity vector of the complete rigid body, Equation (1.5-1) can be evaluated. Since
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the inertia matrix is known, and constant in the body frame, it will be convenient to
replace the derivative in (1.5-1) by a derivative taken in the body frame:

MA,T = i ḣ = bḣ+ ωb/i × h

Now, differentiating (1.5-2) in Fb, with J constant, and taking body-fixed compo-
nents, we obtain,

Mb
A,T = J b bω̇bb/i +8b

b/iJ
bωbb/i ,

where8b
b/i is a cross-product matrix for ω

b
b/i . A rearrangement of this equation gives

the state equation for angular velocity:

bω̇bb/i = (
J b

)−1 [
Mb
A,T −8b

b/iJ
bωbb/i

]
(1.5-3)

This state equation is widely used in simulation and analysis of rigid-body motion,
from satellites to ships. It can be solved numerically for ωbb/i given the inertia matrix
and the torque vector, and its features will now be described.
The assumption that the inertia matrix is constant is not always completely true.

For example, with aircraft the inertias may change slowly as fuel is transferred and
burned. Also, the inertias may change abruptly if an aircraft is engaged in dropping
stores. These effects can usually be adequately accounted for in a simulation by
simply changing the inertias in (1.5-3) without accounting for their rates of change.
As far as aircraft control system design is concerned, point designs are done for
particular flight conditions, and interpolation between point designs can be used
when the aircraft mass properties change. This is more likely to be done to deal with
movement of the vehicle cm and the resultant effect on static stability.
The inverse of the inertia matrix occurs in (1.5-3), and because of symmetry this

has a relatively simple form:

J−1 = 1

D



k1 k2 k3

k2 k4 k5

k3 k5 k6


 , (1.5-4)

where

k1 = (
JyyJzz − J 2yz

)
/D k2 = (

JyzJzx + JxyJzz
)
/D

k3 = (
JxyJyz + JzxJyy

)
/D k4 = (

JzzJxx − J 2zx
)
/D

k5 = (
JxyJzx + JyzJxx

)
/D k6 = (

JxxJyy − J 2xy
)
/D

and

D = JxxJyyJzz − 2JxyJyzJzx − JxxJ
2
yz − JyyJ

2
zx − JzzJ

2
xy
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A real symmetric matrix has real eigenvalues and, furthermore, a repeated eigenvalue
of order p still has associated with it p linearly independent eigenvectors. Therefore,
a similarity transformation can be found that reduces the matrix to a real diagonal
form. In the case of the inertia matrix this means that we can find a set of coordinate
axes in which the inertia matrix is diagonal. These axes are called the principal axes.
In principal axes the inverse of the inertia matrix is also diagonal and the angular

velocity state equation takes its simplest form, known as Euler’s equations of motion.
If the torque vector has body-axes components given by

Mb
A,T =


 C

m

n


 , (1.5-5)

then Euler’s equations are

Ṗ = (Jy − Jz) QR

Jx
+ C

Jx

Q̇ = (Jz − Jx) RP

Jy
+ m

Jy
(1.5-6)

Ṙ = (Jx − Jy) PQ

Jz
+ n

Jz

The equations involve cyclic permutation of the rate and inertia components; they
are inherently coupled because angular rates about any two axes produce an angular
acceleration about the third. This inertia coupling has important consequences for
aircraft maneuvering rapidly at high angles of attack; we examine its effects in Chap-
ter 4. The stability properties of the Euler equations are interesting and will be studied
in Problem (1.5-1).
The angular velocity state equation is again simplified when applied to aircraft

since for most aircraft the x-z plane is a plane of symmetry. Under this condition, for
every product yizj or yixj in an inertia computation there is a product that is identical
in magnitude but opposite in sign. Therefore, only the Jxz cross-product of inertia
is nonzero. A notable exception is an oblique-wing aircraft (Travassos et al., 1980),
which does not have a plane of symmetry. Under the plane-of-symmetry assumption
the inertia matrix and its inverse reduce to

J =



Jx 0 −Jxz
0 Jy 0

−Jxz 0 Jz


 , J−1 = 1

E



Jz 0 Jxz

0 E/Jy 0

Jxz 0 Jx


 , (1.5-7)

where E = (JxJz − J 2xz) and the double-subscript notation on the moments of inertia
has been dropped.
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If the angular velocity state equation (1.5-3) is expanded using the torque vector
(1.5-5) and the simple inertia matrix given by (1.5-7), the result is:

E Ṗ = Jxz
[
Jx − Jy + Jz

]
PQ− [

Jz(Jz − Jy)+ J 2xz
]
QR + JzC+ Jxzn

JyQ̇ = (Jz − Jx)PR − Jxz(P
2 − R2)+m (1.5-8)

E Ṙ = [
(Jx − Jy)Jx + J 2xz

]
PQ− Jxz

[
Jx − Jy + Jz

]
QR + JxzC+ Jxn

In the analysis of angular motion we have so far neglected the angular momentum
of any spinning rotors. Technically this violates the rigid-body assumption, but the
resulting equations are valid. Note that, strictly, we require axial symmetry of the
spinning rotors, otherwise the position of the vehicle cm will vary. This is not a
restrictive requirement because it is also a requirement for dynamically balancing
the rotors. The effects of the additional angular momentum may be quite significant.
For example, a number of World War I aircraft had a single “rotary” engine that had
a fixed crankshaft and rotating cylinders. The gyroscopic effects caused by the large
angular momentum of the engine gave these aircraft tricky handling characteristics.
In the case of a small jet with a single turbofan engine on the longitudinal axis, the
effects are smaller. To represent the effect, a constant vector can be added to the
angular momentum vector in (1.5-2). Thus,

hb = J bωbb/i +


hx

hy

hz


 (1.5-9a)

If this analysis is carried through, the effect is to add the following terms, respectively,
to the right-hand sides of the three equations (1.5-8):

Jz(Rhy −Qhz)+ Jxz(Qhx − Phy)

− Rhx + Phz (1.5-9b)

Jxz(Rhy −Qhz)+ Jx(Qhx − Phy)

To complete the set of equations for angular motion, a kinematic equation is
required that describes the rigid-body orientation. The changing orientation is a result
of the nonzero (in general) angular rates that satisfy the state equation (1.5-3). The
kinematics may be described by:

(a) Euler’s kinematical equations (1.3-21/22)

(b) Poisson’s kinematical equations (1.3-23)

(c) the quaternion kinematical equations (1.3-35/36)

For example, the quaternion state equation
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q̇b/i = 1
2qb/i ∗ ωbb/i (1.5-10)

can be solved simultaneously with the angular velocity state equation, for a total of
seven state variables. The direction cosine matrix Cb/i and the Euler angles will be
required in a complete simulation, and these can be derived from the quaternion using
(1.3-32) and (1.3-24). The quaternion can be initialized from the initial Euler angles
using (1.3-33).
This completes the discussion of the angular motion dynamics. We now turn our

attention to the translational motion of the cm.

Translational Motion of the Center of Mass

The first step will be to find the inertial acceleration of the vehicle cm so that Newton’s
second law may be applied. The frames and coordinate systems related to Figure 1.4-
2 are required. These include the ECI system fixed in the inertial frame Fi , the ECEF
system fixed in Fe, the NED geographic system in Fv , and the vehicle body-fixed
system in frame Fb. In addition to the definitions in the angular motion subsection,
we must define the following vectors:

pCM/O = vehicle cm position relative to ECI origin

vCM/i = i ṗCM/O = velocity of the cm in Fi
vCM/e = eṗCM/O = velocity of the cm in Fe
ωx/y = angular velocity of frame x with respect to frame y

FA,T = vector sum of aerodynamic and thrust forces at cm

Note that because pCM/O is a position vector in both Fi and Fe, vCM/i and vCM/e are
both velocity vectors.
By using the equation of Coriolis to relate the derivatives of pCM/O in Fi and Fe,

we find that

vCM/i = i ṗCM/O = vCM/e + ωe/i × pCM/O (1.5-11)

Newton’s second law applied to the motion of the cm, and neglecting the rate of
change of mass of the vehicle, gives

(1/m) FA,T +G = i v̇CM/i

where m is the mass of the vehicle.
Now differentiate (1.5-11) and substitute for the right-hand side of this equation.

The Earth’s angular velocity vector is constant for the differentiation and, introducing
the derivative of vCM/e taken in the body frame, gives

(1/m) FA,T +G = bv̇CM/e + ωb/i × vCM/e + ωe/i × i ṗCM/O

Substitute (1.5-11) for the inertial position derivative:
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(1/m) FA,T +G = bv̇CM/e + (ωb/i + ωe/i)× vCM/e + ωe/i × (ωe/i × pCM/O)

or

bv̇CM/e = (1/m) FA,T + g − (ωb/i + ωe/i)× vCM/e, (1.5-12)

where

g = G− ωe/i × (ωe/i × pCM/O)

The kinematic equation (1.5-11) and the dynamic equation (1.5-12) will provide
two matrix state equations. When (1.5-11) is resolved in the ECI system, it relates
the derivatives of the ECI components of the inertial position vector to themselves
and the velocity in Fe. The velocity in Fe must be obtained from the simultaneous
solution of (1.5-12). Similarly, Equation (1.5-12) must be resolved in the vehicle
body-fixed coordinate system so that it relates derivatives of body-fixed components
to themselves and the aerodynamic and thrust forces. The body-fixed components
are needed to determine the aerodynamic and thrust forces. Equation (1.5-12) also
requires the inertial position vector and the angular velocity vector, and is therefore
coupled to (1.5-11) and the angular velocity equation (1.5-3). Because (1.5-11) and
(1.5-12) are resolved in different coordinate systems, the direction cosine matrix
Cb/i , obtained from the quaternion (1.5-10), is needed to transform components
between these equations. This means that the translational motion equations must
be solved simultaneously with the angular motion equations. The complete set of
equations of motion, in component form, will be assembled after we have examined
the importance of the Earth-rotation terms in (1.5-12).

Significance of the Earth-Rotation Terms

The third term on the right-hand side of (1.5-12) is where these equations will differ
from the flat-Earth equations that we will derive. Using the additive property of
angular velocities, Equation (1.5-12) can also be written as

bv̇CM/e = (1/m) FA,T + g − (ωb/v + ωv/e + 2ωe/i)× vCM/e (1.5-13)

The angular velocity ωb/v is null when the vehicle is not maneuvering; the angular
velocity ωv/e can be obtained from geodetic latitude and longitude rates, which can in
turn be determined from the NED components of vCM/e using Equations (1.4-4) and
(1.4-6). The term 2ωe/i × vCM/e is the Coriolis acceleration, introduced in Equation
(1.2-11).
We will use ωv/e to illustrate how an angular velocity vector can be determined

in general. The additive property of angular velocity can be used in conjunction with
intermediate frames whose angular velocities are more easily determined. Imagine
an intermediate vehicle-carried frame, Fvi , at the same longitude as the vehicle in
question, but at zero latitude. Summation of angular velocities gives

ωv/e = ωv/vi + ωvi/e
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The geographic components of these angular velocities are easily found from the
latitude and longitude rates. The transformation from the geographic system in Fvi to
that in Fv is a left-handed rotation around the east axis through the latitude angle φ.
Therefore we obtain

ωnv/e =

 0

−φ̇
0


 +


 cφ 0 sφ

0 1 0
−sφ 0 cφ




 Ċ0
0




The latitude and longitude rates are given by (1.4-4) and (1.4-6) and are often ade-
quately approximated by letting (M + h) = (N + h) = R, with R = 21 × 106 ft.
Then

ωnv/e = 1/R




VE

−VN
−VE tan φ


 (1.5-14a)

In ECEF or ECI coordinates the angular velocity ωe/i has only a z component,
equal to the Earth’s spin rate, ωE . The NED components can be found by using the
coordinate rotation (1.4-13):

ωne/i =


ωE cosφ

φ

−ωE sin φ


 (1.5-14b)

Now, adding (1.5-14a) to twice (1.5-14b), we can form a cross-product matrix to
premultiply the NED components of vCM/e, and hence evaluate the cross-product
terms in the equation of motion (1.5-13) when the vehicle is not maneuvering. Letting
the NED components of vCM/e be [VNVEVD]T , the result is very cumbersome, so we
will take the special case where the vehicle is flying due east at constant altitude; then
VN = VD = 0. The result is

(
8n
v/e + 28n

e/i

)
vnCM/e =



V 2
E tan(φ)/R + 2VEωE sin φ

0

V 2
E/R + 2VEωE cosφ


 (1.5-15)

The centripetal term V 2
E/R is equal to the Coriolis term 2VEωE at about 3000 ft/s.

At zero latitude, the down component in (1.5-15) is about 0.9 ft/s2, which is to be
compared with gD = 32.2 ft/s2. In the “flat-Earth” equations of motion, the Coriolis
terms are omitted and the equations have significant errors for velocities over the
Earth with magnitude greater than about 2000 ft/s.

The Oblate Rotating-Earth Equations of Motion

We now return to the task of assembling a set of state equations. Position deriva-
tives are obtained from the kinematic equation (1.5-11), resolved in ECI coordinates.
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Derivatives of translational velocity components are found from the Newton’s law
equation (1.5-12) in body-fixed coordinates, and derivatives of angular velocity com-
ponents are found from the angular velocity equation (1.5-3) as it stands. A time-
varying coordinate rotation from ECI to body-fixed coordinates will be needed, and
so we will apply the quaternion differential equations (1.5-10), and construct the di-
rection cosine matrix from the quaternion using Equation (1.3-32). This leads to the
following set of state equations:

Cb/i = f n(qb/i)
[
auxiliary eqn., see 1.3-32

]
(1.5-16a)

q̇b/i = 1
2qb/i ∗ ωbb/i (1.5-16b)

i ṗiCM/O = Ci/bvbCM/e +8i
e/ip

i
CM/O (1.5-16c)

bv̇bCM/e = (1/m)FbA,T − (
8b
b/i +8b

e/i

)
vbCM/e + Cb/igi (1.5-16d)

bω̇bb/i = (J b)−1
[
Mb
A,T −8b

b/iJ
bωbb/i

]
(1.5-16e)

The state vector for this set of simultaneous differential equations is given by

XT =
[(
piCM/O

)T
(qb/i)

T
(
vbCM/e

)T (
ωbb/i

)T ]
The auxiliary equation for the direction cosinematrixmust first be calculated from the
state vector, before the state equations can be evaluated. Given the mass properties of
the vehicle (m and J b), and the forces and moments, all of the terms on the right-hand
side of Equations (1.5–16) should be determined by the state vector.
On the right-hand side of (1.5-16c) 8i

e/i is the cross-product matrix for the ECI
components of Earth’s angular velocity vector [0, 0, ωE]T . In Equation (1.5-16d) a
new cross-product matrix for the body-fixed components of this angular velocity is
needed. This is given by a similarity transformation:

8b
e/i = Cb/i 8

i
e/i Ci/b (1.5-17)

since each cross-product matrix is a linear transformation of components in one
coordinate system. A simpler calculation is to form a cross-product matrix for(

ωbb/i + Cb/iω
i
e/i

)
and postmultiply it by vbCM/e.
For convenience the gravity vector has been left in terms of ECI components. Be-

cause our gravitationmodel has no longitude dependence, these can be used instead of
ECEF components. If the gravity term must be computed accurately at high altitude,
or over a wide range of latitude, we must use

gb = Cb/i
(
Gi − (8i

e/i)
2piCM/O

)
(1.5-18)

with the gravitation model (1.4-16).
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In Equations (1.5-16d) and (1.5-16e) models of the aerodynamic and thrust forces
and moments are needed, as derived in Chapter 2. This is where the control inputs
enter the model, as throttle settings, aerodynamic control surface deflections, and so
on. These forces and moments also depend on the velocity of the vehicle relative to
the surrounding air. Therefore, we define a relative velocity vector, vrel , by

vrel = vCM/e − vW/e, (1.5-19a)

where vW/e is the wind velocity taken in Fe. Since the wind is normally specified in
NED components, and body-fixed components are required for aerodynamic calcu-
lations, we will calculate vbrel from

vbrel = vbCM/e − Cb/n vnW/e (1.5-19b)

Equation (1.5-19b) requires Cb/n, from which we can also find yaw, pitch, and roll
Euler angles that describe the attitude of the vehicle relative to the vehicle-carried
geographic system. These are usually needed for control purposes, and are calculated
as follows.
The algorithm (1.4-11) can be used to find geodetic altitude and latitude, and celes-

tial longitude is found from the inertial position vector. Geodetic altitude can be used
to determine the atmospheric properties required for the aerodynamic calculations.
The direction cosine matrix Cb/n can be computed using

Cb/n = Cb/iCi/n, (1.5-20)

where Ci/n is found from (1.4-13) with λ replacing C. Equations (1.3-24) can be used
to obtain the attitude Euler angles from Cb/n:

φ = atan2 (c23, c33)

θ = − sin−1 (c13) (1.5-21)

ψ = atan2 (c12, c11)

Finally, the terrestrial longitude can be calculated from celestial longitude using
Equation (1.4-2). Hence position over the Earth is specified.
Equations (1.5-16) and the auxiliary equations (1.5-17) through (1.5-21) constitute

the equations needed to simulate the motion of a vehicle around the oblate rotating
Earth. They should be used when an accurate simulation is required for a vehicle
flying faster than about 2000 ft/s over the Earth, or when accurate long-distance
navigation is being simulated. They apply to any type of rigid aerospace vehicle;
differences between vehicles begin to appear when the various forces and torques,
acting on the vehicle, are modeled. For example simulation of a satellite might require
models for gravity-gradient torque, radiation pressure, and residual atmospheric drag.
In the next subsection we will derive the so-called flat-Earth equations of motion as
a subset of these equations.
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The Flat-Earth Equations of Motion

For low-speed flight simulation of aircraft flying over a small region of the Earth,
and with no requirement for precise simulation of position, it is usual to neglect the
centripetal and Coriolis terms in Equation (1.5-13), as described earlier. Neglecting
the centripetal term is equivalent to pretending that the Earth is flat (R → ∞ in (1.5-
14a) ), and neglecting the Coriolis term is equivalent to assuming that the Earth is an
inertial frame. The vehicle-carried frame Fv now has zero angular velocity relative
to Fe, and so ωb/v ≡ ωb/e, and the geographic coordinate system in Fv remains
aligned with a tangent-plane system in the vicinity of the vehicle. Vehicle attitude
can be described, relative to the tangent plane, by yaw, pitch, and roll angles and
a direction-cosine matrix Cb/n (vehicle body with respect to the local navigational
system). Position can conveniently be measured from the origin of the tangent-plane
system, T . Therefore, Equations (1.5-16) become:

Cb/n = f n(<) (from 1.3-20) (1.5-22a)

eṗnCM/T = Cn/bvbCM/e (1.5-22b)

<̇ = H(<)ωbb/e (from 1.3-22) (1.5-22c)

bv̇bCM/e = (1/m) FbA,T + Cb/ngn −8b
b/ev

b
CM/e (1.5-22d)

bω̇bb/e = (
J b

)−1 [
Mb
A,T −8b

b/eJ
bωbb/e

]
, (1.5-22e)

where

pCM/T = vehicle cm position relative to tangent-system origin

vCM/e = eṗCM/T = cm velocity vector in Fe
ωb/e = angular velocity of Fb with respect to Fe
< = Euler angles of body-fixed system relative to NED system

The equation for the velocity vector relative to the surrounding air becomes

vbrel = vbCM/e − Cb/n vnW/e (1.5-23)

Gravity appears in the velocity state equation, and in tangent system components
this is

gt = [0 0 gD] (1.5-24)

with gD equal to the standard gravity (9.80665 m/s2), or the local value. The state
vector can be seen to be

XT =
[(
pnCM/T

)T
<T

(
vbCM/e

)T (
ωbb/e

)T ]
(1.5-25)
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The vector form of the relative velocity equation is (1.5-19a). If this equation is
differentiated in the body-fixed frame, and used to eliminate vCM/e and its derivative
from the vector equation for the translational acceleration, we obtain

bv̇rel = (1/m) FA,T + g − ωb/e × vrel − ev̇W/e, (1.5-26a)

where a term ωb/e × vW/e has been canceled from each side of the equation. The last
term on the right can be used as a way of introducing gust inputs into themodel, or can
be set to zero for steady winds. Taking the latter course, and introducing components
in the body-fixed system, gives

bv̇brel = (1/m) FbA,T + Cb/ngn −8b
b/ev

b
rel (1.5-26b)

This equation is an alternative to (1.5-22d), and Equation (1.5-22b) must then be
modified to use the sum of the relative and wind velocities.
The dynamic behavior of the rigid vehicle is determined by the force and moment

equations and the attitude kinematic equation. There is only a weak dependence on
altitude, and hence only a weak coupling to Equation (1.5-22b). Furthermore, it is
shown in Chapter 2 that the aerodynamic forces and moments depend on the velocity
relative to the air mass, with only a weak dependence on altitude. Therefore, the
dynamic behavior is essentially determined by vrel , or its negative, the relative wind,
and is independent of the steady wind velocity. In Chapter 2 we will use (1.5-26) to
make a model that is suitable for studying the dynamic behavior.
Equations (1.5-22b–d) are twelve coupled, nonlinear, first-order differential equa-

tions. Chapter 2 shows how they can be “solved” analytically. Chapter 3 shows how
they can be solved simultaneously by numerical integration for the purposes of flight
simulation. Coupling exists because angular acceleration integrates to angular ve-
locity, which determines the Euler angle rates, which in turn determine the direc-
tion cosine matrix. The direction cosine matrix is involved in the state equations for
position and velocity, and position (the altitude component) and velocity determine
aerodynamic effects which determine angular acceleration. Coupling is also present
through the translational velocity. These interrelationships will become more appar-
ent in Chapter 2.

1.6 SUMMARY

This chapter provides sufficient background material to enable the reader to deal with
many of the dynamical problems that occur in the modern aerospace industry. Clas-
sical mechanics is the key to the analysis and solution of many of these problems,
and we have reviewed and used many of the vector operations from classical me-
chanics. Coordinate rotations are everywhere in the analysis and in the software used
for computer control of many systems. Therefore, we have attempted to provide an
easy approach to setting up the rotations. The use of quaternions for coordinate rota-
tion is very popular in satellite and missile problems, and in computer graphics. We



54 THE KINEMATICS AND DYNAMICS OF AIRCRAFT MOTION

have provided background material in this area because the quaternion avoids any
numerical singularity problems with “all-attitude” simulation of aircraft.
The gravity model presented here is more detailed than usual for aircraft simula-

tions and gives the reader an introduction to the more detailed modeling that would
be needed to simulate accurate navigation, or simulate spacecraft and launch and
reentry vehicles. The rotating-Earth equations of motion may be applied to vehicles
intended to reach hypersonic speeds and perhaps go into orbit, or to slowly mov-
ing aircraft near the surface of the Earth. The design of these vehicles requires large
computer simulations involving the equations of motion, and controlling them may
require programming onboard computers with algorithms that employ many of the
concepts described here.
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PROBLEMS

Section 1.2

1.2-1 Prove the scalar triple product formula.

1.2-2 Prove the vector triple product formula.

1.2-3 If u, v,w are bound vectors (i.e., they have a common origin), show that
u · (v × w) represents the signed volume of the parallepiped that has u, v,w
as adjacent edges.

1.2-4 Show that u× (v × w)+ v × (w × u)+ w × (u× v) = 0.

1.2-5 If two particles moving with constant velocity are described by the position
vectors

p = p0 + vt, and s = s0 + wt

(a) show that the shortest distance between their trajectories is given by:

d = |(s0 − p0) · (w × v)|/(|w × v|)
(b) find the shortest distance between the particles themselves.

1.2-6 If the vectors u, v in the rotation formula (1.2-6) are known, what can be
determined mathematically about the unit vector n?

1.2-7 (a)Write a vector equation for the specific force at the cm of amoving vehicle,
in terms of the gravitational, centripetal, and Coriolis acceleration vectors,
and the derivative in Fe of vehicle velocity vCM/e. (b) Rewrite the equation
in terms of the derivative taken in Fv, ωv/i and ωe/i (see Table 1.4-1). (c)
Write the matrix equation for the NED components of the velocity in Fv .
(d) Explain how this equation could be used to perform inertial navigation
using Equations (1.4-3–6) and measurements from three accelerometers on a
servo-driven, NED-aligned platform.

1.2-8 Compare the Coriolis deflections of a mass reaching the ground for the fol-
lowing two cases:
(a) thrown vertically upward with initial velocity u
(b) dropped, with zero initial velocity, from the maximum height reached

in (a).

1.2-9 Show that, for a quaternion product, the norm of the product is equal to the
product of the individual norms.

1.2-10 Compare the operation count (+,−,×,÷) of the vector rotation formula
(1.2-6) with that of the quaternion formula (1.2-20b).

1.2-11 If a coordinate system b is rotating at a constant rate with respect to a system
a, and only the components of the angular velocity vector in system b are
given, find an expression for the quaternion that transforms coordinates from
b to a.
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Section 1.3

1.3-1 Derive the cross-product matrix used in Equation (1.3-9).

1.3-2 Derive the plane rotation matrix given in Equation (1.3-18)
(a) by using Equation (1.3-12);
(b) by trigonometry from Figure 1.3-1.

1.3-3 A “compound” rotation can be represented by a sequence of plane rotations,
but the plane rotations do not commute. Start with an airplane heading north
in level flight and draw two sequences of pictures to illustrate the difference
between a yaw, pitch, roll sequence, and a roll, yaw, pitch sequence. Let the
rotations (Euler angles) be yawψ = −90°, pitch θ = −45°, and rollφ = 45°.
State the final orientation.

1.3-4 Find the rotation matrix corresponding to (1.3-20) if the reference system has
its z-axis pointing up, not down.

1.3-5 Show that the rotation matrix between two coordinate systems can be cal-
culated from a knowledge of the position vectors of two different objects if
the position vectors are known in each system. Specify the rotation matrix in
terms of the solution of a matrix equation. Show how this technique could be
used to determine vehicle attitude by taking telescope bearings on two known
stars, given a star catalog.

1.3-6 Find the eigenvalues of the rotation matrix (1.3-17).

Section 1.4

1.4-1 The ECI position coordinates of a celestial object are (x, y, z). Determine
the ENU (east, north, up) position coordinates of the object with respect to a
tracking station on the surface of the Earth at celestial longitude λ, geodetic
latitudeφ, and sea-level altitude. Assume a spherical Earth (of radiusR), align
the ECI system with its z-axis pointing up toward the North Pole, and assume
that the ENU frame is obtained by rotating first through the longitude angle
and then through the latitude angle. Assume also that longitude is measured
east from the ECI x-axis. Show that the Earth’s radius appears in only one of
the required coordinates.

1.4-2 Starting from a calculus-textbook definition of radius of curvature, and the
equation of an ellipse, derive the formula (1.4-3) for the meridian radius of
curvature.

1.4-3 Use the fact that the prime vertical radius of curvature is equal to the distance
along the normal, from the spheroid surface to the semiminor axis, together
with the equation of the generating ellipse, and an expression for the gradient
of a normal, to derive the formula (1.4-5) for N . Also confirm Equation
(1.4-7) for the two parts of N .

1.4-4 Program the iterative calculation of geodetic coordinates, (1.4-11) and use
some test cases to demonstrate that it converges very quickly to many decimal
digits.
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1.4-5 Derive the formula (1.4-16), for G, starting from the potential function, V ,
in Equation (1.4-14). Use a geocentric coordinate system as mentioned in the
text.

1.4-6 Derive the formula (1.4-17) for geocentric latitude in terms of geodetic lati-
tude by using the geometry of the generating ellipse.

1.4-7 Starting from (1.4-16), write and test a program to evaluate |g| and |G| as
functions of geodetic latitude and altitude. Plot them both on the same axes,
against latitude (0 → 90°). Do this for h = 0 and 30,000 m.

1.4-8 Derive the conditions for a body to remain in a geostationary orbit of the
Earth. Use the gravity model and geodetic data to determine the geostationary
altitude. What are the constraints on the latitude and inclination of the orbit?

Section 1.5

1.5-1 Derive a set of linear state equations from Equations (1.5-6) by considering
perturbations from a steady-state condition with angular rates Pe,Qe, andRe.
Find expressions for the eigenvalues of the coefficient matrix when only one
angular rate is nonzero, and show that there is an unstable eigenvalue if the
moment of inertia about this axis is either the largest or the smallest of the
three inertias. Deduce any practical consequences of this result.

1.5-2 Use Euler’s equations of motion (1.5-6) and the Poisson kinematical equa-
tions (1.3-23) to simulate the angular motion of a brick tossed in the air and
spinning. Write a MATLAB program using Euler integration (1.1-4) to in-
tegrate these equations over a 300 s interval, using an integration step of 10
ms. Let the brick have dimensions 8 × 5 × 2 units, corresponding to x, y, z
axes at the center of mass. The moments C,m, n are all zero, and the initial
conditions are:
(a) φ = θ = ψ = 0, P = 0.1, Q = 0, R = 0.001 rad/s
(b) φ = θ = ψ = 0, P = 0.001, Q = 0, R = 0.1 rad/s
(c) φ = θ = ψ = 0, P = 0.0, Q = 0.1, R = 0.001 rad/s

Plot the three angular rates (deg/s) on one graph, and the three Euler angles
(in deg) on another. Which motion is stable and why?

1.5-3 Repeat 1.5-2, but use the Euler kinematical equations (1.3-22a) to represent
attitude. Add logic to the program to restrict the Euler angles to the ranges
described in Section 1.3.

1.5-4 An aircraft is to be mounted on a platform with a torsional suspension so that
its moment of inertia, Izz, can be determined. Treat the wings as one piece,
equal to one-third of the aircraft weight, and placed on the fuselage one-third
back from the nose.
(a) Find the distance of the aircraft cm from the nose, as a fraction of the

fuselage length.
(b) The aircraft weight is 80,000 lbs, the wing planform is a rectangle 40 ft

by 16 ft, and the planview of the fuselage is a rectangle 50 ft by 12 ft.
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Assuming uniform density, calculate the aircraft moment of inertia (in
slug-ft2).

(c) Calculate the period of oscillation (in s) of the platform if the torsional
spring constant is 10,000 lb-ft/rad.

1.5-5 The propeller and crankshaft of a single-engine aircraft have a combined
moment of inertia of 45 slug-ft2 about the axis of rotation, and are rotating at
1500 rpm clockwise when viewed from in front. Themoments of inertia of the
aircraft are roll: 3000 slug-ft2, pitch: 6700 slug-ft2, yaw: 9000 slug-ft2. If the
aircraft rolls at 100 deg/s, while pitching at 20 deg/s, determine the angular
acceleration in yaw. All inertias and angular rates are body-axes components.


